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Abstract

Prompting language models (LMs) is the main
interface for applying them to new tasks. How-
ever, for smaller LMs, prompting provides
low accuracy compared to gradient-based fine-
tuning. Tree Prompting is an approach to
prompting which builds a decision tree of
prompts, linking multiple LM calls together to
solve a task. At inference time, each call to the
LM is determined by efficiently routing the out-
come of the previous call using the tree. Exper-
iments on classification datasets show that Tree
Prompting improves accuracy over competing
methods and is competitive with fine-tuning.
We also show that variants of Tree Prompting
allow inspection of a model’s decision-making
process.1

1 Introduction

Pretrained language models (LMs) have made re-
markable progress in recent years (Vaswani et al.,
2017; Brown et al., 2020; OpenAI, 2023), but their
large size makes them difficult to fine-tune with
gradients for specific downstream tasks. As such,
prompting has become the main interface for ap-
plying pretrained language models (LMs), where
task-specific instructions are provided to guide an
LM’s behavior. The most common way to adapt
LMs is to use few-shot in-context examples, where
input-output pairs are shown to the model.

Yet, few-shot prompting has a clear downside.
Prompt expressiveness is limited by the context
length of the language model. This constraint
prevents using more than a handful of examples
for few-shot in-context learning, particularly in
memory-constrained environments. If there is ad-
ditional supervised data available for a task, users
need to either ensemble together many prompts or
back off to alternative LM fine-tuning approaches.

1*Equal contribution. Scikit-learn-compatible API for
using Tree-Prompt is available at � github.com/csinva/tree-
prompt.
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Figure 1: Illustration of Tree Prompting. At each node
of the decision tree, a subset of training data is used
to prompt the LM to partition the input space into sub-
regions. This process is repeated until a classification
decision is made at a leaf node.

In this work, we propose Tree Prompting as an
alternative method for incorporating task supervi-
sion. The key idea is to use training data to form
a decision tree based on simple prompt-LM calls,
with each prompt determined by the outcomes of
previous calls. The method does not change the
parameters of the language model, but instead uses
its outputs to determine an effective tree structure.
To determine the prompts used at each node of
the decision tree, we propose a simple bagging-
inspired approach that samples few-shot examples
to find the most informative prompt (see Fig. 1).
To convert LM outputs into split features for deci-
sion path determination, we consider both using a
pre-defined verbalizer (Hu et al., 2022) and a more
expressive kNN Prompting approach (Xu et al.,
2023). To learn the tree structure, we employ a
classic decision tree learning algorithm (Breiman
et al., 1984). The constructed tree is a sparse rep-
resentation of the fine-tuning data, incorporating a
large number of few-shot examples, but only requir-
ing a constant number of LM calls for inference.

Tree Prompting offers several advantages over
existing prompting approaches. It allows users to

https://github.com/csinva/tree-prompt
https://github.com/csinva/tree-prompt


easily incorporate large supervised training datasets
without requiring larger contexts. It also allows
experts to examine the decision-making process
underlying a prediction in detail, which can be
improved by combining with prompt generation
methods. Finally, Tree Prompting can be adapted
to be compatible with many existing LMs that are
only accessible to the public via API calls. We
demonstrate these advantages in experiments on
multi-class classification benchmarks.

2 Background: Decision Trees

Decision trees are a classic model for classification
and regression. They provide a graphical, intuitive
model of decision-making, based on a cascading
series of binary decisions2. At each node in the tree,
a decision is made based on a single feature of the
input, which leads to the next node, and ultimately
to a leaf node representing a prediction.

Learning Decision trees are constructed greed-
ily in a top-down manner, starting from the root
node, where all training data (x, y) and features
ϕ(x) ∈ {0, 1}d are available. At each node, a fea-
ture that best splits the dataset into two subsets is
chosen. The “best split” is determined by a crite-
rion that measures the quality of a split. A com-
monly used criterion is the Gini impurity from the
CART algorithm (Breiman et al., 1984). The se-
lected feature creates two child nodes, each contain-
ing the subset of data that satisfies the respective
split condition. This process is repeated recursively
for each child node with the corresponding subset
of the data until a stopping condition is met3. Each
leaf node in the final decision tree represents a deci-
sion (such as a class label prediction), determined
by the majority class of the instances in the leaf.

