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Abstract001

The growing capabilities of large language002
models in natural language understanding003
significantly strengthen existing agentic sys-004
tems. To power performant on-device mo-005
bile agents for better data privacy, we intro-006
duce DroidCall, the first training and testing007
dataset for accurate Android Intent invocation.008
With a highly flexible and reusable data gen-009
eration pipeline, we constructed 10k samples010
in DroidCall. Given a task instruction in nat-011
ural language, small language models such as012
Qwen2.5-3B and Gemma2-2B fine-tuned with013
DroidCall can approach or even surpass the014
capabilities of GPT-4o for accurate Android015
intent invocation. We also provide an end-016
to-end Android app equipped with these fine-017
tuned models to demonstrate the Android in-018
tent invocation process. The code and dataset019
are available at https://anonymous.4open.020
science/r/DroidCall-C100.021

1 Introduction022

The advent of large language models (LLMs) rev-023

olutionizes natural language processing, enabling024

machines to understand and generate human-like025

language with unprecedented accuracy. In the026

realm of mobile computing, this advancement027

presents a significant opportunity for developing028

intelligent mobile agents (Li et al., 2024; Zhang029

et al., 2024b; Wen et al., 2024; Wang et al., 2023a).030

Specifically, these agents can leverage the rich031

ecosystem of built-in intents (int, 2024) provided032

by both the operating system and third-party appli-033

cations on Android devices. These intents serve034

as a fundamental mechanism for inter-app com-035

munication and function invocation, such as send-036

ing messages, making phone calls, or triggering037

specific app features. By harnessing LLMs, mo-038

bile agents can interpret diverse and complex user039

instructions, seamlessly mapping them to the ap-040

propriate intents, and therefore automating user041

interaction with mobile devices.042

Figure 1: Small language models fine-tuned with
DroidCall have the capability to assist users in complet-
ing common tasks such as adding events to the calendar.

On-device LLMs are necessary for building 043

mobile agents due to privacy and latency con- 044

straints (goo, 2024; Lu et al., 2024c; Yin et al., 045

2024; Xu et al., 2023b; Yuan et al., 2024). Since 046

user data are processed locally, sensitive informa- 047

tion remains on devices, thereby mitigating risks 048

associated with data transmission over networks. 049

Moreover, on-device inference eliminates the need 050

for constant internet connectivity. Various on- 051

device LLM inference optimizations significantly 052

reduce response time (Xu et al., 2024b; Yi et al., 053

2023a; Xu et al., 2024a), leading to a more respon- 054

sive and fluid user experience. 055

However, our investigations reveal a critical chal- 056

lenge: Existing device-affordable LLMs lack the 057

capability of accurate intent invocation. For exam- 058

ple, Llama3.2-1B (Dubey et al., 2024) only suc- 059

ceeds in 31.5% and 60.5% of the tasks in zero-shot 060
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and few-shot scenarios, respectively. This limita-061

