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Abstract

Retrieval-enhanced methods have become a pri-
mary approach in fact verification (FV); it re-
quires reasoning over multiple retrieved pieces
of evidence to verify the integrity of a claim. To
retrieve evidence, existing work often employs
off-the-shelf retrieval models whose design is
based on the probability ranking principle. We
argue that, rather than relevance, for FV we
need to focus on the utility that a claim verifier
derives from the retrieved evidence. We in-
troduce the feedback-based evidence retriever
(FER) that optimizes the evidence retrieval pro-
cess by incorporating feedback from the claim
verifier. As a feedback signal we use the di-
vergence in utility between how effectively
the verifier utilizes the retrieved evidence and
the ground-truth evidence to produce the final
claim label. Empirical studies demonstrate the
superiority of FER over prevailing baselines.1

1 Introduction

The risk of misinformation has increased the de-
mand for fact-checking, i.e., automatically assess-
ing the truthfulness of textual claims using trust-
worthy corpora, e.g., Wikipedia. Existing work on
fact verification (FV) commonly adopts a retrieval-
enhanced verification framework: an evidence re-
triever is employed to query the background corpus
for relevant sentences, to serve as evidence for the
subsequent claim verifier. High-quality evidence is
the foundation of claim verification. Currently, pre-
vailing approaches to identifying high-quality evi-
dence typically adopt off-the-shelf retrieval models
from the information retrieval (IR) field for evi-
dence retrieval (Wan et al., 2021; Jiang et al., 2021;
Chen et al., 2022a; Liu et al., 2020). These models
are usually based on the probability ranking prin-
ciple (PRP) (Robertson, 1977), ranking sentences

∗Research conducted when the author was at the Univer-
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1Our code and data are available at https://github.
com/ict-bigdatalab/FER

based on their likelihood of being relevant to the
claim. However, the sentences retrieved in this way
are assumed to be consumed by humans, and this
may not align with a retrieval-enhanced verification
framework (Zamani et al., 2022): the top-ranked
sentences produced by existing retrieval models do
not always align with the judgments made by the
claim verifier regarding what counts as evidence.

We argue that when designing evidence retrieval
models for FV, the notion of relevance should be
reconceptualized as the utility that the verifier de-
rives from consuming the evidence provided by the
retrieval model, a viewpoint that aligns well with
task-based perspectives on IR (Kelly et al., 2013).
Hence, we assume that when training evidence re-
trievers, it is advantageous to obtain feedback from
the claim verifier as a signal to optimize the re-
trieval process.

Therefore, we propose a shift in emphasis from
relevance to utility in evidence retrieval for FV. We
introduce the feedback-based evidence retriever
(FER) that incorporates a feedback mechanism
from the verifier to enhance the retrieval process.
FER leverages a coarse-to-fine strategy. Initially, it
identifies a candidate set of relevant sentences to
the given claim from the large-scale corpus. Sub-
sequently, the evidence retriever is trained using
feedback from the verifier, enabling a re-evaluation
of evidence within the candidate set. Here, feed-
back is defined as the utility divergence observed
when the verifier evaluates the sentences returned
by the retriever, compared to when it consumes
the ground-truth evidence for predicting the claim
label. By measuring the utility criterion between
the two scenarios, we can optimize the retriever
specifically for claim verification.

Experimental results on the large-scale Fact
Extraction and VERification (FEVER) dataset
(Thorne et al., 2018) demonstrate a 23.7% F1 per-
formance gain over the SOTA baseline.

https://github.com/ict-bigdatalab/FER
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2 Background
For the FEVER task (Thorne et al., 2018), au-
tomatic FV systems need to determine a three-
way veracity label, i.e., SUPPORTS, REFUTES or
NOT ENOUGH INFO, for each human-generated
claim based on a set of supporting evidence from
Wikipedia. The FV system can be split into docu-
ment retrieval, evidence retrieval, and claim verifi-
cation phases. The first phase is to retrieve related
documents from the corpus. The second phase
aims to extract evidence from all sentences of the
recalled documents. The final phase aggregates
the information of the retrieved evidence to predict
a claim label. In this work, our contributions are
focused on the evidence retrieval step. The related
work and more extensive discussions are included
in Appendix A.1.

