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Abstract

The growing capabilities of large language
models in natural language understanding
significantly strengthen existing agentic sys-
tems. To power performant on-device mo-
bile agents for better data privacy, we intro-
duce DroidCall, the first training and testing
dataset for accurate Android Intent invocation.
With a highly flexible and reusable data gen-
eration pipeline, we constructed 10k samples
in DroidCall. Given a task instruction in nat-
ural language, small language models such as
Qwen2.5-3B and Gemma2-2B fine-tuned with

DroidCall can approach or even surpass the
capabilities of GPT-40 for accurate Android
intent invocation. We also provide an end-
to-end Android app equipped with these fine-
tuned models to demonstrate the Android in-
tent invocation process. The code and dataset
are available at https://anonymous.4open.
science/r/DroidCall-C100.

1 Introduction

The advent of large language models (LLMs) rev-
olutionizes natural language processing, enabling
machines to understand and generate human-like
language with unprecedented accuracy. In the
realm of mobile computing, this advancement
presents a significant opportunity for developing
intelligent mobile agents (Li et al., 2024; Zhang
et al., 2024b; Wen et al., 2024; Wang et al., 2023a).
Specifically, these agents can leverage the rich
ecosystem of built-in intents (int, 2024) provided
by both the operating system and third-party appli-
cations on Android devices. These intents serve
as a fundamental mechanism for inter-app com-
munication and function invocation, such as send-
ing messages, making phone calls, or triggering
specific app features. By harnessing LLMs, mo-
bile agents can interpret diverse and complex user
instructions, seamlessly mapping them to the ap-
propriate intents, and therefore automating user
interaction with mobile devices.
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Figure 1: Small language models fine-tuned with
DroidCall have the capability to assist users in complet-
ing common tasks such as adding events to the calendar.

On-device LLMs are necessary for building
mobile agents due to privacy and latency con-
straints (goo, 2024; Lu et al., 2024c; Yin et al,,
2024; Xu et al., 2023b; Yuan et al., 2024). Since
user data are processed locally, sensitive informa-
tion remains on devices, thereby mitigating risks
associated with data transmission over networks.
Moreover, on-device inference eliminates the need
for constant internet connectivity. Various on-
device LLM inference optimizations significantly
reduce response time (Xu et al., 2024b; Yi et al.,
2023a; Xu et al., 2024a), leading to a more respon-
sive and fluid user experience.

However, our investigations reveal a critical chal-
lenge: Existing device-affordable LLMs lack the
capability of accurate intent invocation. For exam-
ple, Llama3.2-1B (Dubey et al., 2024) only suc-
ceeds in 31.5% and 60.5% of the tasks in zero-shot
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and few-shot scenarios, respectively. This limita-
tion is not due to inherent deficiencies in the models
themselves but stems from the absence of special-
ized datasets tailored for this purpose. Existing
LLMs are typically trained on broad datasets that
do not encompass the specific language patterns
and contextual nuances required for accurate intent
invocation.

To address this gap, we introduce DroidCall,
the first open-sourced, high-quality dataset de-
signed for fine-tuning LLMs for accurate intent in-
vocation on Android devices, along with a flexible
and reusable data generation pipeline. DroidCall
comprises an extensive collection of user instruc-
tions paired with their corresponding intents, cov-
ering a wide array of functionalities across the
system and third-party apps while the data gen-
eration pipeline automatically generates, validates,
and deduplicates data to ensure accuracy and diver-
sity. Unlike existing methods (Wang et al., 2022;
Taori et al., 2023; Qin et al., 2023), our approach
eliminates the need for manually written seed data,
significantly reducing labor.

Evaluation. Based on DroidCall, we fine-
tuned a series of small language models (SLMs)
that are tailored for on-device use. We demon-
strate that by fine-tuning models on DroidCall,
the Android Intent invocation capabilities of these
SLMs can be effectively unleashed. Some models
can even achieve higher accuracy than GPT-40 us-
ing simpler prompts. While prompts for GPT-40
contain an average of 1,367 tokens, models after
fine-tuning, achieve this with an average of just
645 tokens. The accuracy of using Gemma2-2B
improves from 59% to 85% after fine-tuned on
DroidCall, while GPT-40 only achieves an accu-
racy of 77%.

End-to-end demo and open-source. We also
provide an end-to-end Android demonstration with
the fine-tuned models based on mllm (Yi et al.,
2023Db), a fast and lightweight multimodal LLM in-
ference engine, which demonstrates the feasibility
of our work. The demo is illustrated in Figure 1,
which can assist users in completing common op-
erations such as composing emails, setting alarms,
making phone calls, and so on.

2 Related Work

2.1 LLM-based Agents

LLMs have emerged as a significant advancement
in artificial intelligence, particularly in natural lan-

guage processing. OpenAlI’s GPT series (Achiam
et al., 2023) has led the development of LLMs,
which have rapidly gained attention. Open-source
LLMs (Yang et al., 2024; Team, 2024; Bai et al.,
2023; Dubey et al., 2024; Liu et al., 2024a; Zhu
et al., 2024; GLM et al., 2024) have also emerged,
with capabilities approaching or rivaling GPT-4.
Additionally, models like GPT-4V have extended
LLMs with visual capabilities (Yang et al., 2023c;
Lu et al., 2024a; Wang et al., 2024c; Liu et al.,
2024b), enabling them to handle more complex
tasks.

Prompting techniques such as React (Yao et al.,
2022), Plan and Solve (Wang et al., 2023b), and
ReWOO (Xu et al., 2023a) allow LLMs to plan
tasks, use tools, and interact with external envi-
ronments. These advancements have led to the
development of agents like AutoGPT (Yang et al.,
2023a), MetaGPT (Hong et al., 2023), and Hug-
gingGPT (Shen et al., 2024b), which can assist
humans in various tasks.

