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Abstract

Autoregressive sampling from large language
models has shown to achieve state-of-the-art re-
sults in several natural language tasks. However,
autoregressive sampling generates tokens one at
a time making it slow, and even prohibitive in
certain tasks. One way to speed up decoding is
speculative decoding: use a smaller model to sam-
ple a draft (block or sequence of tokens), and then
score all tokens in the draft by the desired large
language model in parallel. The tokens in the
draft are either accepted or rejected based on a
statistical method to guarantee that the final out-
put is a valid sample from the large model. In
this work, we provide a principled understanding
of speculative decoding through the lens of opti-
mal transport (OT) with membership cost. This
framework can be viewed as an extension of the
well-known maximal-coupling problem. This new
formulation enables us to generalize the sampling
method to allow for a set of k candidates at the
token-level, leading to an improved optimal mem-
bership cost. The optimal solution can be com-
puted via linear programming, whose best-known
runtime is exponential in k. We then propose an
approximate solution whose acceptance probabil-
ity is (1 − 1/e)-optimal multiplicatively. More-
over, it can be computed in time almost linear
with size of token vocabulary. Using this new OT
algorithm, we develop a new autoregressive sam-
pling algorithm called SpecTr. We experimentally
demonstrate that the proposed approach achieves
a speedup of 3X, a further 1.36X speedup over
speculative decoding on standard benchmarks.
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1. Introduction
Autoregressive language models have shown to achieve
state-of-the-art results in several natural language tasks
(Brown et al., 2020; Chowdhery et al., 2022; Thoppilan
et al., 2022; Touvron et al., 2023). During inference, given
a context xt:=x(1), x(2) . . . , x(t), an autoregressive model
Mb generates successive tokens x(t + 1), x(t + 2), . . .
via temperature sampling (Ackley et al., 1985; Ficler &
Goldberg, 2017), where the next token x(t + 1) is drawn
from the temperature-scaled distributionMb(·|xt). If the
temperature is zero, i.e., greedy decoding, the next to-
ken is determined by the maximum likelihood method i.e.,
x(t+ 1) = arg maxx∈ΩMb(x|xt), where Ω is the vocab-
ulary. The sampling approach can be further combined
with other sampling primitives such as nucleus sampling
(Holtzman et al., 2019) and top-k sampling (Fan et al., 2018;
Radford et al., 2019). All these approaches are autoregres-
sive decoding methods, where tokens are generated serially
one after another, which can be slow or even prohibitive
in several applications (Stern et al., 2018). Hence, several
techniques have been proposed to improve the speed of gen-
eration. Before we proceed further, we first present some
notations and a simplified computational model.

Notations. We use xi:j to denote the sequence x(i), x(i+
1), . . . , x(j) and use xj = x1:j . x(i) denotes the i-th entry
of x. Subscripts are used to distinguish between different
sequences. e.g., xt1 and xt2 denote two sequences of length
t. We use [n] to denote the set {1, . . . , n}.

Computational model.

• Standard inference. Given a context xt, with O(t2)
computation and O(1) time, an autoregressive model
Mb can computeMb(y|xt), the (temperature-scaled)
probability of all possible next tokens y ∈ Ω.

• Parallelization along the time axis. Given a context
xt, with O(t2) computation and O(1) time, an autore-
gressive model Mb can compute Mb(y|xi), for all
y ∈ Ω and i ∈ {1, 2, . . . , t}.

• Parallelization along time and batch axis1. Let K
be the maximum batch size that can be used during the

1This assumption implies that naively batching multiple queries
improves decoding throughput, but not latency of a single query.
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inference of the autoregressive model. Given several
contexts, xt1, x

t
2, . . . x

t
K , with O(Kt2) computation

and O(1) time, an autoregressive modelMb can com-
puteMb(y|xij), for all y ∈ Ω, i ∈ [t], and j ∈ [K].

The above computation model assumes that parallelizing
along time and batch axes does not increase the computa-
tion time. It is a simplified characterization of the typical
hardware, such as TPUs and GPUs, used in neural net-
work inference. Previous approaches also assume similar
computational model to devise faster decoding algorithms
(Leviathan et al., 2022; Chen et al., 2023). In practice, there
will be some overhead depending on hardware, implementa-
tion and resource utilization. In Table 2 (Appendix I), we
experimentally show that the assumptions roughly hold for a
large transformer model. We also note that there are efficient
transformer architectures, which reduces the computation
cost from O(t2) to O(t log t) (see (Tay et al., 2022) for a
survey). Such approaches are orthogonal to the focus of this
paper, and they can be easily combined with our approach.

Broadly speaking, multiple previous approaches proposed to
guess a few possible future tokens using an efficient model.
They then compute several conditional probability distribu-
tions from the large model based on the guesses. Computing
the distributions takes O(1) time due to parallelization. The
guessed tokens are then accepted or rejected based on a sta-
tistical method such that the accepted tokens are effectively
samples from the large model. When the guesses are good,
multiple tokens will be accepted. While this approach incurs
the same computation cost as vanilla decoding (assuming
computing the guess is cheap), it can significantly improve
decoding latency due to parallelization.

The goal of this work is to provide a principled understand-
ing of the above approaches and discuss optimality condi-
tions and algorithmic improvements. We start by providing
an overview of speculative decoding and related works.

2. Previous works and speculative decoding
Previous approaches make use of parallelization along the
time axis to provide speed-ups. They first predict multiple
tokens and validate if these multiple tokens can be generated
by the model with the corresponding sampling or decoding
scheme. For greedy decoding, multiple tokens can be pre-
dicted by a separate model (Stern et al., 2018), aggressive
decoding (Ge et al., 2022), or retrieval augmented text (Yang
et al., 2023). For sampling, recently (Leviathan et al., 2022;
Chen et al., 2023) proposed an algorithm called speculative
decoding. Next we provide an overview of this algorithm.

Suppose we have access to a computationally-inexpensive
draft modelMs, which also predicts the token given the
context and the predictions ofMs is similar to that ofMb

for many contexts. Suppose we have decoded for t steps

and have obtained prefix xt. The next step of the speculative
algorithm can be broken down into three steps.

1. Draft construction. The draft model can be used to ef-
ficiently and “speculatively” sample L tokens, extend-
ing the context to x(1), . . . , x(t), x̃(t + 1), . . . , x̃(t +
L). We keep the conditional probabilities on the next
tokenMs(y | xt, x̃t+1:t+i), ∀i < L and ∀y ∈ Ω.

2. Conditional probability computation. After observ-
ing the samples, we compute the conditional distribu-
tionsMb(y | xt, x̃t+1:t+i) for each i < L and ∀y ∈ Ω
in parallel (along time axis) in O(1) time.

3. Draft selection. Select first L′ of the L tokens and set
x(t+ i) = x̃(t+ i) for i ≤ L′ given the draft sequence
and the conditional probabilities from both models.

