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Abstract
Tabular biomedical data poses challenges in
machine learning because it is often high-
dimensional and typically low-sample-size. Previ-
ous research has attempted to address these chal-
lenges via feature selection approaches, which
can lead to unstable performance and insufficient
interpretability on real-world data. This suggests
that current methods lack appropriate inductive
biases that capture informative patterns in differ-
ent samples. In this paper, we propose ProtoGate,
a local feature selection method that introduces an
inductive bias by attending to the clustering char-
acteristic of biomedical data. ProtoGate selects
features in a global-to-local manner and leverages
them to produce explainable predictions via an
interpretable prototype-based model. We conduct
comprehensive experiments to evaluate the perfor-
mance of ProtoGate on synthetic and real-world
datasets. Our results show that exploiting the ho-
mogeneous and heterogeneous patterns in the data
can improve prediction accuracy while prototypes
imbue interpretability.

1. Introduction
In biomedical research, tabular data is frequently collected
(Baxevanis et al., 2020; Lesk, 2019; Polanski & Kimmel,
2007) for a wide range of applications such as detecting
marker genes (Hsu et al., 2003), identifying cancer sub-
types (Hsu et al., 2003), and performing survival analy-
sis (Yang et al., 2022; Fan et al., 2022). Clinical trials,
whilst collecting large amounts of high-dimensional data us-
ing modern high-throughput sequencing technologies, often
consider a small number of patients due to practical rea-
sons (Levin et al., 2022). The resulting tabular datasets are
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thus often high-dimensional and typically low-sample-size
(HDLSS). Moreover, given the inherent heterogeneity of
biomedical data, important features often vary from sample
to sample – even in the same dataset (Yang et al., 2022;
Yoon et al., 2018). Such scenarios have proven challenging
for current machine learning approaches, including deep
tabular models (Liu et al., 2017; Shwartz-Ziv & Armon,
2022; Mamoshina et al., 2016; Yang et al., 2022; Aoshima
et al., 2018; Margeloiu et al., 2023).

Previous methods (Remeseiro & Bolon-Canedo, 2019; Chen
et al., 2018; Yoon et al., 2018; Yang et al., 2022) have at-
tempted to address such challenges by performing local
feature selection: rather than selecting a general set of im-
portant features across all samples, local feature selection
methods select specific subsets of features for each sample
and these subsets may vary from sample to sample. How-
ever, existing methods have three limitations: (i) In many
real-world tasks, even simple models – such as an MLP
or Lasso – can outperform many existing methods (Yang
et al., 2022). One reason is the accuracy of current meth-
ods can be substantially lower for some classes than other
classes, and we illustrate this in Figure 1. (ii) These methods
commonly comprise a trainable feature selector to select fea-
tures and a trainable predictor to make predictions with these
features, which can be susceptible to the co-adaptation prob-
lem (Jethani et al., 2021; Adebayo et al., 2018; Hooker et al.,
2019). Because the two components are jointly trained, the
predictor can fit the selected features to achieve high accu-
racy even when these features do not reflect the real data
distribution (Jethani et al., 2021). Consequently, the predic-
tion accuracy is inconsistent with the quality of selected fea-
tures. For instance, L2X (Chen et al., 2018) achieves 96%
accuracy in digit classification on MNIST by using only
one pixel as input (Jethani et al., 2021). (iii) Current meth-
ods (Yoon et al., 2018; Jethani et al., 2021; Yang et al., 2022;
Chen et al., 2018) cannot provide explainable predictions be-
cause they mainly use an MLP-based predictor. This lack of
explainability is a major concern in high-stake applications
such as medicine (Holzinger et al., 2019; London, 2019;
Amann et al., 2020; Reddy, 2022; Tjoa & Guan, 2020).

We hypothesise that these local feature selection methods
exhibit subpar performance for two reasons:
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Figure 1. Illustration of the unstable performance of LSPIN (Yang et al., 2022) on the lung dataset. (a) The class-wise classification
accuracy, with class distribution in the parentheses. (b) The mean number of selected features, displayed on a logarithmic scale. MLP and
ProtoGate achieve stable performance, while LSPIN has a large variance in the accuracy and number of selected features across classes.

• Lack of appropriate inductive biases: These methods
mainly make predictions using MLPs, although, in
the biomedical domain, the clustering assumption
(which states similar samples should belong to the
same class (Chapelle et al., 2006)) has been shown
effective (Kolodner, 1992; Li et al., 2018; Bichindaritz
& Marling, 2006; Bichindaritz, 2008; Lu et al., 2021).
Based on the clustering assumption, the prototype-based
models can perform well on tabular data by classifying
the new instances according to their similarities to the
existing prototypes. For instance, a simple prototype-
based model, such as k-means, can outperform complex
neural networks with an accurate pre-trained feature
selector (Yang et al., 2022).

• Lack of consideration on the homogeneity between
samples: Existing local feature selection models tend
to overly emphasize heterogeneity, often neglecting that
different samples might share some informative features.
The high accuracy of global feature selection models on
real-world datasets (Margeloiu et al., 2023) suggests that
informative features can indeed be shared across samples.

Therefore, we believe that effective local feature selection
methods should be able to identify the clustering charac-
teristics and homogeneous/heterogeneous feature patterns
across samples, provided the data supports their existence.

In this paper, we aim to address the challenges of suboptimal
performance and the opaqueness of local feature selection
methods applied to tabular biomedical data. We propose
ProtoGate, a novel method which performs local feature
selection and makes accurate and explainable predictions in
the HDLSS regime.

Firstly, ProtoGate uses a prototype-based predictor with-
out learnable parameters – namely Differentiable K-Nearest
Neighbors (DKNN) (Grover et al., 2019) – which enables
explainable predictions. The prototype-based predictor con-
fers ProtoGate two important features: (i) an inductive bias
aligned with the clustering assumption in biomedical data;

and (ii) consistent evaluations of the quality of selected
features throughout the training process, eliminating the
possibility of co-adaptation from joint training. Secondly,
ProtoGate performs feature selection in a global-to-local
manner with an ℓ1-regularised gating network. The global-
to-local design helps ProtoGate consider the homogeneous
and heterogeneous patterns across multiple samples.

Our contributions can be summarised as follows:

1. We propose ProtoGate, a novel method which addresses
the challenge of high-dimensional and low-sample-size
(HDLSS) biomedical data by achieving local feature
selection and explainable predictions with a global-to-
local feature selector and a prototype-based classifier.

2. We show that ProtoGate generally outperforms 12
benchmark methods on seven real-world biomedical
datasets (Section 4.1) while selecting fewer features
(Section 4.2), paving the path to more robust and inter-
pretable local feature selection models.

3. We demonstrate that ProtoGate effectively handles the
co-adaptation problem via a prototype-based predictor
without learnable parameters by evaluating its perfor-
mance on three synthetic datasets (Section 4.3).

2. Related Work
Feature Selection Methods Feature selection is a common
technique for improving the accuracy and interpretability
of machine learning models on HDLSS datasets. An exten-
sive line of work selects features globally with Lasso-based
regularisation (Tibshirani, 1996; Feng & Simon, 2017; Ya-
mada et al., 2014; 2018; Climente-González et al., 2019)
or specialised layers in neural networks (Margeloiu et al.,
2023; Singh et al., 2020; Balın et al., 2019; Lemhadri et al.,
2021; Yamada et al., 2020). However, the global feature se-
lection ignores the heterogeneous nature of biomedical data,
leading to insufficient interpretability (Yang et al., 2022).