tion is not due to inherent deficiencies in the models062

themselves but stems from the absence of special-063

ized datasets tailored for this purpose. Existing064

LLMs are typically trained on broad datasets that065

do not encompass the specific language patterns066

and contextual nuances required for accurate intent067

invocation.068

To address this gap, we introduce DroidCall,069

the first open-sourced, high-quality dataset de-070

signed for fine-tuning LLMs for accurate intent in-071

vocation on Android devices, along with a flexible072

and reusable data generation pipeline. DroidCall073

comprises an extensive collection of user instruc-074

tions paired with their corresponding intents, cov-075

ering a wide array of functionalities across the076

system and third-party apps while the data gen-077

eration pipeline automatically generates, validates,078

and deduplicates data to ensure accuracy and diver-079

sity. Unlike existing methods (Wang et al., 2022;080

Taori et al., 2023; Qin et al., 2023), our approach081

eliminates the need for manually written seed data,082

significantly reducing labor.083

Evaluation. Based on DroidCall, we fine-084

tuned a series of small language models (SLMs)085

that are tailored for on-device use. We demon-086

strate that by fine-tuning models on DroidCall,087

the Android Intent invocation capabilities of these088

SLMs can be effectively unleashed. Some models089

can even achieve higher accuracy than GPT-4o us-090

ing simpler prompts. While prompts for GPT-4o091

contain an average of 1,367 tokens, models after092

fine-tuning, achieve this with an average of just093

645 tokens. The accuracy of using Gemma2-2B094

improves from 59% to 85% after fine-tuned on095

DroidCall, while GPT-4o only achieves an accu-096

racy of 77%.097

End-to-end demo and open-source. We also098

provide an end-to-end Android demonstration with099

the fine-tuned models based on mllm (Yi et al.,100

2023b), a fast and lightweight multimodal LLM in-101

ference engine, which demonstrates the feasibility102

of our work. The demo is illustrated in Figure 1,103

which can assist users in completing common op-104

erations such as composing emails, setting alarms,105

making phone calls, and so on.106

2 Related Work107

2.1 LLM-based Agents108

LLMs have emerged as a significant advancement109

in artificial intelligence, particularly in natural lan-110

guage processing. OpenAI’s GPT series (Achiam 111

et al., 2023) has led the development of LLMs, 112

which have rapidly gained attention. Open-source 113

LLMs (Yang et al., 2024; Team, 2024; Bai et al., 114

2023; Dubey et al., 2024; Liu et al., 2024a; Zhu 115

et al., 2024; GLM et al., 2024) have also emerged, 116

with capabilities approaching or rivaling GPT-4. 117

Additionally, models like GPT-4V have extended 118

LLMs with visual capabilities (Yang et al., 2023c; 119

Lu et al., 2024a; Wang et al., 2024c; Liu et al., 120

2024b), enabling them to handle more complex 121

tasks. 122

Prompting techniques such as React (Yao et al., 123

2022), Plan and Solve (Wang et al., 2023b), and 124

ReWOO (Xu et al., 2023a) allow LLMs to plan 125

tasks, use tools, and interact with external envi- 126

ronments. These advancements have led to the 127

development of agents like AutoGPT (Yang et al., 128

2023a), MetaGPT (Hong et al., 2023), and Hug- 129

gingGPT (Shen et al., 2024b), which can assist 130

humans in various tasks. 131

2.2 Mobile Device Control Agents 132

Agents for mobile device control have seen signif- 133

icant development. Early work (Venkatesh et al., 134

2022; Wang et al., 2023a; Wen et al., 2024) pri- 135

marily focused on designing UI representations for 136

models to understand mobile screens. With the 137

advent of multimodal LLMs, agents like AppA- 138

gent (Yang et al., 2023b) and Mobile Agent (Wang 139

et al., 2024b,a) now integrate visual capabilities to 140

accomplish complex tasks on mobile devices. 141

However, existing agents have limitations: (1) 142

Most rely on cloud-side LLMs like GPT-4, which 143

raises privacy concerns and fails in poor network 144

conditions. Our work addresses this by deploying 145

SLMs on edge devices. (2) Existing agents simu- 146

late human actions (e.g., tap and swipe) to operate 147

devices, which is inefficient and error-prone. We 148

propose intent invocation through function calling 149

as a more efficient and accurate approach. For ex- 150

ample, instead of navigating the UI to set an alarm, 151

the agent directly communicates the intent to the 152

app. 153

2.3 LLMs for Function Calling 154

The emergence of LLMs has enabled powerful 155

function-calling capabilities. Pioneering work like 156

Toolformer (Schick et al., 2024) demonstrated 157

LLMs’ ability to use external tools. Developing 158

these capabilities often requires substantial training 159

data; following the Self-Instruct paradigm (Wang 160
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Figure 2: Workflow of DroidCall, which consist of three key phases:(1) Functions Predefinition; (2) Data
Generation; (3) Finetuning and Evaluation.

et al., 2022), various efforts (Qin et al., 2023; Tang161

et al., 2023; Patil et al., 2023; Kim et al., 2023)162

have generated extensive function-calling datasets.163

Furthermore, numerous benchmarks and datasets,164

including APIGen (Liu et al., 2024d), Shortcuts-165

Bench (Shen et al., 2024a), ToolACE (Liu et al.,166

2024c), AppWorld (Trivedi et al., 2024), Android-167

World (Rawles et al., 2024), ToolSandbox (Lu et al.,168

2024b), and BFCLv3 (Yan et al., 2024), have been169

constructed to evaluate LLM tool use. AgentOhana170

(Zhang et al., 2024a) notably focused on standard-171

izing data formats and training pipelines.172

Our work introduces a reusable and customiz-173

able data generation pipeline specifically for An-174

droid intent invocation, aiming for better edge per-175

formance than large models like GPT-4o. We also176

provide straightforward methods for fine-tuning177

and evaluation. While similar mobile function-178

calling agents exist, such as TinyAgent (Erdogan179

et al., 2024) (macOS-specific) and Octopus (Chen180

and Li, 2024) (requires model architecture adjust-181

ments), neither offers publicly available code for182

data generation or fine-tuning, distinguishing our183

contribution.184

3 DroidCall Dataset and Workflow185

This section outlines the DroidCall framework,186

detailing its three key phases for building Android187

intent invocation capabilities: Function Predefini-188

tion, Data Generation, and Model Fine-tuning &189

Evaluation, as illustrated in Figure 2. Our data190

generation method requires minimal human super-191

vision and is easily extensible. We conclude with192

an end-to-end demonstration of device control us-193

ing fine-tuned LLMs.194

3.1 Collecting Android Intents 195

In Android development, an intent is a messag- 196

ing object facilitating communication between app 197

components, used to request actions. Intents are 198

broadly categorized: Explicit Intents target spe- 199

cific components (e.g., internal app communica- 200

tion), while Implicit Intents declare a general ac- 201

tion, allowing any compatible component to re- 202

spond. 203

DroidCall aims to enable models for function 204

calling on Android devices for common operations. 205

Implicit intents are particularly suitable for this, as 206

they efficiently express user intentions and utilize 207

system resources. 208

To construct the DroidCall dataset, we re- 209

viewed Android’s official documentation (com, 210

2024). From this, we selected most frequently- 211

used implicit intents, encapsulating them into 24 212

predefined functions. This selection covers the 213

majority of standardized inter-app communication 214

scenarios, enabling common operations such as 215

alarm configuration, email composition, and web 216

searching. 217

3.2 Dataset Generation 218

In this section, we present a detailed description 219

of the DroidCall dataset generation process. The 220

process is orchestrated by a Collector component 221

that coordinates interactions among other key com- 222

ponents: the Sampler, LLM, and Filter. We first 223

introduce these key components, and subsequently 224

elaborate on the critical phases of data generation: 225

function predefinition, seed data generation, and 226

data generation. The entire dataset generation pro- 227

cess leverages GPT-4-turbo as the underlying lan- 228

guage model. Figure 3 shows the overall data gen- 229
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eration workflow orchestrated by the Collector.230

Figure 3: Details of data generation in DroidCall. To
avoid manually creating seed data, DroidCall initially
samples examples from an external dataset to generate
its first set of data. Subsequently, the data is used as
seed data to continuously generate new data, thereby
eliminating the need for laborious manual work. All
the generated data will go through a set of customized
filters to ensure the correctness of data formats and the
diversity of the data.

3.2.1 Key Components of Generation Pipeline231

The data generation pipeline consists of four key232

components: Sampler, LLM, Filter, and Collector.233

Sampler. The sampler takes multiple data234

sources (e.g., lists, jsonl files) as input, samples235

data according to a specific strategy, and organizes236

it into a user-defined format for output.237

LLM. The LLM is the core engine for data gen-238

eration. Using the self-instruct paradigm (Wang239

et al., 2022), we integrate sampled data into prompt240

templates and generate data via the LLM. In this241

work, GPT-4-turbo is used as the LLM, a choice242

motivated by preliminary assessments of various243

models, as detailed in Appendix B.244

Filter. Filters process the LLM’s output, extract-245

ing structured data, discarding improperly format-246

ted data, and removing highly similar data. The247

framework supports custom filters for flexible data248

processing.249

Collector. The Collector serves as the central250

orchestrator of the data generation pipeline. It man-251

ages the workflow, directing the Sampler to retrieve252

source data, passing data and prompt templates to253

the LLM for raw output generation, routing the254

LLM’s output through the sequence of Filters for255

validation and deduplication, and finally collecting256

the processed high-quality data.257

3.2.2 Functions Predefinition258

Automated extraction of intents from the Android259

Open Source Project (AOS, 2024) is complex due260

to the dynamic nature of the Android platform. To261

avoid these challenges, we predefine 24 functions 262

covering common Android operations, utilizing 263

common intents for their implementation. These 264

functions act as an interface between the LLM and 265

the intents, hiding intent details from the LLM. 266

This approach ensures compatibility across differ- 267

ent Android versions, as the LLM only needs to 268

learn the functions, while the underlying intent 269

implementations can be adapted as needed. The 270

predefined functions support operations such as: 271

• Scheduling Assistant: Set alarms/timers, in- 272

sert calendar events. 273

• Contact Management: Add contacts, make 274

phone calls. 275

• Common Operations: Internet search, map 276

search, open camera, adjust settings. 277

• Messaging Services: Compose text messages 278

or emails. 279

In our framework, functions are predefined simi- 280

larly to ordinary Python functions. We write func- 281

tion signatures and provide Google-style docstrings 282

(Goo, 2024), from which structured information is 283

automatically extracted. The extracted data format 284

is shown in Listing 1. 285
286

{ 287
"name": "func1", 288
"description": "This function is ...", 289
"arguments": { 290