After this step, we use xt+L
′

1 as prefix and sample the next
sequence using speculative decoding iteratively. For com-
pleteness, we provide the full algorithm in Appendix A. The
crux of the above three steps is draft selection, which given
a draft sequence and the conditional probabilities from both
models, selects a valid sequence such that the output has
same distribution as that of the large model. In specula-
tive decoding, this is achieved via recursively applying a
token-level maximal coupling algorithm, which is provided
in Algorithm 1.

For the draft selection, Algorithm 1 is applied where p is the
conditional distribution of the draft modelMs(· | xt) and q
is the conditional distribution of the large modelMb(· | xt)
(which may be further conditioned on the sampled tokens).

Algorithm 1 Token-level maximal coupling

Input: Distributions p, q, Draft sample X ∼i.i.d. p.
1: Compute pres where ∀x ∈ Ω, pres(x) =

q(x)−min{p(x),q(x)}
1−

∑
x′ min{p(x′),q(x′)} .

2: Sample η ∼ U(0, 1).
3: if η ≤ min

(
1, q(X)

p(X)

)
then

4: Y = X , accept = True
5: end if
6: Return Y ∼ pres, accept = False.

Algorithm 1 returns a random variable Y which either is
the accepted input X (accept = True) or a sample from
the residual distribution pres (accept = False), which
is defined in Step 1 of Algorithm 1. The algorithm is re-
cursively applied as long as the draft tokens are accepted
(accept = True) to select the first L′ ≤ L tokens from the
draft model. Previous works showed that if X ∼ p, then
Y ∼ q (Leviathan et al., 2022; Chen et al., 2023). In the
case of the draft selection this means that the output of the
algorithm is distributed according toMb(· | xt), which is
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exactly the desired outcome. Furthermore

Pr(Y = X) =
∑
x∈Ω

min(p(x), q(x)) = 1− dTV(p, q),

where dTV is the total variation distance between p and
q. The more similar p and q are, the higher the chance
Pr(Y = X), and fewer the number of serial calls to the
larger model. In the ideal case, if p = q, then Pr(Y = X) =
1, i.e., the draft token is always accepted, and when used for
speculative decoding we have L′ = L. In such a case, based
on our computational model (Section 1), assuming the draft
model is fast, the speedup is L times.

3. Our contributions
From a theoretical viewpoint, the speculative decoding al-
gorithm raises multiple questions.

• What is the relationship between speculative decoding
and the broader literature of sampling in statistics?

• Is speculative decoding optimal in an information-
theoretic sense?

• Speculative decoding uses parallelization along time
to speed up decoding, would it be possible to use par-
allelization along batch (number of drafts) to further
improve decoding speed?

We provide answers to all the above questions. We first re-
late the problem of speculative decoding to the broader and
well-studied discrete optimal transport theory (Section 4).
With this connection, it becomes clear that the token-level
draft selection is the optimal solution for optimal transport
with indicator cost function and also related to the prob-
lem of maximal coupling (Den Hollander, 2012). Based
on the connection, we show that one can further speed up
the decoding by parallelizing along the batch axis by using
multiple drafts from the draft model (Section 5).

More precisely, we formulate the draft selection problem
as an discrete optimal transport problem with membership
cost. Discrete optimal transport can be solved with a linear
program, but the runtime is exponential in batch size, which
can be prohibitive. To address this, we propose an approxi-
mate solution which achieves a (1− 1/e)-approximation of
the optimal acceptance probability (Section E).

With this theoretically motivated algorithm and guarantees,
we circle back to speeding up decoding and propose a new
algorithm called SpecTr and theoretically show that it can
be used to derive valid sequences from the large model
(Section 6). We then experimentally demonstrate the benefit
of our approach on standard datasets (Section 7).

4. Token-level draft selection as an optimal
transport problem

In this section, we formulate token-level draft as an optimal
transport problem, where a cost function is associated with
whether a draft token is accepted. To simplify notations, we
assume the data comes from a discrete domain, but this can
be easily generalized.

Definition 4.1 (Coupling). For two probability distribu-
tions P over X and Q over Y , we say a joint distri-
bution π supported over X × Y is a coupling between
P and Q if ∀y ∈ Y,

∑
x∈X π(x, y) = Q(y),∀x ∈

X ,
∑
y∈Y π(x, y) = P (x). We use Π(P,Q) to denote

the set of all possible couplings between P and Q.

When it is clear from context, we will overload notation and
refer to the probabilistic mapping fπ : X → Y introduced
by the conditional probability π(y | x):=π(x, y)/P (x) as
a coupling, which is also referred to the transport plan from
P to Q (Villani et al., 2009).

Definition 4.2 (Optimal Transport (OT) (Villani et al.,
2009)). For a cost function c : X × Y → R+, the trans-
portation cost of a coupling is defined as:

C(π) = EX,Y∼π [c(X,Y )] .

The optimal transport plan is the coupling π ∈ Π(P,Q)
that minimizes the transportation cost.

With these definitions in place, we can see that with X =
Y = Ω, which is the alphabet of the tokens, we recover
the speculative decoding with the cost function of indicator
cost, which captures the resampling cost, defined below:

∀x ∈ Ω, y ∈ Ω, c(x, y) = 1 {y 6= x} .

The transportation cost of the coupling will be

C(π) = EX,Y∼π [1 {Y 6= X}] = PX,Y∼π(Y 6= X).

This optimal transport with this specific cost function is also
called maximal coupling (Den Hollander, 2012), and the
optimal cost is known to be

min
π:Π

PX,Y∼π(Y 6= X) = 1− dTV(P,Q). (1)

This implies that Algorithm 1 achieves the optimal cost.

5. Optimal transport with multiple draft
tokens

In this section, we generalize speculative decoding to allow
for multiple drafts. More formally, let X = Ωk for some
k ∈ N+, which is the set of k draft tokens from Ω and
Y = Ω, which is the space of the final sampled token from
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the desired distribution. To characterize the resampling cost,
we use the cost function of membership cost, defined below:

∀x ∈ Ωk, y ∈ Ω, c(x, y) = 1 {y /∈ S(x)} ,

where S(x) = {o ∈ Ω | o appears in x} denotes the set
of distinct elements in x. When k = 1, this recovers the
indicator cost mentioned above. The transportation cost of
the coupling will be

C(π) = EX,Y∼π [1 {Y /∈ S(X)}] = PX,Y∼π(Y /∈ S(X)).
(2)

We will also refer to the above cost C(π) as the rejection
probability due to its probabilistic interpretation. And sim-
ilarly, α(π):=1 − C(π) = Pr (Y ∈ S(X)) will be the ac-
ceptance probability.