3 Our Approach
Based on the related documents (i.e., Wikipedia
pages) obtained by a common document retrieval
method with entity linking (Hanselowski et al.,
2018; Liu et al., 2020), FER comprises two com-
ponents: (i) coarse retrieval: using a PRP-based
retrieval model to recall a set of candidate sen-
tences to the claim from the related documents; and
(ii) fine-grained retrieval: selecting evidential sen-
tences from the candidate set based on the feedback
from the claim verifier. The overall architecture of
FER is illustrated in Figure 1.

3.1 Coarse retrieval
For a given claim, we first retrieve a set S of candi-
date sentences from the related documents based
on the PRP. Following (Zhou et al., 2019; Liu et al.,
2020), we employ the base version of BERT for
coarse retrieval. We utilize the hidden state of the
“[CLS]” token to represent the claim and sentence
pair. To project the “[CLS]” hidden state to a rank-
ing score, we employ a linear layer followed by a
tanh activation function. Lastly, we optimize the
BERT-based ranking model using a typical pair-
wise loss function. During inference, given a test
claim, we take the top-K ranked sentences to form
the candidate set S.

3.2 Fine-grained retrieval with feedback
Given the candidate set S, we train the fine-grained
evidence retriever Rθ with the feedback from the
claim verifier. We leverage the base version of
BERT to implement Rθ. The claim and all sen-
tences in S are concatenated as a single input se-
quence, with a special token [CLS] added at the

Claim: Nicholas Brody is a character on Homeland.
Candidate sentences: (1)Nicholas  Nick Brody,… (2)The series stars Claire 
Danes… (3)Carrie Anne Mathison, played by actress Claire… (4)In the third 
season, he was… (5)Mathison had come… (6)Between the first and… (7) After 
a U.S.… (8)… (9)… (10)… (11)… (12)… (13)… (14)
However, a CIA officer… (15)The series has also been renewed…
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Figure 1: Architecture of FER.

beginning of each sentence to indicate its presence.
The training objective L for Rθ consists of two
parts, i.e., an evidence classification Lcla and a
utility divergence Luti, denoted as:

L = αLcla + βLuti,

where α and β are coefficients.
Evidence classification. We first leverage the

ground-truth evidence to boost plausibility. Specif-
ically, we input the concatenated sequence into
BERT and leverage the hidden state of each [CLS]
to classify the corresponding sentence through lin-
ear layers and ReLU activation functions. Here,
g ∈ {0, 1} is the sentence label where 1 or 0 rep-
resents whether a sentence is the ground-truth ev-
idence or not. Then, the classification loss is de-
fined as a measure of the difference between the
predicted evidence and the ground-truth evidence
via binary cross-entropy loss, i.e.,

Lcla = −
∑
s∈S

g log(p(s))+ (1− g) log(1− p(s)),

where s is a sentence in the candidate set S and
p(s) is the predicted probability of s by Rθ as the
ground-truth. During training, this loss function
Lcla encourages the retriever to select evidence
sentences that are deemed plausible, representing
ground-truth evidence.

Utility divergence based on the claim verifier.
To further ensure that the retrieved evidence im-
proves verification performance, we propose to get
feedback from the claim verifier as a signal for op-
timizing the evidence retriever. Here, we leverage
the utility that the verifier obtains by consuming
the retrieved evidence as the feedback. Specifically,
for each claim c, we can measure the divergence in
utility between the verifier’s judgements based on
the ground-truth evidence and those based on the



Table 1: Comparisons of the evidence retrieval performance achieved by FER and baselines. † indicates statistically
significant improvements over all the baselines (p-value < 0.05).

Model
Dev Test

P R F1 P R F1

TF-IDF (Thorne et al., 2018) - - 17.20 11.28 47.87 18.26
ColumbiaNLP (Chakrabarty et al., 2018) - 78.04 - 23.02 75.89 35.33

UKP-Athene (Hanselowski et al., 2018) - 87.10 - 23.61 85.19 36.97
GEAR (Zhou et al., 2019) 24.08 86.72 37.69 23.51 84.66 36.80
NSMN (Nie et al., 2019a) 36.49 86.79 51.38 42.27 70.91 52.96
KGAT (Liu et al., 2020) 27.29 94.37 42.34 25.21 87.47 39.14
DREAM (Zhong et al., 2020) 26.67 87.64 40.90 25.63 85.57 39.45

DQN (Wan et al., 2021) 54.75 79.92 64.98 52.24 77.93 62.55
GERE (Chen et al., 2022a) 58.43 79.61 67.40 54.30 77.16 63.74
Stammbach (Stammbach, 2021) 71.25 83.21 76.72 - - -

