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Abstract
Federated learning enables training machine learn-
ing models while preserving the privacy of par-
ticipants. Surprisingly, there is no differentially
private (DP) distributed method for smooth, non-
convex optimization problems. The reason is that
standard privacy techniques require bounding the
participants’ contributions, usually enforced via
clipping of the updates. Existing literature typ-
ically ignores the effect of clipping by assum-
ing the boundedness of gradient norms or ana-
lyzes distributed algorithms with clipping, but
ignores DP constraints. In this work, we study
an alternative approach via smoothed normaliza-
tion of the updates, motivated by its favorable
performance in the single-node setting. By in-
tegrating smoothed normalization with an Error
Compensation mechanism, we design a new dis-
tributed algorithm α-NormEC. We prove that our
method achieves a superior convergence rate over
prior works. By extending α-NormEC to the DP
setting, we obtain the first differentially private
distributed optimization algorithm with provable
convergence guarantees. Finally, our empirical
results from neural network training indicate ro-
bust convergence of α-NormEC across different
parameter settings.

1. Introduction
Federated Learning (FL) has become a viable approach
for distributed collaborative training of machine learning
models [37; 47; 48]. This growing interest has spurred
the development of novel distributed optimization methods
tailored for FL, focusing on ensuring high communication
efficiency [30]. Although FL optimization methods ensure
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that private data is never directly transmitted, Boenisch et al.
[6] demonstrated that the global models produced through
FL can still enable the reconstruction of participants’ data.
Therefore, it is essential to study distributed optimization
methods for differentially private training [17; 48; 69].

To mitigate emerging privacy risks in FL, differential privacy
(DP) [17] has become the standard for providing theoret-
ical privacy guarantees in machine learning. DP is often
enforced by a clipping operator. It bounds gradient sen-
sitivity, allowing the addition of DP noise to the updates
before communication. While gradient clipping enables
DP as in Differentially Private Stochastic Gradient Descent
(DP-SGD) [1], it also introduces a bias that can impede
convergence [11; 36]. Often, distributed DP gradient meth-
ods with clipping have been studied under assumptions that
are unrealistic for heterogeneous FL environments, such
as bounded gradient norms [42; 72; 45; 80], which effec-
tively ignore the impact of clipping bias. To our knowledge,
convergence guarantees for distributed DP methods remain
elusive unless the impact of clipping bias is explicitly con-
sidered.

Error Feedback (EF), also known as Error Compensation
(EC), such as EF21 [63] has been employed to alleviate
the clipping bias and achieve strong convergence for non-
private distributed methods with gradient clipping, as shown
by [35; 77]. However, extending these methods to the pri-
vate setting remains an open problem. Furthermore, optimiz-
ing the convergence of distributed DP clipping methods is
challenging because the clipping threshold significantly in-
fluences both the convergence speed and DP noise variance.
Extensive grid search for the optimal clipping threshold is
computationally expensive [4] and leads to additional pri-
vacy loss [57]. Two major approaches have emerged to
address the need to manually tune the clipping threshold.
The first is to use adaptive clipping techniques, such as adap-
tive quantile clipping, initially proposed by [4] and further
analyzed by [49; 66]. The second, which is the focus of this
paper, is to replace clipping with a normalization operator.

Smoothed normalization, introduced by [9; 76], is an al-
ternative operator to clipping. Unlike clipping, smoothed
normalization eliminates the need to tune the clipping thresh-
old. By ensuring that the Euclidean norm of the normalized
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gradient is bounded above by one, smoothed normalization
guarantees robust performance of DP-SGD in both conver-
gence and privacy. However, very limited literature charac-
terizes properties of smoothed normalization and a rigorous
convergence analysis for DP-SGD using this operator, es-
pecially in the distributed setting. While the method has
been studied in the single-node setting by [9] and [76], the
convergence results rely on unrealistic and/or restrictive as-
sumptions, such as symmetric gradient noise [9] and almost
sure bounds on the gradient noise variance [76].

Contributions. We propose α-NormEC, the distributed
gradient method that uses smoothed normalization and er-
ror compensation. Our method provides the first provable
convergence guarantees in the DP setting without bounded
gradient norm assumptions typically imposed in prior works.
Our contributions are summarized below:

• Favorable properties of smoothed normalization. We
present the novel properties of smoothed normalization. We
show that smoothed normalization enjoys a “contractive”
property similar to biased compression operators [5] widely
used for reducing communication in distributed learning.
This property essentially allows for analyzing α-NormEC
without ignoring the impact of smoothed normalization.

• Convergence for non-convex, smooth problems without
bounded gradient norm assumptions. We prove that α-
NormEC achieves the optimal convergence rate [10] for
minimizing non-convex, smooth functions without imposing
additional restrictive assumptions, such as bounded gradient
norms or bounded heterogeneity. Furthermore, α-NormEC
achieves the faster rate than Clip21 [35], where its step size
needs to know the inaccessible value of f(x0)− f inf .

• The first provable convergence in the private setting
under standard assumptions. Next, we extend α-NormEC
to the differential privacy (DP) setting. Specifically, α-
NormEC achieves the first convergence guarantees for DP,
non-convex, smooth problems without ignoring the bias
introduced by smoothed normalization. This is the first
provably efficient distributed method in the DP setting un-
der standard assumptions, thus addressing the gap left by
prior work [35; 77], which did not adapt distributed gradient
clipping methods for private training.

• Robust empirical performance of α-NormEC. Finally,
we verify the theoretical benefits of α-NormEC in both
non-private and private training via experiments on the im-
age classification task with the CIFAR-10 dataset using the
ResNet20 model. Our algorithm demonstrates robust em-
pirical convergence across different parameter values and
benefits from error compensation that enables superior per-
formance over vanilla distributed gradient normalization
methods (such as DP-SGD). In the private training, server
normalization enhances the robustness of DP-α-NormEC

across tuning parameters. Finally, DP-α-NormEC without
server normalization outperforms DP-Clip21.

2. Preliminaries
Notations. We use [a, b] to denote the set {a, a + 1, a +
2, . . . , b} for integers a, b such that a ≤ b, and E [u] to
represent the expectation of a random variable u. For vectors
x, y ∈ Rd, ⟨x, y⟩ denotes their inner product, and ∥x∥ :=√

⟨x, x⟩ denotes the Euclidean norm of x. Finally, for
functions f, g : Rd → R, we write f(x) = O(g(x)) if
f(x) ≤ M · g(x) for some M > 0. Problem Formulation.
We consider the finite-sum optimization problem:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where x ∈ Rd is the vector of model parameters of di-
mension d, and fi : Rd → R is either a loss function on
client i ∈ [1, n] (distributed setting) or data point i (single-
node setting). Moreover, we impose the following standard
assumption on objective functions for analyzing the conver-
gence of first-order optimization algorithms [52].
Assumption 1. Let f : Rd → R be bounded from below
by a finite constant f inf , i.e. f(x) ≥ f inf > −∞ for
all x ∈ Rd, and be L-smooth, i.e. ∥∇f(x)−∇f(y)∥ ≤
L ∥x− y∥ for all x, y ∈ Rd. Also, let fi be Li-smooth, i.e.
∥∇fi(x)−∇fi(y)∥ ≤ Li ∥x− y∥ for all x, y ∈ Rd.