Inference A decision tree makes predictions on
unseen data by traversing the tree from the root
node to a leaf node. Starting from the root, the
feature value of the example corresponding to the
split feature at the current node is used to determine
whether the left child or the right child node is
visited next. This process is repeated until a leaf
node is reached. The class label associated with
this leaf node is then used as the prediction.

2We exclusively focus on binary trees in this paper.
3Stopping conditions include reaching a maximum number

of leaf nodes or when no feature improves the split quality.

3 Tree Prompting

Tree Prompting utilizes decision trees as a method
of adapting LMs to specific tasks without fine-
tuning the model. Assuming access to a set of text-
label pairs (x, y), the goal is to determine a tree to
best classify this data. The algorithm then proceeds
in a top-down manner, where at each node, it se-
lects the best prompt based on the chosen method
for finding prompt candidates and constructing split
features.

However, unlike standard decision trees, we do
not have access to a predetermined set of features
ϕ(x). Tree Prompting instead constructs this fea-
ture function dynamically by constructing prompts.
The value of a feature ϕi(x) is determined by run-
ning a prompt through the LM and mapping its
response to a binary value.

A major benefit of utilizing decision trees in this
setting is their efficiency at inference time. Con-
structing the tree lets us compactly represent a large
amount of task-specific training examples. If each
ϕi requires running one prompt, there are 2D fea-
tures. At inference time, we only need D prompt
calls to classify a single datapoint.

Our primary approach to find prompts for fea-
tures ϕi(x) is to select random few-shot exam-
ples drawn from the training data, as shown in
Figure 1. We take inspiration from bagging ap-
proaches (Breiman, 1996) that combine random
training samples to produce complementary paral-
lel models. By sampling random x, y pairs from the
task training data and passing them to an LM, we
are effectively bagging small training splits. Each
prompt is constructed by alternating classes with
their corresponding labels in a templated form.

Once a prompt is constructed, the feature value
is set using a pre-defined verbalizer to transform
the LM’s output (Hu et al., 2022). A verbalizer is
a function that maps the LM’s output probabilities
into a discrete decision. A simple implementation
of a verbalizer is to determine whether the pre-
dicted probability for the token Yes/No is higher. In
this work, we experiment with two different verbal-
izers: the first maps the logits to class labels (such
as Positive/Negative for binary sentiment classifica-
tion), and the second more generic verbalizer maps
the logits to Yes/No.

When the output logits of the LM are inacces-
sible4, we can discretize the LM’s outputs into

4Some recent LMs such as OpenAI’s GPT-3.5 and GPT-4
do not provide output logits.
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Figure 2: Extension to the Tree Prompting approach using instruction prompts on the Emotion dataset. Each path
represents a decision sequence, and colors correspond to different emotions (classes). The line width indicates
the number of instances within a particular class. As the decision process advances down the tree, the classes get
separated.

categories defined by the verbalizer using word
matching. With few-shot prompts, large LMs have
empirically been found to respect the template for-
mat and output only labels that they have seen in
the demonstrations most of the time (Brown et al.,
2020).

3.1 Extensions

Instruction Prompts To leverage expert insights
on specific tasks, we can instead use human-curated
prompt candidates (Bach et al., 2022) as shown in
Fig. 2. To diversify and enrich the pool of prompt
candidates, we leverage the capabilities of GPT-
3.5 to generate paraphrases of the original prompts.
This method provides the ability to incorporate
domain-specific knowledge, and the prompts are
more interpretable compared to random few-shot
examples. However, it might be less adaptable to
novel or unique task specifications compared to
the other automatic prompt candidate generation
methods.

Dynamic Prompts Instead of pre-constructing
random prompt-based features, we can generate
dynamic prompts while building the decision tree.
At each node, we conduct a discrete prompt search

to identify a list of prompt candidates that best ex-
plain the subset of data at this node. The prompt
that best splits this subset into two further sub-
sets is then selected. The prompt search algorithm
used in this paper is iPrompt (Singh et al., 2023b),
which employs an LM to generate potential prompt
candidates, ranking them based on how well they
explain the data. Dynamic prompts offer enhanced
flexibility and adaptability, at the cost of additional
computation.

kNN Prompting Features As a more expressive
alternative to predefined verbalizers, we consider
the kNN Prompting approach (Xu et al., 2023).
kNN Prompting employs the label of the nearest
neighbor in an anchor set as the split feature, with
the distance measured in terms of the KL diver-
gence between output probabilities. This approach
allows for the use of a large number of examples
at each node, extending beyond the limitations im-
posed by the restricted context window size, mak-
ing it more expressive. A downside of this ap-
proach is its dependence on access to the LM’s
output logits. Moreover, as multiple prompts are
utilized at each node of the decision tree, this can
compromise the interpretability of the model.