FER w/o Lcla 80.26† 81.62 80.93† 75.76† 75.97 75.86†

FER w/o Luti 75.69† 87.38 81.12† 71.84† 80.87 76.08†

FER 84.04† 84.59 84.31† 79.35† 78.34 78.84†

sentences provided by the retriever when predicting
the claim label, i.e.,

Luti = y∗Dϕ(c, E
∗)− y∗Dϕ(c,Rθ(c, S)),

where c is the given claim, E∗ denotes the ground-
truth evidence and y∗ denotes a one-hot indicator
vector of the ground-truth claim label. Rθ(c, S)
represents the sentences selected by the evidence
retriever, which takes the candidate set S and the
claim c as input. Dϕ(·) is the probability distribu-
tion predicted by the claim verifier. The details of
loss gradient passed to the fine-grained retriever
can be found in the Appendix A.2.

Here, we also use BERT’s base version as the
verifier in FER. During training, the verifier per-
forms classification on the concatenated input, i.e.,
[CLS]+ c+ [SEP]+E∗+ [SEP], and leverage the
hidden state of [CLS] to classify c into three cate-
gories via a linear layer and softmax function. After
training, the verifier is fixed and we directly com-
pute the probability prediction vector Dϕ(·) based
on E∗ and Rθ(c, S), respectively. Note that we can
leverage other advanced claim verifiers to provide
feedback (Section 4.4). The loss function Luti en-
courages the retriever to prioritize the selection of
sentences that are crucial for claim verification.

At inference time, given a test claim, we leverage
the optimized retriever to retrieve evidence (Sec-
tion 4.2). Then, we can directly input the retrieved
evidence to several advanced verification models
to verify the claim (Section 4.3).

4 Experiments
4.1 Experimental settings
We conduct experiments on the FEVER bench-
mark dataset (Thorne et al., 2018), which com-

prises 185,455 claims with 5,416,537 Wikipedia
documents from the June 2017 Wikipedia dump.
All claims are annotated as “SUPPORTS”, “RE-
FUTES” or “NOT ENOUGH INFO”.

For evaluation, we leverage official evaluation
metrics, i.e., Precision (P), Recall (R), and F1 for
evidence retrieval, and the FEVER score and Label
Accuracy (LA) for claim verification. We prioritize
the F1 as our primary metric for evidence retrieval
because it directly reflects the model performance
in terms of retrieving precise evidence.

The candidate set size K is set to 25; both α
and β are set to 1. All hyper-parameters are tuned
on the development set. We include detailed de-
scriptions of the implementation details, evaluation
metrics, and baselines in Appendix A.3.

4.2 Results on evidence retrieval
We select several representative evidence retrieval
models as our baselines and conduct experiments
on both the development and test set following the
common setup in FEVER. Based on the results
presented in Table 1, we find that: (i) FER signifi-
cantly outperforms the state-of-the-art methods in
terms of P and F1, demonstrating its superiority
in providing supporting evidence for claim verifi-
cation based on utility. (ii) The superior precision
achieved by FER comes at the expense of lower
recall when compared to baselines. The reason
might be that FER aims to retrieve more precise
and concise sets of evidence for each claim. That
is, FER results in a smaller amount of retrieved ev-
idence compared to the baselines. Similarly, DQN,
GERE and Stammbach also aim to identify precise
evidence. However, their P and F1 scores are sub-
stantially lower than those for FER, indicating that



Table 2: Performance of different claim verification
models on the test set using evidence from the original
paper vs. evidence retrieved by FER.

Model LA FEVER

BERT Concat (Zhou et al., 2019) 71.01 65.64
BERT Concat + FER 72.46 68.16

BERT Pair (Zhou et al., 2019) 69.75 65.18
BERT Pair + FER 72.12 68.03

GEAR (Zhou et al., 2019) 71.60 67.10
GEAR + FER 72.54 67.49

GAT (Liu et al., 2020) 72.03 67.56
GAT+FER 72.85 69.43

KGAT(BERT Base) (Liu et al., 2020) 72.81 69.40
KGAT+FER 73.34 69.61

considering the utility of evidence contributes to re-
trieving evidential sentences for FV. (iii) FER with-
out Lcla outperforms FER without Luti in terms of
P, indicating that feedback from the verifier plays a
crucial role in aiding the retriever to identify precise
evidence that is crucial for the verification process.
FER without Lcla retrieves a smaller number of
sentences than FER without Luti, i.e., its perfor-
mance in terms of R and F1 is poorer. Some case
studies can be found in Appendix A.4.2.