2.1. DP-SGD

To solve Problem (1), the most common approach that en-
sures the approximate (ϵ, δ)-differential privacy [16] is via
the DP-SGD method [1]

xk+1 = xk − γ
( 1

B

∑
i∈Bk

Ψ(∇fi(x
k)) + zk

)
, (2)

where γ > 0 is the step size, Bk is a subset of {1, 2, . . . , n}
with cardinality |Bk| = B, zk ∈ Rd is the DP noise, and Ψ :
Rd → Rd is an operator with bounded norm, i.e. ∥Ψ(g)∥ ≤
Φ for some Φ > 0 and any g ∈ Rd. The method (2)
achieves (ϵ, δ)-DP [1] if zk is zero-mean Gaussian noise
with variance

σ2
DP ≥ Φ2 · cB

2

n2

K log(1/δ)

ϵ2
, (3)

where c > 0 is a constant, and K > 0 is the total number of
iterations. To obtain reasonable DP guarantees, we usually
choose ϵ ≤ 10 and δ ≪ 1/n, where n is the number of data
points [59]. Notice that the DP Gaussian noise variance (3)
is scaled with the sensitivity Φ.

The method (2) has been analyzed, e.g. by [80; 81; 51],
under the bounded gradient norm assumption

∥∇fi(x)∥ ≤ Φ for all i and x ∈ Rd. (4)
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However, this assumption has several limitations. Firstly, the
sensitivity Φ is typically infeasible to compute for many loss
functions used in training machine learning models. Even
when it can be estimated, the resulting upper bound is often
overly pessimistic, leading to excessively large DP noise
and thus significantly degrading the algorithmic conver-
gence performance. Secondly, this assumption restricts the
class of models and loss functions f , as it excludes simple
quadratic functions over unbounded domains. Thirdly, this
assumption is “pathological” in the distributed setting be-
cause it restricts the heterogeneity between different clients
and can result in vacuous bounds [33].

To enforce bounded sensitivity without imposing the
bounded gradient norm Φ, it is common to apply clipping
[1] with threshold τ > 0, as defined by

Clipτ (g) := min (1, τ/∥g∥) g. (5)

Here, clipping ensures that Φ = τ , as ∥Ψ(g)∥ =
∥Clipτ (g)∥ ≤ τ = Φ. In fact, the method (2) that uses
clipping (5) is generally referred to as DP-SGD in the litera-
ture. However, it is challenging to analyze the convergence
of DP-SGD without additional restrictive assumptions such
as the symmetric noise assumption [11; 60]. Even without
DP noise, DP-SGD fails to converge due to the clipping
bias [36]. Furthermore, since smaller values of τ imply
stronger privacy but larger bias, jointly optimizing conver-
gence and privacy of DP-SGD by carefully tuning τ and γ
in the DP setting is a difficult task [39; 9].

Smoothed normalization. To eliminate the need to tune
the clipping threshold τ , smoothed normalization is an al-
ternative operator [9; 76] defined by

Normα (g) :=
1

α+ ∥g∥
g, (6)

for some α ≥ 0 and satisfies the following property.

Lemma 1. For any α ≥ 0, β > 0, and g ∈ Rd,

∥Normα (g)∥ ≤ 1, (A)

∥g − βNormα (g)∥2 =

(
1− β

α+ ∥g∥

)2

∥g∥2 . (B)

Clearly, smoothed normalization ensures that (A) the norm
of the normalized vector is bounded above by 1, and (B)
the distance between the true vector and a β-multiple of the
normalized vector is bounded by a function of β, α, and
∥g∥. Although smoothed normalization with α = 0 recov-
ers standard normalization g/∥g∥ [53; 25; 40], smoothed
normalization with α > 0 improves the contraction fac-
tor, compared to standard normalization. Specifically, as
∥g∥ → 0, the contraction factor of smoothed normalization
approaches (1− β/α)2, while standard normalization lacks
this contraction property.

Although DP-SGD with smoothed normalization achieves
robust empirical convergence in the DP setting [9], its the-
oretical convergence is limited to the single-node setting
and relies on restrictive assumptions, specifically the central
symmetry of stochastic gradients around the true gradient.

2.2. Limitations of DP Distributed Gradient Methods

Extending the convergence results of DP-SGD to the dis-
tributed setting poses significant challenges due to potential
client heterogeneity. Existing results often address the bias
introduced by the operator (clipping or normalization) by re-
lying on restrictive assumptions, such as imposing bounded
gradient norms [42; 81; 51; 73], or assuming that clipping
is effectively turned off [79; 55]. Recently, Li et al. [41] ex-
tended the analysis of Koloskova et al. [36] to a distributed
private setting under strong gradient dissimilarity condition.
However, their method fails to converge due to the clipping
bias, as discussed in the previous section. More importantly,
even in the absence of the DP noise (zk = 0), the inherent
bias in the gradient estimator can severely impact the con-
vergence. For instance, DP-SGD (2) diverge exponentially
when Ψ(·) is a Top-1 compressor [5], and fail to converge
when Ψ(·) is clipping [11; 35]. Similarly, smoothed normal-
ization (6) with α = 0 also cannot address this convergence
issue, as demonstrated in the next example.

Example 1. Consider Problem (1) with n = 2, d = 1,
f1(x) = 1

2 (x− 3)
2 and f2(x) = 1

2 (x+ 3)
2. Then,

f(x) = 1
2 (f1(x) + f2(x)) satisfies Assumption 1 and is

minimized at x⋆ = 0. The iterates {xk} generated by (2)
(for B = 2) with zk = 0 and α = 0 do not progress when
x0 = 2, as the gradient estimator Normα

(
∇f1(x

k)
)
+

Normα

(
∇f2(x

k)
)

results in

∇f1(x
0)

∥∇f1(x0)∥
+

∇f2(x
0)

∥∇f2(x0)∥
= −1/1 + 5/5 = 0.

Naively applying normalization to the gradients in DP-SGD
leads to the method that does not converge in the distributed
setting without extra assumptions. Also, this fundamental
limitation affects federated averaging algorithms that apply
normalization on the client updates [15].

2.3. EF21 Mechanism

One approach to resolve the convergence issues of dis-
tributed gradient methods with biased operators is to use
EF21, an error feedback mechanism developed by Richtárik
et al. [63]. Instead of directly applying the biased gradient
estimator Ψ to the gradient, EF21 applies Ψ to the difference
between the true gradient and the current error feedback
(memory) vector. At iteration k = 0, . . . ,K, each client i
receives the current iterate xk from the central server, and
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Operator Property

Contractive compressor C : Rd → Rd ∥C(g)− g∥2 ≤ (1− η)2 ∥g∥2

Clipping Clipτ (g) := min
(
1, τ

∥g∥

)
g ∥Clipτ (g)− g∥2 ≤ max(0, ∥g∥ − τ)2

Smoothed normalization Normα (g) := 1
α+∥g∥g ∥Normα (g)− g∥2 ≤

(
1− 1

α+∥g∥

)2
∥g∥2

Table 1: Smoothed normalization, unlike clipping, satisfies the contractive property similar to compressors.

computes its local update gk+1
i via

gk+1
i = gki + βΨ(∇fi(x

k)− gki ), (7)

where β > 0. Next, the central server receives an average
of local error feedback vectors that are communicated by
all clients 1

n

∑n
i=1 Ψ(∇fi(x

k)− gki ), computes the global
gradient estimator gk := 1

n

∑n
i=1 g

k
i as

gk+1 = gk +
β

n

n∑
i=1

Ψ(∇fi(x
k)− gki ), (8)

and updates the next iterate xk+1 via

xk+1 = xk − γgk+1. (9)

This method generalized EF21 by replacing a contractive
compressor1 with other biased estimator, such as clipping
in Clip21 proposed by Khirirat et al. [35].

Despite achieving the O(1/K) rate in the non-private set-
ting, Clip21 faces difficulty in establishing the convergence
in the presence of DP noise for two primary reasons. Firstly,
its convergence analysis relies on separate descent inequal-
ities when clipping turns on and off, as the operator does
not satisfy the contractive compressor property required
by EF21 (see Table 1). Secondly, the clipping threshold
τ intricately influences both privacy and convergence. A
sufficiently large τ is required to achieve the descent in-
equality, but this condition requires adding large Gaussian
noise, which can prevent the convergence when it is accu-
mulated. Due to these properties of clipping, analyzing the
convergence of Clip21 in the DP setting is challenging.