2.2 Mobile Device Control Agents

Agents for mobile device control have seen signif-
icant development. Early work (Venkatesh et al.,
2022; Wang et al., 2023a; Wen et al., 2024) pri-
marily focused on designing Ul representations for
models to understand mobile screens. With the
advent of multimodal LLMs, agents like AppA-
gent (Yang et al., 2023b) and Mobile Agent (Wang
et al., 2024b,a) now integrate visual capabilities to
accomplish complex tasks on mobile devices.
However, existing agents have limitations: (1)
Most rely on cloud-side LLMs like GPT-4, which
raises privacy concerns and fails in poor network
conditions. Our work addresses this by deploying
SLMs on edge devices. (2) Existing agents simu-
late human actions (e.g., tap and swipe) to operate
devices, which is inefficient and error-prone. We
propose intent invocation through function calling
as a more efficient and accurate approach. For ex-
ample, instead of navigating the UI to set an alarm,
the agent directly communicates the intent to the

app.
2.3 LLMs for Function Calling

The emergence of LLMs has enabled powerful
function-calling capabilities. Pioneering work like
Toolformer (Schick et al., 2024) demonstrated
LLMs’ ability to use external tools. Developing
these capabilities often requires substantial training
data; following the Self-Instruct paradigm (Wang
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Figure 2: Workflow of DroidCall, which consist of three key phases:(1) Functions Predefinition; (2) Data

Generation; (3) Finetuning and Evaluation.

et al., 2022), various efforts (Qin et al., 2023; Tang
et al., 2023; Patil et al., 2023; Kim et al., 2023)
have generated extensive function-calling datasets.
Furthermore, numerous benchmarks and datasets,
including APIGen (Liu et al., 2024d), Shortcuts-
Bench (Shen et al., 2024a), ToolACE (Liu et al.,
2024c¢), AppWorld (Trivedi et al., 2024), Android-
World (Rawles et al., 2024), ToolSandbox (Lu et al.,
2024b), and BFCLvV3 (Yan et al., 2024), have been
constructed to evaluate LLM tool use. AgentOhana
(Zhang et al., 2024a) notably focused on standard-
izing data formats and training pipelines.

Our work introduces a reusable and customiz-
able data generation pipeline specifically for An-
droid intent invocation, aiming for better edge per-
formance than large models like GPT-40. We also
provide straightforward methods for fine-tuning
and evaluation. While similar mobile function-
calling agents exist, such as TinyAgent (Erdogan
et al., 2024) (macOS-specific) and Octopus (Chen
and Li, 2024) (requires model architecture adjust-
ments), neither offers publicly available code for
data generation or fine-tuning, distinguishing our
contribution.

3 DroidCall Dataset and Workflow

This section outlines the DroidCall framework,
detailing its three key phases for building Android
intent invocation capabilities: Function Predefini-
tion, Data Generation, and Model Fine-tuning &
Evaluation, as illustrated in Figure 2. Our data
generation method requires minimal human super-
vision and is easily extensible. We conclude with
an end-to-end demonstration of device control us-
ing fine-tuned LLMs.

3.1 Collecting Android Intents

In Android development, an intent is a messag-
ing object facilitating communication between app
components, used to request actions. Intents are
broadly categorized: Explicit Intents target spe-
cific components (e.g., internal app communica-
tion), while Implicit Intents declare a general ac-
tion, allowing any compatible component to re-
spond.

DroidCall aims to enable models for function
calling on Android devices for common operations.
Implicit intents are particularly suitable for this, as
they efficiently express user intentions and utilize
system resources.

To construct the DroidCall dataset, we re-
viewed Android’s official documentation (com,
2024). From this, we selected most frequently-
used implicit intents, encapsulating them into 24
predefined functions. This selection covers the
majority of standardized inter-app communication
scenarios, enabling common operations such as
alarm configuration, email composition, and web
searching.

3.2 Dataset Generation

In this section, we present a detailed description
of the DroidCall dataset generation process. The
process is orchestrated by a Collector component
that coordinates interactions among other key com-
ponents: the Sampler, LLM, and Filter. We first
introduce these key components, and subsequently
elaborate on the critical phases of data generation:
function predefinition, seed data generation, and
data generation. The entire dataset generation pro-
cess leverages GPT-4-turbo as the underlying lan-
guage model. Figure 3 shows the overall data gen-
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Figure 3: Details of data generation in DroidCall. To
avoid manually creating seed data, DroidCall initially
samples examples from an external dataset to generate
its first set of data. Subsequently, the data is used as
seed data to continuously generate new data, thereby
eliminating the need for laborious manual work. All
the generated data will go through a set of customized
filters to ensure the correctness of data formats and the
diversity of the data.

3.2.1 Key Components of Generation Pipeline

The data generation pipeline consists of four key
components: Sampler, LLM, Filter, and Collector.

Sampler. The sampler takes multiple data
sources (e.g., lists, jsonl files) as input, samples
data according to a specific strategy, and organizes
it into a user-defined format for output.

LLM. The LLM is the core engine for data gen-
eration. Using the self-instruct paradigm (Wang
etal., 2022), we integrate sampled data into prompt
templates and generate data via the LLM. In this
work, GPT-4-turbo is used as the LLM, a choice
motivated by preliminary assessments of various
models, as detailed in Appendix B.

Filter. Filters process the LLM’s output, extract-
ing structured data, discarding improperly format-
ted data, and removing highly similar data. The
framework supports custom filters for flexible data
processing.

Collector. The Collector serves as the central
orchestrator of the data generation pipeline. It man-
ages the workflow, directing the Sampler to retrieve
source data, passing data and prompt templates to
the LLM for raw output generation, routing the
LLM’s output through the sequence of Filters for
validation and deduplication, and finally collecting
the processed high-quality data.

3.2.2 Functions Predefinition

Automated extraction of intents from the Android
Open Source Project (AOS, 2024) is complex due
to the dynamic nature of the Android platform. To

avoid these challenges, we predefine 24 functions
covering common Android operations, utilizing
common intents for their implementation. These
functions act as an interface between the LLM and
the intents, hiding intent details from the LLM.
This approach ensures compatibility across differ-
ent Android versions, as the LLM only needs to
learn the functions, while the underlying intent
implementations can be adapted as needed. The
predefined functions support operations such as:

* Scheduling Assistant: Set alarms/timers, in-
sert calendar events.