4.3 Results on claim verification

To better understand the effectiveness of evidence
retrieved by FER, we choose several advanced
claim verification models, and provide them with
evidence retrieved by FER and evidence obtained
from the original paper, respectively. The experi-
ments are reported on the test set; see Table 2. Sim-
ilar findings can be obtained on the development
set; see Appendix A.4.1. All the claim verifica-
tion models leveraging evidence retrieved by FER
outperform their respective original versions based
on PRP. By conducting further analyses, we find
that the evidence retrieved based on the likelihood
of being relevant to the claim in the original pa-
pers may not be always useful for the verification
process or contain conflicting pieces. FER is able
to select more precise evidence for claim verifica-
tion, contributing to the verification outcome and
leading to improved results.

Table 3: Evidence retrieval performance with feedback
from different verifiers on the test set.

Verifier P R F1

GAT 77.93 79.48 78.70
KGAT 84.38 75.95 79.94

4.4 Quality analysis
Feedback using different verifiers. Here, we ex-
plore the potential of utilizing off-the-shelf claim
verifiers to offer feedback to Rθ in our FER. From
Table 2, KGAT (Liu et al., 2020) and GAT exhibit
promising verification performance, making them
suitable choices for providing feedback. BERT
Pair cannot be employed for providing feedback
to FER, since it produces multiple independent
probabilities instead of a probability distribution
encompassing the final claim labels. In future work,
we will explore alternative feedback formulations
to incorporate additional verifiers. The experiments
are reported on the test set; see Table 3. Similar
findings have been obtained on the development
set; see Appendix A.4.1. Obtaining feedback from
other verifiers could also show promising evidence
retrieval performance; this result showcases the
adaptability of the proposed FER method, which
effectively adjusts to different verifiers. Besides,
good retrievers and verification models can mutu-
ally benefit from each other’s strengths.
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Figure 2: Evidence retrieval performance with different
values of K on the test set.
Effect of the candidate set size K. In Figure 2, we
plot the effect of the number of candidate sentences
K obtained by the coarse retrieval components on
the final evidence retrieval performance. Recall
is high for all values of K. The reason might be
that on average, each claim is associated with 1.86
relevant sentences in FEVER, while K is set to be
larger than 5. Furthermore, a lower value of K im-
plies that less information will be available for the
fine-grained retrieval model, which, in turn, hurts
precision. As K is increased, more information is
provided to the model, which amplifies the impact
of feedback, potentially causing slight fluctuations
in the recall rate.

5 Conclusion
In this paper, we proposed FER (feedback-based
evidence retrieval) for FV, a novel evidence re-
trieval framework that incorporates feedback from
the claim verifier. Unlike traditional approaches



based on PRP, FER places an emphasis on the util-
ity of evidence that contributes meaningfully to the
verification process, going beyond mere relevance.
Through the integration of feedback from the ver-
ifier, FER effectively identifies the evidence that
is both relevant and useful for claim verification.
The experimental results on the FEVER dataset
demonstrated the effectiveness of FER.

Limitations
In this paper, we utilized the performance disparity
between ground-truth evidence and retrieved evi-
dence for claim verification as a form of feedback
to train an evidence retrieval model. There are two
primary limitations that should be acknowledged:
(i) Currently, the retrieval and verification models
are optimized independently, lacking conditional
optimization or joint end-to-end optimization. Fu-
ture research could explore approaches to optimize
both the retrieval and verification models in a sin-
gle objective function. In this manner, we expect
to see improved overall performance. (ii) In this
study, we focused solely on investigating the prob-
ability distribution generated by the claim verifier
to compute the utility divergence. However, it is
important to note that there exist multiple methods
for quantifying the divergence in utility of retrieval
results, e.g., the gradients of the verification loss.
Additionally, it is worth considering that there may
be various forms of feedback that can be incor-
porated. We hope that this research will inspire
further exploration and attention in this area for
future studies. (iii) Finally, we only demonstrated
the effectiveness of the proposed FER method on
a single dataset, the FEVER dataset, and the evi-
dence retrieval process. We encourage future work
aimed at the creation of further claim verification
datasets and document retrieval process.
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A Appendix
A.1 Related work
In this section, we briefly review two lines of
related work, i.e., fact verification and retrieval-
enhanced machine learning.