"arg1": { 291
"description": "This arg is...", 292
"type": "<type >", 293
"required": "true or false", 294
"default": "<default_value >" 295

}, 296
"arg2": ... 297

}, 298
"returns": { 299

"type": "...", 300
"description": "..." 301

}, 302
"example": [...] 303

} 304305

Listing 1: Extracted function. “returns” field and
“example” field are optional.

3.2.3 Data generation 306

We follow the self-instruct paradigm (Wang et al., 307

2022; Taori et al., 2023) to build our data genera- 308

tion pipeline, which consists of two stages: seed 309

generation and data generation. 310

Seed Generation Stage. High-quality seed data 311

is crucial for guiding LLMs in synthetic data gen- 312

eration. To avoid manual effort, we automatically 313

generate seed data by leveraging existing function- 314

calling datasets. Specifically, we sample data from 315
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xlam-function-calling-60k (Liu et al., 2024d) and316

prompt the LLM to generate user queries and call-317

ing examples for our predefined functions. These318

seeds are used in the subsequent data generation319

stage.320

Data Generation Stage. In this stage, we use321

the self-instruct paradigm to generate more data.322

For each predefined function, we extract examples323

from the seed data and prompt the LLM to produce324

additional user queries and function-calling exam-325

ples. The generated data follows the format shown326

in Listing 2327
328

{329
"query": "user query here",330
"answers": [331

{332
"id": id,333
"name": "func_name",334
"arguments": {335

"arg1": "value1",336
...337

}338
}, ...339

]340
}341342

Listing 2: An example of generated data

To ensure data quality, we apply three filters343

sequentially:344

JsonExtractor: Extracts JSON data from LLM345

output using a syntax parser.346

FormatFilter: Ensures the extracted JSON347

matches the required format.348

SimilarityFilter: Filters out highly similar349

queries using the LCS ROUGE score (Lin, 2004),350

discarding data with an F-measure value above351

75%.352

We generate two types of function-calling data:353

• Simple: User queries requiring a single func-354

tion call. Listing 3 shows an example:355
356

{357
"query": "Wake me up at 8:30",358
"answers": [359

{360
"id": 0,361
"name": "ACTION_SET_ALARM",362
"arguments": {363

"EXTRA_HOUR": 8,364
"EXTRA_MINUTE": 30365

}366
}367

]368
}369370

Listing 3: Simple call example

• Complex: User queries requiring multiple371

function calls. Listing 4 shows an example:372
373

{374
"query":"Help me call my friend Sophia .",375
"answers":[376

{377

"id":0, 378
"name":"get_contact_info", 379
"arguments":{ 380

"name":"Sophia", 381
"key":"phone" 382

} 383
}, 384
{ 385

"id":1, 386
"name":"dial", 387
"arguments":{ 388

"phone_number":"#0" 389
} 390

} 391
] 392

} 393394

Listing 4: Complex call example

The DroidCall dataset comprises 10K train- 395

ing(7589 simple entries and 2692 complex entries) 396

and 200 test entries. The test set was randomly sam- 397

pled from the generated data. This size was chosen 398

to enable efficient evaluation cycles while facilitat- 399

ing meaningful comparison of model capabilities. 400

As detailed in Appendix A, extensive analysis on 401

test sets of varying sizes demonstrates the robust- 402

ness of the conclusions drawn from evaluating on 403

this test set. 404

3.3 Fine-tuning SLMs with DroidCall 405

Models. We fine-tuned a series of SLMs us- 406

ing the DroidCall dataset, including PhoneLM- 407

1.5B (Yi et al., 2024), Qwen2.5-1.5B, Qwen2.5- 408

3B (Yang et al., 2024; Team, 2024), Llama3.2-1B, 409

Llama3.2-3B (Dubey et al., 2024), MiniCPM3-4B 410

(Hu et al., 2024), Phi3.5-3.8B (Abdin et al., 2024) 411

and Gemma2-2B (Team et al., 2024). 412

Modeling function-calling tasks. We treat func- 413

tion calling as an instruction-following task, where 414

the model’s input includes the user query, available 415

function descriptions (specifically, the functions rel- 416

evant to the given task), and task instructions, and 417

the output is a specific representation for calling a 418

function. 419

To avoid performance degradation caused by 420

mismatched formats, we reuse the model’s chat 421

template instead of designing a unified input-output 422

format. Most models are fine-tuned for chat tasks 423

involving three roles: system, user, and assistant. 424

We place the user query and available function 425

descriptions in the system and user prompts, and 426

the function-calling result in the assistant output. 427

This approach aligns the fine-tuning data with the 428

model’s existing knowledge, ensuring better perfor- 429

mance. 430

Setups. We formatted the DroidCall dataset 431

into the chat format, resulting in 10K training sam- 432

ples. We fine-tuned the model using LoRA (Hu 433
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et al., 2022) with a rank of 8, alpha of 16, and a434

linear learning rate scheduler (learning rate: 1.41e-435

5, warmup ratio: 0.1). Training ran for 24 epochs,436

with the best checkpoint selected. Prompt format437

details are provided in Appendix F.438

3.4 Putting It All Together439

We fine-tune SLMs for Android intent invocation440

using the DroidCall dataset. While our main eval-441

uation (§4) focuses on the SLM’s core mapping ca-442

pability assuming relevant functions are provided443

as input, a real-world application necessitates dy-444

namically identifying applicable functions from445

available tools. To demonstrate the feasibility of446

integrating our fine-tuned models into such an end-447

to-end system, we developed an Android applica-448

tion demo (Figure 4). The demo comprises two key449

components:450

Retriever: In this end-to-end demonstration, the451

Retriever dynamically identifies relevant functions452

from the predefined set based on the user query.453

It leverages GTE (Li et al., 2023) for word em-454

beddings and ObjectBox (obj, 2024) as the vector455

database, passing retrieved functions to the Intent456

Invocation Model.457

Intent Invocation Model: This model takes the458

user query and retrieved functions as input, out-459

putting the necessary function calls. For this, we460

use PhoneLM-1.5B (Yi et al., 2024) fine-tuned on461

the DroidCall dataset.462

All model inference is performed on mobile de-463

vices using mllm (Yi et al., 2023b), a fast and464

lightweight multimodal LLM inference engine for465

edge devices. Figure 1 illustrates an example of466

this end-to-end demo, where the fine-tuned model467

assists users in adding a calendar event.468

Figure 4: Design of our demo.