Prior studies attend to the heterogeneity between samples
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by designing post-hoc local explanation methods to explain
the instance-wise feature importance for a pre-trained pre-
dictor (Jethani et al., 2021; Ribeiro et al., 2016; Lundberg &
Lee, 2017; Shrikumar et al., 2017; Simonyan et al., 2013;
Lundberg et al., 2018; Bach et al., 2015). These methods are
limited because the post-hoc analysis on feature importance
does not improve the performance of pre-trained predictors.

Recent work proposes to select instance-wise features for
making predictions (Yoon et al., 2018; Yang et al., 2022;
Chen et al., 2018; Arik & Pfister, 2021; Yoshikawa & Iwata,
2022). L2X uses mutual information for instance-wise fea-
ture selection with Concrete distribution, but it requires
specifying the number of selected features (Chen et al.,
2018). INVASE addresses such limitation by modelling
each feature’s mask/gate value with independent Bernoulli
distributions (Yoon et al., 2018). However, both methods
utilise computationally expensive gradient estimators: RE-
INFORCE (Williams, 1992) or REBAR (Tucker et al., 2017).
Similar to STG (Yamada et al., 2020), LSPIN/LLSPIN re-
formalises the mask/gate value with injected Gaussian noise
and extends Localized Lasso (Yamada et al., 2017) with a
gating network that can select similar features for similar
samples (Yang et al., 2022). However, the poor performance
of a vanilla KNN on real-world datasets (Table 1) demon-
strates that the similarity in the initial high-dimensional
feature space is inaccurate because a large proportion of
features can be noise for the prediction. And these meth-
ods mainly employ unexplainable MLPs for making pre-
dictions, which can be unsuitable for tabular biomedical
data (Shwartz-Ziv & Armon, 2022).

In contrast, ProtoGate measures the similarity across
samples within an intrinsically interpretable DKNN
predictor. The predictor takes the samples after feature
selection as input, and thus the similarity is measured in
a feature space with reduced dimensions.

Prototype-based Machine Learning Prototype-based mod-
els (Biehl et al., 2016) in machine learning are closely re-
lated to metric learning (Goldberger et al., 2004) and case-
based reasoning (Kolodner, 1992). They are built upon the
clustering assumption and aim to represent data through
prototypical exemplars (e.g. KNN (Fix, 1985)) or a set of
prototypical centroids (e.g. k-means (Ball & Hall, 1965))
that capture the fundamental characteristics of the data.
These core ideas parallel similar concepts from cognitive
psychology and neurosciences (Biehl et al., 2016). There-
fore, prototype-based models have gained attention for their
potential to improve the performance and interpretability
of machine learning approaches, particularly in the context
of the biomedical field (Kolodner, 1992; Li et al., 2018;
Bichindaritz & Marling, 2006; Bichindaritz, 2008; Lu et al.,
2021). Therefore, ProtoGate employs a prototype-based
predictor for explainable predictions on biomedical data.

Co-adaptation Problem In feature selection, co-adaptation
refers to the situation where the model encodes predictions
into the feature selection, leading to high accuracy with
features that do not reflect the real data distributions (Jethani
et al., 2021; Adebayo et al., 2018; Hooker et al., 2019;
Samek et al., 2016). REAL-X proves that co-adaptation
can happen in models with jointly trained feature selectors
and predictors (Jethani et al., 2021), and addresses this
problem by decoupling the training objectives of the feature
selector and predictor. However, it is important to note that
REAL-X can only provide a post-hoc analysis of feature
importance for individual samples, which does not address
the performance gap arising from HDLSS data.

In ProtoGate, we propose to address the co-adaptation prob-
lem with DKNN, a prototype-based predictor without learn-
able parameters. Therefore, the DKNN predictor cannot
adapt to the feature selector, eliminating the possibility of
co-adaptation from joint training.

3. Method
3.1. Problem Setup

We consider the classification task on tabular biomedical
data with Y classes. Let X := [x(1), . . . ,x(N)]⊤ ∈ RN×D

be the data matrix consisting of N samples x(i) ∈ RD with
D features, and let Y := [y(1), . . . , y(N)] ∈ RN be the
corresponding labels. We denote x

(i)
d as the d-th feature of

the i-th sample. To simplify the notation, we assume all
samples in X are used for training.

A common local feature selection model contains two com-
ponents: (i) an instance-wise feature selector SW : RD →
{0, 1}D that takes as input a sample x(i) and generates a
mask/gate s(i) ∈ [0, 1]D for its features, and (ii) a predictor
model Fθ : RD → Y which takes as input both the sample
x(i) and the mask s(i) for prediction:

ŷ(i) = Fθ

(
SW(x(i)),x(i)

)
= Fθ(x

(i) ⊙ s(i)) (1)

where ŷ(i) is the predicted label and ⊙ is the element-wise
multiplication. Here, we define the d-th feature is selected
if and only if the mask value is positive (s(i)d > 0).

3.2. Rationales for Model Design
We propose ProtoGate as a method for selecting instance-
wise features with inductive biases from the prototype-based
model, as shown in Figure 2. And the pseudocode for model
training is summarised in Algorithm 1.

Firstly, ProtoGate selects instance-wise features with a
global-to-local feature selector, which is an ℓ1-regularised
gating network. This design allows the feature selector to
consider the homogeneous and heterogeneous feature pat-
terns across samples.
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Secondly, ProtoGate leverages DKNN as the predictor, a
prototype-based model. The differentiability allows DKNN
to encode the clustering assumption into feature selection
when trained in tandem with the feature selector. Further-
more, the DKNN predictor is inherently interpretable. And
it can avoid the co-adaptation problem because it has no
learnable parameters to fit the selected features.

3.3. Global-to-local Feature Selection (Figure 2 (A))

The global-to-local feature selector SW : RD → [0, 1]D

contains a neural network that maps feature values x(i) into
mask values s(i). The feature selector attends to the homo-
geneity between samples via applying ℓ1-regularisation on
W[1], the weights of the first layer. Intuitively, the regular-
isation can lead to sparse weights in the first layer, which
implicitly selects features globally for all samples. The out-
put µ(i) from the last layer is thresholded to obtain instance-
wise mask values by

s
(i)
d = max(0,min(1, µ

(i)
d + ϵ

(i)
d )) (2)

where ϵ
(i)
d is the injected noise sampled from Gaussion

distribution N (0, σ2). The standard deviation σ is fixed
during training, and it is removed during the inference time
for deterministic mask values.

With the injected noise, s(i) can be re-formalised as random
vectors whose parameters µ(i) are predicted by a neural
network. Therefore, the sparsity regularisation on mask
values can be computed by

R(W[1], s(i), λg, λl) = λg||W[1]||1 +E
[
λl||s(i)||0

]
=λg||W[1]||1 + λl

D∑
d=1

(
1

2
− 1

2
erf(−

µ
(i)
d√
2σ

)

)
(3)

where (λg, λl) is a pair of hyper-parameters to balance the
effects of global and local feature selection, and erf(·) is the
Gauss error function. The full derivations are available in
Appendix A.2. By considering the interplay between λg and
λl, ProtoGate can perform local feature selection with both
homogeneity and heterogeneity across samples considered.