Approach SST2 SUBJ MPQA AGNews CB CR DBPedia MR RTE TREC Emotion FPB IMDB AVG #LM Calls

Classes 2 2 2 4 3 2 14 2 2 6 6 3 2 - -

Finetuning
BERT† 88.3 90.7 74.5 88.0 78.6 88.0 95.1 83.0 58.1 78.8 82.3 - - - 1.0
GPT-2 Large† 90.7 86.1 87.6 88.3 70.0 86.7 96.5 86.2 55.4 71.2 81.9 - - - 1.0

ICL GPT-2 Small
FSPrompting 51.6 52.0 66.9 36.5 49.4 49.6 34.0 51.6 47.0 41.7 25.9 18.9 68.1 45.6 1.0
Greedy 48.4 49.3 73.0 73.2 51.2 50.4 71.7 64.7 54.6 51.4 37.4 61.8 63.9 57.8 40.0
Boosting 71.7 50.4 83.5 78.6 51.2 68.4 45.7 66.5 55.5 56.2 42.2 69.2 78.6 62.9 40.0
TreePrompt 72.3 50.4 83.5 80.6 55.4 68.0 82.9 66.7 56.0 63.4 43.0 67.9 77.5 66.7 8.8
TreePrompt Ens 72.7 50.4 83.3 81.2 59.5 68.2 87.6 66.5 55.9 71.7 43.3 68.7 78.7 68.3 32.6

ICL GPT-2 Medium
FSPrompting 52.0 52.1 66.7 35.9 48.2 59.1 42.6 49.6 50.9 53.6 28.6 23.5 22.1 45.0 1.0
Greedy 83.1 74.3 63.8 70.8 64.3 50.4 78.9 77.9 54.8 63.0 46.8 61.8 74.3 66.5 40.0
Boosting 85.8 75.4 83.9 77.9 64.9 81.1 39.1 79.0 56.1 50.3 53.3 75.9 80.6 69.5 40.0
TreePrompt 83.6 76.2 83.9 78.3 66.7 80.6 90.5 78.8 54.9 72.8 53.3 78.4 81.1 75.3 6.2
TreePrompt Ens 85.5 75.9 85.2 79.8 64.9 80.6 94.5 79.0 55.6 77.9 54.9 79.4 81.8 76.5 35.5

ICL GPT-2 Large
FSPrompting 81.6 52.2 50.0 49.5 40.5 64.6 33.6 59.4 51.0 54.7 27.5 52.1 50.8 51.4 1.0
Greedy 91.1 85.8 53.9 78.4 66.1 61.6 82.4 87.1 53.6 69.0 35.2 67.8 81.5 70.3 40.0
Boosting 91.9 87.4 84.0 79.9 65.5 85.4 25.0 86.5 54.0 59.8 45.0 78.6 90.6 71.8 40.0
TreePrompt 91.5 87.8 85.2 80.9 58.9 81.9 91.0 85.0 53.9 76.8 46.4 79.7 90.1 77.6 7.8
TreePrompt Ens 91.7 87.4 85.5 83.2 63.7 84.0 94.7 86.7 55.6 79.2 47.4 81.7 90.6 79.3 35.7

ICL GPT-2 XL
FSPrompting 83.3 62.1 65.2 55.2 47.6 69.4 74.5 67.4 53.9 57.2 24.9 48.5 96.9 62.0 1.0
Greedy 90.5 77.9 76.3 83.7 62.5 73.6 88.8 84.2 57.7 63.5 35.2 65.8 86.3 72.8 40.0
Boosting 91.7 82.7 84.5 84.1 67.9 83.7 41.5 88.5 56.2 57.9 54.9 78.5 90.7 74.1 40.0
TreePrompt 83.6 76.2 83.9 78.3 66.7 80.6 90.5 78.8 54.9 72.8 53.3 78.4 81.1 75.3 6.6
TreePrompt Ens 85.5 75.9 85.2 79.8 64.9 80.6 94.5 79.0 55.6 77.9 54.9 79.4 81.8 76.5 36.2

