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Abstract

Formal verification (FV) has witnessed growing significance with emerging pro-
gram synthesis by the evolving large language models (LLMs). However, current
formal verification mainly resorts to symbolic verifiers or hand-craft rules, resulting
in limitations for extensive and flexible verification. On the other hand, formal
systems for automated theorem proving, such as Isabelle, serve as another line
of rigorous verification, upheld by extensive rules and theorems. In this paper,
we propose FVEL?3, an interactive Formal Verification Environment with LLMs.
Specifically, FVEL transforms a given code to be verified into Isabelle, and then
conducts verification via neural automated theorem proving with an LLM. The
joined paradigm leverages the rigorous yet abundant formulated and organized
rules in Isabelle and is also convenient for introducing and adjusting cutting-edge
LLMs. To achieve this goal, we extract a large-scale dataset for automated formal
verification named FVELER?. The FVELER dataset includes code dependencies
and verification processes that are formulated in Isabelle, containing 758 theories,
29,304 lemmas, and 201,498 proof steps with in-depth dependencies. We bench-
mark FVELER in the FVEL environment by fine-tuning LLMs with FVELER and
then evaluating them on Code2Inv and SV-COMP. The results show that FVEL
with FVELER fine-tuned Llama3-8B solves 17.39% (69—81) more problems, and
Mistral-7B 12% (75—84) more problems in SV-COMP. And the proportion of
proof errors is reduced. Project page: https://fveler.github.io/.

1 Introduction

Formal verification (FV), or automated program verification [36, 2] checks if a code meets a specific
demand and is correct to implement. As the code synthesis ability of current models [27, 24, 8] evolves
rapidly, there is a growing demand for automated verification of diverse and abundant synthesis
programs. However, current formal verification mainly resorts to symbolic verifiers [10, 6, 21] or
hand-craft rules [40]. However, symbolic verification can not leverage the advanced reasoning ability
of current large language models (LLMs), while hand-craft rules with limited execution on specific
code cases have restricted abilities to general verification.

On the other hand, automated theorem proving (ATP) [43, 1, 13] is a line of work on rigorous
verification with formal languages (e.g., Isabelle [29], Lean [5]) and interactive proof environments
(e.g., PISA [15], LeanDojo [41]). Such formal languages and toolkits maintain corresponding
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Figure 1: FVEL workflow. FVEL takes a C code as input, parses it into Isabelle definition, and then conducts
interactive formal proving with FVEL-LLM/human via outputting proof state and receiving generated proof.

libraries with a large number of human-written and checked theorems and rules, which are provided
as pre-training materials for many large language models [27, 37, 14]. The ATP formulation and rules
have strong expressiveness and, therefore have a great potential for describing formal verification
problems and requests. As a result, the verification can be implemented under a rigorous, step-wise,
and interactive ATP environment. Moreover, the pre-trained formal reasoning capabilities within
LLMs and their potential to solve formal verification problems are underexplored.

To take one step towards this goal, this paper proposes FVEL, a new formal verification environment
interacting with LLMs via automated theorem proving processes. Figure 1 demonstrates an overview
of FVEL. Specifically, the FVEL environment takes as input a code to be verified, converts the
code into Isabelle formulation, and generates a lemma in Isabelle followed by a whole proof to
the lemma. FVEL then outputs the proof result (succeed or failed being proved) as an indication
of the code verification result. FVEL interacts with an LLM by initially providing the converted
Isabelle formulation to the LLM and then receiving the derived lemma on the code specification.
The interaction is then continued by the LLM generating proof states and the FVEL environment
providing feedback via prover information in the PISA environment [15], such as cheating keywords
sorry or opps and other error messages. As a result, a user provides her code to be verified to
FVEL, and then she will receive the verification result and intermediate proving information. Note
that we follow previous works [6, 40] to investigate FVEL on C code verification in this paper. We
remain the extension of FVEL to support more programming languages as a near future work.

To implement the FVEL environment, we extract and cleanse a large-scale FVELER dataset with
deep dependencies, which can be applied as both a fine-tuning resource and evaluation benchmark.
The FVELER dataset has two main components: C code dependencies formulated by Isabelle
theories, and Isabelle lemmas with their step-wise proof states. FVELER then includes 758 theories
with 29,304 lemmas and 201,498 proof steps. The dataset is then randomly split according to lemmas,
resulting in training/validation/test/test-hard sets. The test-hard set data have dependencies that are
challenging to find. Statistical analysis shows that FVELER data comprehensively covers diverse
dependency depths and has a remarkable number of data with very deep dependencies. For example,
over 50% of lemmas have a depth greater than 78, while the deepest dependency is 156.