From now on we will use membership cost as the default
cost function and refer to the optimal transport solution as
optimal transport with membership cost (OTM). We use
π∗ to denote the coupling that minimizes this cost π∗ =
arg minπ∈Π(P,Q) C(π);2 and the cost C(π∗) is is the opti-
mal transport cost between P andQ. α(P,Q) = 1−C(π∗)
is the corresponding optimal acceptance probability.

Draft selection with i.i.d. draft tokens. In this paper, we
will mainly focus on the case when the draft tokens are
i.i.d. samples from a base distribution. Let p, q be supported
over Ω and the goal is to obtain one valid token from q given
k i.i.d. samples from p. This applies to the practical scenario
where there exists a computationally efficient model, from
which we can sample multiple independent draft tokens
efficiently. We set P = p⊗k, a product distribution whose
marginals are all p, and Q = q. The OT problem becomes:

minC(π) s.t. π ∈ Π(p⊗k, q). (3)

In this case, we overload notation and denote the optimal ac-
ceptance probability as αk(p, q):=α(p⊗k, q) = 1− C(π∗).
To better understand the quantity, we present a few proper-
ties and examples of αk in Appendix B. In particular, we
show that αk(p, q) increases as k increases, implying that
multiple drafts can help increase the acceptance probability.

Optimal transport in discrete domain has been studied exten-
sively (Kantorovich, 1942; Pele & Werman, 2009; Guo et al.,
2020), and it is shown that the optimal transport problem
can be solve in time exponential in k (Appendix D).

Lemma 5.1. OTM (3) can be solved in time O(|Ω|O(k)).

We refer to the optimal coupling obtained above as OTM-k
and denote it as πOTM−k. For the case of k = 1, we have
a closed form expression for the optimal acceptance cost
(see Equation (1)), whereas for larger values of k, we don’t

2The existence of optimal coupling in discrete domain is well-
known, e.g., see (Villani et al., 2009). When the optimal coupling
is not unique, we use π∗ to denote one of the optimal couplings.

have a general closed form expression. We provide an upper
bound on the acceptance probability in Appendix C.

While this solution gives the optimal transportation cost, if
we use generic linear program solver to solve (6), to the
best of our knowledge, the runtime will be exponential in k,
which can be prohibitive when either the vocabulary size Ω
or the number of draft tokens k is large. In Appendix E, we
will present an approximate solution to the OTM problem
and show that for any pair of distributions, it gives a (1−1/e)
approximation to the optimal acceptance probability αk.

6. SpecTr: Application of OTM in
autoregressive sampling

In this section, we describe how OTM can be used to speed
up auto-regressive sampling, which we refer to as SpecTr
sampling. Similar to speculative decoding, each step of
SpecTr can be decomposed into three phases:

1. Draft set construction. Given context xt, use the
draft model sample a set of draft sequences with length
L, denoted by S = {zL ∼ Ms(· | xt)}. We keep
the conditional probabilities Ms(y | xt, zi) for all
y ∈ Ω, i ≤ L and zL ∈ S.

2. Conditional probability computation. Compute the
conditional probabilities on the next token for the large
modelMb(y | xt, zi) for all y ∈ Ω, i ≤ L and zL ∈ S
in parallel.

3. Draft selection. Select first L′ of the L tokens and set
x(t+ i) = z(i) for i ≤ L′ and some z ∈ S given the
set of draft sequences and the conditional probabilities
from both models.

This paper will  

be liked by all

be read by four

be liked for its

not be liked by

not get good reviews

receive one good review

|Sz| = 6 |Sz| = 3 |Sz| = 2 |Sz| = 1

Figure 1. An example of draft selection in SpecTr with L = 4 and
K = 6. At each step k = |Sz| is the number of draft tokens
for OTM. In the first step, we compute the transport plan with
|Sz| = K = 6 and the sequential selection algorithm will select
‘be’, which appeared thrice in our samples. We then compute
the transport plan with |Sz| = 3 and the sequential selection
algorithm will select ‘liked’. We then compute the transport plan
with |Sz| = 2 and the sequential selection algorithm will select
‘by’. Finally, we compute the transport plan with |Sz| = 1 and the
sequential selection algorithm will not select any of the drafts.
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Draft set with i.i.d. draft sequences. Gvien context xt, a
natural way to come up with a set of K drafts is to inde-
pendently sample K draft sequences from the conditional
distributionMs(· | xt), i.e.,

zL1 , z
L
2 , . . . , z

L
K ∼i.i.d.Ms(·, ·, . . . ·︸ ︷︷ ︸

L dots

| xt). (4)

The draft set construction method in (4) can be generalized
to a prefix-tree based algorithm. However, this generalized
version did not perform better in experiments. We include
this construction in the Appendix H for completeness.

Draft selection with multiple candidates. At a high-level,
the algorithm proceeds in a recursive fashion. Given prompt
xt and a candidate set S sampled from Ms(· | xt), the
algorithm first computes the optimal transport plan fπ :
Ω|S| → Ω fromMs(· | xt)⊗|S| toMb(· | xt). Then fπ is
applied to the first token in each sequence in S to obtained
a valid token Y fromMb(· | xt). If Y is not the last token
(L ≥ 2), we filter out sequences in S whose first token is not
Y and denote the remaining sequences as Snext and feed it
to the algorithm with context (xt, Y ) and draft length L− 1.
This goes on until we have L = 1 or Snext = ∅.

A sample run of the algorithm is presented in Figure 1.
The detailed algorithm (Algorithm 4) and its performance
(Theorem G.1) is presented in Appendix G.

7. Experiments
We evaluate the performance of our algorithm and compare
it to speculative decoding by following a recipe provided in
(Leviathan et al., 2022). We train decoder-only transformer
models on the one-billion language benchmark (LM1B)
(Chelba et al., 2013) based on the example provided in the
FLAX library (Heek et al., 2023). For the draft model, we
use a 6M parameter transformer model, and for the large
model we use a 97M parameter transformer model.

The results of different decoding algorithms are shown in
Table 1. The baseline method decodes one token from
the large model per serial call, and speculative decoding
improves this to ≈ 2.3. The proposed method SpecTr im-
proves upon speculative decoding and increases the number
of decoded tokens per serial call as we increase the number
of draftsK. We further note that for both Speculative decod-
ing and SpecTr, the number of decoded tokens increases as
we increase the block length from 4 to 8. We also note that
based on our current implementation, generating the drafts
using the small models adds about 10%-15% latency under
settings in Table 1. Due to space constraints, we provide
additional experiments and details in Appendix I.

Table 1. Experimental results on the LM1B dataset. All results are
over 1000 test prompts averaged over three different random seeds.

Algorithm K L Number of decoded
tokens per serial call

Baseline - - 1.0
Speculative 1 4 2.2

SpecTr 2 4 2.4
SpecTr 4 4 2.7
SpecTr 8 4 3.0

Speculative 1 8 2.3
SpecTr 2 8 2.6
SpecTr 4 8 3.0
SpecTr 8 8 3.3
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A. Speculative decoding

Algorithm 2 Speculative Sampling SPECSAMPLE.