3.4. Prototype-based Prediction (Figure 2 (C))

The prototype-based predictor F : RD → Y is a DKNN
model. The DKNN predictor first constructs a prototype
base B with training samples. After masking the training
samples with the mask generated by SW(X), DKNN re-
tains the masked samples and their labels as prototypes in
the base B := {(SW(x(i)) ⊙ x(i), y(i))}Ni=1. With the ac-
quired prototypes, the predictor can classify a query sample
xquery ∈ X by retrieving the base B. The predictor sorts the

prototypes by their similarities to the masked query sam-
ple with NeuralSort (Grover et al., 2019), a differentiable
relaxed sorting operator. Note that ProtoGate computes the
Euclidean distance between samples as the similarity evalu-
ation metric. According to the sorting results, the predictor
uses the majority class of the K closest prototypes as the
predicted label ŷquery. For each query sample, the loss of
prototype-based classification is defined as:

ℓpred(P
query
B ,xquery, yquery) = K − ℓNeuralSort

= K − 1

K

K∑
j=1

N∑
i=1

1

(
y(i) = yquery

)
P query
B [i, j]

(4)

where P query
B ∈ RN×N is the relaxed permutation matrix

and 1(·) is the indicator function. In the permutation matrix,
P query
B [i, j] denotes the possibility that the i-th prototype is

the j-th closest to query sample xquery under NeuralSort.
Among the K nearest prototypes, Equation 4 estimates the
number of prototypes that have different labels to xquery.

Because the feature selector is learnable, the predicted
masks can change over the training time, and thus the pro-
totypes in base B are changing before the model converges.
After training, the prototype base B is fixed, and query sam-
ples are from unseen test data.

3.5. Training Loss

The training loss in ProtoGate consists of two components:
the classification loss and the sparsity regularisation term.
Equation 5 shows the formulation of the total loss:

L =
1

N

N∑
i=1

(
ℓpred(P

(i)
B ,x(i), y(i)) +R(W[1], s(i), λg, λl)

)
.

(5)
Because the loss function is fully differentiable, the global-
to-local feature selector and the prototype-based predictor
can be trained in tandem. The whole model can be optimised
with standard gradient-based approaches, such as stochastic
gradient descent. We did not observe optimisation issues
when training over 3,000 models (Appendix B.4).

4. Experiments
We now evaluate ProtoGate on both synthetic and real-world
datasets to substantiate the model design choices. Firstly,
we compare ProtoGate against 12 benchmark methods on
real-world classification tasks (Section 4.1 and Section 4.2).
Secondly, we investigate the impact of the prototype-based
predictor by replacing it with a linear or MLP-based pre-
diction head (Appendix C.1) and adjusting the number of
nearest neighbours (Appendix C.2). Thirdly, we analyse
the co-adaptation problem by considering the performance
misalignment between feature selection and classification
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Figure 2. The architecture of ProtoGate. (A) Given a sample x ∈ RD , the global-to-local feature selector performs global feature
selection in the first layer. The orange dashed lines denote sparsified weights in W[1] under ℓ1 regularisation. The neural network then
computes the instance-wise mask values {sd}Dd=1 ∈ [0, 1]D with a thresholding function. (B) The mask is applied to the sample for local
feature selection by element-wise multiplication. (C) The prototype-based predictor classifies x by retrieving the K nearest neighbours to
the masked sample in base B. The majority class of neighbours is used as the predicted label ŷ.

Table 1. Evaluation predictive performance of ProtoGate with 12 benchmark methods on seven real-world tabular biomedical datasets.
We report the mean ± standard deviation of test balanced accuracy (averaged across 25 runs) and average accuracy rank across datasets.
A smaller rank implies higher accuracy. Note that INVASE failed to converge on 3 datasets, and we computed its rank with the averaged
balanced accuracy of other methods on corresponding datasets. We highlight the First, Second and Third ranking accuracy for each
dataset. ProtoGate consistently ranks Top-3 across datasets and achieves the best overall performance.

Methods lung meta-dr meta-pam prostate tcga-2y toxicity colon Avg. Rank

LightGBM 93.42 ± 5.91 58.23 ± 8.56 94.98 ± 5.19 91.38 ± 5.71 57.09 ± 7.87 81.98 ± 6.25 76.60 ± 11.67 5.71
RF 91.73 ± 6.61 51.48 ± 3.41 88.73 ± 6.24 90.38 ± 7.31 58.70 ± 6.84 79.78 ± 7.10 80.05 ± 10.37 7.14
KNN 91.06 ± 7.92 54.64 ± 7.95 82.79 ± 9.20 78.78 ± 6.71 58.83 ± 7.07 83.86 ± 12.03 77.33 ± 5.41 8.00
Lasso 94.47 ± 3.17 58.58 ± 9.04 95.15 ± 2.83 91.18 ± 6.39 56.99 ± 6.26 91.86 ± 5.27 79.40 ± 8.50 4.29
MLP 95.81 ± 2.69 54.68 ± 9.63 95.71 ± 2.59 87.22 ± 7.41 55.32 ± 7.24 93.54 ± 4.28 80.00 ± 8.70 5.14
STG 93.30 ± 6.28 58.15 ± 8.67 76.13 ± 8.19 89.38 ± 5.85 57.04 ± 5.76 87.95 ± 5.01 79.55 ± 10.53 6.29
TabNet 77.65 ± 11.56 49.18 ± 15.02 82.66 ± 7.81 65.66 ± 9.03 51.58 ± 8.26 40.06 ± 12.23 56.75 ± 7.31 12.00
L2X 50.02 ± 8.30 52.54 ± 13.75 62.64 ± 13.69 61.78 ± 6.29 52.30 ± 9.11 31.72 ± 13.48 57.60 ± 14.26 12.43
INVASE 91.22 ± 6.16 − 91.70 ± 6.84 − 55.98 ± 6.45 80.04 ± 6.60 − 9.00
REAL-X 93.27 ± 4.32 60.01 ± 7.12 95.59 ± 3.04 86.75 ± 6.68 59.30 ± 7.49 90.79 ± 4.75 76.75 ± 12.21 5.14
LLSPIN 70.10 ± 12.31 56.77 ± 9.65 95.50 ± 3.60 88.71 ± 5.98 57.87 ± 6.02 81.67 ± 9.01 79.35 ± 7.74 7.14
LSPIN 76.92 ± 9.38 53.98 ± 8.00 97.18 ± 3.16 87.75 ± 6.74 55.95 ± 7.45 83.47 ± 8.59 81.30 ± 7.97 6.71

ProtoGate 93.44 ± 6.37 60.43 ± 7.61 95.96 ± 3.93 90.58 ± 5.64 61.18 ± 6.47 92.34 ± 5.67 81.10 ± 12.14 2.00

on the synthetic datasets (Section 4.3). We also provide the
comparison of training time in Appendix D.

Real-world datasets. Following (Margeloiu et al., 2023),
we utilise seven HDLSS tabular biomedical datasets. The
datasets contain 2000 – 5966 features with 62 – 197 samples
of 2 – 4 different classes. We are interested in datasets with
much fewer samples than LSPIN (Yang et al., 2022), which
uses ∼ 1, 500 samples. Full descriptions of the real-world
datasets are available in Appendix B.1.