4 Experiments 469

We first explore the impact of prompt designs on 470

model fine-tuning, identifying an optimal format. 471

We then demonstrate DroidCall’s superior per- 472

formance over general function-calling datasets 473

for Android intent invocation. Next, we analyze 474

the contribution of different DroidCall data types 475

through an ablation study. Finally, we present re- 476

sults showcasing the effectiveness of models fine- 477

tuned with DroidCall. 478

Metrics. We introduce two metrics to evaluate 479

function-calling performance: Accuracy and Soft 480

Accuracy. 481

• Accuracy. Measures the model’s ability to 482

perfectly match ground-truth function calls, 483

requiring exact matches of function identity 484

and all parameter values: 485

Acc =
Nperfect

Ntotal
486

• Soft Accuracy. Evaluates partially correct 487

function calls by calculating the proportion 488

of accurately predicted parameters, averaged 489

across all calls: 490

Accsoft =
1

F

F∑
i=1

Pcorrect,i

Ptotal,i
491

We evaluate SLMs using the 200 test entries 492

from DroidCall. Following the input format used 493

during training (§3.3), the prompts for evaluation 494

include descriptions of the relevant functions re- 495

quired for each task. This setup allows us to isolate 496

and measure the SLM’s core ability to map user 497

queries to correct function calls, decoupling the 498

evaluation from the function retrieval process re- 499

quired in a full end-to-end system (demonstrated 500

in §3.4). 501

4.1 Effect of Different Prompts 502

Prompt Average Number of Tokens
code_short 645.195
json_short 950.340

code 931.555
json 1367.905

Table 1: Average number of tokens of different prompts.

In § 3.3, we described the model input compo- 503

nents: user query, available function descriptions, 504
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(a) Accuracy of Qwen2.5-1.5B-Instruct on different
prompts

(b) Different models fine-tuned on different datasets

Figure 5: Figure 5(a) illustrates the performance of Qwen2.5-1.5B-Instruct after fine-tuning under different prompt
formats. Figure 5(b) shows the performance of PhoneLM-1.5B and Qwen2.5-1.5B-Instruct after finetuning on
different datasets.

and task instructions, with the output being a spe-505

cific representation for calling a function. While506

the user query is user-provided, we designed the507

remaining components to evaluate their impact on508

fine-tuning performance.509

json. Uses JSON for available function descrip-510

tions and function call representations due to its511

simplicity.512

code. Leveraging the prevalence of code data513

in pre-training, we used docstrings for function514

descriptions and Python function calls for function515

representations. This aligns with pre-training data,516

potentially improving model comprehension.517

short. Removes task instructions from the json518

and code formats (json_short and code_short), hy-519

pothesizing they may be unnecessary after fine-520

tuning.521

We fine-tuned Qwen2.5-1.5B-Instruct using four522

prompt formats. Figure 5(a) shows accuracy. The523

code_short format achieved comparable results to524

json with significantly fewer tokens (Table 1). We525

selected code_short for subsequent experiments.526

4.2 Effectiveness of DroidCall527

To verify DroidCall outperforms general datasets528

for Android intent invocation, we compared529

Qwen2.5-1.5B-Instruct and PhoneLM-1.5B fine-530

tuned on DroidCall and xlam-function-calling-531

60k (Liu et al., 2024d).532

Both datasets were formatted using code_short.533

The xlam-function-calling-60k has 60k data points534

while DroidCall has 10k. To ensure equivalent535

training instances, we trained 4 epochs on xlam-536

function-calling-60k and 24 epochs on DroidCall. 537

Results across 9 checkpoints (0th is pre-finetuning) 538

are in Figure 5(b). 539

Accuracy improves with fine-tuning on both 540

datasets, but the xlam-function-calling-60k model 541

quickly plateaus. Improvement with DroidCall is 542

substantially more significant. 543

This demonstrates that a task-specific dataset 544

like DroidCall yields better results than a general- 545

purpose dataset for a specific task. Further- 546

more, PhoneLM’s performance, initially lower than 547

Qwen’s, reaches parity by the end of fine-tuning 548

with DroidCall. This suggests DroidCall aids 549

models in leveraging pre-trained knowledge for 550

Android control, allowing models with compara- 551

ble pre-trained knowledge to reach similar perfor- 552

mance levels on this task. 553

4.3 Impact of Simple vs. Complex Data Types 554

The DroidCall dataset comprises 7589 simple 555

data entries and 2682 complex entries(approx. 3:1). 556

To understand their contribution and justify their 557

ratio, we conducted an ablation study. 558

We fine-tuned Gemma-2-2b-it on subsets: sim- 559

ple only, complex only, and the full dataset. To 560

account for subset sizes, we adjusted epochs (32 561

for simple, 96 for complex, 24 for combined) to 562

equalize training steps. The best checkpoint for 563

each was selected. 564

Results in Table 3 demonstrate the complemen- 565

tary value. Simple data alone achieves a solid 566

baseline. Complex data alone yields lower accu- 567

racy, likely due to difficulty. The combined dataset 568
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Model Size Zero-Shot Few-Shot Fine-Tuning

Acc Accsoft Acc Accsoft Acc Accsoft

PhoneLM-1.5B 1.5B 17.5 17.5 55.5 62.8 75 86.1
Qwen2.5-1.5B-Instruct 1.5B 61 76.6 64.5 81 76 90.3
Qwen2.5-3B-Instruct 3B 62 79.4 71 86.1 83 93.5
Qwen2.5-Coder-1.5B 1.5B 42.5 48.8 65.5 81.6 82 93.2
Gemma2-2B-it 2B 59 77.2 67.5 83.7 85 93.9
Phi-3.5-mini-instruct 3.8B 62 77.8 67.5 82.1 83.5 93.8
MiniCPM3-4B 4B 67 84.3 75 89.6 74.5 82.3
Llama3.2-1B-Instruct 1B 31.5 37.7 60.5 76.3 75.5 87.3
Llama3.2-3B-Instruct 3B 66.5 79.8 72 87.2 82 92.7