Input: Input sequence xt. Access to a small modelMs and a large modelMb, block length L, end of sequence symbol
eos.

1: Autoregressively sampleMs with context xt to get L− 1 subsequent samples denoted by x̃t+1, . . . , x̃t+L−1.
2: Let x̃i = xi for i ≤ n.
3: In parallel compute pi =Ms(·|x̃t+i−1) and qi =Mb(·|x̃t+i−1) for 1 ≤ i ≤ L.
4: for i = 1, . . . , L− 1 do
5: Compute Yi, accept = Algorithm 1(pi, qi, x̃t+i)
6: xt+i = Yi.
7: if xt+i = eos then
8: Return xt+i
9: end if

10: if accept = True then
11: Continue.
12: else
13: Return SPECSAMPLE(xt+i,Ms,Mb, L).
14: end if
15: end for
16: Draw xt+L from qL.
17: Return SPECSAMPLE(xt+L,Ms,Mb, L).

B. Analysis and examples on the optimal acceptance probability αk.
Lemma B.1. (Appendix B.1) The optimal acceptance probability statisfies the following properties.

• Monotonicity. For any p, q and k ≥ 1, αk(p, q) ≤ αk+1(p, q).

• Consistency. If q(x)/p(x) is bounded ∀x ∈ Ω, we have

lim
k→∞

αk(p, q) = 1.

Else,

lim
k→∞

αk(p, q) =
∑
x∈Ω

1 {p(x) > 0} q(x).

With the above result, it is clear that increasing k could increase the acceptance probability, particularly when the draft
model satisfies p(x) > 0 for all x ∈ Ω.

We illustrate for few simple cases and plot them in Figures 2, 3, 4 and provide analysis for these simple distributions in
Appendix B.2. Let U(d) denote a uniform distribution over [d]. In Figure 2, we plot the optimal acceptance probability
for different uniform functions q as a function of k. Observe that all acceptance probabilities are monotonically increasing
and tend to one as k →∞, however the rate of convergence is vastly different. Furthermore if α1(p, q) > α1(p, q′), that
does not necessarily mean αk(p, q) > αk(p, q′). In Figure 3, we plot the optimal acceptance probability for different
Bernoulli distributions q as a function of k when p = Ber(0.25). Note that when p = q, the acceptance probability is
always one (green line), but as we increase / decrease q the acceptance probability decreases. Finally, in Figure 4, we plot
the acceptance probability for different values of k as a function of q, when p = Ber(0.25). In this scenario, note that if
k is sufficiently large, say 8, then for most values of q, the acceptance probability is one, however if k is small, then the
acceptance probability depends on how close p and q are.
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B.1. Proof of Lemma B.1

We first prove monotonicity. By definition,

αk(p, q) = 1− min
π∈Π(p⊗k,q)

PrXk,Y∼π
(
Y /∈ S(Xk)

)
= max
π∈Π(p⊗k,q)

PrXk,Y∼π
(
Y ∈ S(Xk)

)

Moreover, for any π ∈ Π(p⊗k, q), we can construct π′ ∈ Π(p⊗k+1, q) by setting

∀xk+1 ∈ Ωk+1, y ∈ Ω, π′(xk+1, y) = π(xk, x(k + 1), y)p(x(k + 1)),

i.e., adding and independent sample from p to Xk.

Hence we have

αk(p, q) = max
π∈Π(p⊗k,q)

PrXk,Y∼π
(
Y ∈ S(Xk)

)
= max
π∈Π(p⊗k,q)

PrXk+1,Y∼π′
(
Y ∈ S(Xk)

)
≤ max
π∈Π(p⊗k,q)

PrXk+1,Y∼π′
(
Y ∈ S(Xk+1)

)
≤ max
π′∈Π(p⊗k+1,q)

PrXk+1,Y∼π′
(
Y ∈ S(Xk+1)

)
= αk+1(p, q).

Next we prove consistency. We start with the case when ∀x ∈ Ω, q(x)/p(x) < ∞. To prove this, we will show that
Algorithm 3 with γmax = maxx∈Ω q(x)/p(x) statisifies

lim
k→∞

α(πK-SEQ
γmax

) = 1.

Notice that by Lemma E.2 and Theorem E.1, πK-SEQ
γmax

is a valid coupling, and

α(πK-SEQ
γmax

) = 1− (1− βp,q(γmax))k,

where βp,q(γ) =
∑
x∈Ω min(p(x), q(x)

γ ) ≥ 1/γmax > 0. Taking k →∞ concludes the proof.

For the case when q(x)/p(x) is unbounded, there exists x ∈ Ω such that q(x) > 0 and p(x) = 0. Let

poff =
∑
x∈Ω

1 {p(x) = 0} q(x).
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Let x0 be such that p(x0) > 0. We define q′ such that

q′ =


0, if p(x) = 0,

q(x), if p(x) > 0 and x 6= x0,

q(x) + poff if x = x0.

Then we have dTV(q, q′) = poff , and hence by subadditivity of transport cost,

αk(p, q) ≥ αk(p, q′)− poff .

Moreover, we have ∀x ∈ Ω, q′(x)/p(x) <∞. Hence

lim
k→∞

αk(p, q) ≥ lim
k→∞

αk(p, q′)− poff = 1− poff =
∑
x∈Ω

1 {p(x) > 0} q(x).

B.2. Optimal acceptance probability calculations

In this section, we provide a sketch of optimal acceptance probability calculations for results in Figures 2, 3, and 4.

Figure 2: p = U(d) and q = U(d/r). The optimal acceptance probability is

αk(U(d), U(d/r)) = 1− (1− 1/r)k.

We first prove αk(U(d), U(d/r)) ≥ 1 − (1 − 1/r)k by a construction. Let S(Xk) be the set of unique symbols in Xk.
Consider the following transport plan, where Y is drawn uniformly from S(Xk) ∩ [d/r] and draws a new uniform sample
from [d/r] if S(Xk)∩ [d/r] = ∅. Observe that since U(d) is uniform over [d], this is a valid transport plan and furthermore,

αk(U(d), U(d/r)) ≥ Pr(S(X)k ∩ [d/r] 6= ∅) = 1− (1− 1/r)k.

The upper bound follows by setting Ω0 = [d] \ [d/r] in Theorem C.1.

αk(U(d), U(d/r)) ≤ Pr(S(Xk) ∩ [d/r] 6= ∅) = 1− (1− 1/r)k.

