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Abstract

The advent of Large Language Models (LLMs)
has significantly improved NLP tasks, but their
performance depends on effective prompt engi-
neering, where engineers iteratively craft prompts
by observing the dynamics of LLMs. With the
rising number of LLMs, each trained on differ-
ent data sources and thus exhibiting different in-
ternal sensitivities, prompt engineering has be-
come an increasingly cumbersome task. The so-
lution to these challenges lies in an automated
and reliable model capable of suggesting opti-
mized prompts and adapting to various LLMs.
Previous works have primarily focused on training
learnable vectors or identifying discrete prompts,
which were effective for earlier, smaller language
models. However, contemporary LLMs require
coherent text prompts tailored to their specific
training instructions. In this paper, we address
this gap by proposing a methodology for train-
ing a lightweight model that not only produces
legible, optimized prompts but also adapts to dif-
ferent LLMs. The proposed methodology has
demonstrated significant performance improve-
ments with optimized prompts across different
LLMs.

1. Introduction

Prompting has emerged as a pivotal methodology in lever-
aging the capabilities of LLMs to tackle a diverse array
of Natural Language Processing (NLP) tasks. With the
advent of powerful pre-trained language models such as
GPTs (Radford et al., 2019), BERT and Roberta (Liu et al.,
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2019), prompting has gained significant attention as an al-
ternative to traditional fine-tuning approaches for specific
tasks. Unlike conventional fine-tuning methods that ne-
cessitate costly updates to the extensive parameters of the
language model for each downstream task, prompting in-
volves appending an additional piece of text to the inputs,
guiding the LLM to generate desired outputs. The primary
research interest surrounding prompting pertains to the iden-
tification of optimal prompts that enhance the performance
of LLMs across a spectrum of tasks, often in scenarios with
limited training examples. This paper studies optimizing
such prompts, shedding light on their efficacy and impact
on LLM performance.

Recent studies have tackled this challenge through various
approaches, including the training of auxiliary models or dif-
ferentiable representations of prompts (Qin & Eisner, 2021;
Deng et al., 2022). However, these endeavors often presume
access to internal state variables of the LLM (Shin et al.,
2020; Lester et al., 2021), a condition not typically avail-
able to practitioners who interact with LLMs through APIs.
Moreover, the soft prompts obtained through these method-
ologies are less interpretable in natural language (Shi et al.,
2022), and natural language mapping of these soft prompts
can be highly misleading as they lose the effectiveness when
decoded to natural language(Bailey et al., 2023). Alterna-
tively, some research employs discrete manipulations of
prompts using Reinforcement Learning techniques or LLM-
based feedback mechanisms (Zhang et al., 2022; Zhou et al.,
2022). Nevertheless, these algorithms may necessitate low-
level access to the LLM, generate outputs that are difficult
to comprehend or rely on undirected Monte-Carlo search
strategies across the semantic space of prompts.

Powerful models such as GPT-3.5 exhibit a reluctance to
process nonsensical tokens and prioritize legible text, owing
to their fine-tuning on instruction-based tasks (Cherepanova
& Zou, 2024). This trait underscores the importance of craft-
ing coherent and legible prompts for effectively prompting
these models. Previous prompt optimization techniques
mainly focussed on optimizing learnable embeddings and
then finding the nearest word from vocabulary. These meth-
ods worked well for previous GPTs till GPT-2 but failed
with contemporary instruction-tuned LLMs.

In this paper, we propose an approach aimed at fine-tuning



LLM-Informed Discrete Prompt Optimization

a lightweight language prompter model, using a dataset
comprising prompts and optimized prompt data. Moreover,
to ensure the adaptability of this prompter model across
various LLMs, each of which is trained distinctively and ex-
hibits sensitivity to different vocabulary tokens for the same
task, we conduct fine-tuning of the language model head,
accompanied by the addition of a linear layer tailored to
accommodate the specifics of the target LLM. Subsequently,
we evaluate the performance of the prompter model across
multiple LLMs and observe its performance gain over user-
generated prompts by a substantial margin across diverse
domains.

2. Previous Work

The exploration of prompt tuning to condition LLMs for
specific tasks can be divided into two principal streams of
research: soft-prompt tuning and discrete (hard) prompts.