ICL GPT-J
FSPrompting 87.1 79.2 76.6 74.1 50.6 83.7 89.7 77.9 52.7 78.4 40.7 37.8 77.3 69.7 1.0
Greedy 91.3 89.8 85.4 83.9 72.0 87.2 93.8 89.6 58.9 81.0 49.4 69.4 93.7 80.4 40.0
Boosting 93.1 91.8 89.2 84.2 73.2 87.4 22.3 90.5 58.6 70.4 58.2 76.6 93.9 76.1 40.0
TreePrompt 91.5 92.2 87.4 85.5 73.2 87.8 97.5 90.5 59.8 83.2 59.6 76.5 93.1 82.9 8.9
TreePrompt Ens 93.1 92.2 88.5 85.8 75.0 87.5 98.2 90.5 59.2 87.2 61.9 79.2 93.7 84.0 32.3

ICL LLAMA-2 7B
FSPrompting 92.7 55.1 78.6 84.9 55.4 90.9 94.0 90.8 59.2 80.2 37.5 70.2 60.1 73.1 1.0
Greedy 95.1 84.1 85.3 86.6 64.9 90.4 98.2 94.7 71.7 83.9 47.6 70.2 86.0 81.4 40.0
Boosting 94.4 89.2 86.1 87.2 76.2 90.9 21.5 92.7 74.0 39.3 55.1 81.6 91.9 75.4 40.0
TreePrompt 93.6 89.2 85.2 88.5 75.0 88.5 98.6 93.9 69.7 88.0 54.8 84.0 93.8 84.8 6.6
TreePrompt Ens 94.5 90.0 86.6 88.2 76.8 89.2 98.6 93.8 73.6 89.7 57.2 84.9 93.5 85.9 35.4

Table 1: Main results. ICL: In Context Learning. ICL Prompting and ICL Prompting Ensemble use 128 examples
per class to construct the prompt. †: results taken from Xu et al. (2023).

Tree Ensembles Trees generated via Tree
Prompting can be used to construct typical tree en-
sembles such as random forests (Breiman et al.,
1984) or gradient-boosted trees (Freund et al.,
1996) by using a Tree Prompting tree as the base
estimator. This incurs very little overhead when
using a fixed set of prompts, as the split features
can be shared across all trees after being computed
once.

4 Experimental Setup

Datasets We evaluate Tree Prompting on 13 text
classification datasets. Among them are binary
classification datasets SST2 (Socher et al., 2013),
SUBJ (Pang and Lee, 2004; Wiebe et al., 2005),
MPQA (Deng and Wiebe, 2015), CR (Hu and
Liu, 2004), MR (Pang and Lee, 2005), RTE (Da-
gan et al., 2006), IMDB (Maas et al., 2011), and
multi-class classification datasets AGNews (Zhang

et al., 2015), CB (De Marneffe et al., 2019), DB-
Pedia (Zhang et al., 2015; Lehmann et al., 2015),
TREC (Li and Roth, 2002; Hovy et al., 2001),
FPB (Malo et al., 2014), and Emotion (Saravia
et al., 2018). Appendix A.1 provides dataset statis-
tics in Table 6, and examples in Table 7.

Model Settings For the LM, we run experi-
ments using five pretrained models: GPT-2 Small
(117M parameters), GPT-2 Medium (355M param-
eters), GPT-2 Large (774M parameters), GPT-2 XL
(1.5B parameters) (Radford et al., 2019), and GPT-
J (Wang and Komatsuzaki, 2021) (6B parameters).

Baselines We compare our approach Tree
Prompting, TreePrompt, to standard fine-tuning.
In addition, we also compare against a conven-
tional prompting baseline FSPrompting, which di-
rectly uses few-shot example demonstrations as
the prompt. We also compare the performance of
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Figure 3: Performance as a function of the number of LM evaluations per example (#LM calls). We use GPT-J as the
base LM and class names as verbalizers. GBDT, gradient-boosting tree using Tree Prompting as the base classifier,
fitted to a maximum of 40 LM calls provides an upper bound of accuracy we can get on individual datasets.

our ensembling approach, TreePrompt Ens5, with
two baseline ensembling strategies: Greedy, which
adds prompts to an ensemble in order of their cross-
validation accuracy), and Boosting, which adds
prompts to an ensemble using AdaBoost (Freund
and Schapire, 1997; Hou et al., 2022; Pitis et al.,
2023).