GPT-4o (2024-08-06) 77 89.1 80.5 91.5
GPT-4o-mini (2024-07-18) 71.5 86.6 76 88.6
GPT-4-turbo (2024-04-09) 78.5 91.2 83.1 95.1

Table 2: Evaluation of different models. Our fine-tuned model achieves superior performance compared to GPT-4o,
utilizing only half the prompt length and a compact 2 billion parameters.

achieves significantly higher accuracy. This shows569

simple examples help basic learning, while com-570

plex examples are crucial for handling diversity571

and compositionality, justifying the dataset’s com-572

position and ratio.573

Type Soft Accuracy (%) Accuracy (%)

S 78.8 68.0
C 69.6 50.5

S + C 93.9 85.0

Table 3: Ablation study on the impact of data types on
Gemma-2-2b-it performance. S denotes Simple and C
denotes Complex.

4.4 Performance of Different SLMs574

To test various edge-tailored SLMs and further ver-575

ify DroidCall effectiveness, we tested Acc and576

Accsoft under zero-shot, few-shot, and fine-tuned577

conditions. Zero-shot/few-shot used json prompts578

as code_short lacks task instructions needed for579

these settings; json was more effective than code.580

Table 2 shows performance. Zero-shot results581

vary significantly, likely due to differing SFT and582

alignment effectiveness influencing instruction fol-583

lowing. All models improve under few-shot con-584

ditions, suggesting better utilization of pre-trained585

knowledge.586

After fine-tuning with DroidCall (code_short587

format), performance significantly improves. Infer-588

ence requires only user query and function descrip-589

tions, greatly reducing prompt length compared to 590

zero-shot/few-shot. 591

5 Conclusion 592

In this paper, we introduce DroidCall, a novel 593

dataset specifically engineered to enhance the An- 594

droid intent invocation capabilities of LLMs. Our 595

approach diverged from conventional cloud-based 596

models, focusing instead on on-device deployment 597

to address privacy concerns inherent in mobile en- 598

vironments. In our work, we (1) build a highly 599

customizable and reusable data generation pipeline, 600

(2) construct DroidCall, a first-of-its-kind open- 601

sourced dataset for Android intent invocation based 602

on the pipeline, (3) fine-tune a series of models tai- 603

lored for edge devices, enabling them to approach 604

or even surpass the performance of GPT-4o in the 605

specific task of intent invocation and (4) implement 606

an end-to-end demo with mllm. Our work demon- 607

strates the potential applications of small models 608

on the edge. We have open-sourced all the code of 609

the data generation, fine-tuning, and evaluation. 610

Limitations 611

While our approach demonstrates promising re- 612

sults, it has several limitations that warrant further 613

investigation. 614

Data Quality and Generalizability. Our 615

method relies heavily on the quality of the gen- 616

erated data, which may introduce biases or inaccu- 617

racies. For instance, the synthetic data generated by 618

8



LLMs may not fully capture the diversity of real-619

world scenarios, potentially limiting the model’s620

generalization ability. In this work, we prioritize621

generating high-quality, task-specific data for An-622

droid intent invocation, which allows us to mitigate623

some of these issues within the narrow scope of624

our target domain. However, broader generaliza-625

tion to more diverse or complex scenarios remains626

a challenge. Future work could explore hybrid data627

generation techniques, combining synthetic data628

with real-world user interactions, to improve both629

diversity and accuracy.630

Scalability of the Method. Our approach re-631

quires predefined functions, which limits its adapt-632

ability to new tasks without significant manual633

effort. This limitation is partially offset by the634

modular design of our pipeline, which allows for635

easy extension to new functions within the An-636

droid ecosystem. In the context of this work, we637

focus on a curated set of common Android intents,638

where predefined functions are sufficient to cover639

most use cases. However, for more dynamic or640

open-ended tasks, this approach may not scale ef-641

fectively. Future research could investigate meth-642

ods for automatically discovering and defining new643

functions, potentially leveraging unsupervised or644

semi-supervised learning techniques to reduce man-645

ual intervention.646
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A Evaluation Robustness Analysis 944

This appendix provides a detailed analysis addressing concerns regarding the size of our 200-sample 945

test set relative to the 10K training set. While standard practice often suggests larger test sets to ensure 946

robustness and reduce variance, our evaluation primarily aims to demonstrate the relative capabilities of 947

fine-tuned Small Language Models (SLMs) compared to larger models for the specific task of Android 948

intent invocation. 949

To investigate the reliability of evaluations conducted on test sets of this scale within the distribution 950

of our generated data, we performed supplementary experiments using several capable large language 951

models: Deepseek-chat, GPT-4o, and GPT-4o-mini. These models were evaluated in a zero-shot setting 952

on randomly sampled test sets of varying sizes (200, 400, 600, 1000, 1500, and 2000 entries) drawn 953

from our dataset. We chose these models to understand how performance metrics, particularly relative 954

performance, behave across different evaluation scales on data structured for this domain. The results are 955

presented in Table 4. 956

Model Data Size Zero-Shot Acc Zero-Shot Accsoft

deepseek-chat

200 75.0 89.9
400 75.3 90.4
600 71.1 86.3
1000 73.3 87.5
1500 78.5 91.2
2000 71.5 86.0

GPT-4o

200 77.0 89.1
400 74.3 87.9
600 69.1 84.0
1000 73.7 85.6
1500 75.4 86.8
2000 73.2 86.2

GPT-4o-mini

200 71.5 86.6
400 74.8 88.5
600 68.6 85.1
1000 73.6 87.3
1500 70.8 84.4
2000 70.6 84.6

Table 4: Zero-shot Accuracy of Various Models on Randomly Sampled Test Sets of Different Sizes. The results
demonstrate the stability of model performance across varying evaluation set sizes.