3. Algorithm and Analysis
To address the convergence challenges of Clip21, we propose
α-NormEC, the first distributed method to provide provable
convergence guarantees in the DP setting. α-NormEC im-
plements the update rules defined by (7), (8), and (9), where
Ψ(·) is smoothed normalization (6) that offers key advan-
tages over clipping. In the update rule in (9), we rather
use server normalization xk+1 = xk − γgk+1/

∥∥gk+1
∥∥ and

adopt notation 0/0 = 0. See Algorithm 1 for the detailed
description of α-NormEC.

1A contractive compressor [68; 5] is defined by ∥g − C(g)∥2 ≤
(1− η)2 ∥g∥2 , for some η ∈ (0, 1] and for all g ∈ Rd.

Algorithm 1 (DP-)α-NormEC

1: Input: Step size γ > 0; β > 0; normalization parame-
ter α > 0; starting points x0, g0i ∈ Rd for i ∈ [1, n] and
ĝ0 = 1

n

∑n
i=1 g

0
i ; zki ∈ Rd are sampled from Gaussian

distribution with zero mean and σ2
DP-variance.

2: for each iteration k = 0, 1, . . . ,K do
3: for each client i = 1, 2, . . . , n in parallel do
4: Compute local gradient ∇fi(x

k)
5: Compute ∆k

i = Normα

(
∇fi(x

k)− gki
)

6: Update gk+1
i = gki + β∆k

i

7: Non-private setting: Transmit ∆̂k
i = ∆k

i

8: Private setting: Transmit ∆̂k
i = ∆k

i + zki
9: end for

10: Server computes ĝk+1 = ĝk + β
n

∑n
i=1 ∆̂

k
i

11: Server updates xk+1 = xk − γĝk+1/
∥∥ĝk+1

∥∥
12: end for
13: Output: xK+1

α-NormEC achieves better convergence guarantees than
Clip21 in the non-private setting and the first convergence
guarantees in the DP setting. These theoretical benefits
of α-NormEC stem from favorable properties of smoothed
normalization. Specifically, smoothed normalization, un-
like clipping, behaves similarly to a contractive compressor
(see Table 1), which simplifies the convergence analysis of
α-NormEC compared to Clip21.

Next, we present the convergence theorem of α-NormEC.

Theorem 1. Consider DP-α-NormEC (Algorithm 1) for solv-
ing Problem (1), where Assumption 1 holds. Let β, α, γ > 0
be chosen such that

β

α+R
< 1, and γ ≤ βR

α+R

1

Lmax
,

where R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥, and Lmax =
maxi∈[1,n] Li. Then,

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ f(x0)− f inf

γ(K + 1)
+ 2R+

L

2
γ

+2
√
β2(K + 1)σ2

DP/n.

From Theorem 1, α-NormEC converges sublinearly up to
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additive constants due to the bias of smoothed normalization
2R+ L

2 γ and the DP noise 2
√

β2(K + 1)σ2
DP/n.

Non-private setting. We begin by discussing the conver-
gence of α-NormEC from Theorem 1 in the non-private
setting, when σDP = 0. The next corollary shows that
α-NormEC attains the O(1/

√
K) rate when we properly

choose initialized memory vectors g0i and the step size γ.
Corollary 1 (Non-private setting). Consider α-NormEC
(Algorithm 1) for solving Problem (1) under the same setting
as Theorem 1 with σDP = 0. If we choose g0i ∈ Rd such
that maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ = D(K + 1)−1/2 with
any D > 0, γ ≤ β

Lmax

D
α+D

1
(K+1)1/2

, and α > β, then

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤ C

(K + 1)1/2
,

where C = Lmax(α+D)
βD (f(x0)−f inf)+2D+ L

2
βD

Lmax(α+D) .

From Corollary 1, α-NormEC enjoys the O(1/
√
K) rate

in the gradient norm when we choose g0i such that R =
O(1/

√
K), and γ = O(β/

√
K). By further choosing α >

1, and proper choice of β, the associated convergence bound
from Corollary 1 becomes

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤

√
2L(f(x0)− f inf) + 2D

(K + 1)1/2
. (10)

This bound comprises two terms. The first term√
2L(f(x0)− f inf)(K+1)−1/2 is the convergence bound

by classical gradient descent [10], while the second term
2D(K + 1)−1/2 due to the initialized memory vectors g0i
for running the error feedback mechanism. We can initialize
x0, g0i ∈ Rd to ensure that maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ =

D(K+1)−1/2 with any D > 0. For example, this condition
holds when we choose g0i = ∇fi(x

0) + e for any x0 ∈ Rd

and e = (D/
√
K + 1, 0, . . . , 0) ∈ Rd with any D > 0 and

any total iteration count K.

Comparison between α-NormEC and Clip21. In the non-
private setting, α-NormEC provides stronger convergence
guarantees than Clip21. In particular, the convergence bound
of α-NormEC in (10) exhibits a smaller convergence factor
than that of Clip21, as explained in Appendix E.3. Specifi-
cally, by choosing g0i ∈ Rd such that D is sufficiently small,
the convergence bound of α-NormEC in (10) approaches
that of classical gradient descent [10]. Furthermore, the
hyperparameters of α-NormEC (β, α, γ > 0), as defined
in Theorem 2, are easier to implement than Clip21. The
step-size γ for α-NormEC does not need to know the func-
tion sub-optimal gap f(x0)− f(x⋆) that is inaccessible in
practice, in contrast to Clip21, whose step-size in (Theorem
5.6 of [34]) depends on not only the function sub-optimality
gap but also C1 = maxi∈[1,n] ∥∇fi(x

0)∥.

Private setting. Next, we discuss the convergence of α-
NormEC in the DP setting. From Theorem 1, we show that

α-NormEC achieves (ϵ, δ)-DP and the corresponding utility
bounds, in contrast to Clip21 [35] where its convergence
is limited to the non-private setting. We show this by set-
ting the standard deviation of the DP noise according to
Theorem 1 of [1], i.e., σDP = O(

√
(K + 1) log(1/δ)ϵ−1),

which yields the utility bound O
(
∆ 4
√

d log(1/δ)/(nϵ2)
)

with constant ∆ > 0 defined in Corollary 2. Unlike Clip21,
α-NormEC provides the first utility bound in the DP dis-
tributed setting that accounts for the effect of bounding
sensitivity, a factor often neglected in the existing literature.
Our obtained utility bound applies for smooth problems
without the bounded gradient norm assumption, the limita-
tion present in prior works for analyzing DP-SGD such as
[42; 72; 45; 80].

4. Experiments
We evaluate the performance of α-NormEC to solve the
non-convex optimization problem of deep neural network
training in both non-private and private settings. We con-
duct experiments on the CIFAR-10 [38] dataset using the
ResNet20 [26] model for the image classification task. The
compared methods are run for 300 communication rounds.
The convergence plots present results for tuned step size γ.
Additional experimental details and results are provided in
Appendix G.

0.01 0.1 1.0

0.
01

0.
1

1.
0

10
.0

83.76 84.35 84.11

85.64 85.78 85.38

84.47 84.66 84.66

81.82 82.16 81.84

Highest test accuracy

82

83

84

85

Figure 1: The highest test accuracy achieved by α-NormEC
with different α and β values.