5 Results

5.1 Classification Accuracy

Our main results are summarized in Table 1. The
table compares Tree Prompting across multiple lan-
guage model sizes to other few-shot prompting
and ensembling approaches, as well as to gradient-
based fine-tuning. Approaches are allotted a maxi-
mum of 40 LM inference calls per example.

Results show that Tree Prompting outperforms
basic few-shot prompting and also ensembling-
based approaches across model sizes and almost all
datasets. The performance difference is particularly
large across smaller model classes. For instance,
while FSPrompting averages an accuracy of 44.3%
with GPT-2 Small, Tree Prompting elevates this
to 60.5%. Tree Prompting can also be ensembled,
which produces accuracy improvements at the cost
of more LM calls.

We also compare Tree Prompting to gradient
based fine-tuning, particularly on GPT-2 Large. Re-
sults show that Tree Prompting is less stable than
fine-tuning, performing poorly on some tasks, but
outperforms it on 5 of 10 tasks. This result shows
that Tree Prompting can learn well from task su-
pervision at the cost of additional runtime queries.
(Tree Prompting could likely perform better com-
pared to fine-tuning if we increased the maximum
number of prompts beyond 40.)

5This ensemble uses scikit-learn’s GradientBoostingClas-
sifier with its default parameters: 100 trees, each with max
depth 3, with a learning rate of 0.1.

Relative to the baselines, Tree Prompting is typi-
cally able to outperform them all while making
fewer queries than Greedy and Boosting. Tree
Prompting makes large improvements over few-
show prompting in most cases, even when the
model size is large. We observe a failure of the
boosting strategy when the number of classes is
large (specifically for 14-class DBPedia). Tree
Prompting with gradient boosting generally gives
an increase at performance at the cost of a 5.7-times
increase in queries.

5.2 Inference Efficiency

As computing outputs from language models can
be costly, particularly with large LMs, the effi-
ciency of Tree Prompting at inference time is cru-
cial. In Fig. 3, we plot test accuracy against the
number of language model evaluations per exam-
ple (#LM Calls) to gauge this efficiency6. Tree
Prompting frequently surpasses competing ensem-
ble strategies in performance under the same num-
ber of LM calls, indicating an improvement in effi-
ciency. This gain is more significant for multiclass
datasets, such as Emotion and Financial phrasebank
(FPB).

To establish an upper bound of accuracy, we con-
sider Tree Prompting ensembling. This approach
generally achieves the best test performance across
all methods, although it also demands more LM
calls than a single tree (up to 40 calls).

5.3 Interpretability and Dynamic Prompts

A practical benefit of decision trees is increased
interpretability. Each node of the decision tree can
be inspected, offering insights into the decision-
making process when predicting the label of a given
input. Our few-shot approach for Tree Prompting

6The mean number of LM calls may differ from the max
depth of a tree, as reaching a leaf node can require fewer calls
in an unbalanced tree.



CB CR SUBJ MPQA RTE TREC MR DBPedia SST2 AGNews AVG

Train Size (k) 0.25 1.77 2.49 5.45 8.00 8.60 8.66 50.00 67.35 120.00 -

kNN Prompting† 62.1 87.5 54.1 86.7 87.6 84.8 83.6 96.7 85.5 87.6 81.6
Tree Prompting 58.2 86.6 54.4 85.9 88.4 84.8 86.2 97.2 90.3 88.8 82.1

Table 2: Comparison between Tree Prompting and kNN Prompting. Both approaches use GPT-2 Large as the base
LM. Tree Prompting uses predictions from kNN Prompting to construct split features. Tree Prompting results are
averaged over 5 random seeds. †: results taken from Xu et al. (2023).
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Figure 4: Tree Prompting tree learned using dynamic
prompts on the MR dataset. We use GPT-4 for prompt
generation in AutoPrompting and GPT-J as the base LM
in Tree Prompting.

is challenging to interpret, but we can instead use
interpretable prompts that are human-curated or
dynamically constructed.

Fig. 2 demonstrates an instance of a decision
tree learned from human-curated prompts on the
Emotion dataset, where different colors represent
the true labels of the data. At the root node, a
high-level query is posed regarding whether the
tweet’s underlying emotion is love. Deeper in the
tree, more granular questions are presented, e.g.
whether the sentiment of the sentence is anger.