Experimental setup. For each dataset, we perform 5-fold
cross-validation on 5 different splits, summing up to 25
runs per model. We obtain the validation set by randomly
selecting 10% of training data. For each benchmark model,
the training loss is a weighted loss, and we perform a hyper-
parameter search for model selection on the validation set.

Full details about the reproducibility and hyper-parameter
tuning are available in Appendix B.5.

Evaluation metrics. We report the results averaged over
25 runs on test samples. (i) For classification, we measure
the performance by the mean ± standard deviation test bal-
anced accuracy. (ii) Note that the proportion of selected
features varies across samples for local feature selection
methods. Therefore, we measure the sparsity of feature
selection by the mean ± standard deviation proportion of
selected features across samples. (iii) To distinguish be-
tween “similar number of selected features” and “similar
selected features”, we introduce a new metric: degree of
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local sparsity Q, which is computed by

Q =
1

D ·N

N∑
j=1

card

(
N⋃
i=1

nonzero(s(i))− nonzero(s(j))

)
(6)

where card(·) returns the cardinality of a set and nonzero(·)
returns the indices of non-zero elements in a vector. Q
measures the difference between the union set of selected
features for all samples and the selected features for a spe-
cific sample. Intuitively, a non-zero Q denotes selected
features are different across samples, and thus the feature
selection is local. For global feature selection, the degree of
local sparsity is zero (Q ≡ 0).

ProtoGate implementation. The global-to-local feature
selector is flexible on the number of hidden layers, and we
implement it as a three-layer feed-forward neural network.
The numbers of neurons in the input and output layers are
the same as the number of features of the input data, and
the hidden layer has 100/200 neurons. The feature selector
has batch normalisation and tanh activation for all layers.
We train the models with a batch size of 64 and utilise an
SGD optimiser with a weight decay of 1e− 4. The number
of nearest neighbours K is searched in {1, 2, 3, 4, 5}. The
global sparsity hyper-parameter λg is searched in {1e −
4, 2e − 4, 3e − 4, 4e − 4, 6e − 4}, and the local sparsity
hyper-parameter λl is set as 1e − 3. Full implementation
details are available in B.5.

Benchmark methods. We evaluate the classification accu-
racy of ProtoGate and compare it with several benchmark
models, including global feature selection models (Light-
GBM (Ke et al., 2017), Random Forest (RF) (Breiman,
2001), Lasso (Tibshirani, 1996) and STG (Yamada
et al., 2020)) and local feature selection models (Tab-
Net (Arik & Pfister, 2021), L2X (Chen et al., 2018), IN-
VASE (Yoon et al., 2018), REAL-X (Jethani et al., 2021) and
LSPIN/LLSPIN (Yang et al., 2022)). Additionally, we also
compare ProtoGate with some standard models, including
KNN (Fix, 1985) and MLP.

4.1. Classification Performance

Table 1 shows that ProtoGate consistently achieves better
than or comparable balanced accuracy to the benchmark
models. We compute the average rank across different
datasets, and ProtoGate ranks first, followed by Lasso.
ProtoGate outperforms all other local feature selection
models by a clear margin. We also find that the existing
local feature selection methods cannot outperform even the
simple linear Lasso or vanilla MLPs on HDLSS datasets.
Note that REAL-X achieves comparable performance as
the vanilla MLP model because it trains an MLP-based
predictor with all features.

The stable and competitive performance of ProtoGate shows

the suitability of the clustering assumption in the biomedical
field. Moreover, ProtoGate intrinsically provides explana-
tions for the predictions by explicitly pointing out the K
nearest prototypes, while other local feature selection meth-
ods can be unexplainable with MLP-based predictors. Poor
performance of the vanilla KNN model also demonstrates
that a large proportion of features can be irrelevant to the
predictions, and thus the similarity in the high-dimensional
feature space can introduce noise to feature selection, which
can be one reason for the failure of LSPIN and LLSPIN.

In most HDLSS cases, ProtoGate consistently outperforms
both Lasso and MLP. ProtoGate could have slightly lower
accuracy on some datasets, such as the toxicity dataset. We
attribute this to the limited expressivity of prototype-based
models compared to connectionist models (Lu et al., 2017).
As mentioned in (Margeloiu et al., 2023; Yang et al., 2022),
Lasso and MLP can outperform other feature selection mod-
els when they are well-regularised on some datasets, such as
the toxicity dataset. Compared with well-regularised Lasso
and MLP, the prototype-based predictor could have limited
expressivity, but ProtoGate still has higher overall accuracy.

4.2. Feature Selection Performance

We compare ProtoGate against global feature selection meth-
ods (RF, Lasso and STG) and local feature selection methods
(L2X, LSPIN and LLSPIN). We plot the mean ± standard
deviation of the proportion of selected features across sam-
ples in Figure 4 and heatmaps of mask values in Figure 5.
The numerical results and full visualisations of selected
features are available in Appendix E.

Number of selected features. Figure 4 shows that Pro-
toGate consistently selects fewer features per sample than
other benchmark methods, except L2X. Because the perfor-
mance of L2X is the worst among the 12 benchmark models,
we argue that the L2X model does not perform better than
ProtoGate on feature selection, although it has the fewest
selected features. Compared with the rest local feature selec-
tion methods, ProtoGate has smaller standard deviations in
the proportion of selected features across test samples. Note
that this does not mean ProtoGate selects features globally
because the degree of local sparsity is positive (Figure 3(b)).

The sparse feature selection results from ProtoGate demon-
strate the effectiveness of global information in feature selec-
tion, and the global-to-local process helps ProtoGate attend
to both homogeneity and heterogeneity across samples.

Degree of local sparsity. We further examine how different
hyper-parameter values of global sparsity λg impact the
feature selection behaviour.

Figure 3(a) shows that increasing λg can lead to a lower
degree of local sparsity. On most datasets, ProtoGate starts
to perform global feature selection with λg ≥ 1e − 3. At
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Table 2. Evaluation comparison of ProtoGate and nine benchmark methods on three synthetic datasets. We report the F1 score of selected
features (F1selec) and the balanced accuracy for prediction (ACCpred) on test samples. ‘Diff.’ refers to the difference between the ranks
of F1selec and ACCpred, and a positive value indicates a high possibility of co-adaptation. We highlight the First, Second and Third
performance for each dataset. ProtoGate achieves well-aligned performance for feature selection and prediction.

Methods Syn1(+) Syn2(+) Syn3(−)

F1selec ACCpred Diff. F1selec ACCpred Diff. F1selec ACCpred Diff.