Figure 3 and 4: Ber(p) and Ber(q). The optimal acceptance probability is

αk(Ber(p),Ber(q)) = min(q, 1− (1− p)k) + min(1− q, 1− pk). (5)

Setting Ω0 = {0, 1} in Theorem C.1 yields the upper bound. For the lower bound observe that since Ω = {0, 1},
1
{
y /∈ S(xk)

}
< 1 if and only if xk is 0k or 1k. Hence,

αk(Ber(p),Ber(q)) = π(Xk /∈ {0k, 1k}) + max
π
{π(Y = 0, Xk = 0k) + π(Y = 1, Xk = 1k)}

= 1− pk − (1− p)k + max
π
{π(Y = 0, Xk = 0k) + π(Y = 1, Xk = 1k)}.

Consider the transport plan π given by π(1k, 1) = min(pk, q), π(1k, 0) = pk−min(pk, q), π(0k, 0) = min((1−p)k, 1−q),
and π(0k, 1) = (1− p)k −min((1− p)k, 1− q). It can be checked that this is a valid transport plan. To see this matches
the upper bound on the optimal cost from Theorem C.1, notice that

1− pk − (1− p)k + max
π
{π(Y = 0, Xk = 0k) + π(Y = 1, Xk = 1k)}

= 1− pk − (1− p)k + min(pk, q) + min((1− p)k, 1− q).

If pk ≤ q and (1 − p)k ≤ 1 − q, then the above equation simplifies to 1 and (5) also simplifies to 1. If pk > q and
(1− p)k ≤ 1− q, then the above equation simplifies to 1 + q − pk and (5) also simplifies to the same quantity. Similarly,
the proof applies for pk ≤ q and (1− p)k > 1− q.
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C. Upper bound on αk

Even though, we don’t have a closed form solution for general k, we provide an information-theoretic upper bound in the
next theorem. For the case of k = 1, this upper bound matches the optimal acceptance probability of previous results.

Theorem C.1. For any two distributions p, q and ∀k ≥ 1, we have

αk(p, q) ≤ min
Ω0⊂Ω

∑
y∈Ω0

min
{
q(y), 1− (1− p(y))k

}
+
∑
xk∈Ωk

min{
k∏
i=1

p(xi),
∑

y∈xk∩Ωc
0

q(y)}

 .

Proof. It would be enough to show that for any π ∈ Π(p⊗k, q), and any Ω0 ⊂ Ω, we have

Pr
(
Y ∈ S(Xk)

)
≤
∑
y∈Ω0

min
{
q(y), 1− (1− p(y))k

}
+
∑
xk∈Ωk

min{
k∏
i=1

p(xi),
∑

y∈S(xk)∩Ωc
0

q(y)}.

Pr
(
Y ∈ S(Xk)

)
=
∑
y∈Ω

∑
xk∈Ωk

Pr
(
Xk = xk, Y = y

)
· 1
{
y ∈ S(xk)

}
=
∑
y∈Ω0

∑
xk∈Ωk

Pr
(
Xk = xk, Y = y

)
· 1
{
y ∈ S(xk)

}
+
∑
y∈Ωc

0

∑
xk∈Ωk

Pr
(
Xk = xk, Y = y

)
· 1
{
y ∈ S(xk)

}
=
∑
y∈Ω0

Pr
(
y ∈ S(xk), Y = y

)
+
∑
xk∈Ωk

∑
y∈S(xk)∩Ωc

0

Pr
(
Xk = xk, Y = y

)
≤
∑
y∈Ω0

min{Pr
(
y ∈ S(xk)

)
, q(y)}+

∑
xk∈Ωk

min{Pr
(
Xk = xk

)
,

∑
y∈S(xk)∩Ωc

0

q(y)}

=
∑
y∈Ω0

min{1− (1− p(y))k, q(y)}+
∑
xk∈Ωk

min{
k∏
i=1

p(xi),
∑

y∈S(xk)∩Ωc
0

q(y)}.

D. Details on solving OT with linear program.
Optimal transport in discrete domain has been studied extensively (Kantorovich, 1942; Pele & Werman, 2009; Guo et al.,
2020), and it is shown that the optimal transport problem is equivalent to the following linear programming problem:

min
∑
x∈Ωk

∑
y∈Ω

π(x, y)1 {y /∈ S(x)} (6)

s.t. ∀y ∈ Ω,
∑
x

π(x, y) = Q(y)

∀x ∈ Ωk,
∑
y

π(x, y) = P (x)

∀x ∈ Ωk, y ∈ Ω, π(x, y) ≥ 0.

Linear programming can be solved in time polynomial in the number of variables and constraints (Dantzig, 2002; Pele &
Werman, 2009). Linear program in (6) has |Ω|k+1 variables and |Ω|k + |Ω| equality constraints.
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E. Approximate OTM via k-sequential selection
In this section, we present sequential selection algorithm (K-SEQ), an approximate solution to the optimal transport problem
in Equation (3), which can be efficiently computed in time almost linear in |Ω| and logarithmic in k. The algorithm is
presented in Algorithm 3.

Algorithm 3 k-sequential selection algorithm (K-SEQ).

Input: Distributions p, q, samples X1, . . . , Xk ∼i.i.d. p. γ ∈ [1, k] : division factor.
1: Let βp,q(γ) =

∑
x∈Ω min(p(x), q(x)/γ) and pacc = 1− (1− βp,q(γ))k. Compute pres where

∀x ∈ Ω, pres(x) =
q(x)−min

{
p(x), q(x)

γ

}
pacc

βp,q(γ)

1− pacc
. (7)

2: for i = 1, 2, . . . , k do
3: Sample ηi ∼ U(0, 1).
4: if ηi ≤ min

(
1, q(Xi)

γ·p(Xi)

)
then

5: Y = Xi.
6: Return Y = Xi.
7: end if
8: end for
9: Return Y ∼ pres.

At a high-level, the algorithm goes over all k samples X1, . . . , Xk generated from p sequentially, and decides on whether to
accept each Xi based on the ratio q(Xi)/p(Xi). The algorithm output the first accepted sample or result from a residual
distribution pres if none of the samples is accepted. To control the probability of accepting an x ∈ Ω with probability
larger than q(x). We choose an appropriate γ ∈ [1, k] and accept Xi with probability min(1, q(Xi)/(γ · p(Xi))) instead of
min(1, q(Xi)/(p(Xi))) as in the single-draft case. Further, notice that Algorithm 3 recovers Algorithm 1 when γ = k = 1.

In Theorem E.1, we show that family of joint distributions induced by Algorithm 3 is indeed valid transportation plans from
p⊗k to q. Moreover, to find the best transportation plan within the family, we only need to search over a single parameter
γ, which reduces the computation cost significantly. We also show that searching over this sub-family of couplings won’t
decrease the optimal acceptance probability by a multiplicative constant. The performance of Algorithm 3 is stated in
Theorem E.1.
Theorem E.1. Let βp,q(γ) =

∑
x∈Ω min(p(x), q(x)

γ ) and γ∗ be the solution to the identity below.