* Contact Management: Add contacts, make
phone calls.

* Common Operations: Internet search, map
search, open camera, adjust settings.

* Messaging Services: Compose text messages
or emails.

In our framework, functions are predefined simi-
larly to ordinary Python functions. We write func-
tion signatures and provide Google-style docstrings
(Goo, 2024), from which structured information is
automatically extracted. The extracted data format
is shown in Listing 1.

{

"name"”: "funcl”,
"description”: "This function is ...",
"arguments”: {
"argl": {
"description”: "This arg is...",
"type": "<type>",
"required”: "true or false”,
"default”: "<default_value>"
1,
"arg2": ...

3,
"returns”: {
"typel: "7
"description”: "
Hy
"example”: [...]

}

Listing 1: Extracted function. “returns” field and

“example” field are optional.

3.2.3 Data generation

We follow the self-instruct paradigm (Wang et al.,
2022; Taori et al., 2023) to build our data genera-
tion pipeline, which consists of two stages: seed
generation and data generation.

Seed Generation Stage. High-quality seed data
is crucial for guiding LLMs in synthetic data gen-
eration. To avoid manual effort, we automatically
generate seed data by leveraging existing function-
calling datasets. Specifically, we sample data from



xlam-function-calling-60k (Liu et al., 2024d) and
prompt the LLM to generate user queries and call-
ing examples for our predefined functions. These
seeds are used in the subsequent data generation
stage.

Data Generation Stage. In this stage, we use
the self-instruct paradigm to generate more data.
For each predefined function, we extract examples
from the seed data and prompt the LLM to produce
additional user queries and function-calling exam-
ples. The generated data follows the format shown
in Listing 2

{
"query": "user query here”,
"answers”: [
{
"id": id,
"name": "func_name",
"arguments”: {
"argl": "valuel”,

Listing 2: An example of generated data

To ensure data quality, we apply three filters
sequentially:

JsonExtractor: Extracts JSON data from LLM
output using a syntax parser.

FormatFilter: Ensures the extracted JSON
matches the required format.
SimilarityFilter: Filters out highly similar

queries using the LCS ROUGE score (Lin, 2004),
discarding data with an F-measure value above
75%.

We generate two types of function-calling data:

» Simple: User queries requiring a single func-
tion call. Listing 3 shows an example:

{

"query"”: "Wake me up at 8:30",
"answers”: [
{
"id": o,

"name"”: "ACTION_SET_ALARM",

"arguments”: {
"EXTRA_HOUR": 8,
"EXTRA_MINUTE": 30

3

¥
]
b

Listing 3: Simple call example

* Complex: User queries requiring multiple
function calls. Listing 4 shows an example:

{
"query":"Help me call my friend Sophia."”,
"answers": [

{

"id":0,
"name"”:"get_contact_info",
"arguments”:{
"name”:"Sophia”,
"key":"phone"
3
3,
{
"id":1,
"name":"dial",
"arguments”:{
"phone_number": "#0"
}
3
]
}

Listing 4: Complex call example

The DroidCall dataset comprises 10K train-
ing(7589 simple entries and 2692 complex entries)
and 200 test entries. The test set was randomly sam-
pled from the generated data. This size was chosen
to enable efficient evaluation cycles while facilitat-
ing meaningful comparison of model capabilities.
As detailed in Appendix A, extensive analysis on
test sets of varying sizes demonstrates the robust-
ness of the conclusions drawn from evaluating on
this test set.

3.3 Fine-tuning SLMs with DroidCall

Models. We fine-tuned a series of SLMs us-
ing the DroidCall dataset, including PhoneLM-
1.5B (Yi et al., 2024), Qwen2.5-1.5B, Qwen2.5-
3B (Yang et al., 2024; Team, 2024), Llama3.2-1B,
Llama3.2-3B (Dubey et al., 2024), MiniCPM3-4B
(Hu et al., 2024), Phi3.5-3.8B (Abdin et al., 2024)
and Gemma2-2B (Team et al., 2024).

Modeling function-calling tasks. We treat func-
tion calling as an instruction-following task, where
the model’s input includes the user query, available
function descriptions (specifically, the functions rel-
evant to the given task), and task instructions, and
the output is a specific representation for calling a
function.

To avoid performance degradation caused by
mismatched formats, we reuse the model’s chat
template instead of designing a unified input-output
format. Most models are fine-tuned for chat tasks
involving three roles: system, user, and assistant.
We place the user query and available function
descriptions in the system and user prompts, and
the function-calling result in the assistant output.
This approach aligns the fine-tuning data with the
model’s existing knowledge, ensuring better perfor-
mance.

Setups. We formatted the DroidCall dataset
into the chat format, resulting in 10K training sam-
ples. We fine-tuned the model using LoRA (Hu



et al., 2022) with a rank of 8, alpha of 16, and a
linear learning rate scheduler (learning rate: 1.41e-
5, warmup ratio: 0.1). Training ran for 24 epochs,
with the best checkpoint selected. Prompt format
details are provided in Appendix F.

3.4 Putting It All Together

We fine-tune SLMs for Android intent invocation
using the DroidCall dataset. While our main eval-
uation (§4) focuses on the SLM’s core mapping ca-
pability assuming relevant functions are provided
as input, a real-world application necessitates dy-
namically identifying applicable functions from
available tools. To demonstrate the feasibility of
integrating our fine-tuned models into such an end-
to-end system, we developed an Android applica-
tion demo (Figure 4). The demo comprises two key
components:

Retriever: In this end-to-end demonstration, the
Retriever dynamically identifies relevant functions
from the predefined set based on the user query.
It leverages GTE (Li et al., 2023) for word em-
beddings and ObjectBox (obj, 2024) as the vector
database, passing retrieved functions to the Intent
Invocation Model.