We then benchmark FVELER in the FVEL environment on the Code2Inv [36] and SV-COMP
[2] benchmarks. After fine-tuning on FVELER, Mistral-7B [14] and Llama3-8B* are observed
performance improvements on both benchmarks. For example, Llama3-8B solves 81 out of 1,000
SV-COMP problems, achieving a 17.39% improvement, and Mistral-7B improves by 12%. Moreover,
ablation study on statement and proof errors during FVEL verification shows that after fine-tuning
with FVELER, the proportion of proof errors is reduced, indicating the benefits of FVEL and
FVELER. The contributions of this paper are summarized as follows:
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1. We introduce FVEL, an interactive formal verification environment with LLMs that lever-
ages neural ATP advances including formulation, theorems, models, and prover.

2. We extract and cleanse a large-scale FVELER with 758 theories, 29,304 lemmas, and
201,498 proof steps in total that contain deep dependencies. We split FVELER into
training/validation/test/test-hard sets as fine-tuning resources and an evaluation benchmark.

3. We apply FVEL with several FVELER fine-tuned LLMs. The results show that FVEL
with FVELER fine-tuned LLMs show performance improvements on representative code
verification benchmarks, and the proof errors are reduced. The results indicate the benefits
of FVEL and FVELER.

2 Related Works

Formal Verification. Formal verification (FV), or automated program verification [36, 2], is the task
of verifying if a given code fulfills specific requirements. One line of work [10, 6, 21] resort to reduc-
ing the code into candidate loop invariant and then using satisfiability modulo theories (SMT) solver
for post-hoc verification. Different methods are proposed to improve the loop invariant inference,
including decision tree [20], reinforcement learning [42, 35], and neural network [33]. However,
finding or generating accurate loop invariants remains challenging, which hinders the preciseness
of the verification. Moreover, symbolic SMT solvers are time-consuming and uneconomical when
there is a large amount of code to be verified. The other line of work tries to introduce LLMs to
solving formal verification. For using LL.Ms to find loop invariants, Loopy [17] prompts LLMs to
exhaustively generate candidate invariants and include a repair procedure to improve the variants
by an SMT solver. For using LLMs to perform the program verification, Lemur [40] proposes to
integrate LLMs in formal verification by transforming the program invariants into deductively verified
sub-goals, appearing to be most relevant to our work. However, they hand-craft a proof system
with solely 8 rules without a demonstration of its completeness. Therefore, the expressiveness of
this hand-craft system is unclear. In this paper, we propose a new formal verification environment
that interacts with large language models to leverage their theorem-proving ability and also the
rigorous validation by automated theorem provers. The environment thus leverages the corresponding
extensive rule and theorem libraries.

Automated Theorem Proving with LLMs. The field of automated theorem proving (ATP) [34, 19,
3, 28, 22] utilizes formal languages such as first-order logic (FOL) and higher-order logic (HOL)
to describe mathematical problems, theorems, and solution processes, allowing rigorous step-by-
step validation through deductive reasoning to achieve final answers or proofs. Interactive theorem
proving (ITP) then introduces interactive proof assistants [29, 5, 4, 25] and automates the validation
process with machine learning methods [30, 9, 16, 39]. Furthermore, recent studies explore the
integration of large language models and theorem proving [15, 41, 38, 12, 23]. For example, PISA
[15] introduces an environment that allows language models to interact with an Isabelle server, which
are able to mine 183k lemmas and theorems from the Isabelle libraries. LeanDojo [41], on the
other hand, is a Lean environment that enables interaction between the language models and the
Lean prover with fine-grained annotations of premises in proofs and an LLM-based theorem prover.
Such interactive proving systems leverage both the abundant libraries of theorems and rules and
advanced performances of LLMs, which is promising for formalized applications such as formal
verification. To this end, this paper investigates a novel LLM interactive environment that advances
formal verification. The environment thus also helps solve automated theorem proving tasks.

3 FVEL: Interactive FV Environment with LL.Ms

Workflow of FVEL. Figure 1 demonstrates FVEL. The main idea of FVEL is to provide an
interactive environment with large language models (LLMs) that leverage rigorous theorem-proving
processes. The input of FVEL environment is a code to be verified. Specifically, we follow previous
studies [10, 40] to verify C code and conduct a pilot study on our new framework. Moreover, the
input format is flexible as one can choose to input an ensemble of C code and its corresponding
SIMPL and/or Isabelle content as supplements. The output of FVEL is the code verification result,
i.e., success or failure.
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Figure 2: (a) SeL4 ROOT file structure. It provides an example ROOT file content for the session Word_Lib.
(b) Theory dependency graph. Each theory file is grouped by the Session. (c) Step-wise lemmas extraction.