A.1.1 Fact Verification
The real-world fact verification (FV) task focuses
on verifying the accuracy of claims made by hu-
mans through the retrieval of evidential sentences
from reliable corpora such as Wikipedia (Chen
et al., 2022a). Current FV models typically adopt
a three-step pipeline framework, which includes
document retrieval, evidence retrieval, and claim
verification.

In the document retrieval stage, existing works
could be broadly categorized into three cate-
gories: entity linking (Hanselowski et al., 2018;
Chernyavskiy and Ilvovsky, 2019; Zhao et al.,
2020; Liu et al., 2020), keyword matching (Nie
et al., 2019a; Ma et al., 2019; Nie et al., 2019b) and
feature-based (Hidey and Diab, 2018; Yang et al.,
2017; Chen et al., 2022a) methods.

In the evidence retrieval stage, existing FV
works commonly utilize retrieval models that are
built upon the probability ranking principle (PRP)
(Robertson, 1977) in the field of information re-
trieval (IR). These models aim to select the top-
ranked sentences as evidence based on relevance
ranking (Jiang et al., 2021; Soleimani et al., 2020;
Zhou et al., 2019; Liu et al., 2020; Hanselowski
et al., 2018; Wan et al., 2021). Very recently, Chen
et al. (2022a); Liu et al. (2023) proposed to retrieve
evidence in a generative fashion by generating doc-
ument titles and evidence sentence identifiers.

In the claim verification stage, considerable at-
tention has been given to this step in many existing
FV works. These mainly include implication-based
inference methods that treat the verification task as
an entailment task (Thorne et al., 2018; Nie et al.,
2019a; Krishna et al., 2022; Nie et al., 2019b), as
well as graph neural network-based methods (Liu
et al., 2020; Zhou et al., 2019) that frame the veri-
fication task as a graph reasoning task. It is worth
noting that the accuracy of this stage heavily re-
lies on the retrieved evidence. Therefore, having a
precise set of evidence can significantly impact the
verification outcome and lead to improved results.

A.1.2 Retrieval-enhanced machine learning
As mentioned in Zamani et al. (2022), one approach
to improve accuracy is by increasing the parameter

size of machine learning models. However, it is im-
portant to consider that this approach comes with
the trade-off of increased costs in model design
and training. Hence, the task of alleviating model
memory through retrieval enhancement holds sig-
nificant applications in various domains (Sharma
et al., 2021; He et al., 2023; Chen et al., 2022b),
e.g., commonsense generation (Wang et al., 2021;
Fan et al., 2020), dialogue systems (Song et al.,
2016; Zhang et al., 2022; Zhu et al., 2019; Chen
et al., 2022c; Parvez et al., 2023), summarization
(An et al., 2021), and fact verification (Thorne et al.,
2018).

Retrieval-enhanced machine learning methods
could be mainly divided into two categories:
(i) The first one is retrieval-only: the retrieval
model acts as an auxiliary tool to provide query-re-
lated responses to the prediction model. Note that
the majority of current fact verification models pri-
marily belong to this category. (ii) The second one
is retrieval with feedback: the retrieval model is fur-
ther trained based on the feedback provided by the
prediction model. Very recently, Hu et al. (2023)
proposed to utilize the loss value of the prediction
model as a signal for optimizing the retrieval model.
However, this method may not be suitable for large
datasets because it relies on all provided sentences
to compute the loss. Additionally, without access to
ground-truth evidence for the prediction model, ac-
curately capturing the utility of retrieved sentences
may be challenging.

A.2 The training process of the fine-grained
retriever

In this section, we provide a detailed description of
training process of the fine-grained retriever, given
the K candidate sentences from the coarse retriever,
unfolds as follows:

The fine-grained retriever selects sentences from
the candidate set.
• The claim and K candidate sentences
[s1, s2, . . . , sK ] are concatenated with a
special token [CLS] at the beginning of each
sentence and then provided as input to the
fine-grained retriever.

• Subsequently, the hidden state of each [CLS]
undergoes a transformation through a linear layer
followed by a ReLU activation, yielding K sets of
2-dimensional vectors, for example, [[0.1, 0.9],
[0.2, 0.8], ..., [0.7, 0.3]].

• Finally, Gumbel Softmax is applied to these K
2-dimensional classification vectors, producing a



sequence-length K vector like [1, 1, ..., 0], where
1 indicates the predicted evidence sentence.