1− (1− βp,q(γ))k = γβp,q(γ). (8)

When γ ≥ γ∗, the coupling πK-SEQ
γ introduced by Algorithm 3 is a valid transport plan from p⊗k to q and

α(πK-SEQ
γ ) ≥ pacc = 1− (1− βp,q(γ))k.

And when γ = γ∗, we have
α(πK-SEQ

γ∗ ) ≥ (1− e−1)αk(p, q).

Moreover, γ∗ can be computed in time O(|Ω| log k).

We provide the proof in Appendix E.1 To see why γ∗ can be computed efficiently, we notice that the function f(γ) defined
below has a root in [1, k]. Moreover it is continuous and monotonically increasing when γ ∈ [1, k]:

f(γ) = 1− (1− βp,q(γ))k − γβp,q(γ).

Hence the solution to Equation (8) can be efficiently computed using binary search over the set [1, k].

In fact, although Theorem E.1 only guarantees that Algorithm 3 can achieve an acceptance rate at least a (1− e−1) factor of
the optimal acceptance rate, empirically we observe that the acceptance probabilities are much closer for certain distributions.
For example, for the example in Figure 2, the proposed algorithm is in fact optimal. We list few more comparisons in the
Appendix F.
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E.1. Proof of Theorem E.1

We start by proving the following lemma on γ∗.

Lemma E.2. Let
f(γ) = 1− (1− βp,q(γ))k − γβp,q(γ).

Then we have Let γ∗ be the solution to Equation (8). Then when dTV(p, q) ∈ (0, 1),

• f(γ) is monotone in γ in [1,∞);

• γ∗ ∈ [1,min{k,maxx
q(x)
p(x)}].

Proof. It would enough to prove the followings: (1) f(γ) is monotone in γ in [1,∞); (2) f(1) ≥ 0; (3) f(k) ≤ 0; (4)
f(maxx

q(x)
p(x) ) ≤ 0.

To see (1), since βp,q(γ) is decreasing in γ, so is 1− (1− βp,q(γ))k. Moreover, γβp,q(γ) =
∑
x min{γp(x), q(x)}, which

is non-decreasing in γ. Hence we have 1− (1− βp,q(γ))k − γβp,q(γ) is decreasing.

To see (2), note that when γ = 1, βp,q(γ) = 1− dTV(p, q). Hence we have

1− (1− βp,q(1))k = 1− dTV(p, q)k ≥ 1− dTV(p, q).

When γ = k, (3) holds since for x ∈ [0, 1], we have 1− (1− x)k ≤ kx. Moreover, when γ = maxx
q(x)
p(x) > 1, we have

βp,q(γ) = 1/γ and (4) holds since

1− (1− βp,q(γ))k = 1− (1− 1/γ)k < 1 = γ · 1/γ.

Next we prove Theorem E.1, we will break the proof into four parts: (1) computation efficiency; (2) πK-SEQ
γ is a valid

transport plan; (3) acceptance probability; (4) optimality guarantee of πK-SEQ
γ∗ .

Computation efficiency. Note that the lemma immediately implies that γ∗ can be computed up to arbitrary accuracy δ in
time |Ω| log(k/δ) using binary search over [1, k].

Valid transport plan. We next prove that πK-SEQ
γ is a valid transport plan when γ ≥ γ∗. By Lemma E.2, when γ ≥ γ∗,

we have 1− (1− βp,q(γ))k ≥ γβp,q(γ). Recall that pacc = 1− (1− βp,q(γ))k, and

∀x ∈ Ω, pres(x) =
q(x)−min

{
p(x), q(x)

γ

}
pacc

βp,q(γ)

1− pacc
.

∀x ∈ Ω, we have

min

{
p(x),

q(x)

γ

}
pacc

βp,q(γ)
≤ 1− (1− βp,q(γ))k

γβp,q(γ)
q(x) ≤ q(x),

this implies pres(x) ≥ 0 for all x ∈ Ω. Moreover,

∑
x∈Ω

pres(x) =
∑
x∈Ω

q(x)−min
{
p(x), q(x)

γ

}
pacc

βp,q(γ)

1− pacc
= 1.

Hence pres is a valid distribution. It remains to show that the marginal of Y is q. We first compute the probability of the
output Y = x. Note that probability that Y = X1 is

p(X1) min

(
1,

q(X1)

γp(X1)

)
= min

(
p(X1),

q(X1)

γ

)
.
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Hence

Pr(Y = X1 = x) = min

(
p(x),

q(x)

γ

)
.

Therefore,

Pr(Y = X1) =
∑
x

min

(
p(x),

q(x)

γ

)
= β(γ).

Similarly, probability that

Pr(Y = X2 = x) = Pr(Y 6= X1) Pr(Y = X2|Y 6= X1) = (1− βp,q(γ)) min

(
p(x),

q(x)

γ

)
.

Hence,

Pr
(
Y = x, one of Xk is accepted

)
=

k−1∑
i=0

Pr (X1, . . . , Xi are rejected, Xi+1 is accepted, and Xi+1 = x)

=

k−1∑
i=0

(1− βp,q(γ))i · p(x) ·min

{
1,

q(x)

p(x)γ

}

= min

{
p(x),

q(x)

γ

}
·
k−1∑
i=0

(1− βp,q(γ))i

= min

{
p(x),

q(x)

γ

}
1− (1− βp,q(γ))k

βp,q(γ)

Summing over all symbols x yields

Pr(one of Xk is accepted) =
∑
x

min

{
p(x),

q(x)

γ

}
1− (1− βp,q(γ))k

βp,q(γ)
= 1− (1− βp,q(γ))k.

Hence we have

Pr (Y = x) = Pr
(
Y = x, one of Xk is accepted

)
+ (1− one of Xk is accepted)pres(x)

= min

{
p(x),

q(x)

γ

}
1− (1− βp,q(γ))k

βp,q(γ)

+
(
1− (1− βp,q(γ))k

)q(x)−min
{
p(x), q(x)

γ

}
1−(1−βp,q(γ))k

βp,q(γ)

1− (1− βp,q(γ))k

= q(x).

Acceptance probability. The acceptance probability holds since

α(πK-SEQ
γ ) ≥ Pr(one of Xk is accepted) = 1− (1− βp,q(γ))k.

Optimality guarantee of πK-SEQ
γ∗ . It can be seen that β(γ) is decreasing in γ, and so is 1− (1−βp,q(γ))k. Hence we have

α(πK-SEQ
γ∗ ) ≥ 1− (1− βp,q(γ∗))k ≥ 1− (1− βp,q(k))k = ck(p, q) ·min{kp(x), q(x)},

where

ck(p, q) =
1− (1− βp,q(k))k

kβp,q(k)
∈ [1− (1− 1/k)k, 1).
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The inclusion holds sincef(x) = 1−(1−x)k

kx in monotonically decreasing when x ∈ (0, 1/k] and f(1/k) = 1 − (1 −
1/k)k, limx→0+ f(x) = 1.