FVEL interacts with a large language model to achieve the verification. At the initial step of
interaction (S in Figure 1), FVEL transforms the input C code into facts, and then provides the facts
to the LLM. The LLM then generates a lemma in Isabelle [29] as a formal description of the code
specification. In this step, a code verification problem is transformed into an ATP problem. As a
result, FVEL can leverage the LLMs theorem-proving techniques and rigorous ATP validation. At
the follow-up interaction steps (S5;, % > 1 in Figure 1), the LLM is prompted to generate proof steps,
while FVEL incorporates an Isabell prover to provide feedback such as error messages to the LLM.
The process terminates until a whole proof is generated. If the proof success in proving the lemma,
FVEL outputs “success”, otherwise outputs “failure”.

Applying FVEL. The current version of FVEL supports code verification in C language. We leave
the generalization of FVEL to other programming languages as a near future work. To apply FVEL,
a user prepares her C code and passes it to FVEL. The user can customize her LLM for FVEL.
Therefore, FVEL adjusts to cutting-edge LLMs with strong theorem-proving ability and customized
LLMs. The user then gets the “success” or “failure” feedback regarding the verification result from
FVEL. Furthermore, the intermediate proof states and prover messages provide further information
about the verification.

Environment Implementation. We perform the C code transformation with the C-Parser [26] and
AutoCorres [7] and construct the environment based on Isabelle-scala® and PISA [15]. C-Parser can
translate a large subset of C99 code into the imperative language SIMPL. For every function in the C
source file, it generates a corresponding Isabelle definition literally without omitting details of the C
language. AutoCorres can further simplify and abstract the generated SIMPL language, producing a
higher-level functional specification that is easier to reason by humans. We provide the simplified
Isabelle definition to LLMs to better align with human interactive proving with Isabelle. Specifically,
Given the C source file, we use the PISA to set up the Isabelle process by including the directories
of C-parser and AutoCorres in the Isabelle “sessionRoots”, and setting the “workingDirectory”
to the C file. Then we initialize the Isabelle state by importing the C-parser and AutoCorres tools.
Lastly, we use PISA to interact with the Isabelle process, invoke tools to translate the C code, and
then extract the fact definition “c file name.function name’_def” after unfolding it in Isabelle. The
extracted definition can be passed to LLMs, and LLMs can generate lemma specifications and interact
with Isabelle prover in this setup process.

4 FVELER: Benchmarking FVEL

4.1 FVELER Overview

FVELER contains transformed Isabelle theories and lemmas from C codes that support the FVEL
environment for C code verification. FVELER has two main components: (1) Theories dependencies.
A resource for dependencies among theories, lemmas, and C code specified by SeL.4 verification.
These data provide the ground-truth seL4 premises for proving the current lemma and enable a
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model to retrieve related statements or proof context at both the training and testing stages. (2)
Lemmas from theories with their Isabelle proof states. The step-wise lemmas with multiple proof
states that support the Isabelle proving process in FVEL. These data on the one hand enhance LLMs
with search-based/step-wise ATP while interacting with FVEL, and on the other hand, provide a
benchmark for interactive formal verification. Figure 2 illustrates the construction processes of each
component.

In the following, we first introduce the preliminary for FVELER construction (Section 4.2), then
introduce the construction of the two components in FVELER: (1) the extraction of C-Code Depen-
dencies by Isabelle Theories (Section 4.3) and (2) the extraction of step-wise lemmas (Section 4.4).
We then demonstrate FVELER statistics and distribution in Section 4.5.

4.2 Preparation

Data Source. Sel.4° [18] is a system microkernel with comprehensive formal verification. Its
implementation verification against safety and security specifications contains multi-level formal
proof manually written in Isabelle, including abstract specification and concept level to concrete
implementation level. Since the open-source sel.4 verification contains high-quality and multi-level
proof following human reasoning, we choose seL4 as FVELER data source. Figure 2(a) demonstrates
the relations amount session, ROOT files, and lemmas in sel.4.

SelL4 Session. In sel.4, an Isabelle session contains a group of theory files that focus on proofing one
concept or topic, similar to the package in a programming language. Since the formal verification
of seL.4 is a large project that involves various aspects, different sessions are used to define code
specifications, construct intermediate definitions, and process C code semantics. Isabelle can build a
session into a binary file called “heap image” that can be fast-loaded for processing other theories.

ROOT Files. The ROOT files contain all the listed ROOTs that should be built by Isabelle. ROOT
files instruct Isabelle on how to build the sessions and verify the theories. Each session in a ROOT
file contains its names, parent sessions, entry theories, and directories of theory files. We use such
information to recursively construct the dependency graphs and set up the Isabelle environment to
extract step-wise proof states.

Theory and Lemma. A Theory file contains the necessary context and concrete proof for Isabelle
to formally verify the target lemmas. The context includes importing other theories, defining
intermediate symbols, and giving concrete lemma statements and proof. A lemma is a statement
that relates to the functionality demands of the codes. In FVEL, the goal of formal verification is to
generate the correct proof of these lemmas.