Intent Invocation Model: This model takes the
user query and retrieved functions as input, out-
putting the necessary function calls. For this, we
use PhoneLM-1.5B (Yi et al., 2024) fine-tuned on
the DroidCall dataset.

All model inference is performed on mobile de-
vices using mllm (Yi et al., 2023b), a fast and
lightweight multimodal LLM inference engine for
edge devices. Figure 1 illustrates an example of
this end-to-end demo, where the fine-tuned model
assists users in adding a calendar event.
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Figure 4: Design of our demo.

4 Experiments

We first explore the impact of prompt designs on
model fine-tuning, identifying an optimal format.
We then demonstrate DroidCall’s superior per-
formance over general function-calling datasets
for Android intent invocation. Next, we analyze
the contribution of different DroidCall data types
through an ablation study. Finally, we present re-
sults showcasing the effectiveness of models fine-
tuned with DroidCall.

Metrics. We introduce two metrics to evaluate
function-calling performance: Accuracy and Soft
Accuracy.

* Accuracy. Measures the model’s ability to
perfectly match ground-truth function calls,
requiring exact matches of function identity
and all parameter values:

* Soft Accuracy. Evaluates partially correct
function calls by calculating the proportion
of accurately predicted parameters, averaged
across all calls:

F
A 1 P correct,?
CCsoft = g
F i—1 Ptotal,i

We evaluate SLMs using the 200 test entries
from DroidCall. Following the input format used
during training (§3.3), the prompts for evaluation
include descriptions of the relevant functions re-
quired for each task. This setup allows us to isolate
and measure the SLM’s core ability to map user
queries to correct function calls, decoupling the
evaluation from the function retrieval process re-
quired in a full end-to-end system (demonstrated
in §3.4).

4.1 Effect of Different Prompts

Prompt | Average Number of Tokens
code_short 645.195
json_short 950.340

code 931.555
json 1367.905

Table 1: Average number of tokens of different prompts.

In § 3.3, we described the model input compo-
nents: user query, available function descriptions,
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Figure 5: Figure 5(a) illustrates the performance of Qwen2.5-1.5B-Instruct after fine-tuning under different prompt
formats. Figure 5(b) shows the performance of PhoneLM-1.5B and Qwen2.5-1.5B-Instruct after finetuning on

different datasets.

and task instructions, with the output being a spe-
cific representation for calling a function. While
the user query is user-provided, we designed the
remaining components to evaluate their impact on
fine-tuning performance.

json. Uses JSON for available function descrip-
tions and function call representations due to its
simplicity.

code. Leveraging the prevalence of code data
in pre-training, we used docstrings for function
descriptions and Python function calls for function
representations. This aligns with pre-training data,
potentially improving model comprehension.

short. Removes task instructions from the json
and code formats (json_short and code_short), hy-
pothesizing they may be unnecessary after fine-
tuning.

We fine-tuned Qwen2.5-1.5B-Instruct using four
prompt formats. Figure 5(a) shows accuracy. The
code_short format achieved comparable results to
Jjson with significantly fewer tokens (Table 1). We
selected code_short for subsequent experiments.

4.2 Effectiveness of DroidCall

To verify DroidCall outperforms general datasets
for Android intent invocation, we compared
Qwen2.5-1.5B-Instruct and PhoneLM-1.5B fine-
tuned on DroidCall and xlam-function-calling-
60k (Liu et al., 20244d).

Both datasets were formatted using code_short.
The xlam-function-calling-60k has 60k data points
while DroidCall has 10k. To ensure equivalent
training instances, we trained 4 epochs on xlam-

function-calling-60k and 24 epochs on DroidCall.
Results across 9 checkpoints (Oth is pre-finetuning)
are in Figure 5(b).

Accuracy improves with fine-tuning on both
datasets, but the xlam-function-calling-60k model
quickly plateaus. Improvement with DroidCall is
substantially more significant.

This demonstrates that a task-specific dataset
like DroidCall yields better results than a general-
purpose dataset for a specific task. Further-
more, PhoneLM’s performance, initially lower than
Qwen’s, reaches parity by the end of fine-tuning
with DroidCall. This suggests DroidCall aids
models in leveraging pre-trained knowledge for
Android control, allowing models with compara-
ble pre-trained knowledge to reach similar perfor-
mance levels on this task.

4.3 Impact of Simple vs. Complex Data Types

The DroidCall dataset comprises 7589 simple
data entries and 2682 complex entries(approx. 3:1).
To understand their contribution and justify their
ratio, we conducted an ablation study.

We fine-tuned Gemma-2-2b-it on subsets: sim-
ple only, complex only, and the full dataset. To
account for subset sizes, we adjusted epochs (32
for simple, 96 for complex, 24 for combined) to
equalize training steps. The best checkpoint for
each was selected.

Results in Table 3 demonstrate the complemen-
tary value. Simple data alone achieves a solid
baseline. Complex data alone yields lower accu-
racy, likely due to difficulty. The combined dataset



Model Size Zero-Shot Few-Shot Fine-Tuning
Acc  Accsopr  Acc  Accsopr  Acc Accsopt

PhoneLM-1.5B 1.5B 17.5 17.5 55.5 62.8 75 86.1
Qwen2.5-1.5B-Instruct 1.5B 61 76.6 64.5 81 76 90.3
Qwen2.5-3B-Instruct 3B 62 79.4 71 86.1 83 93.5
Qwen2.5-Coder-1.5B 1.5B 42.5 48.8 65.5 81.6 82 93.2
Gemma?2-2B-it 2B 59 77.2 67.5 83.7 85 93.9
Phi-3.5-mini-instruct 3.8B 62 77.8 67.5 82.1 83.5 93.8
MiniCPM3-4B 4B 67 84.3 75 89.6 74.5 82.3
Llama3.2-1B-Instruct 1B 31.5 37.7 60.5 76.3 75.5 87.3
Llama3.2-3B-Instruct 3B 66.5 79.8 72 87.2 82 92.7
GPT-40 (2024-08-06) 77 89.1 80.5 91.5

GPT-40-mini (2024-07-18) 71.5 86.6 76 88.6

GPT-4-turbo (2024-04-09) 78.5 91.2 83.1 95.1

Table 2: Evaluation of different models. Our fine-tuned model achieves superior performance compared to GPT-4o,
utilizing only half the prompt length and a compact 2 billion parameters.

achieves significantly higher accuracy. This shows
simple examples help basic learning, while com-
plex examples are crucial for handling diversity
and compositionality, justifying the dataset’s com-
position and ratio.