α-NormEC demonstrates stable convergence with respect
to the normalization parameter α, and robustness to
variations in β values. From Figure 1, we observe that
convergence of α-NormEC is stable with respect to a wide
range of α values and robust to variations in β. The perfor-
mance of α-NormEC is primarily governed by the choice
of β. From Figure 1, optimal performance (85-86% accu-
racy) is observed when β is around 0.1. While α-NormEC
is stable with respect to α, extreme values of β lead to
suboptimal performance: very large values (β = 10.0) re-
sult in lower accuracy (81-82%), while very small values
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(β = 0.01) achieve moderate performance (83-84%). The
optimal configuration, achieving the highest 85.78% accu-
racy, is β = 0.1 and α = 0.1. Further analysis of the
algorithm’s stability with respect to α and robustness to
β, including additional metrics (along with convergence
curves) is provided in Appendix G.2.1. For subsequent ex-
periments, we set α = 0.01, which is consistent with the
prior work in the single-node setting [9].

Error compensation enables α-NormEC to outperform
DP-SGD. From Figure 2, α-NormEC outperforms DP-SGD
with smoothed normalization (defined by Equation (2) with
B = n and z ≡ 0). This improvement is attributed to error
compensation (EC), as confirmed by running α-NormEC
without server normalization (Line 11 of Algorithm 1).
From Figure 2, α-NormEC achieves faster convergence than
DP-SGD with smoothed normalization for most β values,
with the exception of β = 10. However, such a large β
is impractical for differentially private training due to the
resulting increase in noise variance. Moreover, while our
algorithm demonstrates robust performance across varying
β values, DP-SGD with smoothed normalization exhibits
greater sensitivity to this parameter, notably struggling with
convergence at β = 0.01. This comparison underscores
how EC not only accelerates convergence but also improves
the algorithm’s stability with respect to parameter selection.
Appendix G.2.2 presents further details (such as accuracy
convergence curves in Figure 6) and optimal parameters
with corresponding final accuracies (Table 7).

An ablation study examining the impact of server normal-
ization on α-NormEC is provided in Appendix G.2.3. Fur-
thermore, a comparison between α-NormEC and Clip21 is
presented in Appendix G.2.4.

Private Training. We analyze the performance of α-
NormEC in the private setting by choosing the variance of
added noise at β

√
K log(1/δ)ϵ−1 for ϵ = 8, δ = 10−5 and

vary β to simulate different privacy levels. Figure 3 shows
the training loss curves for DP-α-NormEC (with and without
server normalization) and DP-Clip21. Notably, compared to
the non-private case, convergence in the DP setting is slower
and requires a smaller β (e.g., 0.01) for best performance.

From Figure 3 we observe three key findings: (1) DP-α-
NormEC without Server Normalization converges signif-
icantly faster than DP-Clip21 at all privacy levels (β ∈
{0.001, 0.01, 0.1}); (2) Server normalization (SN) provides
crucial stability at high noise levels–at β = 1.0, only DP-
α-NormEC with SN maintains convergence; (3) While SN
improves robustness, it comes with a slight reduction in
convergence speed at lower noise levels.

The complete analysis, including test accuracy results across
different hyperparameter combinations and detailed perfor-
mance comparisons, is presented in Appendix G.3. Notably,
server normalization significantly reduces performance vari-
ation across different learning rates (γ), with at most 6%
variation compared to 40% without normalization, demon-
strating improved hyperparameter robustness.

5. Conclusion
We have proposed and analyzed α-NormEC, a novel dis-
tributed algorithm that integrates smoothed normalization
with the EF21 mechanism for solving non-convex, smooth
optimization problems in both non-private and private set-
tings. Unlike Clip21, α-NormEC achieves strong conver-
gence guarantees that almost match those of classical gra-
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Figure 2: Comparison of DP-SGD (2) [solid] and α-NormEC
(1) [dashed] without server normalization.

Figure 3: Comparison of methods in the Differentially Private
(DP) setting across different β values.
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dient descent for non-private training and provides the first
utility bound for private training without relying on restric-
tive assumptions such as bounded gradient norms. In neural
network training, α-NormEC achieves robust convergence
across varying hyperparameters and significantly stronger
convergence (due to error compensation) compared to DP-
SGD with smoothed normalization. In the private training,
DP-α-NormEC benefits from server normalization for in-
creased robustness and outperforms DP-Clip21.

Our work implies many promising research directions. One
direction is to extend α-NormEC to accommodate the partial
participation case, where the central server receives the local
normalized gradients from a few clients, and the stochastic
case, where each client has access only to stochastic gradi-
ents. Another important direction is to modify α-NormEC
to solve federated learning problems, where the clients run
their local updates before the local updates are normalized
and transmitted to the central server.
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Khodak, M., Konečný, J., Korolova, A., Koushanfar,
F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri,
M., Nock, R., Özgür, A., Pagh, R., Qi, H., Ramage, D.,
Raskar, R., Raykova, M., Song, D., Song, W., Stich,
S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma,
P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu,
H., and Zhao, S. Advances and open problems in feder-
ated learning. Found. Trends Mach. Learn., 14(1-2):1–
210, 2021. doi: 10.1561/2200000083. URL https:
//doi.org/10.1561/2200000083. (Cited on
page 1)

[31] Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi,
M. Error feedback fixes signSGD and other gradient
compression schemes. In International Conference

8

https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10
https://doi.org/10.1561/2200000083
https://doi.org/10.1561/2200000083


Private Federated Learning with Provable Convergence via Smoothed Normalization

on Machine Learning, pp. 3252–3261. PMLR, 2019.
(Cited on page 13)

[32] Karimireddy, S. P., He, L., and Jaggi, M. Learning
from history for byzantine robust optimization. In
International Conference on Machine Learning, pp.
5311–5319. PMLR, 2021. (Cited on page 13)

[33] Khaled, A., Mishchenko, K., and Richtárik, P. Tighter
theory for local SGD on identical and heterogeneous
data. In International Conference on Artificial Intel-
ligence and Statistics, pp. 4519–4529. PMLR, 2020.
(Cited on page 3)

[34] Khirirat, S., Magnússon, S., and Johansson, M. Con-
vergence bounds for compressed gradient methods
with memory based error compensation. In ICASSP
2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp.
2857–2861. IEEE, 2019. (Cited on pages 5 and 13)

[35] Khirirat, S., Gorbunov, E., Horváth, S., Islamov, R.,
Karray, F., and Richtárik, P. Clip21: Error feedback for
gradient clipping. arXiv preprint arXiv:2305.18929,
2023. (Cited on pages 1, 2, 3, 4, 5, 13, 14, and 16)

[36] Koloskova, A., Hendrikx, H., and Stich, S. U. Re-
visiting gradient clipping: Stochastic bias and tight
convergence guarantees. In International Conference
on Machine Learning, pp. 17343–17363. PMLR, 2023.
(Cited on pages 1, 3, and 13)
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A. Related Work
In this section, we review prior work that is closely related to our paper.

Clipping and normalization. Clipping and normalization address many key challenges in machine learning. They
mitigate the problem of exploding gradients in recurrent neural networks [58], enhance neural network training for tasks
in natural language processing [50; 8] and computer vision [7], enable differentially private machine learning [1; 48],
and provide robustness in the presence of misbehaving or adversarial workers [32; 56; 46]. In this paper, we consider
smoothed normalization, introduced by Yang et al. [76]; Bu et al. [9], as an alternative to clipping, given its robust empirical
performance and hyperparameter tuning benefits in the DP setting.

Private optimization methods. DP-SGD [1] is the standard distributed first-order method that achieves the DP guarantee
by clipping the gradient before adding noise scaled with the clipped gradient’s sensitivity. However, existing DP-SGD
convergence analyses often neglect the clipping bias. Specifically, convergence results for smooth functions under differential
privacy often require either the assumption of bounded gradient norms [80; 42; 81; 72; 45; 51; 73] or conditions where
clipping is effectively inactive [79; 55]. Thus, the convergence behavior of DP-SGD in the presence of clipping bias remains
poorly understood.