In the domain of soft-prompt tuning, as described in studies
(Qin & Eisner, 2021; Lester et al., 2021), trainable vectors,
also termed virtual tokens, are appended to the input layer
to enable efficient task-specific tuning of LLMs. These
virtual tokens are adapted to individual tasks and integrated
with the standard user prompts during the inference stage.
Although such methods have been effective in enhancing the
performance of LLMs, their applicability is restricted by a
lack of generalizability across various language models due
to differences in their latent representations. Moreover, the
opacity of these virtual tokens has catalyzed further research
into discrete prompt optimization, which seeks to provide
greater interpretability for model-tuning processes.

On the other hand, hard-prompt methods automate the pro-
cess of manual prompt engineering by incorporating intel-
ligible word tokens into the original prompt structure. For
instance, AutoPrompt leverages a template-based approach
where a specific number of trigger tokens are optimized
via gradient descent for tasks such as sentiment classifica-
tion (Shin et al., 2020). This strategy highlights the potential
of prompt tuning as a viable alternative to extensive model
finetuning, particularly with masked language models. Re-
cent studies include methodologies like RLPrompt, which
utilizes a smaller language model with a trainable head to re-
fine user prompts into a specific set of discrete tokens (Deng
et al., 2022). This strategy has shown promise in tasks
such as few-shot classification and style-transfer tasks for
models like DistilGPT and GPT-2. Nevertheless, it has
been observed that the discrete tokens generated can often
be nonsensical and difficult to interpret when applied to
larger language models, diminishing their efficacy in newer
instruction-tuned and dialogue-based LL.Ms.

Our methodology is influenced by the approach used in
Promptist, which optimizes a small language model to gen-

erate discrete prompts specifically tailored for a Stable Dif-
fusion model, leading to better aesthetic scores while main-
taining relevance to the prompt (Hao et al., 2024). Extend-
ing this approach to generative language models, we apply
parameter-efficient fine-tuning to a smaller language model,
enhancing evaluation scores consistently across a varied set
of language models. This strategy not only addresses the
shortcomings of generalizability seen in soft-prompt meth-
ods but also enhances the transparency and efficacy of the
prompts, thereby broadening the practical deployment of
LLMs in specialized tasks.

3. Proposed Methodology

In this study, we propose a two-step fine-tuning process, as
depicted in Figure 1. Each of these stages is discussed in
the following subsections.

3.1. Stage 1 - Supervised Finetuning of Lightweight
Language Model

The main goal of supervised fine-tuning for the lightweight
model is to create clear and understandable text that in-
cludes important tokens for the specific LLM, while still
keeping the text easy to read and in context. Unlike deal-
ing with random or nonsensical text, modern LLMs trained
on instructional data need input that makes sense. To do
this, a lightweight language model that specializes in sug-
gesting optimized prompts is improved through supervised
fine-tuning. This process involves using a dataset containing
prompts and their optimized versions, with the details of
how this dataset is created discussed in Section 4.

3.2. Stage 2 - Language Head Fine Tuning

Stage 1 ensures the training of the language model for a
specific task, i.e., to produce optimized prompts given the
dataset pattern. However, it does not ensure whether the
optimized prompt contains LLM-specific sensitive tokens.
It makes the prompt more definite and detailed, but the
performance across LLMs varies significantly as it is only
trained on a specific dataset. During language modeling,
the LM head has the same input dimensions, but the output
dimensions are the same size as the vocabulary, providing
a probability for each token’s fit in a given position. Thus,
the language head is responsible for modeling probabilities
over the vocabulary.

Taking this as fundamental for prompter model adaptation
across LLMs, we add a single MLP layer and make this
layer and the language head trainable in stage 2. MLP layer
acts as a parameter efficient method to compute the adapted
embeddings, inspired by the work mentioned in [4].

Let E € R?*" represent the encoding matrix produced
by the language model, where d is the dimension of the
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Figure 1. Proposed approach for training prompter model. In the first stage, a lightweight language model undergoes supervised fine-tuning
to generate clear and contextually relevant prompts. In the second stage, only the language head and a single Multi-Layer Perceptron
(MLP) layer are trained, allowing adaptability across different language models. This stage ensures that the optimized prompts contain

model-specific tokens

encoded representation and n is the number of tokens.
E = Encoder(X)

Here, X denotes the input tokens and Encoder(-) represents
the fixed trained language model up to the encoding layer
in Stage 1.

The MLP layer, which transforms the encoded representa-
tions, is defined as:

Z = MLP(E)

where Z € R%*" is the transformed representation.

The language head, which maps the transformed representa-
tions to the vocabulary space, is defined as:

Y = LMpena(Z)

where Y € RY*" is the output logits, v is the size of the
vocabulary, LMpe,q € R4*? is language head.