RF 0.1461 ± 0.0367 57.08 ± 6.48 3 0.1921 ± 0.0230 59.44 ± 5.24 1 0.2232 ± 0.0241 56.33 ± 9.08 -1
Lasso 0.0905 ± 0.0197 54.55 ± 6.14 2 0.1130 ± 0.0070 52.42 ± 6.69 0 0.0900 ± 0.0179 55.30 ± 7.44 2
STG 0.2656 ± 0.0420 58.65 ± 9.03 -1 0.2247 ± 0.0904 58.28 ± 8.36 -2 0.2846 ± 0.1802 54.00 ± 9.09 -7
TabNet 0.0843 ± 0.0172 48.59 ± 6.55 1 0.0642 ± 0.0246 49.57 ± 5.38 0 0.0605 ± 0.0200 48.45 ± 8.31 0
L2X 0.1599 ± 0.0710 52.89 ± 7.51 -3 0.1873 ± 0.0976 55.78 ± 6.97 -1 0.0984 ± 0.0889 55.92 ± 7.30 2
INVASE 0.1763 ± 0.0456 55.36 ± 9.00 -1 0.1553 ± 0.0338 60.28 ± 8.61 6 0.1332 ± 0.0265 58.75 ± 8.70 5
REAL-X 0.1850 ± 0.0438 47.54 ± 9.51 -7 0.2328 ± 0.0729 55.20 ± 6.38 -6 0.2630 ± 0.0567 56.48 ± 9.34 -1
LLSPIN 0.1060 ± 0.0246 54.96 ± 9.49 2 0.1692 ± 0.0795 56.18 ± 5.80 1 0.1031 ± 0.0635 52.35 ± 8.32 -2
LSPIN 0.1466 ± 0.0380 59.04 ± 9.24 5 0.1911 ± 0.0389 59.40 ± 8.07 1 0.1927 ± 0.0645 58.09 ± 6.41 2

ProtoGate 0.2948 ± 0.0728 58.68 ± 6.28 -1 0.2922 ± 0.0943 60.67 ± 8.21 0 0.1653 ± 0.0554 56.16 ± 6.82 0
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Figure 3. Comparison of different values of global sparsity hyper-
parameter λg on test set. (a) The degree of local sparsity averaged
over 25 runs. Increasing λg reduces the diversity of instance-wise
selected features. (b) The balanced accuracy averaged over 25
runs. Increasing λg does not guarantee improvement in accuracy.

another extreme, when λg = 0, the feature selector in Proto-
Gate has no explicit restrictions on the homogeneity across
samples, and the degree of local sparsity is high. Figure 3(b)
further shows that ProtoGate achieves the best test accuracy
when selecting features locally (Q > 0), which aligns with
the domain knowledge that heterogeneity across samples is
important for accurate predictions on biomedical data. The
results suggest that ProtoGate achieves outstanding perfor-
mance by considering both homogeneity and heterogeneity

across samples for feature selection.

4.3. Co-adaptation Analysis

We evaluate ProtoGate and benchmark feature selection
models on the synthetic datasets to examine their correctness
in feature selection and susceptibility to the co-adaptation
problem. We use the same experimental settings as real-
world datasets and change the range of searching hyper-
parameter for each model to achieve their optimal perfor-
mance. Following (Yang et al., 2022; Jethani et al., 2021),
we measure the quality of selected features by computing
the F1 score with predicted masks and ground truth masks,
and the results are averaged over 25 runs.

Synthetic datasets. We generate three synthetic datasets by
adapting the nonlinear datasets used in (Yang et al., 2022;
Yoon et al., 2018; Jethani et al., 2021), and the exact data
models are described in Appendix B.2. Each dataset has 200
samples of 100 features, which is only 10% of the samples
and 10 times more features compared to (Yang et al., 2022).
All feature values are sampled independently from N (0, I),
where I is an 100× 100 identity matrix. Each dataset has
two classes, and we make the data distribution imbalance by
generating 50 and 150 samples for two classes respectively.

We purposely design Syn3(−) to examine the inductive bias
in ProtoGate. Note that the absolute value function is an
even function. Two samples with opposite values of the
same feature are likely to have equal logit values, and then
they belong to the same class. However, the opposite values
tend to mean a long distance between them, and they should
not belong to the same class according to the clustering as-
sumption. Therefore, prototype-based models are expected
to perform poorly in this regime. We implement it by adding
absolute value function |x9| in the first class of Syn3(−) to
observe the performance degradation in ProtoGate. Because
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Figure 4. Comparison of the feature selection sparsity on real-world datasets. We report the mean ± standard deviation of the proportion
of selected features on test samples, averaged over 25 runs. ProtoGate learns sparser patterns than others by a clear margin except for L2X.
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(b) Heatmaps of mask values from ProtoGate

Figure 5. Comparison of the selected features on real-world datasets. We plot the heatmaps of predicted mask values s(i) of test samples,
where the x-axis refers to the indices of features, and the y-axis refers to the indices of samples. We align the heatmaps of different
datasets by adjusting the aspect ratio. The samples are sorted according to their ground truth labels, and the red dash lines separate
samples of different classes. Observing the heatmaps, we find that ProtoGate consistently learns more homogeneous feature patterns
across samples compared to LSPIN across various real-world datasets. Note that the different feature selection results across samples
demonstrate that ProtoGate preserves the ability to identify and leverage heterogeneous feature patterns for local feature selection.

of the evenness of absolute value, two samples with oppo-
site values of x9 are likely to be of the same class, which is
against the clustering assumption.

Results. On Syn1(+) and Syn2(+), ProtoGate achieves
better or comparable performance in feature selection and
classification than benchmark methods. On Syn3(−), Proto-
Gate performs poorly as expected. Although Syn1(+) and
Syn2(+) also contain even functions like square and abso-
lute value, they also have many other informative features
that do not utilise the even functions to compute logit value.
Therefore, the side effect of even functions is diluted in
Syn1(+) and Syn2(+).

We also find the LSPIN exhibits visible misalignment in fea-
ture selection and prediction. On Syn1(+), LSPIN achieves
the best classification accuracy, but the quality of selected
features is much worse, with a rank of six out of ten methods.
In other words, LSPIN simply overfits the dataset without
correctly identifying the informative features, denoting a
severe co-adaptation problem. In contrast, ProtoGate has
consistently non-positive rank differences between F1selec
and ACCpred, showing that the co-adaptation does not occur.
The results demonstrate that ProtoGate can achieve a well-
aligned performance of feature selection and classification,
guaranteeing the quality of selected features.
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5. Conclusion
We present ProtoGate, a prototype-based neural model for
local feature selection on high-dimensional and low-sample-
size datasets. ProtoGate selects features in a global-to-local
manner and makes predictions with an interpretable
prototype-based model. The experimental results on
real-world datasets demonstrate that ProtoGate improves
classification accuracy and interpretability by attending to
both homogeneity and heterogeneity across samples. The
analysis of synthetic datasets further reveals that ProtoGate
can effectively avoid the co-adaptation problem by utilising
a prototype-based predictor without learnable parameters.
Although we evaluate ProtoGate only on classification tasks
in this paper, it is readily extendable and applicable to other
biomedical tasks, including regression.
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Appendix for submission “ProtoGate: Prototype-based Neural Networks
with Local Feature Selection for Tabular Biomedical Data”

A. Model Design
A.1. Algorithm for Training ProtoGate

Algorithm 1 Training Procedure of ProtoGate

Input: training samples X ∈ RN×D, ground truth labels Y ∈ RN , global-to-local feature selector SW, prototype-based
classifier F , sparsity hyper-parameters (λg , λl), number of nearest neighbours K, total training epochs E, learning rate α

Output: trained model SW, prototype base B
W← GaussianInitialisation() {Initialise the weights of feature selector}
for e← 1 to E do
B ← {} {Initialise the prototype base as an empty set}
for i← 1 to N do
x
(i)
masked ← x(i) ⊙ SW(x(i)) {Select instance-wise features for training samples}
B ← B ∪ {(x(i)

masked, y
(i))} {Add masked samples and their labels to the prototype base}

end for
for i← 1 to N do
x
(i)
masked ← x(i) ⊙ SW(x(i)) {Select instance-wise features for training samples}