Dynamic prompts offer an additional advantage
over human-curated prompts; they are capable of
better reflecting the specific subset of data at each
node, making the decision process more aligned
with the data distribution at each tree node. Fig. 4
shows a tree learned using iPrompt to create dy-
namic prompts at each node of the tree. Prompts
are suggested by GPT-4 and reranked according to
the iPrompt algorithm with the verbalizer Yes/No
corresponding to the positive/negative classes of

the MR dataset.

5.4 Comparison with kNN Prompting

Nonparametric methods like kNN Prompting (Xu
et al., 2023) can be employed to improve model
expressivity, which allows using multiple prompts
per node and avoids the reliance on pre-defined
verbalizers. Table 2 provides a comparison be-
tween Tree Prompting and kNN Prompting. In this
comparison, Tree Prompting uses kNN Prompting
predictions as split features7. The results show that
Tree Prompting outperforms vanilla kNN Prompt-
ing on most datasets, potentially due to its added
flexibility of partitioning the input space using the
decision tree, although it underperforms on three
of the smaller datasets CB (250 training examples),
CR (1.77k training examples), and TREC (5.44k
training examples).

5.5 Comparison to Larger LMs

Tree Prompting allows enhancing the performance
of small LMs to match the performance of large
LMs, as shown in Table 3. For these experiments
instead of few-shot prompting we use instruc-
tion prompts curated from PromptSource (Bach
et al., 2022)8. In this setting, even GPT-2 Small
paired with Tree Prompting Ensemble is competi-
tive against GPT-3 (text-davinci-003), outperform-
ing it on two datasets (FPB and MR), albeit being
slightly worse on the other two datasets (IMDB and
SST2). With the larger LM GPT-J, Tree Prompting
outperforms GPT-3 with conventional prompting
across all datasets, demonstrating the potential of
using a smaller model in a decision tree repeat-
edly to outperform a larger model, which might be
useful in resource-constrained scenarios.

7We binarize kNN Prompting predictions, which are multi-
class labels, into multiple split features (each evaluating
whether the output matches a certain class).

8Initial experiments showed that instruction prompts out-
perform few-shot prompts for GPT-3.



LM Approach FPB MR IMDB SST2 AVG

GPT-3 Zero-Shot Instruction Prompting 39.6 82.7 75.6 90.5 72.1
AutoPrompting (Singh et al., 2023a) 57.2 77.4 86.6 82.4 75.9

GPT-2 Small TreePrompt Ensemble 71.4 77.5 85.8 80.8 78.9
GPT-J TreePrompt Ensemble 80.2 91.3 94.5 93.7 89.9

Table 3: Tree Prompting with supervision achieves comparable accuracy to GPT-3 zero-shot and supervised auto-
prompting. Tree Prompting uses instruction prompts, class names as the verbalizer, and fits gradient-boosted trees
with up to 40 prompts. Averaged over 3 random seeds.

Verbalizer FPB MR IMDB SST2 AVG

Yes/No
Greedy 58.9 72.7 58.8 75.7 66.5
Boosting 57.8 71.6 58.7 75.8 66.0
TreePrompt 64.4 79.4 68.6 77.2 72.4

Class Names
Greedy 59.6 64.5 62.3 78.2 66.1
Boosting 61.9 65.2 62.4 77.1 66.6
TreePrompt 74.2 73.4 65.7 80.4 73.4

Table 4: Accuracy with different verbalizers. We em-
ploy GPT-2 Small as the LM, limiting to a maximum of
5 average calls during inference.

Prompt Source FPB MR IMDB SST2 AVG

Few-shot
Greedy 59.6 64.5 62.3 78.2 66.1
Boosting 61.9 65.2 62.4 77.1 66.6
TreePrompt 74.2 73.4 65.7 80.4 73.4

Instructions
Greedy 71.8 83.3 88.2 86.5 82.4
Boosting 77.4 84.2 91.3 87.6 85.1
TreePrompt 80.9 85.1 92.0 88.5 86.6

Table 5: Comparative results using different prompt
sources. We use GPT-2 Small with class names as the
verbalizer, limiting the LM to a maximum of 5 average
calls during inference.

6 Analysis

6.1 Verbalizer Sensitivity

Table 4 shows the robustness of different ap-
proaches when employing a generic Yes/No ver-
balizer versus a class-name verbalizer. The results
show that Tree Prompting consistently outperforms
the baseline regardless of the verbalizer used, de-
livering decent performance even when using the
generic Yes/No verbalizer. This feature could be
useful in applications where class names are not
meaningful words, such as in distinguishing be-
tween texts generated by different decoding set-
tings (Naseh et al., 2023). Table 8 in Appendix A.3
shows full performance sensitivity results across
different settings for the underlying LM, verbalizer,

and source of prompts.