The fine-grained retriever forwards the selected
sentence information to the verifier.
• The sequence-length K vector is adaptively ex-

tended to match the lengths of the K candidate
sentences, aligning with the respective sentence
lengths. For instance, [len(s1) ∗ 1, len(s2) ∗
1, . . . , len(sK) ∗ 0] represents the selected vec-
tors, which serve as the input_mask for the BERT
tokenizer. Here, len(s1) ∗ 1 signifies the repeti-
tion of 1 for the length of s1.

• The selected vectors [len(s1) ∗ 1, len(s2) ∗
1, . . . , len(sK)∗0] from the retriever, along with
the K discrete sentences [s1, s2, . . . , sK ], are pro-
vided as input_mask and input_ids, respectively,
to the verifier using the BERT tokenizer.

• For the ground-truth evidence, the input_ids cor-
responds to the true discrete evidence, while the
input_mask are represented as the unit vector.

• Subsequently, the utility divergence between the
verifier’s judgments based on ground-truth evi-
dence and those derived from retriever-provided
sentences is computed, all in the context of pre-
dicting the claim label.

The verifier back-propagates the loss gradient to
the fine-grained retriever.
• Following the computation of the utility diver-

gence, gradients are back-propagated to the
selected vectors, e.g., [len(s1) ∗ 1, len(s2) ∗
1, . . . , len(sK) ∗ 0].

• As the Gumbel Softmax function is differentiable,
gradients permeate through the selected vectors,
extending back to the retriever.

A.3 Reproducibility

In this section, we introduce our experimental de-
tails. The source code and trained models will be
made publicly available upon publication to im-
prove the reproducibility of results.

A.3.1 Experimental settings

For document retrieval, we adopt the entity link-
ing approach (Hanselowski et al., 2018) to retrieve
relevant documents, following the methodology of
Hanselowski et al. (2018). On average, four docu-
ments are retrieved for each claim. Following the
traditional entity linking pipeline approach, there
are three steps for document retrieval. First, the
claims are parsed using AllenNLP (Gardner et al.,
2018) to extract multiple entities. Secondly, the

MediaWiki API2 is utilized to search for page titles
that correspond to the identified entities. Lastly, the
retrieval results are filtered using the entity cover-
age limitation to select the appropriate documents.

For coarse retrieval, we follow the approach
described in (Liu et al., 2020), where we uti-
lize the base version of the BERT model (Devlin
et al., 2019) from Hugging Face3 to implement our
coarse-grained retrieval model. We use the “[CLS]”
hidden state to represent claim and sentence pairs.
Training samples are constructed by using both
ground-truth evidence and non-ground-truth sen-
tences from document retrieval. The pairwise train-
ing method is employed to train the retrieval rank-
ing model. The max length of the input is set to
130. We use the Adam optimizer with a learning
rate of 5e-5 and a warm-up proportion of 0.1.

For fine-grained retrieval, it contains the fine-
grained retrieval model Rθ and the verifier. Specif-
ically, Rθ concatenates the claim and the retrieved
candidate sentences and feeds them into the BERT
model. The maximum length is set to 512, and
the sentences are separated using the special token
“[CLS]”. The hidden vector corresponding to the
“[CLS]” token is then used for evidence classifica-
tion. The learning rate for the AdamW (Loshchilov
and Hutter, 2019) optimizer is set to 2e-5. In the
verifier model, the input consists of the concate-
nated sequence of the claim and the ground-truth
evidence. The batch size is set to 5, and the accu-
mulate step is also set to 5. The learning rate for
the AdamW optimizer is set to 3e-5. The hyper-
parameters of α and β are set to 1 and 1, respec-
tively.

Furthermore, all models are implemented using
the PyTorch framework. For online evidence eval-
uation, only the initial five sentences of predicted
evidence provided by the candidate system are uti-
lized for scoring. In order to adhere to the specifi-
cations of the online evaluation, the baselines and
our FER select the five sentences as the evidence.

A.3.2 Evaluation metric
For evaluation on the FEVER benchmark dataset4,
we use the official evaluation metrics, i.e.,
Precision (P), Recall (R), and F1 for evidence re-
trieval; FEVER score and Label Accuracy (LA) for
claim verification. Following the official evaluation
(Thorne et al., 2018), we compute P@5, R@5 and

2https://www.mediawiki.org/wiki/API:Main_pagel
3https://huggingface.co/
4https://fever.ai/dataset/fever.html

https://www.mediawiki.org/wiki/API: Main_pagel
https://huggingface.co/
https://fever.ai/dataset/fever.html


F1@5. FEVER5 evaluates accuracy based on the
condition that the predicted evidence fully covers
the ground-truth evidence. LA assesses the accu-
racy of the claim label prediction without taking
into account the validity of the retrieved evidence.