For each LLM, the MLP and Language Head combination
is different and dynamically loaded during inference condi-
tioned on the LLM for which the prompter module is used.
By training the MLP + Language Head separately for each
LLM, our language head functions in an adaptable fashion,
as it is responsible for assigning probabilities across LLMs.
By training this LM Head, it alternates between high proba-
bility tokens across LLMs, indicating that different LLMs

are sensitive to different tokens. In this stage, a dataset of
prompts and optimized prompts for adaptation, as discussed
in Section 4, is used to train only the MLP and language
head.

4. EXPERIMENT CONFIGURATION

4.1. Datasets Preparation

To fine-tune the language model, we used the ChatGPT-3.5-
Turbo API to create a synthetic dataset of 1,000 pairs of gen-
eral and optimized prompts, covering topics like academic
writing, text-style transformation, and code generation.In
the next stage, we generated data using the target language
model for which the adapter is to be trained to ensure the
synthetic data matched its distribution, including relevant
tokens and keywords.

4.2. Configurations for LLM Fine-tuning

Our prompter model is based on the Microsoft Phi-2 lan-
guage model. In the initial stage, we use parameter-efficient
fine-tuning with 32 rank LoRA layers across key transformer
components. The model is trained for ten epochs on a 24GB
Nvidia RTX4090 GPU. In the second stage, we add a lin-
ear layer before the language model head, initialized as an
identity matrix with zero bias. This configuration main-
tains the original data distribution while adding trainable
parameters for the adapter head. The new linear layer is
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Figure 2. AlpacaEval Scores - Adapted Optimized Prompts vs.
Non-Adapted Optimized Prompts on GPTeacher Dataset (Teknium,
2024)

trained concurrently with the language head, optimizing
latent representation mapping to the vocabulary.

5. Results

Two primary metrics are used to evaluate LLMs: the Mas-
sive Multi-task Language Understanding (MMLU) score
and the AlpacaEval score [12]. The MMLU includes around
16,000 multiple-choice questions across 57 academic dis-
ciplines, serving as a benchmark for assessing knowledge
retention and contextual accuracy in LLMs. The AlpacaE-
val score is an LLM-based automatic evaluation, validated
against 20K human annotations and demonstrating a 0.98
correlation with human judgment (Li et al., 2023). It lever-
ages strong LL.Ms like GPT-4 for automatic evaluation of
responses. In this study, only the AlpacaEval score is uti-
lized for evaluation, as prompting cannot enhance the inher-
ent knowledge of LLMs. Our two-step methodology was
evaluated to assess the impact of training stages and adap-
tation on language model performance. AlpacaEval scores
were computed for optimized prompts from the baseline
prompter model and the adapted model post-Stage 2 train-
ing. Results (Figure 2) demonstrate that adapted prompts
significantly outperformed baseline prompts, emphasizing
the effectiveness of training the language head and MLP for

Table 1. AlpacaEval Scores for User and Optimized prompts across
various model sizes

MODEL USER PROMPT  OPTIMIZED PROMPT
GEMMA7B 0.807 0.914
VICUNAT7B 0.843 0.885
LLAMA3-8B 0.865 0.921
QWEN1.5-14B 0.879 0.918
MISTRALBX7B 0.878 0.923
CHATGPT3.5 0.865 0.900
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Figure 3. Rouge Score Comparison for Summarization Task for
user and optimized prompts on CNN and Daily Mail datasets.

adaptation.

Expanding on our findings, we further assessed our
method’s performance using the AlpacaEval score. Across
six LLMs, significant improvements were observed for opti-
mized prompts compared to user-generated ones, with LLM
sizes ranging from 7 billion to 175 billion parameters. Par-
ticularly, smaller models like Gemma7B and Llama3-8B
exhibited more noticeable improvements, revealing greater
sensitivity and variation in these models. Notably, opti-
mized prompts in smaller models achieved performance
comparable to larger ones like Mistral8x7B and GPT-3.5,
highlighting the impact of prompt optimization in enabling
lightweight models to rival larger counterparts.

Similarly, the methodology’s performance over closed-
ended tasks, such as summarization, has also been exam-
ined. As illustrated in figure 3, both prompts and opti-
mized prompts yield similar results for closed-ended tasks
like summarization highlighted by Rouge-1, Rouge-2 and
Rouge-L scores. This suggests a limitation of prompt op-
timization: it works best for tasks that require generative
creative capabilities or have an open-ended nature. Addi-
tionally, the effectiveness of prompt optimization may vary
slightly across Language Model Models (LLMs), as indi-
cated by the slight improvement in the summarization task
performance with optimized prompts for Llama 3 compared
to GPT-3.