P
(i)
B ← NeuralSort(B,x(i)

masked) {Compute the permutation matrix for x(i)
masked}

ŷ(i) ← F (B,x(i)
masked,K) {Classify the query sample with K nearest prototypes}

end for
L = 1

N

∑N
i=1

(
ℓpred(P

(i)
B ,x(i), y(i)) +R(W[1], s(i), λg, λl)

)
{Compute the training loss}

W←W − α∇WL {Update the weights of feature selector}
end for
return SW, B

A.2. Computation of the Regularisation Term

In line with the approaches presented in (Yamada et al., 2020; Yang et al., 2022), we employ the expectation of the ℓ0 norm
to ensure differentiability. Note that the mask value s(i) is obtained with the network output µ(i) and injected noise ϵ(i).
Consequently, we can utilise standard optimization algorithms such as stochastic gradient descent to update the learnable
parameters within the global-to-local feature selector in ProtoGate. The regularisation term can be computed as follows:

R(W[1], s(i), λg, λl) = λg||W[1]||1 +E
[
λl||s(i)||0

]
= λg||W[1]||1 + λl

D∑
d=1

P(µ
(i)
d + ϵ

(i)
d > 0)

= λg||W[1]||1 + λl

D∑
d=1

[
1−P(µ(i)

d + ϵ
(i)
d ≤ 0)

]
= λg||W[1]||1 + λl

D∑
d=1

[
1− Φ

(
−µ(i)

d

σ

)]

= λg||W[1]||1 + λl

D∑
d=1

Φ

(
µ
(i)
d

σ

)

= λg||W[1]||1 + λl

D∑
d=1

(
1

2
− 1

2
erf(−

µ
(i)
d√
2σ

)

)

(7)
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B. Reproducibility
B.1. Real-word Datasets

Table 3. Details of seven real-world tabular biomedical datasets.
Dataset # Samples # Features # Classes # Samples per class

lung 197 3312 4 [139, 21, 20, 17]
meta-dr 200 4160 2 [139, 61]
meta-pam 200 4160 2 [167, 33]
prostate 102 5966 2 [52, 50]
tcga-2y 200 4381 2 [122, 78]
toxicity 171 5748 4 [45, 45, 42, 39]
colon 62 2000 2 [40, 22]

All datasets are publicly available, and the details are listed in Table 3. Four datasets are available online (https://
jundongl.github.io/scikit-feature/datasets): lung (Bhattacharjee et al., 2001), Prostate-GE (referred
to as ‘prostate’) (Singh et al., 2002), TOX-171 (referred to as ‘toxicity’) (Bajwa et al., 2016) and colon (Ding & Peng, 2005).

In accordance with the methodology presented in (Margeloiu et al., 2023), we derived two datasets from the METABRIC
dataset (Curtis et al., 2012). We combined the molecular data with the clinical label ‘DR’ to create the ‘meta-dr’ dataset,
and we combined the molecular data with the clinical label ‘Pam50Subtype’ to create the ‘meta-pam’ dataset. Because the
label ‘Pam50Subtype’ was very imbalanced, we transformed the task into a binary task of basal vs non-basal by combining
the classes ‘LumA’, ‘LumB’, ‘Her2’, ‘Normal’ into one class and using the remaining class ‘Basal’ as the second class. For
both ‘meta-dr’ and ‘meta-pam’, we selected the Hallmark gene set (Liberzon et al., 2015) associated with breast cancer, and
the new datasets contain 4160 expressions (features) for each patient. We randomly sampled 200 patients while maintaining
stratification to create the final datasets, as our focus is on the HDLSS regime.

Following (Margeloiu et al., 2023), we also derived ‘tcga-2y’ dataset from the TCGA dataset (Tomczak et al., 2015).
We combined the molecular data and the label ‘X2yr.RF.Surv’ to create the ‘tcga-2ysurvival’ dataset. Similar to the
previous datasets, we selected the Hallmark gene set (Liberzon et al., 2015) associated with breast cancer, resulting in 4381
expressions (features). We randomly sampled 200 patients while maintaining stratification to create the final datasets, as our
focus is on the HDLSS regime.

B.2. Synthetic Datasets

The synthetic datasets are adapted from the nonlinear datasets in (Yoon et al., 2018; Yang et al., 2022). Specifically, we
generate three synthetic datasets: Syn1(+), Syn2(+), and Syn3(−), which are designed for the classification task. Each
sample is characterized by 100 features, where the feature values are independently sampled from a Gaussian distribution
N (0, I), with I representing a 100× 100 identity matrix. The ground truth label (target) y for each sample is computed by

y = 1(
1

1 + logit(x)
> 0.5) (8)

where 1(·) is the indicator function. For each samples, the logit(x) is computed with a small proportion of its features:

Syn1(+): logit =

{
exp(x1x2 − x3) if x11 < 0

exp(x2
3 + x2

4 + x2
5 + x2

6 − 4) otherwise
(9)

Syn2(+): logit =

{
exp(x2

3 + x2
4 + x2

5 + x2
6 + x2

7 − 4) if x11 < 0

exp(−10 sin(0.2x7) + |x8|+ x2
9 + exp(−x10)− 2.4) otherwise

(10)

Syn3(−): logit =

{
exp(x1x2 + |x9|) if x11 < 0

exp(−10 sin(0.2x7) + |x8|+ x2
9 + exp(−x10)− 2.4) otherwise

(11)
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Within each dataset, the two classes have a minimum of two informative features in common. For example, in Syn1(+), both
class one and class two share (x3, x11) as the informative features. To introduce class imbalance, we intentionally generate
150 samples for class one and 50 samples for class two. Note that we purposely design Syn3(−) to examine the clustering
assumption in ProtoGate by adding even function |x9|. Section 4.3 further discusses the rationale behind this choice.

Compared to previous studies (Yang et al., 2022; Yoon et al., 2018), we aim to enhance the difficulty of the synthetic datasets
by considering four key aspects. Firstly, we only generate 200 samples for each dataset, which is only 10% of the samples
in (Yang et al., 2022). Secondly, each sample has 100 features, which is ten times more than that in (Yang et al., 2022).
Thirdly, our synthetic datasets are imbalanced. Lastly, we incorporate a greater number of overlapping informative features
between the two classes.

B.3. Data Preprocessing

Following the methodology presented in (Margeloiu et al., 2023), we perform Z-score normalization on each dataset prior to
training the models. This normalization process involves two steps. First, we compute the mean and standard deviation
of each feature in the training data. Using these statistics, we transform the training samples to have a mean of zero and
a variance of one for each feature. Subsequently, we apply the same transformation to the validation and test data before
conducting evaluations.

B.4. Computing Resources

We trained over 15,000 models (including over 3,000 of ProtoGate) for evaluations. All the experiments were conducted
on a machine equipped with an NVIDIA A100 GPU with 40GB memory and an Intel(R) Xeon(R) CPU (at 2.20GHz) with
six cores. The operating system used was Ubuntu 20.04.5 LTS.