Single-node non-private methods with clipping. The impact of clipping bias has been extensively studied in single-node
gradient methods for non-private optimization. Numerous works have shown strong convergence guarantees of clipped
gradient methods under various conditions, including nonsmooth, rapidly growing convex functions [65; 18; 2], generalized
smoothness [78; 36; 24; 71; 44; 27], and heavy-tailed noise [21; 54; 23; 28; 12].

Distributed non-private methods with clipping. Applying gradient clipping in the distributed setting is challenging.
Existing convergence analyses often rely on bounded heterogeneity assumptions, which often do not hold in cases of
arbitrary diverse clients. For example, federated optimization methods with clipping have been analyzed under the bounded
difference between the local and global gradients [74; 43; 13; 41]. However, even in the non-private setting, these distributed
clipping methods do not converge for simple problems [11; 35] for arbitrary clipping threshold. To address the convergence
issue, one approach is to use error feedback mechanisms, such as EF21 [63], that are employed by [35; 77] to compute
local gradient estimators and alleviate clipping bias. However, these distributed clipping methods using error feedback are
limited to the non-private setting, and extending them to the DP setting is still an open problem. In this paper, we propose a
distributed method that replaces clipping with smoothed normalization in the EF21 mechanism. Our method provides the
first provable convergence in the DP setting and empirically outperforms the distributed version of DP-SGD with smoothed
normalization [9; 76], a special case of [15].

Error feedback. Error feedback, or error compensation, has been applied to improve the convergence of distributed methods
with gradient compression for communication-efficient learning. First introduced by [64], EF14 was extensively analyzed
for first-order methods in both single-node [68; 31; 67; 34] and distributed settings [75; 3; 22; 61; 70; 14; 62]. Another
error feedback variant is EF21 proposed by [63] that ensures strong convergence under any contractive compression operator
for non-convex, smooth problems. Recent variants, e.g. EF21-SGD2M [19] and EControl [20], have been developed to
obtain the lower iteration and communication complexities than EF21 for stochastic optimization.

B. Basic Facts
For n ∈ N and x1, . . . , xn, x, y ∈ Rd,

⟨x, y⟩ ≤ ∥x∥ ∥y∥ , (11)
∥x+ y∥ ≤ ∥x∥+ ∥y∥ , and (12)∥∥∥∥∥ 1n

n∑
i=1

xi

∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥xi∥ . (13)

13



Private Federated Learning with Provable Convergence via Smoothed Normalization

C. Proof of Lemma 1
We prove the first statement by taking the Euclidean norm. Next, we prove the second statement. From the definition of the
Euclidean norm,

∥g − βNormα (g)∥2 (6)
= ∥g∥2 + β2

(α+ ∥g∥)2
∥g∥2 − 2β

∥g∥2

α+ ∥g∥

=

(
1− β

α+ ∥g∥

)2

∥g∥2 .

D. Comparison of EF21 with Clipping and Smoothed Normalization
We compare the modified EF21 mechanism, where a contractive compressor is replaced with clipping in Clip21 and with
smoothed normalization in α-NormEC. To compare these modified updates, given the optimal vector g⋆ ∈ Rd, we consider
the single-node EF21 mechanism, which computes the memory vector gk ∈ Rd according to

gk+1 = gk +Ψ(g⋆ − gk), (14)

where Ψ : Rd → Rd is the biased gradient estimator, and g0 ∈ Rd is the initial memory vector.

If Ψ(g) = Clipτ (g), then from Theorem 4.3 of [35]∥∥gk − g⋆
∥∥ ≤ max(0,

∥∥g0 − g⋆
∥∥− kτ).

If Ψ(g) = Normα (g), then from Lemma 1∥∥g⋆ − gk
∥∥2 =

∥∥g⋆ − gk−1 − βNormα

(
g⋆ − gk−1

)∥∥2
=

(
1− β

α+ ∥g⋆ − gk−1∥

)2 ∥∥g⋆ − gk−1
∥∥2

...

=
∥∥g⋆ − g0

∥∥2 · k∏
l=1

(
1− β

α+ ∥g⋆ − gl−1∥

)2

.

In conclusion, while the EF21 mechanism with clipping ensures that the memory gk will reach g⋆ within a finite number of
iterations k (when k ≥

∥∥g0 − g⋆
∥∥ /τ ), the EF21 mechanism with smoothed normalization guarantees that gk will eventually

reach g⋆ (provided thatβ/α < 1).

E. Non-private Results
Theorem 2 (Non-private setting). Consider α-NormEC (Algorithm 1) for solving Problem (1), where Assumption 1 holds.
Let β, α, γ > 0 be chosen such that

β

α+R
< 1, and γ ≤ βR

α+R

1

Lmax
,

where R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ and Lmax = maxi∈[1,n] Li. Then,

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤ f(x0)− f inf

γ(K + 1)
+ 2R+

L

2
γ.

E.1. Proof of Theorem 2

Proof outline. By the L-smoothness of the objective function f , and by the update for xk+1 in α-NormEC, we obtain

V k+1 ≤ V k − γ
∥∥∇f(xk)

∥∥+ Lγ2

2
+ 2γW k,
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where V k := f(xk)− f inf , and W k := 1
n

∑n
i=1

∥∥∇fi(x
k)− gk+1

i

∥∥. The key step to establish the convergence is to bound∥∥∇fi(x
k)− gk+1

i

∥∥. Using Lemma 2 and appropriate choices of the tuning parameters β, α, and γ, we get∥∥∇fi(x
k)− gk+1

i

∥∥ ≤ max
i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ , ∀k ≥ 0.

Finally, substituting this bound into the previous descent inequality yields the convergence bound in mink∈[0,K]

∥∥∇f(xk)
∥∥.

Deriving the bound on
∥∥∇fi(x

k)− gk+1
i

∥∥ for α-NormEC by induction is similar to but simpler than Clip21. This simplified
proof is possible because smoothed normalization possesses a contractive property similar to the contractive compressor
used in EF21.

We prove Theorem 2 by Lemma 2, which states
∥∥∇fi(x

k+1)− gk+1
i

∥∥ ≤ R for some positive scalars R, given that∥∥∇fi(x
k)− gki

∥∥ ≤ R, and hyperparameters α, β, γ are properly tuned.

Lemma 2 (Non-private setting). Consider α-NormEC (Algorithm 1) for solving Problem (1), where Assumption 1 holds. If∥∥∇fi(x
k)− gki

∥∥ ≤ R, β
α+R < 1, and γ ≤ βR

α+R
1

Lmax
with Lmax = maxi∈[1,n] Li, then

∥∥∇fi(x
k+1)− gk+1

i

∥∥ ≤ R.

Proof. From the definition of the Euclidean norm,∥∥∇fi(x
k+1)− gk+1

i

∥∥ (12)
≤

∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥+ ∥∥∇fi(x

k)− gk+1
i

∥∥
gk+1
i=

∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥

+
∥∥∇fi(x

k)− gki − βNormα

(
∇fi(x

k)− gki
)∥∥

Lemma 1
≤

∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥

+

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(x

k)− gki
∥∥

Assumption 1, and xk+1

≤ Lmaxγ +

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(x

k)− gki
∥∥ .

If
∥∥∇fi(x

k)− gki
∥∥ ≤ R and β

α+R < 1, then
∥∥∇fi(x

k+1)− gk+1
i

∥∥ ≤ R when

γ ≤ βR

α+R

1

Lmax
.

Now, we are ready to prove the result in Theorem 2 in four steps.