Moreover, ∀x ≥ 0, kx ≥ 1− (1− x)k. Hence we have

α(πK-SEQ
γ∗ ) ≥

(
1− (1− 1/k)k

)
·min{kp(x), q(x)}

≥
(
1− (1− 1/k)k

)
min{1− (1− p(x))k, q(x)}

≥
(
1− (1− 1/k)k

)
αk(p, q),

where the last inequality is due to the upper bound in Theorem C.1 with Ω0 = Ω.

F. Comparisons between OTM-k and K-SEQ

F.1. Examples where the approximate algorithm is optimal

In this section, we show that for the example in Figures 2, K-SEQ achieves the optimal acceptance accuracy. In this case,
p = U(d) and q = U(d/r). Recall that the optimal acceptance probability is

αk(U(d), U(d/r)) = 1− (1− 1/r)k.

For U(d) and U(d/r), we have

β(γ) =
∑
x∈[d]

min{p(x), q(x)/γ} =
1

max{r, γ}
.

And hence solving 1− (1− β(γ))k = γβ(γ) gives γ∗ = r(1− (1− 1/r)k). And be Theorem E.1, we have

α(πK-SEQ
γ∗ ) ≥ 1− (1− β(γ∗))k = 1− (1− 1/r)k.

And the equality holds since this an upper bound for any coupling.

F.2. Gap between OTM-k and K-SEQ

To see how OTM-k and K-SEQ compare in general, we numerically compute the acceptance probability for a pair of
compressed conditional distributions. We feed the prompt

“He said he also has asked prosecutors to”

to both large and small models used in Section 7 and obtain the conditional distributions p, q. To make the computation
feasible for OTM-k, we take the set of top 10 elements from p, q respectively and set the support S to be the union of the
two sets. Then we set p′ and q′ to be the normalized distribution of p and q over the set S.

We then numerically compute the acceptance probability for the optimal transport solution in Section 5 and the approximate
solution in Appendix E with different k’s. The result in shown in Figure 5. When k = 1, the acceptance probability is equal
to 1− dTV(p′, q′) for both solutions. The acceptance probability increases for both methods as k increases and there exists
a gap between the optimal and approximate solution. We would expect the gap to exist for general conditional distributions
from language models. We leave exploring computationally efficient ways to close this gap as an interesting future direction.

G. Detailed draft selection algorithm and its performance
The detailed algorithm is presented in Algorithm 4. We assume the condition probabilities on the next token is available
given any prefix in the candidate set since they are computed parallelly in the second phase, and won’t list them as inputs
explicitly in Algorithm 4. The algorithm proceeds in a recursive fashion. Given prompt xt and a candidate set S sampled
fromMs(· | xt), the algorithm first computes the optimal transport plan fπ : Ω|S| → Ω fromMs(· | xt)⊗|S| toMb(· | xt).
Then fπ is applied to the first token in each sequence in S to obtained a valid token Y fromMb(· | xt). If Y is not the last
token (L ≥ 2), we filter out sequences in S whose first token is not Y and denote the remaining sequences as Snext and feed
it to the algorithm with context (xt, Y ) and draft length L− 1. This goes on until we have L = 1 or Snext = ∅.
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Figure 5. Acceptance probability comparison OTM-k and K-SEQ with compressed conditional distributions.

Algorithm 4 Draft selection with multiple candidates (DraftSelection).

Input: Input sequence xt; candidate length: L; a set of candidates S = {zLi | i = 1, . . . , |S|} with length L.
1: Compute a transport plan (using linear programming in Lemma 5.1 for an exact solution or Algorithm 3 for an

approximate solution) fromMs(· | xt)⊗|S| toMb(· | xt), denoted by πt.
2: Get the multi-set of next token-level drafts: Sz = {zi(1)}i∈[|S|] and compute Y = fπt

(Sz).
3: if L = 1 then
4: if Y ∈ Sz then
5: Sample Y ′ ∼Mb(· | (xt, Y ))
6: Return (xt, Y, Y ′).
7: else
8: Return (xt, Y )
9: end if

10: end if
11: Let Snext = {z2:L | z ∈ S and z(1) = Y } be the set that consists of sub-sequences of the candidates that agree with

the selected next token.
12: if Snext = ∅ then
13: Return (xt, Y )
14: else
15: Return DraftSelection((xt, Y ), L− 1, Snext)
16: end if

In this case when Y is the last token (i.e., L = 1) and Y ∈ S, we have the choice to sample an additional token
Mb(· | (xt, Y )) since this conditional probability is already computed in the second phase. Due to the property of the
transport plan, we know that Y is always a valid sample fromMb(· | xt). The overall performance of the algorithm is stated
in Theorem G.1. We needed to take care in the statement and the proof to deal with the fact that the length τ of the output
sequence Y τ is itself a random variable.

Theorem G.1. Assume all drafts in set S are generated from the small model with input xt, or more precisely, ∀z ∈ S,

∀i ∈ [1, L], z(i) ∼Mb(· | xt, zi−1). (9)

Let Y τ be the output of Algorithm 4 where τ is the length of the output, and Zτ+1:L = (Z(τ + 1), . . . , Z(L)) ∼
Mb( ·, ·, . . . ·︸ ︷︷ ︸

(L−τ) dots

| xt, Y τ ), then it satisfies that (Y τ , Zτ+1:L) ∼prob Mb(·, ·, . . . ·︸ ︷︷ ︸
L dots

| xt). More precisely, For any length-L

sequence oL = (o(1), . . . , o(L)) ∈ ΩL, we have

Pr
(
(Y τ , Zτ+1:L) = oL

)
= ΠL

i=1Mb(o(i) | xt, oi−1).
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G.1. Proof of Theorem G.1

We prove the theorem via induction. When L = 1, Pr (τ = 1) = 1, the theorem follows directly since fπ in Algorithm 4 is
a valid transport plan. Suppose the theorem holds for L = ` ≥ 1, we next prove that it holds for L = ` + 1. Let Ȳ τ

′
be

the output sequence when L = `+ 1 and Z̄τ
′+1:`+1 be the subsequent samples fromMb. Note that compared to the case

when L = `, extending the block length of the tree by one only changes the probability of Y τ when τ = L, i.e., ∀j < ` and
length-j sequence oj ∈ Ωj , we have

Pr
(
Y j = oj , τ = j

)
= Pr

(
Ȳ j = oj , τ ′ = j

)
For any length-` sequence o`, let

δ(o`):= Pr
(
Y ` = o`, τ = `

)
− Pr

(
Ȳ ` = o`, τ ′ = `

)
.