B.5. Training Details and Hyper-parameter Tuning

Software implementation. We implemented ProtoGate with Pytorch Lightning (Falcon & The PyTorch Light-
ning team, 2019): the global-to-local feature selector is implemented from scratch, and the DKNN predic-
tor is adapted from its official implementation (https://github.com/ermongroup/neuralsort). Note
that we optimised the speed of the official implementation of DKNN with matrix operators in PyTorch (Paszke
et al., 2019). We re-implemented LSPIN/LLSPIN because the official implementation (https://github.
com/jcyang34/lspin) used a different evaluation setup from ours: we report the mean ± standard de-
viation number of selected features, while they report the median number of selected features. We imple-
mented LightGBM using its open-source implementation (https://github.com/microsoft/LightGBM).
With scikit-learn (Pedregosa et al., 2011), Random Forest (https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier), KNN (https://scikit-learn.org/
stable/modules/generated/sklearn.neighbors.KNeighborsClassifier) and Lasso (https://
scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso). For other bench-
mark methods, we used their open-source implementations: STG (https://github.com/runopti/stg), TabNet
(https://github.com/dreamquark-ai/tabnet), L2X (https://github.com/Jianbo-Lab/L2X), IN-
VASE (https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/invase) and
REAL-X (https://github.com/rajesh-lab/realx).

We implemented a uniform pipeline using PyTorch Lightning to ensure consistency and reproducibility. We further fixed the
random seeds for data loading and evaluation throughout the training and evaluation process. This ensured that ProtoGate
and all benchmark models were trained and evaluated on the same set of samples.

Note that all the libraries utilised in this study adhere to open-source licenses. Specifically, the scikit-learn and the INVASE
implementation follow the BSD-3-Clause license, Pytorch Lightning follows the Apache-2.0 license, and the others follow
the MIT license.

Training procedures. In this section, we outline the key training settings for ProtoGate and all benchmark methods. We
made diligent efforts to ensure a fair comparison among the benchmark methods whenever possible. For example, we
employed the same predictor architecture in LSPIN, MLP, and STG, as these models share similar design principles.

• ProtoGate has a three-layer feature selector. The number of neurons in the hidden layer is 200 for real-world datasets
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and 100 for synthetic datasets. And the activation function is tanh for all layers. The model is trained for 10,000
iterations using early stopping with patience 500 on the validation loss. We used the suggested temperature parameter
τ = 16.0 in NeuralSort (Grover et al., 2019).

• LSPIN, LLSPIN and STG have a feature selector with the same architecture as that in ProtoGate. For LSPIN/STG,
the predictor is a feed-forward neural network with hidden layers of [100, 100, 10] with tanh activation function. And
we used the same architecture of predictor for MLP. For LLSPIN, the architecture of the predictor is the same, but the
activation functions are removed. The standard deviation σ for injected noise is 0.5. The model is trained for 7,000
iterations using early stopping with patience 500 on the validation loss.

• TabNet has a width of eight for the decision prediction layer and the attention embedding for each mask and 1.5 for the
coefficient for feature reusage in the masks. The model is trained with Adam optimiser with a momentum of 0.3 and
gradient clipping at 2.

• L2X, INVASE and REAL-X have the default architecture as published (Chen et al., 2018; Yoon et al., 2018; Jethani
et al., 2021). The feature selector network has two hidden layers of [100, 100], and the predictor network has two hidden
layers of [200, 200]. They all use the relu activation after layers. For convergence and computation efficiency, L2X is
trained for 7,000 iterations, INVASE is trained for 5,000 epochs and REAL-X is trained for 1,000 iterations.

• LightGBM has 200 estimators, feature bagging with 30% of the features, a minimum of two instances in a leaf. It is
trained for 10,000 iterations to minimise the weighted cross-entropy loss using early stopping with patience 100 on the
validation loss.

• Random Forest has 500 estimators, feature bagging with the square root of the number of features, and used balanced
weights from class distribution.

• KNN measured the distance between samples with Euclidean distance and used uniform weights to compute the
majority class in the neighbourhood.

• Lasso is trained for 10,000 iterations to minimise the weighted loss with the SAGA solver, and the tolerance for early
stopping is set as 1e− 4.

Hyper-parameter tuning. To ensure optimal performance, we initially identified a suitable range of hyperparameters for
each model to facilitate convergence. Subsequently, we conducted a grid search within this predefined range to determine
the optimal hyperparameter settings. The selection of models was based on their balanced accuracy on the validation
sets averaged over 25 runs. It is worth noting that tuning hyperparameters in LSPIN can be challenging, particularly for
real-world datasets. Therefore, we followed the recommendations in the original paper (Yang et al., 2022) and employed
Optuna (Akiba et al., 2019) to fine-tune the hyperparameters for LSPIN.

Table 4 lists the searching range of hyper-parameters in ProtoGate, and Table 5 lists the searching range of hyper-parameters
in feature selection benchmark methods. Following (Yang et al., 2022; Margeloiu et al., 2023), we performed hyper-
parameter searching for other methods within the same ranges for real-world and synthetic datasets. For MLP, we used
Optuna to find the optimal learning rate within [1e− 3, 1e− 1]. For LightGBM, we performed a grid search for the learning
rate in {1e− 2, 1e− 1} and maximum depth in {1, 2}. For Random Forest, we performed a grid search for the maximum
depth in {3, 5, 7} and the minimum number of instances in a leaf in {2, 3}. For KNN, we performed a grid search of
the number of nearest neighbours in {1, 3, 5}. For Lasso, we performed a grid search of the regularisation strength in
{1, 1e1, 1e2, 1e3}.

Table 4. Searching range of hyper-parameters in ProtoGate.

Datasets Global Sparsity λg Local Sparsity λl K Learning Rate α

Real-word {1e− 3} {1e− 4, 2e− 4, 3e− 4, 4e− 4, 6e− 4} {1, 2, 3, 4, 5} {5e− 2, 7.5e− 2, 1e− 1}
Synthetic {1e− 2, 1.5e− 2, 2e− 2} {0, 1e− 4, 3e− 4} {3} {1e− 1}

Training considerations. ProtoGate can require large training overhead, mostly for tuning the hyper-parameters compared
to some existing models, since we need to consider the interplay between λg, λl and K. ProtoGate also stores all training
samples in the prototype base B, leading to higher memory consumption on large datasets than benchmark methods. Because
we mainly focus on the HDLSS datasets, memory consumption is not a major problem in this regime.
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Table 5. Searching ranges of hyper-parameters for feature selection benchmark methods. Note that the ranges for LSPIN/LLSPIN on
real-world datasets are intervals instead of sets because we used Optuna to search for the optimal hyper-parameter settings.

Datasets Methods λ for sparsity Learning Rate

Real-world

TabNet {1e − 4, 1e − 3, 1e − 2, 1e − 1} {1e − 2, 2e − 2, 3e − 2}
STG {35, 40, 45, 50, 55} {3e − 3}
L2X {1, 5, 10} {1e − 4}
INVASE {1, 1.5, 2} {1e − 4}
REAL-X {1, 5, 10, 30, 50} {1e − 4}
LSPIN/LLSPIN [5e − 4, 1.5e − 3] [5e − 2, 1e − 1]

Synthetic

TabNet {1e − 2, 1e − 1, 5e − 1} {1e − 2}
STG {1, 3, 5} {1e − 1}
L2X {1, 5, 10} {1e − 4}
INVASE {1, 1.5, 2} {1e − 4}
REAL-X {1, 5, 10, 30, 50} {1e − 4}
LSPIN/LLSPIN {1e − 2, 5e − 2, 1e − 1} {1e − 1}

C. Ablation Studies on Prototype-based Predictor
C.1. Impact of the DKNN Predictor

We now investigate how the prototype-based predictor impacts classification performance. For a fair comparison, we replace
the DKNN predictor with a linear head network or an MLP, and then tune the hyper-parameter for global sparsity λg by
searching within {1e− 4, 2e− 4, 3e− 4}.