Analysis of Table 4 indicates that while there is some natural variation in absolute accuracy across 957

different random test set samples, the relative performance ranking and general trends between these 958

powerful models remain largely consistent across test set sizes ranging from 200 to 2000 samples. This 959

stability in relative performance observed on diverse models within the DroidCall data distribution 960

provides strong evidence that evaluating on a 200-sample set is sufficient for obtaining a representative 961

signal for comparing the capabilities of different models in this specific intent invocation domain, which is 962

the primary focus of our evaluation. Therefore, the conclusions drawn from our evaluations, including the 963

comparison between our fine-tuned SLMs and larger models like GPT-4o, are supported by this analysis 964

of evaluation robustness. 965

B Dataset Quality 966

This appendix provides a detailed discussion on the quality of the DroidCall dataset and the rationale 967

behind selecting GPT-4-turbo as our primary data generation model. We address concerns regarding data 968
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reliability and the trade-offs involved in leveraging large language models for synthetic data creation.969

B.1 Rationale for GPT-4-turbo in Data Generation970

Our data generation pipeline, detailed in §3.2, primarily leveraged GPT-4-turbo. This decision stemmed971

from early observations during the initial experimental setup, where we informally assessed various972

LLMs, including GPT-4o, GPT-4o-mini, and DeepSeek, focusing on a practical balance of data quality,973

generation efficiency, and cost.974

Key characteristics observed from our preliminary assessments:975

• GPT-4o-mini: While potentially cost-effective, this model proved inefficient for generating usable976

data. It often produced a large volume of tokens that our filters discarded due to formatting errors or977

high redundancy, suggesting suboptimal output quality upon manual inspection.978

• GPT-4o: This model performed significantly better than GPT-4o-mini but still exhibited slightly979

lower data quality compared to GPT-4-turbo.980

• DeepSeek: DeepSeek consistently generated high-quality data. However, its API response time981

was considerably slower, making it impractical for the large-scale data generation required for982

DroidCall.983

Ultimately, GPT-4-turbo emerged as the preferred choice due to its superior balance of output quality and984

generation speed, which was crucial for efficiently constructing our dataset. We acknowledge the potential985

of more recent powerful open-source models (like the latest Qwen versions) or other closed-source986

alternatives. However, a detailed comparative evaluation with these specific models was beyond the987

scope of this initial work due to resource constraints. We consider exploring their effectiveness for data988

generation an important direction for future research.989

B.2 Ensuring Dataset Quality990

To ensure the reliability and diversity of the DroidCall dataset, our generation pipeline incorporates991

several mechanisms:992

• Automated Filtering Pipeline: As detailed in §3.2, all generated data undergoes a rigorous three-993

stage filtering process:994

– JsonExtractor: Ensures the output strictly adheres to the JSON format.995

– FormatFilter: Validates that the extracted JSON matches the predefined schema for function996

calls.997

– SimilarityFilter: Eliminates highly similar queries using LCS ROUGE scores (with an F-998

measure threshold of 75%), promoting data diversity.999

• Self-Instruct Paradigm: By following the self-instruct paradigm (Wang et al., 2022), we leverage1000

high-quality seed data (Liu et al., 2024d) to guide the LLM, ensuring that generated examples are1001

relevant and structurally consistent with the target function-calling format. This approach minimizes1002

manual annotation efforts while maintaining quality.1003

• Function Predefinition: The predefined set of 24 functions, based on Android Common Intents1004

(com, 2024) (§3.1), provides a controlled and well-defined action space. This specificity reduces1005

ambiguity in generated function calls and enhances the model’s ability to learn precise mappings.1006

B.3 Human Evaluation of Generated Data1007

To provide a direct assessment of the generated data quality beyond automated metrics, we conducted1008

a small-scale human evaluation. This evaluation aimed to validate both the technical correctness of the1009

query-to-function mapping and the naturalness of the user queries.1010

Methodology: We randomly sampled 100 examples from the generated dataset. Three independent1011

annotators were tasked with evaluating each example based on two criteria:1012
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1. Correctness: A binary assessment of whether the query-to-function mapping was technically 1013

accurate (i.e., the function name and all its parameters perfectly matched the ground truth). 1014

2. Reasonableness: A 5-point Likert scale (1: Very unreasonable, 5: Very reasonable) to assess the 1015

quality and naturalness of the task formulation in the user query. 1016

Results: The results from the three annotators are summarized in Table ??. 1017

Annotator Correctness (%) Reasonableness (avg)

1 90% 4.2
2 84% 3.8
3 86% 3.8

Table 5: Human Evaluation Results of Generated Data Quality (N=100)

The human evaluation results indicate a moderate to high level of quality in the generated data. 1018

Correctness rates, ranging from 84% to 90%, suggest that a significant majority of the generated examples 1019

accurately map user queries to their intended function calls. Reasonableness scores, averaging between 1020

3.8 and 4.2, further support that the generated user queries are generally natural and logically consistent. 1021

While this small-scale evaluation provides a strong indication of the dataset’s reliability, we acknowledge 1022

that a more extensive assessment, particularly for complex multi-step examples, would further strengthen 1023

confidence. Our current findings, coupled with the robust automated filtering, establish a solid foundation 1024

for the dataset’s use in fine-tuning SLMs for Android intent invocation. 1025

C Predefined Function Specifications 1026

This appendix documents the 24 core intent-based functions predefined within the DroidCall dataset. 1027

These functions encapsulate common Android operations via standardized implicit intents, serving as 1028

the foundational API for our framework. Detailed specifications are available at https://anonymous. 1029

4open.science/r/DroidCall-C100/api.py. 1030
1031

1 # Scheduling & Alarms 1032
2 def ACTION_SET_ALARM(hour: int , minutes: int , message="", days=None): ... 1033
3 def ACTION_SET_TIMER(duration: str , message=""): ... 1034
4 def ACTION_SHOW_ALARMS (): ... 1035
5 def ACTION_INSERT_EVENT(title: str , desc: str , location=None): ... 1036
6 1037
7 # Camera & Media 1038
8 def ACTION_IMAGE_CAPTURE () -> str: ... # Returns photo URI 1039
9 def ACTION_VIDEO_CAPTURE () -> str: ... # Returns video URI 1040