Type Soft Accuracy (%) Accuracy (%)
S 78.8 68.0
C 69.6 50.5
S+C 93.9 85.0

Table 3: Ablation study on the impact of data types on
Gemma-2-2b-it performance. S denotes Simple and C
denotes Complex.

4.4 Performance of Different SLMs

To test various edge-tailored SLMs and further ver-
ify DroidCall effectiveness, we tested Acc and
Accg, ¢ under zero-shot, few-shot, and fine-tuned
conditions. Zero-shot/few-shot used json prompts
as code_short lacks task instructions needed for
these settings; json was more effective than code.

Table 2 shows performance. Zero-shot results
vary significantly, likely due to differing SFT and
alignment effectiveness influencing instruction fol-
lowing. All models improve under few-shot con-
ditions, suggesting better utilization of pre-trained
knowledge.

After fine-tuning with DroidCall (code_short
format), performance significantly improves. Infer-
ence requires only user query and function descrip-

tions, greatly reducing prompt length compared to
zero-shot/few-shot.

5 Conclusion

In this paper, we introduce DroidCall, a novel
dataset specifically engineered to enhance the An-
droid intent invocation capabilities of LLMs. Our
approach diverged from conventional cloud-based
models, focusing instead on on-device deployment
to address privacy concerns inherent in mobile en-
vironments. In our work, we (1) build a highly
customizable and reusable data generation pipeline,
(2) construct DroidCall, a first-of-its-kind open-
sourced dataset for Android intent invocation based
on the pipeline, (3) fine-tune a series of models tai-
lored for edge devices, enabling them to approach
or even surpass the performance of GPT-40 in the
specific task of intent invocation and (4) implement
an end-to-end demo with mllm. Our work demon-
strates the potential applications of small models
on the edge. We have open-sourced all the code of
the data generation, fine-tuning, and evaluation.

Limitations

While our approach demonstrates promising re-
sults, it has several limitations that warrant further
investigation.

Data Quality and Generalizability. Our
method relies heavily on the quality of the gen-
erated data, which may introduce biases or inaccu-
racies. For instance, the synthetic data generated by



LLMs may not fully capture the diversity of real-
world scenarios, potentially limiting the model’s
generalization ability. In this work, we prioritize
generating high-quality, task-specific data for An-
droid intent invocation, which allows us to mitigate
some of these issues within the narrow scope of
our target domain. However, broader generaliza-
tion to more diverse or complex scenarios remains
a challenge. Future work could explore hybrid data
generation techniques, combining synthetic data
with real-world user interactions, to improve both
diversity and accuracy.

Scalability of the Method. Our approach re-
quires predefined functions, which limits its adapt-
ability to new tasks without significant manual
effort. This limitation is partially offset by the
modular design of our pipeline, which allows for
easy extension to new functions within the An-
droid ecosystem. In the context of this work, we
focus on a curated set of common Android intents,
where predefined functions are sufficient to cover
most use cases. However, for more dynamic or
open-ended tasks, this approach may not scale ef-
fectively. Future research could investigate meth-
ods for automatically discovering and defining new
functions, potentially leveraging unsupervised or
semi-supervised learning techniques to reduce man-
ual intervention.
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A Evaluation Robustness Analysis

This appendix provides a detailed analysis addressing concerns regarding the size of our 200-sample
test set relative to the 10K training set. While standard practice often suggests larger test sets to ensure
robustness and reduce variance, our evaluation primarily aims to demonstrate the relative capabilities of
fine-tuned Small Language Models (SLMs) compared to larger models for the specific task of Android
intent invocation.

To investigate the reliability of evaluations conducted on test sets of this scale within the distribution
of our generated data, we performed supplementary experiments using several capable large language
models: Deepseek-chat, GPT-40, and GPT-40-mini. These models were evaluated in a zero-shot setting
on randomly sampled test sets of varying sizes (200, 400, 600, 1000, 1500, and 2000 entries) drawn
from our dataset. We chose these models to understand how performance metrics, particularly relative
performance, behave across different evaluation scales on data structured for this domain. The results are
presented in Table 4.

Model Data Size Zero-Shot Acc Zero-Shot Accgf
200 75.0 89.9
400 75.3 90.4
600 71.1 86.3
deepseek-chat 73.3 87.5
1500 78.5 91.2
2000 71.5 86.0
200 77.0 89.1
400 743 87.9
600 69.1 84.0
GPT-do 1000 73.7 85.6
1500 75.4 36.8
2000 73.2 86.2
200 71.5 86.6
400 74.8 88.5
. 600 68.6 85.1
GPT-40-mini 1000 73.6 873
1500 70.8 84.4
2000 70.6 84.6

Table 4: Zero-shot Accuracy of Various Models on Randomly Sampled Test Sets of Different Sizes. The results
demonstrate the stability of model performance across varying evaluation set sizes.

Analysis of Table 4 indicates that while there is some natural variation in absolute accuracy across
different random test set samples, the relative performance ranking and general trends between these
powerful models remain largely consistent across test set sizes ranging from 200 to 2000 samples. This
stability in relative performance observed on diverse models within the DroidCall data distribution
provides strong evidence that evaluating on a 200-sample set is sufficient for obtaining a representative
signal for comparing the capabilities of different models in this specific intent invocation domain, which is
the primary focus of our evaluation. Therefore, the conclusions drawn from our evaluations, including the
comparison between our fine-tuned SLMs and larger models like GPT-40, are supported by this analysis
of evaluation robustness.