Step 1) Prove by induction that
∥∥∇fi(x

k)− gki
∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥. For k = 0, this is obvious.
Next, let

∥∥∇fi(x
l)− gli

∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ for l = 0, 1, . . . , k. Then, if β/(α + R) < 1, and
γ ≤ βR

α+R
1

Lmax
, then from Lemma 2

∥∥∇fi(x
k+1)− gk+1

i

∥∥ ≤ R.

Step 2) Bound
∥∥∇fi(x

k)− gk+1
i

∥∥. From the definition of the Euclidean norm,

∥∥∇fi(x
k)− gk+1

i

∥∥ gk+1
i=

∥∥∇fi(x
k)− gki − βNormα

(
∇fi(x

k)− gki
)∥∥

Lemma 1
≤

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(x

k)− gki
∥∥

(∗)
≤

(
1− β

α+R

)
R ≤ R,

where we reach (∗) by the fact that
∥∥∇fi(x

k)− gki
∥∥ ≤ R, β

α+R < 1, and γ ≤ βR
α+R

1
Lmax

.
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Step 3) Derive the descent inequality. By the L-smoothness of f , by the definition of xk+1, and by the fact that
ĝk+1 = gk+1,

f(xk+1)− f inf ≤ f(xk)− f inf − γ

∥gk+1∥
〈
∇f(xk), gk+1

〉
+

Lγ2

2

= f(xk)− f inf − γ
∥∥gk+1

∥∥+ γ

∥gk+1∥
〈
∇f(xk)− gk+1, gk+1

〉
+

Lγ2

2

(11)
≤ f(xk)− f inf − γ

∥∥gk+1
∥∥+ γ

∥∥∇f(xk)− gk+1
∥∥+ Lγ2

2
(12)
≤ f(xk)− f inf − γ

∥∥∇f(xk)
∥∥+ 2γ

∥∥∇f(xk)− gk+1
∥∥+ Lγ2

2
(13)
≤ f(xk)− f inf − γ

∥∥∇f(xk)
∥∥+ 2γ

1

n

n∑
i=1

∥∥∇fi(x
k)− gk+1

i

∥∥+ Lγ2

2
.

Next, since
∥∥∇fi(x

k)− gk+1
i

∥∥ ≤ R with R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥, we have

f(xk+1)− f inf ≤ f(xk)− f inf − γ
∥∥∇f(xk)

∥∥+ 2γ max
i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥+ Lγ2

2
.

Step 4) Finalize the convergence rate. Finally, by re-arranging the terms of the inequality,

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤ 1

K + 1

K∑
k=0

∥∥∇f(xk)
∥∥

≤ [f(x0)− f inf ]− [f(xK+1)− f inf ]

γ(K + 1)
+ 2 max

i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥+ L

2
γ

(†)
≤ f(x0)− f inf

γ(K + 1)
+ 2 max

i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥+ L

2
γ,

where we reach (†) by the fact that f inf ≥ f(xK+1).

E.2. Proof of Corollary 1

If g0i ∈ Rd is chosen such that maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ = D
(K+1)1/2

with any D > 0, γ ≤ β
Lmax

D
α+D

1
(K+1)1/2

, and

β < α, then from Theorem 2, we obtain γ ≤ βR
α+R

1
Lmax

with R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥, and

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤ Lmax(α+D)

βD

f(x0)− f inf

(K + 1)1/2
+ 2

D

(K + 1)1/2
+

L

2

βD

Lmax(α+D)

1

(K + 1)1/2
.

E.3. α-NormEC and Clip21 Comparison

We show that the convergence bound of α-NormEC (10) has a smaller factor than that of Clip21 from Theorem 5.6. of [35].

To show this, let x̂K be selected uniformly at random from a set {x0, x1, . . . , xK}. Then, from Theorem 5.6. of [35], Clip21
achieves the following convergence bound:

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤ E

[∥∥∇f(x̂K)
∥∥]

≤
√
E
[
∥∇f(x̂K)∥2

]
≤ Lmax(f(x

0)− f inf)

τ(K + 1)1/2
+

√
(1 + C1/τ)C2

(K + 1)1/2
,

where τ > 0 is a clipping threshold, C1 = maxi∈[1,n]

∥∥∇fi(x
0)
∥∥, and C2 = max(max(L,Lmax)(f(x

0)− f inf)), C2
1 ).
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If τ = Lmax√
2L

√
f(x0)− f inf , then

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤

√
2L(f(x0)− f inf)

K + 1
+

√(
1 + C1

√
2L

Lmax

√
f(x0)−f inf

)
C2

(K + 1)1/2

≤

√
2L(f(x0)− f inf)

K + 1

+

√
C2 +O

(
max(

√
C1

4
√
f(x0)− f inf , C3

1/
√
f(x0)− f inf)

)
(K + 1)1/2

.

The first term in the convergence bound of Clip21 matches that of α-NormEC as given in (10). However, the second term
in the convergence bound of α-NormEC is D/

√
K + 1, where D > 0 can be made arbitrarily small. In contrast, the

corresponding term for Clip21 is C/
√
K + 1, where C > 0 may become significantly larger than D if x0 ∈ Rd is far from

the stationary point, leading to a large value of C1 = maxi∈[1,n]

∥∥∇fi(x
0)
∥∥.

F. Private Results
F.1. Proof of Theorem 1

We prove Theorem 1 by two useful lemmas:

1. Lemma 2, which states
∥∥∇fi(x

k+1)− gk+1
i

∥∥ ≤ R for some positive scalars R, given that
∥∥∇fi(x

k)− gki
∥∥ ≤ R and

the hyperparameters γ, β, α are properly tuned, and

2. Lemma 3, which bounds the difference in expectation between the memory vectors maintained by the central server
and clients.

Lemma 3 (DP setting). Consider DP-α-NormEC (Algorithm 1) for solving Problem (1), where Assumption 1 holds. If
ĝ0 = 1

n

∑n
i=1 g

0
i , then

E

[∥∥∥∥∥ĝk+1 − 1

n

n∑
i=1

gk+1
i

∥∥∥∥∥
]
≤
√

β2(K + 1)σ2
DP

n
.

Proof. From the definition of gki and ĝk,

ek+1 = ek + βzk+1,

where ek = ĝk − 1
n

∑n
i=1 g

k
i , and zk = 1

n

∑n
i=1 z

k
i . By applying the equation recursively,

ek+1 = e0 + β

k+1∑
l=1

zl.

Therefore, by the triangle inequality,

∥∥ek+1
∥∥ ≤

∥∥e0∥∥+ ∥∥∥∥∥β
k+1∑
l=1

zl

∥∥∥∥∥ .
If ĝ0 = 1

n

∑n
i=1 g

0
i , then e0 = 0 and therefore

∥∥ek+1
∥∥ ≤

∥∥∥∥∥β
k+1∑
l=1

zl

∥∥∥∥∥ .
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By taking the expectation,

E
[∥∥ek+1

∥∥] ≤ E

[∥∥∥∥∥β
k+1∑
l=1

zl

∥∥∥∥∥
]

= E


√√√√∥∥∥∥∥β

k+1∑
l=1

zl

∥∥∥∥∥
2


≤

√√√√√E

∥∥∥∥∥β
k+1∑
l=1

zl

∥∥∥∥∥
2
,

where we reach the last inequality by Jensen’s inequality. Next, by expanding the terms,

E
[∥∥ek+1

∥∥] ≤

√√√√β2

k+1∑
l=1

E
[
∥zl∥2

]
+ β2

∑
j ̸=i

E [⟨zi, zj⟩]

(∗)
=

√√√√β2

k+1∑
l=1

E
[
∥zl∥2

]
(‡)
≤

√√√√β2

n

k+1∑
l=1

σ2
DP,

where we reach (∗) by the fact that E
[
⟨zj , zi⟩

]
= 0 for i ̸= j, and (‡) by the fact that E

[∥∥zk∥∥2] = σ2
DP/n (as zki is

independent of zkj for i ̸= j). Therefore,

E
[∥∥ek+1

∥∥] ≤
√

β2(k + 1)σ2
DP

n

k≤K

≤
√

β2(K + 1)σ2
DP

n
.