4.3 FVELER Construction: C-Code Dependencies by Isabelle Theories

The dependencies are all formulated and saved in Isabelle. The extraction of the dependencies is
via constructing a theory dependency graph. Figure 2(b) illustrates the theory dependency graph.
This graph nodes are the .thy theory files in seL.4 while the edges are the import relationships
between the theory files. It traces multi-hop dependency relationships by import among the Isabelle
lemmas within the theory files. With the theory dependency graph, it is convenient to locate and
extract multi-depth lemmas and their corresponding proofs.

While constructing the dependency graph, we first traverse all ROOT files according to the file order
specified in sel.4, and then parse the session and corresponding theories recursively to obtain the
dependency relationship. Specifically, the graph construction is started by sequentially parsing the
ROOT files in the sel.4 ROQOTS file. For each session, we match the keywords to extract its name, its
parents, and its directories. After extracting all session information, we traverse the ROOTS again
and parse the theory files under the “theories” keywords. We parse the string between “imports” and
“begin” keywords to extract the dependency relationships of these parent theories and parse these
theories recursively to form a graph of other theories given current or other session information. After
traversing all sessions, we construct a dependency graph among sessions and theories, which can be
used to provide dependent proof context or premise when generating formal verification.

SThe 14v library which contains the proofs for the SeL4 kernel are licensed under GPL version 2.



Table 1: FVELER Statistics. A theory is a .thy file in seL4 that contains multiple lemmas. Each lemma has
multiple proof steps. The train/val/test/test-hard data split is based on lemmas.

Total Train Val Test Test-Hard
> Theory
Number of Theories 758 - - - -
Average depth* - 73.687 73.732 73.958 31.476
Maximum depth 156 156 155 155 115
> Lemma
Number of Lemmas 29,304 26,192 1,145 1,115 852
> Proof Step
Number of proof steps™* 201,498 181,887 6,931 8,036 4,644
Average proof steps - 6.944  6.053  7.207 5.450
Maximum proof steps 963 963 188 574 107

‘Depth: Degree of the theory dependency graph by import relationship.
" Proof step: A single step in Isabelle producing a valid statement for interaction."

4.4 FVELER Construction: Step-Wise Lemmas

For extracting the lemmas and also saving their dependencies by theory files and their proof states,
we leverage the PISA [15] environment. We initial the PISA environment and parse all theory files
based on the session information the theory dependency graph developed in Section 4.3. Specifically,
As shown in Figure 2(c), we first build the seL.4 formal verification project’ and obtain the sessions’
binary heap images. Then given each theory file, we modify the PISA environment to include and
load all dependent sessions, setting the working directories to the processed theory files, and then
temporarily copying the files from session directories to the current one, such that the Isabelle process
can correctly import all dependent theory. Lastly, we use PISA to parse the theory file into multi-step
and perform step-wise interaction with Isabelle. For each step, Isabelle will return a proof state and
we store the step and proof state as a step-wise training sample. We traverse the sel.4 verification
projects and extract most of the theory files. Specifically, we omit some experimental theory files that
can not be verified by Isabelle or failed when interacting with PISA. We also omit the sessions for
documentation, C parser [26] and AutoCorres [7] as they do not contain lemmas that are relevant to
formal proving.

4.5 FVELER Splits, Statistics, and Distributions

Splits. We randomly split FVELER according to lemmas, resulting in a training set, a validation set,
a test set, and an especially selected test-hard set. The test-hard set is selected from those lemmas in
the three sessions “Syslnit”, “SysInitExamples”, “LibTest”. Such lemmas are in higher depths in the
dependency relationship, therefore they have less import relationships by other theories.

Statistics. Table 1 demonstrates the number of samples in FVELER and each data split. FVELER
in total contains 758 Isabelle theories, with 29,304 lemmas and 201,498 proof steps. The average
dependency depths among the theories range from 31 to 73. The maximum dependency path reaches
a depth of 156. The average proof step ranges from 5 to 8, while the maximum of proof steps in a
lemma reaches 963. In general, FVELER is a large-scale dataset with deep dependencies among the
Isabelle theorems and lemmas that fit C code formulation. It thus supports the interactive C code
verification with a theorem-proving LLM.

Distribution of Dependency by Theory. We quantify the dependency by “depth”, which is the
degree of the theory dependency graph by the import dependency relationship among the theory
files, as introduced in Section 4.3. Figure 3a demonstrates the distribution of theories by the depth of
dependency relationship. Besides the number of theories in depth=1 is the highest 59 followed by
depth=2 and depth=3 with 29 theories, respectively, small peaks are observed in multiple depth levels.
For example, depth=7 has 19 theories, depth=16 to 22 have around 15 theories, and there are still 11

"https://github.com/selL4/14v
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Figure 3: The FVELER dependency distributions by theory and lemma, respectively.

theories that have depth=36. Most impressively, depth=112 to 115 appear to have on average around
10 theories. As a result, FVELER has very in-depth and comprehensive dependencies information,
which can be beneficial for not only code verification with dependencies but also multi-step ATP.