B Dataset Quality

This appendix provides a detailed discussion on the quality of the DroidCall dataset and the rationale
behind selecting GPT-4-turbo as our primary data generation model. We address concerns regarding data

13



reliability and the trade-offs involved in leveraging large language models for synthetic data creation.

B.1 Rationale for GPT-4-turbo in Data Generation

Our data generation pipeline, detailed in §3.2, primarily leveraged GPT-4-turbo. This decision stemmed
from early observations during the initial experimental setup, where we informally assessed various
LLMs, including GPT-40, GPT-40-mini, and DeepSeek, focusing on a practical balance of data quality,
generation efficiency, and cost.

Key characteristics observed from our preliminary assessments:

* GPT-40-mini: While potentially cost-effective, this model proved inefficient for generating usable
data. It often produced a large volume of tokens that our filters discarded due to formatting errors or
high redundancy, suggesting suboptimal output quality upon manual inspection.

* GPT-40: This model performed significantly better than GPT-4o0-mini but still exhibited slightly
lower data quality compared to GPT-4-turbo.

» DeepSeek: DeepSeek consistently generated high-quality data. However, its API response time
was considerably slower, making it impractical for the large-scale data generation required for
DroidCall.

Ultimately, GPT-4-turbo emerged as the preferred choice due to its superior balance of output quality and
generation speed, which was crucial for efficiently constructing our dataset. We acknowledge the potential
of more recent powerful open-source models (like the latest Qwen versions) or other closed-source
alternatives. However, a detailed comparative evaluation with these specific models was beyond the
scope of this initial work due to resource constraints. We consider exploring their effectiveness for data
generation an important direction for future research.

B.2 Ensuring Dataset Quality

To ensure the reliability and diversity of the DroidCall dataset, our generation pipeline incorporates
several mechanisms:

* Automated Filtering Pipeline: As detailed in §3.2, all generated data undergoes a rigorous three-
stage filtering process:

— JsonExtractor: Ensures the output strictly adheres to the JSON format.

— FormatFilter: Validates that the extracted JSON matches the predefined schema for function
calls.

— SimilarityFilter: Eliminates highly similar queries using LCS ROUGE scores (with an F-
measure threshold of 75%), promoting data diversity.

¢ Self-Instruct Paradigm: By following the self-instruct paradigm (Wang et al., 2022), we leverage
high-quality seed data (Liu et al., 2024d) to guide the LLM, ensuring that generated examples are
relevant and structurally consistent with the target function-calling format. This approach minimizes
manual annotation efforts while maintaining quality.

* Function Predefinition: The predefined set of 24 functions, based on Android Common Intents
(com, 2024) (§3.1), provides a controlled and well-defined action space. This specificity reduces
ambiguity in generated function calls and enhances the model’s ability to learn precise mappings.

B.3 Human Evaluation of Generated Data

To provide a direct assessment of the generated data quality beyond automated metrics, we conducted
a small-scale human evaluation. This evaluation aimed to validate both the technical correctness of the
query-to-function mapping and the naturalness of the user queries.

Methodology: We randomly sampled 100 examples from the generated dataset. Three independent
annotators were tasked with evaluating each example based on two criteria:
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1. Correctness: A binary assessment of whether the query-to-function mapping was technically
accurate (i.e., the function name and all its parameters perfectly matched the ground truth).

2. Reasonableness: A 5-point Likert scale (1: Very unreasonable, 5: Very reasonable) to assess the
quality and naturalness of the task formulation in the user query.

Results: The results from the three annotators are summarized in Table ??.

Annotator Correctness (%) Reasonableness (avg)

1 90% 4.2
84% 3.8
3 86% 3.8

Table 5: Human Evaluation Results of Generated Data Quality (N=100)

The human evaluation results indicate a moderate to high level of quality in the generated data.
Correctness rates, ranging from 84% to 90%, suggest that a significant majority of the generated examples
accurately map user queries to their intended function calls. Reasonableness scores, averaging between
3.8 and 4.2, further support that the generated user queries are generally natural and logically consistent.

While this small-scale evaluation provides a strong indication of the dataset’s reliability, we acknowledge
that a more extensive assessment, particularly for complex multi-step examples, would further strengthen
confidence. Our current findings, coupled with the robust automated filtering, establish a solid foundation
for the dataset’s use in fine-tuning SLMs for Android intent invocation.

C Predefined Function Specifications

This appendix documents the 24 core intent-based functions predefined within the DroidCall dataset.
These functions encapsulate common Android operations via standardized implicit intents, serving as
the foundational API for our framework. Detailed specifications are available at https://anonymous.
4open.science/r/DroidCall-C100/api.py.

# Scheduling & Alarms

def ACTION_SET_ALARM(hour: int, minutes: int, message=
def ACTION_SET_TIMER(duration: str, message=""): .
def ACTION_SHOW_ALARMS(): .

def ACTION_INSERT_EVENT(title: str, desc: str, location=None):

nn

days=None):

# Camera & Media

def ACTION_IMAGE_CAPTURE() -> str: ... # Returns photo URI
def ACTION_VIDEO_CAPTURE() -> str: ... # Returns video URI
def INTENT_ACTION_STILL_IMAGE_CAMERA():

def INTENT_ACTION_VIDEO_CAMERA():

# Contacts Management

def ACTION_PICK(data_type: str = "ALL") -> str: ... # Returns contact URI
def get_contact_info(name: str, key: str) -> str:

def get_contact_info_from_uri(contact_uri: str, key: str)->str:

def ACTION_VIEW_CONTACT (uri: str): ...

def ACTION_EDIT_CONTACT(uri: str, info=None):

def ACTION_INSERT_CONTACT (info: dict):

# Messaging

2| def send_email (to: list, subject: str, body: str, cc=None, bcc=None):

def send_message(phone: str, subject: str, body: str):

# File Operations

def ACTION_GET_CONTENT(mime_type: str, multi=False) -> list: ... # Returns URIs
def ACTION_OPEN_DOCUMENT (mime_types: list, multi=False) -> list:
def ACTION_CREATE_DOCUMENT (mime_type: str, name: str) -> str: ... # Returns URI

# System Operations
def search_location(query: str):
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def dial(phone: str):
def web_search(query: str, engine="baidu”):
def open_settings(setting_type="general”):

# Utilities
def ACTION_GET_RINGTONE() -> str: ... # Returns ringtone URI

Listing 5: Predefined Android Intent Functions

D Discussion on Function Selection, Coverage, and Scalability

This appendix provides additional context regarding the selection of the 24 predefined functions used in
the DroidCall dataset and addresses related aspects of coverage and the method’s scalability, building
upon points raised during the review process.