Now, we prove Theorem 1 in three steps.

Step 1) Prove by induction that
∥∥∇fi(x

k)− gki
∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥. For k = 0, this is obvious.
Next, let

∥∥∇fi(x
l)− gli

∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ for l = 0, 1, . . . , k. Then, if β/(α + R) < 1, and
γ ≤ βR

α+R
1

Lmax
, then from Lemma 2

∥∥∇fi(x
k+1)− gk+1

i

∥∥ ≤ R.

Step 2) Bound
∥∥∇fi(x

k)− gk+1
i

∥∥. From the definition of the Euclidean norm,

∥∥∇fi(x
k)− gk+1

i

∥∥ gk+1
i=

∥∥∇fi(x
k)− gki − βNormα

(
∇fi(x

k)− gki
)∥∥

Lemma 2
≤

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(x

k)− gki
∥∥ .
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Step 3) Derive the descent inequality in E
[
f(xk)− f inf

]
. Denote gk = 1

n

∑n
i=1 g

k
i . By the L-smoothness of f , and by

the definition of xk+1,

f(xk+1)− f inf ≤ f(xk)− f inf − γ

∥ĝk+1∥
〈
∇f(xk), ĝk+1

〉
+

Lγ2

2

= f(xk)− f inf − γ
∥∥ĝk+1

∥∥+ γ

∥ĝk+1∥
〈
∇f(xk)− ĝk+1, ĝk+1

〉
+

Lγ2

2

(11)
≤ f(xk)− f inf − γ

∥∥ĝk+1
∥∥+ γ

∥∥∇f(xk)− ĝk+1
∥∥+ Lγ2

2
(12)
≤ f(xk)− f inf − γ

∥∥∇f(xk)
∥∥+ 2γ

∥∥∇f(xk)− ĝk+1
∥∥+ Lγ2

2
(13)
≤ f(xk)− f inf − γ

∥∥∇f(xk)
∥∥+ 2γ

1

n

n∑
i=1

∥∥∇fi(x
k)− gk+1

i

∥∥
+2γ

∥∥ĝk+1 − gk+1
∥∥+ Lγ2

2
.

Next, let Fk be the history up to iteration k, i.e. Fk := {x0, z01 , . . . , z
0
n, . . . , x

k, zk1 , . . . , z
k
n}. Then,

E
[
f(xk+1)− f inf

∣∣Fk
]

≤ f(xk)− f inf − γ
∥∥∇f(xk)

∥∥+ 2γ
1

n

n∑
i=1

E
[∥∥∇fi(x

k)− gk+1
i

∥∥∣∣Fk
]

+2γE
[∥∥ĝk+1 − gk+1

∥∥∣∣Fk
]
+

Lγ2

2
.

Next, by the upper-bound for
∥∥∇fi(x

k)− gk+1
i

∥∥,

E
[∥∥∇fi(x

k)− gk+1
i

∥∥∣∣Fk
]

≤ E

[∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(x

k)− gki
∥∥∣∣∣∣∣Fk

]

=

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(x

k)− gki
∥∥

≤
(
1− β

α+R

)
R ≤ R,

where we reach the second inequality by the fact that
∥∥∇fi(x

k)− gki
∥∥ ≤ R, β

α+R < 1, and γ ≤ βR
α+R

1
Lmax

. Thus,

E
[
f(xk+1)− f inf

∣∣Fk
]

≤ f(xk)− f inf − γ
∥∥∇f(xk)

∥∥+ 2γR

+2γE
[∥∥ĝk+1 − gk+1

∥∥∣∣Fk
]
+

Lγ2

2
.

By taking the expectation, and by the tower property E [E [X|Y ]] = E [X],

E
[
f(xk+1)− f inf

]
= E

[
E
[
f(xk+1)− f inf

∣∣Fk
]]

≤ E
[
f(xk)− f inf

]
− γE

[∥∥∇f(xk)
∥∥]+ 2γR

+2γE
[∥∥ĝk+1 − gk+1

∥∥]+ Lγ2

2
.

Next, by using Lemma 3,

E
[
f(xk+1)− f inf

]
≤ E

[
f(xk)− f inf

]
− γE

[∥∥∇f(xk)
∥∥]+ 2γR

+2γ

√
β2(K + 1)σ2

DP

n
+

Lγ2

2
.
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Therefore,

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 1

K + 1

K∑
k=0

E
[∥∥∇f(xk)

∥∥]
≤

E
[
f(x0)− f inf

]
− E

[
f(xK+1)− f inf

]
γ(K + 1)

+ 2R+ 2

√
β2(K + 1)σ2

DP

n
+

L

2
γ

≤ f(x0)− f inf

γ(K + 1)
+ 2R+ 2

√
β2(K + 1)σ2

DP

n
+

L

2
γ,

where we reach the last inequality by the fact that f inf ≥ f(xK+1).

F.2. Discussion on Theorem 1

By choosing g0i such that R = D
(K+1)1/6

with any D > 0, β = β0

(K+1)2/3
with β0 ∈ (0, 1], α > 1, and γ ≤ A

(K+1)5/6
with

A = β0D
Lmax(α+D) , then the conditions for β, α, γ in Theorem 1 are satisfied, and from Theorem 1 DP-α-NormEC attains the

O(1/K1/6) convergence rate in the gradient norm:

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ C

(K + 1)1/6
+

LA

2(K + 1)5/6
,

where C1 = f(x0)−f inf

A + 2D + 2β0σDP.

F.3. Utility Guarantee of DP-α-NormEC

In this section, we present the utility guarantee of DP-α-NormEC.

Corollary 2 (Utility guarantee in DP setting). Consider DP-α-NormEC (Algorithm 1) for solving Problem (1) under the same

setting as Theorem 1. If σDP = O(
√
(K + 1) log(1/δ)ϵ−1), β = β0

K+1 with β0 = O
(√

∆
A

)
and α = R = O

(
4
√
d
√
∆A

)
for ∆ =

√
Lmax(f(x0)− f inf) and A =

√
log(1/δ)√

nϵ
, then Algorithm 1 satisfies (ϵ, δ)-DP and attains the bound

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ O

(
∆

4

√
d
log(1/δ)

nϵ2

)
.

Proof: Let σDP = O
(√

(K+1) log(1/δ)

ϵ

)
, and β = β0

K+1 with 0 < β0 < α + R. Then, from Theorem 1, we get

γ ≤ β0R
α+R

1
Lmax

1
K+1 with R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥, and

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ Lmax(α+R)(f(x0)− f inf)

β0R
+ 2R+ 2

β0

√
log(1/δ)√
nϵ

+
Lβ0R

2(α+R)Lmax

1

K + 1
.

If β0 = O
(√

Lmax(f(x0)−f inf )
A

)
and α = R = O

(
4
√
d
√
Lmax(f(x0)− f inf)A

)
for A =

√
log(1/δ)√

nϵ
, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ O
(

4
√
d
√

Lmax(f(x0)− f inf)A

)
.
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F.4. Private initialization of the memory vectors

The server’s initial memory vector ĝ0 in Algorithm 1 is set as the average of the initial client memory vectors: ĝ0 =
1
n

∑n
i=1 g

0
i . Notably, Lemma 3 in our analysis allows for more general initializations, including an additive error term e:

ĝ0 = 1
n

∑n
i=1 g

0
i + e. This initial error can be kept small by privately estimating the mean of the g0i vectors, incurring a

privacy cost only once. Furthermore, secure aggregation techniques can completely remove this error. For instance, if clients
share a random seed, they can add and subtract identical cryptographic noise (h) to their respective local memory vectors
(e.g., g01 + h and g02 − h). This protects the individual vectors from the server while ensuring the average remains accurate:
1
2 (g

0
1 + h) + 1

2 (g
0
2 − h) = 1

2 (g
0
1 + g02).
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G. Experimental Details and Additional Results
We include details on experimental setups and additional results in the non-private and private training for the ResNet20
model on the CIFAR-10 dataset.