As shown in Table 6, the DKNN predictor consistently outperforms other predictors. We attribute the performance
improvement to the appropriate inductive bias in prototype-based classification and the reduction in learnable parameters. In
ProtoGate, only the feature selector needs training, while other local feature selection methods have learnable predictors
with vast amounts of parameters to optimise. We also find that simply combining a global-to-local feature selector and an
MLP/linear prediction head does not outperform LSPIN/LLSPIN. This further indicates that a prototype-based predictor is
the key to the high accuracy of ProtoGate.

Table 6. Balanced accuracy for different predictors on test samples, averaged over 25 runs. We bold the highest accuracy for each dataset.
The prototype-based classifier consistently outperforms linear and MLP predictors on all datasets.

Predictors lung meta-dr meta-pam prostate tcga-2y toxicity colon

MLP 69.97 ± 9.17 56.00 ± 6.37 93.62 ± 6.04 89.13 ± 6.36 54.74 ± 8.11 90.36 ± 5.61 80.95 ± 7.77
Linear Head 66.51 ± 12.45 56.10 ± 8.95 93.20 ± 6.18 89.87 ± 5.80 56.60 ± 8.20 90.29 ± 5.93 79.45 ± 6.23
DKNN 93.44 ± 6.37 60.43 ± 7.61 95.96 ± 3.93 90.58 ± 5.64 61.18 ± 6.47 92.34 ± 5.67 81.10 ± 12.14

C.2. Ablation Impact of the Number of Nearest Neighbours K

In order to evaluate the behaviour of the prototype-based predictor, we conducted experiments using different numbers of
nearest neighbours denoted as K. Considering the limited sample sizes of the datasets under investigation, we set the maxi-
mum number of nearest samples to K = 5. All other experimental settings were kept consistent to ensure a fair comparison.

Table 7 presents the results of the ablation experiments on the number of nearest neighbours, demonstrating that the optimal
value of K varies across different datasets. It is observed that using a small value of K can make the predictions more
sensitive to noise and outliers, resulting in lower accuracy. Notably, ProtoGate consistently achieves high accuracy across the
range of K ∈ {3, 4, 5}. This finding supports the validity of the clustering assumption for the utilised real-world datasets, as
ProtoGate exhibits stable and accurate performance.
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Table 7. Balanced accuracy on test samples for different numbers of nearest neighbours in prototype-based classification, averaged over
25 runs. We bold the highest accuracy for each dataset. A small K ∈ {1, 2} can lead to sensitivity to noise, and the model performs
stably with K ∈ {3, 4, 5}.

lung meta-dr meta-pam prostate tcga-2y toxicity colon

K = 1 87.53 ± 7.28 50.50 ± 6.21 73.02 ± 10.90 75.91 ± 10.21 57.46 ± 6.85 75.85 ± 7.02 70.40 ± 14.45
K = 2 92.30 ± 7.28 56.06 ± 7.29 90.28 ± 6.01 86.93 ± 7.33 59.40 ± 6.24 88.81 ± 7.01 77.35 ± 13.46
K = 3 93.44 ± 6.37 57.82 ± 8.93 95.96 ± 3.93 89.53 ± 5.64 61.18 ± 6.47 91.14 ± 5.19 81.10 ± 12.14
K = 4 90.34 ± 7.01 60.43 ± 7.61 95.03 ± 4.77 88.85 ± 5.87 60.97 ± 5.60 91.10 ± 4.93 75.25 ± 13.34
K = 5 91.12 ± 6.36 59.23 ± 6.88 95.83 ± 5.89 90.58 ± 5.64 60.84 ± 5.88 92.34 ± 5.67 77.50 ± 8.67

D. Comparison of Training Duration
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Figure 6. Comparison of training duration on real-world datasets. TabNet is the fastest method, but its accuracy is substantially lower than
other methods. ProtoGate has a shorter training duration than INVASE and similar computation efficiency as L2X.

E. Complete Results on the Sparsity of Feature Selection
E.1. Numerical Results

Table 8. Quantitative comparison of the feature selection sparsity on real-world datasets. We report the mean ± standard deviation of the
number of selected features on test samples, averaged over 25 runs. ProtoGate learns sparser patterns than other local feature selection
methods by a clear margin except for L2X.

Methods lung meta-dr meta-pam prostate tcga-2y toxicity colon

RF 504.76 ± 0.00 577.60 ± 0.00 1439.20 ± 0.00 510.72 ± 0.00 887.12 ± 0.00 1507.44 ± 0.00 1629.72 ± 0.00
Lasso 1618.08 ± 0.00 4159.92 ± 0.00 4159.40 ± 0.00 5434.68 ± 0.00 4214.56 ± 0.00 2951.28 ± 0.00 371.40 ± 0.00
STG 3312.00 ± 0.00 4157.96 ± 0.00 2992.00 ± 0.00 5966.00 ± 0.00 4381.00 ± 0.00 5748.00 ± 0.00 2000.00 ± 0.00
L2X 1.00 ± 0.00 5.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00
LLSPIN 673.27 ± 1212.20 3026.77 ± 642.02 1180.08 ± 1769.59 2151.05 ± 1954.80 3486.77 ± 696.29 1999.12 ± 2398.65 1311.86 ± 209.80
LSPIN 564.83 ± 1236.21 1138.51 ± 1545.96 1073.04 ± 1661.89 2120.00 ± 1968.86 1418.35 ± 1936.41 1979.29 ± 2387.03 1044.32 ± 293.67

ProtoGate 71.04 ± 4.96 337.21 ± 738.81 469.47 ± 46.90 91.29 ± 7.20 348.79 ± 869.23 76.39 ± 17.42 65.29 ± 10.69
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E.2. Visualisation of Selected Features on Real-world Datasets
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(a) Heatmaps of mask values from LLSPIN
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(b) Heatmaps of mask values from LSPIN
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(c) Heatmaps of mask values from ProtoGate

Figure 7. Comparison of the mask values on real-world datasets. We plot the heatmaps of predicted mask values s(i) of test samples,
where the x-axis refers to the indices of features, and the y-axis refers to the indices of samples2. The samples are sorted according to
their ground truth labels, and the red dash lines separate samples of different classes. Observing the heatmaps, we find that ProtoGate
consistently learns more homogeneous feature patterns across samples compared to LSPIN/LLSPIN across various real-world datasets.
Note that the different feature selection results across samples demonstrate that ProtoGate preserves the ability to identify and leverage
heterogeneous feature patterns for local feature selection.

2Different datasets can have different numbers of samples and features, and the number of features should be more than the number of
samples in the HDLSS regime. For visualisation purposes, we align them by adjusting the aspect ratio of heatmaps.
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