10 def INTENT_ACTION_STILL_IMAGE_CAMERA (): ... 1041
11 def INTENT_ACTION_VIDEO_CAMERA (): ... 1042
12 1043
13 # Contacts Management 1044
14 def ACTION_PICK(data_type: str = "ALL") -> str: ... # Returns contact URI 1045
15 def get_contact_info(name: str , key: str) -> str: ... 1046
16 def get_contact_info_from_uri(contact_uri: str , key: str)->str: 1047
17 def ACTION_VIEW_CONTACT(uri: str): ... 1048
18 def ACTION_EDIT_CONTACT(uri: str , info=None): ... 1049
19 def ACTION_INSERT_CONTACT(info: dict): ... 1050
20 1051
21 # Messaging 1052
22 def send_email(to: list , subject: str , body: str , cc=None , bcc=None): ... 1053
23 def send_message(phone: str , subject: str , body: str): ... 1054
24 1055
25 # File Operations 1056
26 def ACTION_GET_CONTENT(mime_type: str , multi=False) -> list: ... # Returns URIs 1057
27 def ACTION_OPEN_DOCUMENT(mime_types: list , multi=False) -> list: ... 1058
28 def ACTION_CREATE_DOCUMENT(mime_type: str , name: str) -> str: ... # Returns URI 1059
29 1060
30 # System Operations 1061
31 def search_location(query: str): ... 1062
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32 def dial(phone: str): ...1063
33 def web_search(query: str , engine="baidu"): ...1064
34 def open_settings(setting_type="general"): ...1065
351066
36 # Utilities1067
37 def ACTION_GET_RINGTONE () -> str: ... # Returns ringtone URI10681069

Listing 5: Predefined Android Intent Functions

D Discussion on Function Selection, Coverage, and Scalability1070

This appendix provides additional context regarding the selection of the 24 predefined functions used in1071

the DroidCall dataset and addresses related aspects of coverage and the method’s scalability, building1072

upon points raised during the review process.1073

D.1 Function Selection Rationale1074

Our approach focuses on enabling LLMs to invoke Android intents for common user operations. We1075

manually defined a set of 24 functions based on a review of Android’s official Common Intents documen-1076

tation (com, 2024) and frequently performed tasks (e.g., setting alarms, sending emails, making calls).1077

This curated set was chosen primarily to provide a controlled, representative, and practically relevant1078

environment for evaluating the capability of fine-tuned SLMs in mapping diverse user instructions to1079

specific, actionable intent calls. It allows us to demonstrate the core feasibility and performance gains of1080

our data-driven approach within a defined scope.1081

D.2 Coverage Limitations1082

While the 24 functions cover a range of frequent user intents, they represent only a specific subset of the1083

vast and dynamic Android ecosystem. The total number of potential intents is not fixed, as third-party1084

applications can define custom intents, making a comprehensive quantification challenging. Therefore,1085

our predefined set is not exhaustive and inherently limits the agent’s capabilities to actions within this1086

defined 24-function scope. This limitation is acknowledged in the main body’s Limitations section.1087

D.3 Scalability and Generalizability1088

The manual predefinition of the action space directly impacts the scalability and generalizability of our1089

method. Expanding the agent’s capabilities to cover a significantly broader set of Android intents, or1090

adapting the approach to other mobile platforms (e.g., iOS) or different interaction domains, would1091

require substantial manual effort to define or map corresponding functions and their parameters. Our1092

current approach reflects a deliberate trade-off, prioritizing the creation of a high-quality dataset and1093

controllable evaluation environment for a specific, valuable task. In contrast, achieving broader scalability1094

and generalizability would necessitate addressing the significant research challenges associated with1095

automated action space discovery, intent parameter grounding, and data generation for unbounded or1096

rapidly changing domains.1097

D.4 Future Directions1098

Future research directions aimed at mitigating these limitations include exploring automated or semi-1099

automated techniques for discovering and defining intents and their parameters from various sources (e.g.,1100

documentation, UI analysis). Such approaches could help reduce manual effort, facilitate scaling to a1101

wider range of Android functionalities, and potentially improve generalizability across different platforms1102

and domains, complementing the data generation methodology presented in this work.1103

E Data Generation Prompts1104

At the beginning of data generation, we first generate seed data. The prompt used to generate seed is1105

shown as following:1106
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I need your help to generate some function calling datasets. I will provide you with a tool description,
and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.
2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.
3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.
4. The generated queries should be solvable using the given tools.
5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.
6. When providing parameters, if a parameter has required=False, you may omit its value.
7. The generated data must be presented in the format given in my example.
8. The parameter values generated with function call generated must be values that can be inferred
from the user’s query; YOU CANNOT FABRICATE PARAMETERS THAT CANNOT BE
OBTAINED FROM THE USER’S REQUEST.
9. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.

following are some examples:
$examples

Now I will give you a tool, and you help me generate 15 query-answer pairs.
REMEMBER TO GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY.
tool: $tool

In the prompt above, $examples will be replace by random samples sampled from xlam-function- 1107

calling-60k (Liu et al., 2024d). Below is an example: 1108

tool: {
"name: "...",
"description": "...",
"arguments": {

...
}

}
response: {

"query": "...",
"answers": [

{
...

}
]

}

$tools will be replace by json formatted predefined function, below is an example: 1109

tool: { 1110
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"name": "ACTION_SET_ALARM",
"description": "...".
"arguments": {

...
}

}1111

After seed generation stage, we will use another prompt to continuously generate data. Prompt is shown1112

as following:1113

I need your help to generate some function calling datasets. I will provide you with a tool description
and some example data for you. You need to generate queries and corresponding answers based on
this tool, i.e., the answers that call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.
2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.
3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.
4. The generated queries should be solvable using the given tools.
5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.
6. When providing parameters, if a parameter has required=False, it is not necessary to provide its
value.
7. The query-answer pairs should cover as many possible uses of the tool as possible.
8. The generated data must be presented in the format given in my example.
9. The parameter values generated with function call generated must be values that can be inferred
from the user’s query; YOU CANNOT FABRICATE PARAMETERS THAT CANNOT BE
OBTAINED FROM THE USER’S REQUEST.

following are tool I provided and some examples of query-answer pairs: tool: $tool examples:
$examples

Now please help me generate 40 query-answer pairs. REMEMBER TO GENERATE THE
RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE REMEMBER NOT TO FABRICATE
PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE INFERED FROM USER QUERY.