G.1. Additional Experimental Details

The dataset was split into train (90%) and test (10%) sets. The train samples were randomly shuffled and distributed across
10 workers. Every worker computed gradients with batch size 32. The training was performed for 300 communication
rounds. The random seed was fixed to 42 for reproducibility.

All the methods were run with a constant step size (learning rate) without other techniques, such as schedulers, warm-up, or
weight decay. They were evaluated across the following hyperparameter combinations:

• step size γ: {0.001, 0.01, 0.1, 1.0},

• Sensitivity/clip threshold β: {0.01, 0.1, 1.0, 10.0},

• Smoothed normalization value α: {0.01, 0.1, 1.0}.

Our implementation is based on the public GitHub repository [29]. Experiments were performed on a machine with a single
GPU: NVIDIA GeForce RTX 3090.

G.2. Non-private Training

G.2.1. SENSITIVITY OF α-NormEC TO PARAMETERS β, α
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Figure 4: Training loss and test accuracy of non-private α-NormEC with α = 0.01 [solid], 0.1
[dashed], and 1.0 [dotted], and β = 0.01 [blue], 0.1 [green], 1.0 [orange], and 10.0 [red].

Figure 5 supple-
ments the results
in Figure 1 with
other metrics.
Figure 4 displays
convergence curves
across different
combinations of
α, β parameters
with optimally
selected step sizes
γ.
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Figure 5: Minimal train loss (left), final train loss (middle), and final test accuracy (right) achieved by non-private
α-NormEC, after 300 communication rounds using a fine-tuned constant step size γ.
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G.2.2. BENEFITS OF ERROR COMPENSATION

Leveraging error compensation (EC), α-NormEC without server normalization achieves superior performance compared
to DP-SGD with direct smoothed normalization across a range of β and γ hyperparameter settings (where α = 0.01), in
terms of the final test accuracy reported in Figure 6 and Table 7. From Table 7, α-NormEC without server normalization
consistently outperforms DP-SGD across most combinations. This trend is particularly evident for small β values (β = 0.01),
where DP-SGD achieves only 51.10% accuracy while α-NormEC reaches 84.04%. The only exception is β = 10.0, where
DP-SGD outperforms α-NormEC. However, this combination is less practical in the private setting, as too high β values
imply high private noise, thus leading to slow algorithmic convergence.
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Figure 6: Comparison of DP-SGD (2) [solid] and α-NormEC
(1) [dashed] without server normalization.

Method β γ Final Accuracy

α-NormEC 0.01 0.1 84.04%
0.1 0.1 86.09%
1.0 0.1 84.80%

10.0 0.01 79.25%

DP-SGD (2) 0.01 1.0 51.10%
0.1 1.0 79.68%
1.0 1.0 83.89%

10.0 0.1 84.50%

Figure 7: Best configurations and final test accuracies.

G.2.3. EFFECT OF SERVER NORMALIZATION

We investigate the impact of server-side normalization (Line 11 in Algorithm 1) on the convergence performance of
α-NormEC. We reported training loss and test accuracy of α-NormEC without and with server normalization in Figure 8
while summarizing their final test accuracy in Table 2.

α-NormEC without server normalization generally achieves faster convergence in training loss and higher test accuracy than
α-NormEC with server normalization across varying β values. Notably, at β = 0.1, α-NormEC without server normalization
achieves the highest test accuracy of 86.09%. Only at the large value of β = 10.0 does server normalization improve the
test accuracy of α-NormEC without server normalization by approximately 2.2%.

Method: α-NormEC β γ Final Accuracy

With server normalization 0.01 0.01 82.86%
0.1 0.1 85.43%
1.0 0.1 84.29%

10.0 0.1 81.48%

Without server normalization 0.01 0.1 84.04%
0.1 0.1 86.09%
1.0 0.1 84.80%

10.0 0.01 79.25%

Table 2: Best configurations and final test accuracies of α-NormEC with and without server normalization.
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Figure 8: Training loss and test accuracy of α-NormEC with [solid] and without [dashed] server normalization.

G.2.4. COMPARISON OF Clip21 AND α-NormEC

Method β γ Final Accuracy

Clip21 0.01 0.1 83.00%
0.1 0.1 85.91%
1.0 0.1 84.78%

10.0 0.1 83.19%

α-NormEC 0.01 0.1 84.04%
0.1 0.1 86.09%
1.0 0.1 84.80%

10.0 0.01 79.25%

Figure 9: Best configurations and final test accuracies.

Figure 10 and Table 9 show that α-NormEC without server
normalization2 achieves comparable convergence perfor-
mance to Clip21 for most β values. At small β values
(0.01, 0.1), α-NormEC without server normalization at-
tains slightly lower final test accuracy. However, at high
β = 10.0, Clip21 maintains the higher test accuracy, as
the large clipping threshold effectively disables clipping.
Furthermore, in most cases, both methods achieve their
best performance with γ = 0.1, except for α-NormEC at
β = 10.0, where a smaller learning rate (γ = 0.01) was
optimal.
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Figure 10: Training loss and test accuracy of Clip21 [solid] and α-NormEC [dashed] without server normalization in the
non-private training.

2We ran α-NormEC without server normalization because it showed better performance according to Appendix G.2.3.
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G.3. Private Training
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Figure 11: The highest test accuracy of DP-Clip21.

We complement the results in Section 4 with test accuracy conver-
gence curves in Figure 12 (right). Additionally, Figure 13 presents a
comprehensive heatmap analysis of the highest test accuracy achieved
by DP-α-NormEC with and without server normalization (SN) across
different privacy levels (β) and learning rates (γ). The heatmaps reveal
that without server normalization, performance is highly sensitive to
hyperparameter selection, with accuracy ranging from 10% to 77.56%
depending on the specific β-γ combination. With server normaliza-
tion, this sensitivity is significantly reduced, with performance varying
more gradually across the parameter space. The rightmost heatmap
quantifies this difference, showing that server normalization provides
substantial benefits (up to +53.49%) at high privacy levels (β = 1.0)
and higher learning rates, while the non-normalized version performs
better (up to -37.92%) at lower privacy levels with specific learning rates.
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Figure 12: Training loss and test accuracy of DP-Clip21 [solid], and DP-α-NormEC with [dotted] and without [dashed]
server normalization (SN) across different β values (with fine-tuned step sizes).
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Figure 13: The highest test accuracy of DP-α-NormEC with [left] and without [center] Server Normalization (SN), and their
difference [right].
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G.3.1. SHORTER TRAINING

We present additional results in Figures 15, 14 by running DP-α-NormEC for 150 communication rounds. The step size
γ is tuned for every parameter β. In the non-private setting, (reasonably) longer training is basically always beneficial.
However, in the private scenario, it may not hold due to increased noise variance as it scales with a number of iterations.
Interestingly, we observe that for β = 1, the highest achieved accuracy after 150 iterations is almost the same as after a
doubled communication budget of 300 iterations.
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Figure 14: Training loss and test accuracy of DP-α-NormEC across different β values.
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Figure 15: Best test accuracy of DP-α-NormEC across different β, γ values.
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