D.1 Function Selection Rationale

Our approach focuses on enabling LLMs to invoke Android intents for common user operations. We
manually defined a set of 24 functions based on a review of Android’s official Common Intents documen-
tation (com, 2024) and frequently performed tasks (e.g., setting alarms, sending emails, making calls).
This curated set was chosen primarily to provide a controlled, representative, and practically relevant
environment for evaluating the capability of fine-tuned SLMs in mapping diverse user instructions to
specific, actionable intent calls. It allows us to demonstrate the core feasibility and performance gains of
our data-driven approach within a defined scope.

D.2 Coverage Limitations

While the 24 functions cover a range of frequent user intents, they represent only a specific subset of the
vast and dynamic Android ecosystem. The total number of potential intents is not fixed, as third-party
applications can define custom intents, making a comprehensive quantification challenging. Therefore,
our predefined set is not exhaustive and inherently limits the agent’s capabilities to actions within this
defined 24-function scope. This limitation is acknowledged in the main body’s Limitations section.

D.3 Scalability and Generalizability

The manual predefinition of the action space directly impacts the scalability and generalizability of our
method. Expanding the agent’s capabilities to cover a significantly broader set of Android intents, or
adapting the approach to other mobile platforms (e.g., i0OS) or different interaction domains, would
require substantial manual effort to define or map corresponding functions and their parameters. Our
current approach reflects a deliberate trade-off, prioritizing the creation of a high-quality dataset and
controllable evaluation environment for a specific, valuable task. In contrast, achieving broader scalability
and generalizability would necessitate addressing the significant research challenges associated with
automated action space discovery, intent parameter grounding, and data generation for unbounded or
rapidly changing domains.

D.4 Future Directions

Future research directions aimed at mitigating these limitations include exploring automated or semi-
automated techniques for discovering and defining intents and their parameters from various sources (e.g.,
documentation, UI analysis). Such approaches could help reduce manual effort, facilitate scaling to a
wider range of Android functionalities, and potentially improve generalizability across different platforms
and domains, complementing the data generation methodology presented in this work.

E Data Generation Prompts

At the beginning of data generation, we first generate seed data. The prompt used to generate seed is
shown as following:
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I need your help to generate some function calling datasets. I will provide you with a tool description,
and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.

2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.

3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.

4. The generated queries should be solvable using the given tools.

5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.

6. When providing parameters, if a parameter has required=False, you may omit its value.

7. The generated data must be presented in the format given in my example.

8. The parameter values generated with function call generated must be values that can be inferred
from the user’s query; YOU CANNOT FABRICATE PARAMETERS THAT CANNOT BE
OBTAINED FROM THE USER’S REQUEST.

9. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.

following are some examples:
$examples

Now I will give you a tool, and you help me generate 15 query-answer pairs.
REMEMBER TO GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY.
tool: $tool

In the prompt above, $examples will be replace by random samples sampled from xlam-function-
calling-60k (Liu et al., 2024d). Below is an example:

tool: {
"name: "...",
"description”: "...",
"arguments”: {

3
}
response: {
"query": "...",
"answers”: [
{
}
]
}

$tools will be replace by json formatted predefined function, below is an example:

tool: {
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"name"”: "ACTION_SET_ALARM",
"description”: "..."
"arguments”: {

}
b

After seed generation stage, we will use another prompt to continuously generate data. Prompt is shown
as following:

I need your help to generate some function calling datasets. I will provide you with a tool description
and some example data for you. You need to generate queries and corresponding answers based on
this tool, i.e., the answers that call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.

2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.

3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.

4. The generated queries should be solvable using the given tools.

5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.

6. When providing parameters, if a parameter has required=False, it is not necessary to provide its
value.

7. The query-answer pairs should cover as many possible uses of the tool as possible.

8. The generated data must be presented in the format given in my example.

9. The parameter values generated with function call generated must be values that can be inferred
from the user’s query; YOU CANNOT FABRICATE PARAMETERS THAT CANNOT BE
OBTAINED FROM THE USER’S REQUEST.

following are tool I provided and some examples of query-answer pairs: tool: $tool examples:
$examples

Now please help me generate 40 query-answer pairs. REMEMBER TO GENERATE THE
RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE REMEMBER NOT TO FABRICATE
PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE INFERED FROM USER QUERY.

$tool will be replaced by the json format of predefined functions shown early. $examples is the data
sampled from the seed data generated previously.

When generating data of complex call, we slightly modify the prompt shown above. The seed generation
prompt is shown below:

I need your help to generate some function calling datasets. I will provide you with a tool description,
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and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.

2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.

3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.

4. The generated queries should be solvable using the given tools.

5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.

6. When providing parameters, if a parameter has required=False, you may omit its value.

7. The generated data must be presented in the format given in my example.

8. THE PARAMETER VALUES GENERATED WITH FUNCTION CALL GENERATED MUST
BE VALUES THAT CAN BE INFERRED FROM THE USER’S QUERY; YOU CANNOT
FABRICATE PARAMETERS THAT CANNOT BE OBTAINED FROM THE USER’S REQUEST.
9. THE GENERATED QUERY SHOULD CONTAIN ENOUGH INFOMATION SO THAT YOU
COULD CORRECTLY GENERATE PARAMETER USED BY THE TOOLS. THIS IS ALSO TO
GUARANTEE THAT YOU DON’T FABRICATE PARAMETERS.