Distribution of Dependency by Lemma. Figure 3b demonstrates the distribution of 29,304 lemmas
by depth. That is, each lemma belongs to one of the 758 theories whose depth in its dependency is
calculated here. Therefore, in Figure 3b we observe a more fine-grained dependency distribution
within the theory files. It is shown that lemmas with deep dependency are widely distributed. Lemmas
with depth>78 are 14,668, over 50% of all lemmas. For example, depth=116 there are 659 lemmas.
Moreover, there are also 11,518 lemmas with shorter depth=1 to 40. Besides, a curious observation
is that depth=39 to 46 are not found in lemmas. Therefore, FVELER widely supports verification
with diverse depths of dependency.

Distribution of Lemma Steps. One proof step in a lemma is from a current proof state to the next
which produces a sound statement for interaction in PISA. Figure 4 demonstrates the distribution
of intermediate proof steps of the 29,304 lemmas. It is indicated that the number of proof steps are
dramatically different amount the lemmas. 12,089 out of the 29,304 lemmas can be proved via one
proof step. Proof steps between 2 and 10 there are 12,957 lemmas. Therefore, over 85% of the
lemmas in FVELER can be proved within 10 steps. Moreover, 28,954 out of the 29,304 lemmas
can be proved within 100 steps. Therefore FVELER is more helpful for verification within 100 ATP
steps, which is sufficient for covering most of the cases in practice.

5 Benchmark Study

5.1 Setup

Dataset. We benchmark FVELER in the FVEL environment on Code2Inv [36] and SV-COMP [2].
The Code2Inv dataset contains 133 programs in C, and the SV-COMP dataset is from the Software-
Verification Competition with over 23k C programs. These two datasets are purposed for formal
verification. SV-COMP is a competition to establish a set of benchmarks for software verification. In
the competition, the verifiers input a program that implements a particular function and a specification
that describes the expected behavior of the program, e.g., no illegal accesses to arrays, no memory
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Figure 4: The FVELER lemma distribution over step intervals. The y-axis is adjusted to a logarithmic scale.

leaks, and so on. The verifiers judge that the program meets the specification and output a boolean
value. Code2Inv covers a wide range of programs with one or more nested and conditioned loops,
and the verifiers are required to find out the loop invariants during the loop, which is the key to
understanding the work logic of the function. In this task, we convert the problem into proving
that the loop invariant satisfies the loop. Since C-parser supports only part of the C99 standard, we
normalize the C code to make C-parser work properly. Please refer to the supplementary materials
for more details on preprocessing and implementation.

Fine-tuning. We use the training set of FVELER to fine-tune language models. In this study, we
employ LORA [11] to fine-tune two most advanced open-source large language models which excel
in mathematical reasoning and code generation: Llama-3-8B-instruct* and Mistral-7B-Instruct-v0.2
[14]. We convert the training data into the alpaca format, where all training samples use the same
instruction, the input is the lemma specification, and the output is a complete proof written in Isabelle.

Inference. During inference, we transfer the input c-code functions into Isabelle facts in FVEL
environment, requiring the language model to generate a lemma specification to verify that it satisfies
the specifications (e.g., that the assertion holds or does not result in an overflow). The language
model generates proof and interacts with PISA. If proof is passed by Isabelle proving environment,
we consider it a successful verification.

Evaluation. We follow the evaluation settings of Lemur [40]. Within a specified timeout, Lemur,
UAotumizer, and ESBMC generate proposals and call solvers for verification. Our approach interacts
with PISA and self-corrects by the returned error messages.

5.2 Compared Methods

The methods we compare include the symbolic solvers: Uautomizer [10] and ESBMC [6], and
the LLM-based method: Lemur [40]. UAUTOMIZER [10] is the overall champion of the 12th
Competition on Software Verification (SV-COMP 2023)8. Combined with static analysis and model
checking, it is one of the few verifiers that can give witness during verification. ESBMC [6] is
based on K-induction, which is particularly useful for verifying the properties of loops and recursive
functions. Lemur presents a set of derivation rules and makes proposals using a language model to
approximate the boundary conditions of the loop invariant by interacting with the verifier.

5.3 Formal Verification Results

Table 2 reports the number of passed verification tasks. Formal verification for C code in the Isabelle
environment is a great challenge. First, the language model needs to generate the correct lemma

$https://sv-comp.sosy-lab.org/2023/
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Table 2: Result on formal verification task. FT: Fine-tuned.