A.3.3 Evidence retrieval baselines
In our work, we consider several advanced evi-
dence retrieval baselines.
• TF-IDF (Thorne et al., 2018) is a traditional

sparse retrieval model that combines bigram
hashing and TF-IDF matching to return relevant
documents.

• ColumbiaNLP (Chakrabarty et al., 2018) ini-
tially utilizes TF-IDF to rank the candidate sen-
tences and subsequently selects the top 5 sen-
tences with the highest relevance. To mitigate
the presence of noisy data, ELMo embeddings
(Sarzynska-Wawer et al., 2021) are employed
to convert the claims and sentences into vectors.
Subsequently, the top-3 sentences with the high-
est cosine similarity are extracted as the final
retrieval results.

• UKP-Athene (Hanselowski et al., 2018) intro-
duces a sentence ranking model utilizing the
Enhanced Sequential Inference Model (ESIM)
(Hanselowski et al., 2018). This model takes a
claim and a sentence as input, and the predicted
ranking score is obtained by passing the last hid-
den layer of the ESIM through a single neuron.

• GEAR (Zhou et al., 2019) enhances the UKP-
Athene model by introducing a threshold. Sen-
tences with relevance scores higher than the
threshold (set to 0.001) are filtered and consid-
ered as retrieval results.

• Kernel Graph Attention Network (KGAT)
(Liu et al., 2020) utilizes both ESIM and BERT
(Devlin et al., 2019) to construct evidence re-
trieval models, which are trained in a pairwise
manner.

• DREAM (Zhong et al., 2020) employs the con-
textual representation models XLNet (Yang et al.,
2019) and RoBERTa (Liu et al., 2019) to assess
the relevance of a claim to each candidate evi-
dence.

• NSMN (Nie et al., 2019a) employs a direct traver-
sal approach, where all sentences are compared
with the claim to calculate relevance scores. Sen-
tences with relevance scores higher than the
threshold (set to 0.5) are considered as evidence.

5https://codalab.lisn.upsaclay.fr/
competitions/7308

Table 4: Performance of different claim verification
models on the development set using evidence from the
original paper vs. evidence retrieved by FER.

Model LA FEVER

BERT Concat (Zhou et al., 2019) 73.67 68.89
BERT Concat + FER 76.31 69.90

BERT Pair (Zhou et al., 2019) 73.30 68.90
BERT Pair + FER 76.34 69.35

GEAR (Zhou et al., 2019) 74.84 70.69
GEAR + FER 76.24 72.17

GAT (Liu et al., 2020) 76.13 71.04
GAT+FER 77.75 71.27

KGAT(BERT Base) (Liu et al., 2020) 78.02 75.88
KGAT+FER 79.02 76.59

Table 5: Evidence retrieval performance with feedback
from different verifiers on the development set.

Verifier P R F1

GAT 82.45 85.65 84.02
KGAT 88.57 81.82 85.06

• Deep Q-learning Network (DQN) (Wan et al.,
2021) utilizes the RoBERTa for evidence repre-
sentation and applies the deep Q-learning net-
work to select precise evidence.

• GERE (Chen et al., 2022a) employs the new
paradigm of generative retrieval to generate the
relevant evidence identifiers.

• Stammbach (Stammbach, 2021) employs token-
based single-document candidate sentence clas-
sification to retrieve evidence, which uses
RoBERTa (Liu et al., 2019) and BigBird (Za-
heer et al., 2020) to encode candidate sentences.
To ensure a fair comparison, we adopt the results
based on RoBERTa as our baseline.

A.3.4 Veracity prediction
In our work, we also leverage several advanced
claim verification models for verification based on
the retrieved evidence by FER.
• BERT-pair and BERT concat (Zhou et al.,

2019) consider claim-evidence pairs individually,
or stitch all evidence and the claim together to
predict the claim label.

• GEAR (Zhou et al., 2019) considers the influ-
ence between evidence using a graphical atten-
tion network and aggregates all evidence through
the attention layer.