$tool will be replaced by the json format of predefined functions shown early. $examples is the data1114

sampled from the seed data generated previously.1115

When generating data of complex call, we slightly modify the prompt shown above. The seed generation1116

prompt is shown below:1117

I need your help to generate some function calling datasets. I will provide you with a tool description,1118
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and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.
2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.
3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.
4. The generated queries should be solvable using the given tools.
5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.
6. When providing parameters, if a parameter has required=False, you may omit its value.
7. The generated data must be presented in the format given in my example.
8. THE PARAMETER VALUES GENERATED WITH FUNCTION CALL GENERATED MUST
BE VALUES THAT CAN BE INFERRED FROM THE USER’S QUERY; YOU CANNOT
FABRICATE PARAMETERS THAT CANNOT BE OBTAINED FROM THE USER’S REQUEST.
9. THE GENERATED QUERY SHOULD CONTAIN ENOUGH INFOMATION SO THAT YOU
COULD CORRECTLY GENERATE PARAMETER USED BY THE TOOLS. THIS IS ALSO TO
GUARANTEE THAT YOU DON’T FABRICATE PARAMETERS.
10. You should use all the tools I provided to generate the query and answer. It means that you
should generate a query that needs to use all the tools I provided to solve, and remember to provider
an answer that uses all the tools to solve the query.
11. You can use the same tool multiple times in a single query to ensure the query diversity.
12. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.
13. Generate data of nested function calls if possible. i.e., the argument of a function call is the
response of another function call.

following are some examples:
$examples

Now I will give you a tool, and you help me generate 15 query-answer pairs. REMEMBER TO
GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE AND PUT IT IN
A JSON LIST.
REMEMBER YOU SHOULD USE ALL THE TOOLS AT ONE QUERY AND SOLVE IT WITH
ALL TOOLS, AND GENERATE NESTED CALL IF POSSIBLE.
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY.
tools:
$tools 1119

Prompt for continuously generating complex function calling data is: 1120

I need your help to generate some function calling datasets. I will provide you with a tool description, 1121
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and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.
2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.
3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.
4. The generated queries should be solvable using the given tools.
5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.
6. When providing parameters, if a parameter has required=False, you may omit its value.
7. The generated data must be presented in the format given in my example.
8. THE PARAMETER VALUES GENERATED WITH FUNCTION CALL GENERATED MUST
BE VALUES THAT CAN BE INFERRED FROM THE USER’S QUERY; YOU CANNOT
FABRICATE PARAMETERS THAT CANNOT BE OBTAINED FROM THE USER’S REQUEST.
9. THE GENERATED QUERY SHOULD CONTAIN ENOUGH INFOMATION SO THAT YOU
COULD CORRECTLY GENERATE PARAMETER USED BY THE TOOLS. THIS IS ALSO TO
GUARANTEE THAT YOU DON’T FABRICATE PARAMETERS.
10. You should use all the tools I provided to generate the query and answer. It means that you
should generate a query that needs to use all the tools I provided to solve, and remember to provider
an answer that uses all the tools to solve the query.
11. You can use the same tool multiple times in a single query to ensure the query diversity.
12. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.
13. Generate data of nested function calls if possible. i.e., the argument of a function call is the
response of another function call.

Now I will give you some tools and some example data of query-answer pairs using these tools.
Please help me generate 40 query-answer pairs. tools: $tools
examples: $examples

REMEMBER TO GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE
ABOVE AND PUT IT IN A JSON LIST.
REMEMBER YOU SHOULD USE ALL THE TOOLS AT ONE QUERY AND SOLVE IT WITH
ALL TOOLS, AND GENERATE NESTED CALL IF POSSIBLE.
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY.1122

F Function Calling Prompts1123

In § 4.1, we’ve mentioned that we have tested 4 format of prompt: json, code, json_short and code_short.1124

To unify our fine-tuning, we use chat to do function calling thus we only need to design the part of system,1125

user and assistant using chat template.1126

In json or code format, the system prompt would be:1127

You are an expert in composing functions. You are given a query and a set of possible functions.
Based on the query, you will need to make one or more function calls to achieve the purpose. If none
of the function can be used, point it out. If the given question lacks the parameters required by the
function, also point it out. Remember you should not use functions that is not suitable for the query
and only return the function call in tools call sections.

in json_short or code_short the system prompt would be:1128
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You are an expert in composing functions.

The user part of json or code is: 1129

Here is a list of functions that you can invoke:
$functions

Should you decide to return the function call(s), Put it in the format of
$format_description

$example
If there is a way to achieve the purpose using the given functions, please provide the function

call(s) in the above format. REMEMBER TO ONLY RETURN THE FUNCTION CALLS LIKE
THE EXAMPLE ABOVE, NO OTHER INFORMATION SHOULD BE RETURNED.

Now my query is: $user_query

$functions is the functions descriptions provided by retriever, in code or code_short format, it would be 1130

like: 1131

Name:
send_email

Description:
Compose and send an email with optional attachments.

This function allows the user to compose an email with various options,
including multiple recipients, CC, BCC, and file attachments.
Args:

to (List[str]): ...
subject (str): ...
...

Returns:
None

Example:
# Send an email with a content URI attachment

send_email(
to=["recipient@example.com"],
subject="Document",
body="Please find the attached document.",
attachments=...

)

In json or json_short, functions would be describe directly in json format as shown in Listing 1. 1132

$format_description in the prompt will be replace by detailed output format the model should follow. 1133

In json it will be: 1134

[ 1135
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{
"id": 0,
"name": "func0",
"arguments": {

"arg1": "value1",
"arg2": "value2",
...

}
},
{
"id": 1,
"name": "func1",
"arguments": {

"arg1": "value1",
"arg2": "value2",
...

}
},
...

]
If an argument is a response from a previous function call,
you can reference it in the following way like the argument
value of arg2 in func1:
[

{
"id": 0,
"name": "func0",
"arguments": {

"arg1": "value1",
"arg2": "value2",
...

}
},
{
"id": 1,
"name": "func1",
"arguments": {

"arg1": "value1",
"arg2": "#0",
...

}
},
...

]
This means that the value of arg2 in func1 is the return
value from func0 (#0 means the response from the function call with id 0).1136

In code format this will be1137

result1 = func0(arg1="value1", arg2="value2", ...)1138
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result2 = func1(arg1="value1", arg2=result1, ...)
...
You can do nested function calling in the following way:
result1 = func0(arg1="value1", arg2="value2", ...)
result2 = func1(arg1="value1", arg2=result1, ...)
...
This means that the value of arg2 in func1 is the return value from func0. 1139

$example in the prompt is used to test few-shot performance of a model. 1140

The user prompt of json_short or code_short is much simpler withou task instructions: 1141

Here is a list of functions: $functions
Now my query is: $user_query

In code or code_short format the assistant output would be: 1142

<sep>result1 = func0(arg1="value1", arg2="value2", ...)
result2 = func1(arg1="value1", arg2=result1, ...)</sep>

where < sep > and < /sep > can be any seperator set before fine-tuning. 1143

In json or json_short format the assistant output would be: 1144

[
{
"id": 0,
"name": "func0",
"arguments": {

"arg1": "value1",
"arg2": "value2",
...

}
},
...

]
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