Model Code2Inv (#=133) SV-COMP-47 (#=47) SV-COMP (#=1,000)
> Symbolic Solver

UAUTOMIZER [10] 92 1 374
ESBMC [6] 68 1 358
> LLM-based Solver

Lemur-GPT-3.5-turbo [40] 103 14 -
Lemur-GPT-4 [40] 107 25 -
Mistral-7B [14] 37 10 75
Mistral-7B-FT 40 14 84
Llama3-8B* 46 11 69
Llama3-8B-FT 46 16 81

Table 3: Failure types of Code2Inv and SV-COMP datasets.

Model Code2Inv SV-COMP

statement error (%) proof error (%) statement error (%) proof error (%)
Mistral-7B 70.8 29.2 49.7 50.3
Mistral-7B-FT 72.0 28.0 59.0 41.0
Llama3-8B 67.8 32.2 53.0 47.0
Llama3-8B-FT 66.7 333 61.8 38.2

specification, which is particularly difficult on code2inv and SV-comp-47 datasets with loops or
complex conditions, and thus our fine-tuned prover model achieves limited performance gains. On
the Code2Inv dataset, the uncertain looping conditions pose an additional challenge for the language
model to validate C programs. The performance of the fine-tuned model on the SV-COMP-47 dataset
equals or exceeds that of Lemur-GPT-3.5-trubo. In addition, symbolic solvers overwhelmingly
dominate the SV-comp-1,000 dataset, which covers diverse specifications. The lack of a relevant
corpus makes it difficult for language models to verify specifications such as concurrency and no-
overflow. Since FVELER originates from the seL.4 micro-kernel operating system, the correlation of
the data makes fine-tuning on the SV-COMP dataset effective.

5.4 Ablation Study

Further analysis in Table 3 shows that most of the validation errors in the Code2Inv dataset come
from specification generation, which can be type mismatching, syntax errors, etc. In particular, it is
difficult to generate an accurate lemma specification under uncertain loop conditions. In contrast,
the SV-COMP dataset has a larger fraction of validation errors from proof generation, and our
finetuned prover model effectively reduces these proof errors. It suggests that it is feasible to utilize
language models for formal verification in the Isabelle environment, but how to verify that the lemma
specification generated by the model is semantically and syntactically correct remains a challenge.

5.5 Generalization to Other Programming Language

Given Python’s status as one of the most widely adopted programming languages, it is frequently
utilized in code generation and tool invocation for Large Language Model inference. This study
contemplates the formal verification of Python code. However, many existing code translation datasets
are deficient in aligned C to Python samples. The C code prevalent in most datasets is written in C++,
which poses a challenge since the C-parser tool accommodates only the C99 standard. Considering
the complexities associated with employing automated tools or rules to normalize these C++ codes to
C99, we have elected not to leverage open-source datasets such as HumanEval-X [44], CodeNet[31],
and others. Instead, we have collected algorithmic solutions implemented in various programming



Table 4: Result on Python (Translated to C) Code Verification.

Model # Verified
Mistral-7B 35/93
Mistral-7B-FT 42 /93
Llama3-8B 38/93

Llama3-8B-FT 43/93

languages from the Online Judge platforms (LeetCode® and POJ'?) and manually ascertained their
semantic equivalence. Consequently, we have compiled a modest test dataset comprising 93 samples,
with each data point featuring both a Python solution and a corresponding C solution. An exemplar
data point is presented in the supplementary materials. This dataset will be made accessible on our
GitHub repository.

We employed GPT-4 to translate the collated Python code into C. Through prompt engineering, we
ensured that GPT-4 generated code adhering to the C99 standard and evaluated the quality of the
generated code using the success rate of C-parser parsing and the CodeBLEU[32] metric relative to
the ground truth. The results indicate that GPT-4 achieved an 84% pass rate (79/93) and a CodeBLEU
score of 81.32.

Subsequently, we input the translated C code into our framework and conducted verification using
our baseline models. The outcomes are delineated in Table 4.

After fine-tuning, Mistral and Llama successfully validated 42 and 43 pieces of code, respectively.
This indicates that pre-trained Large Language Models have already demonstrated significant ca-
pability in verifying simple Python programs that do not involve complex import structures. With
additional fine-tuning, performance can be further enhanced. Moreover, the FVELframework has the
potential to be adapted for the verification of code in other programming languages, showcasing its
versatility and applicability beyond the current scope.