• KGAT (Liu et al., 2020) introduces a graph at-
tention network to measure the importance of
evidence nodes and the propagation of evidence
among them through node and edge kernels.

https://codalab.lisn.upsaclay.fr/competitions/7308
https://codalab.lisn.upsaclay.fr/competitions/7308
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Figure 3: Evidence retrieval performance with different
K on the development set.

A.4 Experimental results
A.4.1 Performance on the development set.
As shown in Table 4, we report the performance
of different claim verification models on the devel-
opment set using the evidence retrieved by FER.
As shown in Table 5, we report the evidence re-
trieval performance of our method with feedback
from different verifiers on the development set. As
shown in Figure 3, we report the effect of the size
K on the final evidence retrieval performance on
the development set.

A.4.2 Case study
Table 6 presents two illustrative examples from the
FEVER development set. We can observe that:
(i) The sentences provided by the coarse retrieval
method, even though they are ranked highly, do not
always offer useful information for claim verifica-
tion, specifically in terms of providing ground-truth
evidence. For example, in the second instance,
out of the top-5 ranked sentences, only two of
them actually consist of ground-truth evidence.
(ii) Through fine-grained retrieval, we can effec-
tively identify ground-truth evidence that might
have initially been ranked low, such as the 14-th
sentence in the first instance and the 11-th sentence
in the second instance. (iii) In the case of fine–
grained retrieval, not all ground-truth evidence are
successfully identified. For example, in the second
instance, the 8-th sentence is not identified. How-
ever, as observed in the given example, only the
8-th sentence is not retrieved, which does not signif-
icantly affect the judgment of the claims. Nonethe-
less, the issue of the low recall rate necessitates
further resolution in future research.



Table 6: Two examples from the FEVER development set using our FER method. For a given claim, the coarse
retrieval process returns the top-25 sentences. The ground-truth evidence is highlighted in red. The final evidence
identified through our fine-grained retrieval process is {1, 14}, and {1, 2, 4, 5, 6, 7, 11}, respectively.

Claim: The Love Club EP is the debut extended play of singer Ella Marija Lani Yelich-O’Connor.

Ground-truth evidence:
1. The Love Club EP is the debut extended play EP by New Zealand singer Lorde · · ·
2. Ella Marija Lani Yelich O’Connor born 7 November 1996, better known by her stage name Lorde · · ·

Label: SUPPORT

Coarse Retrieval Process:
1. The Love Club EP is the debut extended play EP by New Zealand singer Lorde.
2. The Love Club is a song by New Zealand singer Lorde, taken from her debut extended play · · ·
3. An indie rock influenced electronica album, The Love Club EP · · ·
4. To promote The Love Club EP, Lorde performed during various concerts, and Royals was released · · ·
5. On 8 March 2013 the record was commercially released by Universal Music · · ·
6. Upon the release of the EP, the song was well received by music critics · · ·
· · ·
14. Ella Marija Lani Yelich-O’Connor born 7 November 1996 · · ·
· · ·

Claim: Pearl Jam is a type of dressing.

Ground-truth evidence:
1. Since its inception, the band’s line up has comprised Eddie Vedder lead · · ·
2. Stephen Thomas Erlewine of AllMusic referred to Pearl Jam as the most popular American rock roll · · ·
3. The band’s fifth member is drummer Matt Cameron also of Soundgarden, who has been · · ·
4. Pearl Jam is an American rock band formed in Seattle, Washington, in 1990.
5. Pearl Jam has outlasted and outsold many of its contemporaries from the alternative rock breakthrough · · ·
6. To date, the band has sold nearly 32million records in the United States and an · · ·

Label: REFUTES

Coarse Retrieval Process:
1. Pearl Jam is an American rock band formed in Seattle, Washington, in 1990.
2. Stephen Thomas Erlewine of AllMusic referred to Pearl Jam as the most popular · · ·
3. Pearl Jam sometimes referred to as The Avocado Album or simply Avocado is the eighth studio · · ·
4. One of the key bands in the grunge movement of the early 1990s, over the course of the band’s career, its · · ·
5. Formed after the demise of Gossard and Ament’s previous band, Mother Love Bone, Pearl Jam broke into the · · ·
6. Pearl Jam has outlasted and outsold many of its contemporaries from the alternative rock breakthrough · · ·
7. Since its inception, the band’s line up has comprised Eddie Vedder lead · · ·
8. The band’s fifth member is drummer Matt Cameron also of Soundgarden, who has been · · ·
· · ·
11. To date, the band has sold nearly 32million records in the United States and an · · ·
· · ·