10. You should use all the tools I provided to generate the query and answer. It means that you
should generate a query that needs to use all the tools I provided to solve, and remember to provider
an answer that uses all the tools to solve the query.

11. You can use the same tool multiple times in a single query to ensure the query diversity.

12. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.

13. Generate data of nested function calls if possible. i.e., the argument of a function call is the
response of another function call.

following are some examples:
$examples

Now I will give you a tool, and you help me generate 15 query-answer pairs. REMEMBER TO
GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE AND PUT IT IN
A JSON LIST.
REMEMBER YOU SHOULD USE ALL THE TOOLS AT ONE QUERY AND SOLVE IT WITH
ALL TOOLS, AND GENERATE NESTED CALL IF POSSIBLE.
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY.
tools:
$tools

Prompt for continuously generating complex function calling data is:

I need your help to generate some function calling datasets. I will provide you with a tool description,
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and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.

2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.

3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.

4. The generated queries should be solvable using the given tools.

5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.

6. When providing parameters, if a parameter has required=False, you may omit its value.

7. The generated data must be presented in the format given in my example.

8. THE PARAMETER VALUES GENERATED WITH FUNCTION CALL GENERATED MUST
BE VALUES THAT CAN BE INFERRED FROM THE USER’S QUERY; YOU CANNOT
FABRICATE PARAMETERS THAT CANNOT BE OBTAINED FROM THE USER’S REQUEST.
9. THE GENERATED QUERY SHOULD CONTAIN ENOUGH INFOMATION SO THAT YOU
COULD CORRECTLY GENERATE PARAMETER USED BY THE TOOLS. THIS IS ALSO TO
GUARANTEE THAT YOU DON’T FABRICATE PARAMETERS.

10. You should use all the tools I provided to generate the query and answer. It means that you
should generate a query that needs to use all the tools I provided to solve, and remember to provider
an answer that uses all the tools to solve the query.

11. You can use the same tool multiple times in a single query to ensure the query diversity.

12. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.

13. Generate data of nested function calls if possible. i.e., the argument of a function call is the
response of another function call.

Now I will give you some tools and some example data of query-answer pairs using these tools.
Please help me generate 40 query-answer pairs. tools: $tools
examples: $examples

REMEMBER TO GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE
ABOVE AND PUT IT IN A JSON LIST.
REMEMBER YOU SHOULD USE ALL THE TOOLS AT ONE QUERY AND SOLVE IT WITH
ALL TOOLS, AND GENERATE NESTED CALL IF POSSIBLE.
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY.

F Function Calling Prompts

In § 4.1, we’ve mentioned that we have tested 4 format of prompt: json, code, json_short and code_short.
To unify our fine-tuning, we use chat to do function calling thus we only need to design the part of system,
user and assistant using chat template.

In json or code format, the system prompt would be:

You are an expert in composing functions. You are given a query and a set of possible functions.
Based on the query, you will need to make one or more function calls to achieve the purpose. If none
of the function can be used, point it out. If the given question lacks the parameters required by the
function, also point it out. Remember you should not use functions that is not suitable for the query
and only return the function call in tools call sections.

in json_short or code_short the system prompt would be:
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You are an expert in composing functions.

The user part of json or code is:

Here is a list of functions that you can invoke:
$functions

Should you decide to return the function call(s), Put it in the format of
$format_description

$example

If there is a way to achieve the purpose using the given functions, please provide the function
call(s) in the above format. REMEMBER TO ONLY RETURN THE FUNCTION CALLS LIKE
THE EXAMPLE ABOVE, NO OTHER INFORMATION SHOULD BE RETURNED.

Now my query is: $user_query

$functions is the functions descriptions provided by retriever, in code or code_short format, it would be
like:
Name:
send_email
Description:
Compose and send an email with optional attachments.

This function allows the user to compose an email with various options,
including multiple recipients, CC, BCC, and file attachments.
Args:
to (List[strl]):
subject (str):
Returns:
None
Example:
# Send an email with a content URI attachment
send_email(
to=["recipient@example.com”],
subject="Document"”,
body="Please find the attached document.”,
attachments=...

)

In json or json_short, functions would be describe directly in json format as shown in Listing 1.
$format_description in the prompt will be replace by detailed output format the model should follow.
In json it will be:

L
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"id": o,
"name”: "func@",
"arguments”: {
"argl”: "valuel”,
"arg2": "value2",
}
3,
{
"id": 1,
"name”: "funcl",
"arguments”: {
"argl”: "valuel”,
"arg2": "value2"”,
}
3,

]

If an argument is a response from a previous function call,
you can reference it in the following way like the argument
value of arg2 in funcl:

L
{
"id": @,
"name”: "funco",
"arguments”: {
"argl”: "valuel”,
"arg2": "value2",
}
3,
{
"id": 1,
"name”: "funcl1”,
"arguments”: {
"argl”: "valuel”,
"arg2": "#0",
}
3,
]

This means that the value of arg2 in funcl is the return
value from func@ (#0 means the response from the function call with id 0).

In code format this will be

resultl = func@(argl="valuel”, arg2="value2", ...)
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result2 = funcl(argl="valuel”, arg2=resultl, ...)
You can do nested function calling in the following way:
resultl = func@(argl="valuel”, arg2="value2", ...)

result2 = funcl(argl="valuel”, arg2=resultl, ...)

This means that the value of arg2 in funcl is the return value from funce.

$example in the prompt is used to test few-shot performance of a model.
The user prompt of json_short or code_short is much simpler withou task instructions:

Here is a list of functions: $functions
Now my query is: $user_query

In code or code_short format the assistant output would be:

<sep>resultl = func@(argl="valuel”, arg2="value2”, ...)
result2 = funcl(argl="valuel”, arg2=resultl, ...)</sep>

where < sep > and < /sep > can be any seperator set before fine-tuning.
In json or json_short format the assistant output would be:

L
{
"id": @,
"name”: "funce@”,
"arguments”: {
"argl"”: "valuel”,
"arg2": "value2",
}
}
]
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