6 Conclusion

This paper proposes FVEL, an interactive formal verification environment that can interact with
LLMs by formulating formal verification (FV) dependencies and requests into automated theorem
proving (ATP) theories and lemmas, and the verification processes into lemma proofs. We extract and
cleanse a large-scale dataset FVELER with deep dependencies among Isabelle theorems and lemmas
that formulate the formal verification. Statistical analysis suggests that FVELER has comprehensive
and deep dependency information among the theorems and lemmas, and the multi-step lemma
proofs reach 100 steps. We benchmark FVELER by fine-tuning LL.Ms and then interacting with
the FVEL environment. We evaluate Llama3-8B and Mistral-7B in this setting. Evaluations on
Code2Inv and SV-COMP show improvements. For example, performances on SV-COMP of 17.39%
(69—81) by Llama3-8B and 12% (75—84) by Mistral-7B, and the proof error proportions are
reduced. Experiments on Python code show that our approach has the ability to generalize to validate
other programming languages. The results demonstrate the benefits of FVEL and FVELER.

Acknowledgements

This work was supported in part by the National Science and Technology Major Project
(2020AAA0109704), National Science Foundation of China Grant No. 62476293, Guangdong
Outstanding Youth Fund (Grant No. 2021B1515020061), Shenzhen Science and Technology Pro-
gram (Grant No. GJHZ20220913142600001), Nansha Key RD Program under Grant No.2022Z2D014,
the Major Key Project of PCL (No. PCL2024A04), China Postdoctoral Science Foundation No.
2023M744001.

“https://leetcode.com/
"http://poj.org/

10



References

(1]

(2]

(3]

(4]

(5]

(6]

(71
(8]

(9]

[10]

[11]

[12]

[13]

The lean mathematical library. In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of
the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020,
New Orleans, LA, USA, January 20-21, 2020, pages 367-381. ACM, 2020.

Dirk Beyer. Competition on software verification and witness validation: SV-COMP 2023.
In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 29th International Conference, TACAS 2023, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Paris,
France, April 22-27, 2023, Proceedings, Part II, volume 13994 of Lecture Notes in Computer
Science, pages 495-522. Springer, 2023.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. A deductive database approach
to automated geometry theorem proving and discovering. J. Autom. Reason., 25(3):219-246,
2000.

Projet Coq. The coq proof assistant-reference manual. /NRIA Rocquencourt and ENS Lyon,
version, 5, 1996.

Leonardo Mendonca de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in
Computer Science, pages 378-388. Springer, 2015.

Mikhail Y. R. Gadelha, Felipe R. Monteiro, Jeremy Morse, Lucas C. Cordeiro, Bernd Fischer,
and Denis A. Nicole. ESBMC 5.0: an industrial-strength C model checker. In Marianne
Huchard, Christian Kistner, and Gordon Fraser, editors, Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018, pages 888-891. ACM, 2018.

David Greenaway. Autocorres tool, 2016. Accessed May 2016.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder:
When the large language model meets programming - the rise of code intelligence. CoRR,
abs/2401.14196, 2024.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022.

Matthias Heizmann, Jiirgen Christ, Daniel Dietsch, Evren Ermis, Jochen Hoenicke, Markus
Lindenmann, Alexander Nutz, Christian Schilling, and Andreas Podelski. Ultimate automizer
with smtinterpol - (competition contribution). In Nir Piterman and Scott A. Smolka, editors,
Tools and Algorithms for the Construction and Analysis of Systems - 19th International Confer-
ence, TACAS 2013, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7795 of Lecture
Notes in Computer Science, pages 641-643. Springer, 2013.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang,
Zhenguo Li, Lingi Song, and Xiaodan Liang. MUSTARD: Mastering uniform synthesis of
theorem and proof data. In The Twelfth International Conference on Learning Representations,
2024.

Mauro Jaskelioff and Stephan Merz. Proving the correctness of disk paxos. Archive of
Formal Proofs, June 2005. https://isa-afp.org/entries/DiskPaxos.html, Formal
proof development.

11


https://isa-afp.org/entries/DiskPaxos.html

[14] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825,
2023.

[15] Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. Lisa: Language models
of isabelle proofs. In 6th Conference on Artificial Intelligence and Theorem Proving, pages
378-392, 2021.

[16] Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz
Odrzygézdz, Piotr Milos, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to
integrate language models and automated theorem provers. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurlPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

[17] Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deligiannis, Shuvendu K.
Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma. Finding inductive loop
invariants using large language models. CoRR, abs/2311.07948, 2023.

[18] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David A. Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. sel.4: formal verification of an os kernel. In Jeanna Neefe
Matthews and Thomas E. Anderson, editors, Proceedings of the 22nd ACM Symposium on
Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009,
pages 207-220. ACM, 2009.

[19] Laura Kovacs and Andrei Voronkov. First-order theorem proving and vampire. In Natasha
Sharygina and Helmut Veith, editors, Computer Aided Verification - 25th International Con-
ference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of
Lecture Notes in Computer Science, pages 1-35. Springer, 2013.

[20] Siddharth Krishna, Christian Puhrsch, and Thomas Wies. Learning invariants using decision
trees. CoRR, abs/1501.04725, 2015.