6. Limitations

Despite the promising results of our research, there are two
main limitations to our proposed methodology.

6.1. Limited Augmentation of Inherent Knowledge

While our method of prompt optimization enhances the gen-
erative capabilities of Large Language Models (LLMs), it
does not augment the inherent knowledge contained within
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these models. Although the methodology excels in open-
ended tasks, its effectiveness is not prominent in closed-
ended tasks such as summarization. For the same reason,
only the AlpacaEval Score is used to evaluate instead of
MMLU, which assesses the inherent knowledge of LLMs.

6.2. LLM-Specific Training Requirements

For each new LLM, it is necessary to train a different lan-
guage model head as guided in our training protocol. This
makes the optimized prompt specific to that particular LLM.
Our supervised learning approach is dependent on the train-
ing of this language model head, resulting in a lack of au-
tomatic adaptation. This limitation could be mitigated by
incorporating reinforcement learning into the methodology
to enable more dynamic and adaptive prompt optimization.

7. Conclusion

This study underscores the significance of prompt tuning
in enhancing the performance of LLMs without necessitat-
ing explicit fine-tuning of their parameters. Considering
constraints in accessing model details and computational
resources, our research addresses the need for robust prompt
tuning methods applicable to both closed-source and open-
source LLMs. The suggested training methodology of the
lightweight model demonstrates the efficacy of the model
in crafting coherent and comprehensible text prompts, com-
patible with contemporary language models. Evaluation
conducted through AlpacaEval, utilizing a potent language
model such as GPT-4 as a benchmark, validates our ap-
proach’s capability. Our findings consistently reveal en-
hanced performance across LLMs of varying sizes, ranging
from models with 7 billion to over 100 billion parameters.
In future research, we suggest implementing an agentic
framework with Reinforcement Learning to enhance prompt
optimization and adaptability for domain and task-specific
prompting. This approach opens avenues for deeper explo-
ration and advancement within the field.
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Appendix

User and Optimized Prompts with AlpacaEval Scores

In this section, we compare the user-provided prompts and the optimized prompts generated using our proposed method.
The quality of each prompt is evaluated using the AlpacaEval scoring metric to highlight the efficacy of our optimization
approach. As illustrated in the table, the optimized prompts generally outperform the user-provided prompts in terms of

Table 2. User vs Optimized Prompts - Italicized AlpacaEval scores denote comparative performance, with

AlpacaEval Score and red indicating lesser performance score.

highlighting better

User Prompt

Optimized Prompt

What are some highly-rated movies on Netflix right now?

Can you explain Einstein’s theory of relativity in simple terms?
(0.9)

What are some unique themes for a photography project?
(0.77)

Write a short story about a detective solving a mystery in a

small town. (0.71)

Write a Python script to scrape data from a website. (0.88)

How does the human digestive system work? (0.91)

Create a simple to-do list application using React.js.

How do I write an abstract for a research paper on climate
change? (0.85)

Find me a reliable source on the effects of diet on mental
health. 0.7

Locate some highly-rated movies playing on Netflix today,
analyzing reviews and audience feedback.

Simplify Einstein’s theory of relativity for easy comprehen-
sion.

Explore unique themes for a photography project to showcase
creativity and innovation.

Craft an engaging short story centered around a detective
investigating a perplexing mystery in a tight-knit small town
community.

Write a Python script to scrape data from a website, extracting
relevant information and organizing it in a structured format.

Investigate the processes involved in the digestion of food by
the human body.

Develop a user-friendly to-do list application using React.js,
allowing users to add, update, and delete tasks. (0.86)

Discover tips for crafting an effective abstract for a research
paper on climate change, including key sections and format-
ting guidelines.

Explore reliable sources investigating the relationship between
diet and mental health, including dietary patterns, nutritional
deficiencies, and mental health disorders.

AlpacaEval scores, demonstrating the effectiveness of our optimization method. However, it is important to note that in some
cases, the user prompts achieve better scores than the optimized prompts. These instances typically involve well-defined and
closed-ended tasks, where the initial prompts are already highly effective.

Conversely, in open-ended tasks, our optimized prompts show significant improvements over the user prompts. This
indicates that our method is particularly beneficial for tasks that require creative and comprehensive responses, thereby
enhancing the overall performance and versatility of Large Language Models in diverse applications.