Then by definition, we have

δ(o`) =
∑

o(`+1)∈Ω

Pr
(
Y `+1) = (o`, o(`+ 1)), τ = `+ 1

)
For any length-(`+ 1) sequence o`+1 ∈ Ω`+1, we have

Pr
(

(Ȳ j , Z̄τ
′+1:`+1) = o`+1

)
(10)

=

`−1∑
j=1

Pr
(
Ȳ j = oj , τ ′ = j

)
Mb(o

j+1:`+1 | xn, oj)

+ Pr
(
Ȳ ` = o`, τ ′ = `

)
Mb(o(`+ 1) | xn, o`) + Pr

(
Ȳ `+1 = o`+1, τ = `+ 1

)
(11)

=

`−1∑
j=1

Pr
(
Y j = oj , τ ′ = j

)
Mb(o

j+1:`+1 | xn, oj)

+
(
Pr
(
Y ` = o`, τ ′ = `

)
− δ(o`)

)
Mb(o(`+ 1) | xn, o`) + Pr

(
Ȳ `+1 = o`+1, τ = `+ 1

)
(12)

=Mb(o
`+1 | xn)− δ(o`)Mb(o(`+ 1) | xn, o`) + Pr

(
Ȳ `+1 = o`+1, τ = `+ 1

)
. (13)

Hence it would enough to show that

δ(o`)Mb(o(`+ 1) | xn, o`) = Pr
(
Ȳ `+1 = o`+1, τ = `+ 1

)
(14)

Note that the event Ȳ `+1 = o`+1, τ ′ = ` + 1 only happens when o` are all accepted samples fromMs in the sampling
process and when proceeding, the next obtained token is o(`+ 1).

On the other hand, the δ(o`) is the probability of the event that the sampling process stops at o` when L = ` and proceeds
when L = ` + 1, which, by definition of the algorithm, happens if and only if o` are all accepted samples from Ms.
Moreover, when proceeding, since fπ is a valid transport plan, we have that the next sample is generated fromMb(· | xt, o`).
And hence Equation (14) holds.

This concludes the proof.

H. Construct a candidate set by sampling from a prefix-tree
As discussed in Section 1, the size of the draft set S is constrained by the number of parallel computations that can be
supported in the hardware. Hence it is important to design the draft set carefully to allow for a longer sequence of accepted
candidate sets. In addition to the i.i.d. draft set selection approach listed in Section 6, we present an algorithm that samples a
draft set that forms the leaves of a prefix tree. Given a draft set size K, the algorithm can be specified by a sequence of
parameter (k1, k2, . . . , kL) satisfying

∏L
i=1 ki = K.

At a high-level, the algorithm starts with a root node with sequence x1:t and forms a prefix tree of depth L. At depth
i ∈ [1 : L− 1], each node is expanded by a factor of ki+1 and each of its children will contain a sequence that satisfies: (1)
Its prefix agrees with the sequence in the parent node; (2) The next token is sampled from the conditional probability given
the prefix in small model. These child nodes will be at depth i + 1 and the process goes until it hits depth L. We give a
detailed description of the algorithm in Algorithm 5.
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Algorithm 5 Draft set selection via prefix-tree.

Input: Input sequence xt; expansion factors at each level: (k1, k2, . . . , kL).
1: S0 = {xt}.
2: for i = 0, 1, 2, . . . , L− 1 do
3: Si+1 = ∅.
4: for all seq ∈ Si do
5: Sample ki+1 i.i.d. tokens X1, X2, . . . , Xki+1

fromMb(· | seq).
6: Si+1 = Si+1 ∪ {(seq, Xi), i = 1, 2, . . . ki+1}.
7: end for
8: end for
9: Return SL.

I. Additional experiments
We first provide a verification of the computational model introduced in Section 1 by reporting the latencies of using the
large model to compute the probabilistic distributions with parallelization over time and batch axes. As shown in Table 2,
the latency stays roughly constant in these setting.

Table 2. Average latency with parallelization along the time axis and batch axis. We report average latency with standard deviation over
1,000 runs using a 97M transformer relative to length = 4 and batch = 1 on GPU.

Relative latency batch = 1 batch = 2 batch = 4 batch = 8
length = 4 1.00 ± 0.16 1.01 ± 0.15 1.06 ± 0.10 1.10 ± 0.16
length = 8 1.01 ± 0.18 1.09 ± 0.25 1.10 ± 0.09 1.42 ± 0.4

Similar to Table 2, we report relative latency when parallelizing across the time and batch axes using the small 6M draft
model in Table 3. In Table 3, the reported relative latencies are relative to the large 97M model to get a sense of the relative
cost of sampling multiple drafts with the small model compared to the large model. We also include results for varying draft
model sizes with the same 97M large model for LM1B in Table 4. These additional draft models were produced by either
halving (2M ) or doubling (20M ) the original 6M draft model’s number of layers, embedding dimension, MLP dimension,
and number of attention heads. As expected, the larger draft models improve all speculative methods’ number of decoded
tokens per large model serial call with SpecTr maintaining the best performance across all draft model sizes.
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Table 3. Average latency with parallelization along the time axis and batch axis. We report average latency with standard deviation over
1,000 runs using a 6M transformer relative to the 97M transformer with length = 4 and batch = 1 on GPU.

Relative latency batch = 1 batch = 2 batch = 4 batch = 8
length = 4 0.18 ± 0.02 0.19 ± 0.04 0.18 ± 0.09 0.20 ± 0.13
length = 8 0.17 ± 0.04 0.19 ± 0.05 0.16 ± 0.02 0.18 ± 0.04

Table 4. Experimental results on the LM1B dataset with varying draft model sizes and the 97M transformer as the large model. All
results are over 1000 test prompts averaged over three different random seeds and sampling temperature of 1.0 for both the draft and large
models.

Draft model Algorithm K L Number of decoded
tokens per serial call

2M Transformer Baseline - - 1.00
Speculative 1 4 1.86± 0.02

SpecTr 2 4 2.07± 0.01
SpecTr 4 4 2.32± 0.00
SpecTr 8 4 2.56± 0.01

Speculative 1 8 1.91± 0.01
SpecTr 2 8 2.15± 0.01
SpecTr 4 8 2.41± 0.00
SpecTr 8 8 2.68± 0.01

6M Transformer Baseline - - 1.00
Speculative 1 4 2.21± 0.01

SpecTr 2 4 2.43± 0.01
SpecTr 4 4 2.74± 0.01
SpecTr 8 4 2.99± 0.02

Speculative 1 8 2.33± 0.01
SpecTr 2 8 2.61± 0.02
SpecTr 4 8 2.96± 0.03
SpecTr 8 8 3.27± 0.02

20M Transformer Baseline - - 1.00
Speculative 1 4 2.71± 0.01

SpecTr 2 4 2.96± 0.00
SpecTr 4 4 3.28± 0.02
SpecTr 8 4 3.49± 0.03

Speculative 1 8 3.12± 0.02
SpecTr 2 8 3.48± 0.04
SpecTr 4 8 3.85± 0.05
SpecTr 8 8 4.15± 0.04