[21] Daniel Kroening and Michael Tautschnig. CBMC - C bounded model checker - (competition
contribution). In Erika Abraham and Klaus Havelund, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 20th International Conference, TACAS 2014, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes in Computer
Science, pages 389-391. Springer, 2014.

[22] Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and
Xujie Si. A survey on deep learning for theorem proving. CoRR, abs/2404.09939, 2024.

[23] Jiangiao Lu, Zhengying Liu, Yingjia Wan, Yinya Huang, Haiming Wang, Zhicheng Yang, Jing
Tang, and Zhijiang Guo. Process-driven autoformalization in lean 4, 2024.

[24] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct. CoRR, abs/2306.08568, 2023.

[25] Norman Megill and David A Wheeler. Metamath: a computer language for mathematical
proofs. Lulu. com, 2019.

[26] Michael Norrish. C-to-isabelle parser, version 1.13.0, may 2013. Accessed May 2016.
[27] OpenAl. GPT-4 technical report. CoRR, abs/2303.08774, 2023.
[28] Jens Otten and Wolfgang Bibel. leancop: lean connection-based theorem proving. J. Symb.

Comput., 36(1-2):139-161, 2003.

12



[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

Lawrence C. Paulson. Isabelle - A Generic Theorem Prover (with a contribution by T. Nipkow),
volume 828 of Lecture Notes in Computer Science. Springer, 1994.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Codenet: A large-scale ai for
code dataset for learning a diversity of coding tasks.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming
Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code
synthesis. arXiv preprint arXiv:2009.10297, 2020.

Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana. CLN2INV: learning
loop invariants with continuous logic networks. In 8t International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Stephan Schulz. E—a brainiac theorem prover. Ai Communications, 15(2-3):111-126, 2002.

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning loop
invariants for program verification. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolo Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 7762-7773, 2018.

Xujie Si, Aaditya Naik, Hanjun Dai, Mayur Naik, and Le Song. Code2inv: A deep learning
framework for program verification. In Shuvendu K. Lahiri and Chao Wang, editors, Computer
Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July
21-24, 2020, Proceedings, Part 11, volume 12225 of Lecture Notes in Computer Science, pages
151-164. Springer, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, and Xiaodan Liang. LEGO-prover:
Neural theorem proving with growing libraries. In The Twelfth International Conference on
Learning Representations, 2024.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han
Shi, Yujun Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang. Dt-solver: Automated theorem
proving with dynamic-tree sampling guided by proof-level value function. In Anna Rogers,
Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 12632—-12646. Association for Computational Linguistics,
2023.

Haoze Wu, Clark Barrett, and Nina Narodytska. Lemur: Integrating large language models

in automated program verification. In The Twelfth International Conference on Learning
Representations, 2024.

13



[41]

[42]

[43]

[44]

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad
Godil, Ryan J. Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with
retrieval-augmented language models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurlPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Shiwen Yu, Ting Wang, and Ji Wang. Loop invariant inference through SMT solving enhanced
reinforcement learning. In René Just and Gordon Fraser, editors, Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2023, Seattle, WA,
USA, July 17-21, 2023, pages 175-187. ACM, 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark
for formal olympiad-level mathematics. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan
Wang, Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 5673-5684, 2023.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The main claims and abstract clearly reflect the paper’s
contributions and scope.

(b) Did you describe the limitations of your work? [Yes] See in the supplemental materials.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See in the
supplemental materials.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have read the ethics review guidelines and our paper conforms to
them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] Our paper
does not include theoretical results.
(b) Did you include complete proofs of all theoretical results? [N/A] Our paper does not
include theoretical results.
3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] See in the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See in the supplemental material.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? We do not report the error bars due to computational
constraints. However, our experiments are conducted on sufficient large datasets with
significance. And we confirm the reproducibility of our method by providing all
relevant materials.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See in the supplemental material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We have cited the use
of PISA environment.

(b) Did you mention the license of the assets? [Yes] See Section 4.2

14



(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
New assets are included in the supplemental material

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] Our dataset is extracted from the publicly available 14v library
under GPL version 2 license.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A| The data are Isabelle code for the SelL4 system
kernel formal verification. Which do not include any personally identifiable information
or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] Our paper does not use crowdsourcing or conduct research with
human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] Our paper does not use crowdsourcing or
conduct research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] Our paper does not use crowdsourcing or
conduct research with human subjects.

15



	Introduction
	Related Works
	FVEL: Interactive FV Environment with LLMs
	FVELer: Benchmarking FVEL
	FVELer Overview
	Preparation
	FVELer Construction: C-Code Dependencies by Isabelle Theories
	FVELer Construction: Step-Wise Lemmas
	FVELer Splits, Statistics, and Distributions

	Benchmark Study
	Setup
	Compared Methods
	Formal Verification Results
	Ablation Study
	Generalization to Other Programming Language

	Conclusion