6.2 Prompt Source Sensitivity
Table 5 examines the sensitivity of various ap-
proaches to the source of prompt candidates. The
comparison between using instruction prompts and
few-shot prompts demonstrates that Tree Prompt-
ing consistently outperforms baselines regardless
of the source of prompt candidates. It’s worth not-
ing that instruction prompts generally result in bet-
ter performance than few-shot prompts, corroborat-
ing previous findings that in-context learning with
a single prompt can work as well as multiple data
demonstrations (Le Scao and Rush, 2021). How-
ever, curating instruction prompts requires extra
human effort, since new prompts must be written
for each new dataset.

6.3 Sample Complexity
Fig. 5 visualizes the performance of Tree Prompt-
ing in relation to the fraction of training sam-
ples used for training. When compared to base-
line ensembling techniques, Tree Prompting some-
times underperforms in low-data regimes (on FPB,
IMDB, and MR), but it eventually outperforms
baselines as more training data is available.

7 Related Work

Prompting Language Models The rise of large
language models (LMs) has led to a surge in the
development of effective prompting methods (Stro-
belt et al., 2022; Lu et al., 2022; Bach et al., 2022;
Logan IV et al., 2022; Zhong et al., 2022; Singh
et al., 2023b). Building on top of these methods,
emsembling techniques for averaging multiple LM
calls have shown that they often improve perfor-
mance (Jiang et al., 2020; Zhang et al., 2023a),
e.g. boosting (Hou et al., 2022; Pitis et al., 2023).
Chain prompting (Wang et al., 2022; Press et al.,
2022; Chase, 2023; Rush, 2023) is a widely used
method that divides complex tasks into manage-
able subtasks, linking these via prompt-LM calls.
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This approach has proven effective across various
applications, aligning with our intuition underlying
this work: an LM can handle individual steps of
a task more accurately than executing the task in
full (Ma et al., 2023; Madaan et al., 2023; Zhang
et al., 2023b). However, while chain prompting
links prompt-LM calls, our approach organizes
them within a decision tree, learning the tree struc-
ture and selecting appropriate prompts for each
node.

Frugal GPT (Chen et al., 2023) also bears rele-
vance to our work, proposing a cascade of LMs that
stops when an intermediate output is considered re-
liable, resulting in better computational efficiency.
Viewed from the perspective of decision trees, this
approach resembles a right-branching decision tree.

Concurrent to our work, Tree of Thoughts (Yao
et al., 2023; Long, 2023) organizes LM-generated
“thoughts” within a tree structure for solution
search. While we also use a tree structure, our aim
is to partition the input space to simplify the LM’s
tasks at lower tree levels. We search the tree’s struc-
ture and the prompt at each node during training,
while keeping these elements static during infer-
ence. In contrast, Tree of Thoughts adjusts node
prompts dynamically based on upper-level results.
This sets it apart from our approach, where prompts
remain constant post-training. Collectively, these
works demonstrate the growing interest in merging
tree structures with LMs for task decomposition,
albeit with varied focuses and methodologies.

Decision Tree Applications Dating back
decades, decision trees have been a prevalent
choice in the realms of classification and re-
gression problems (Costa and Pedreira, 2022).
In the field of natural language processing,
decision trees and their ensemble variants such as
Random Forest (Breiman, 2001), Gradient-boosted
Trees (Freund et al., 1996), XGBoost (Chen and

Guestrin, 2016), and BART (Chipman et al., 2010)
have found use in areas like part-of-speech tag-
ging (Magerman, 1995), syntactic parsing (Collins,
1997), and text classification (Sebastiani, 2002;
Singh et al., 2023a). However, these studies
predominantly utilize pre-defined textual features
within their decision tree frameworks, contrasting
our approach where the decision tree is used to
direct the language model’s behavior.

Decision Trees for Interpretability Decision
trees have also been applied to increase the inter-
pretability of neural models. For example, Wan
et al. (2021) used a decision tree structure where
each node is a neural classifier for image classifica-
tion. Zhang and Zhu (2019) learned a decision tree
to explain the decisions made by an image classifier
post hoc. While these works primarily target vision-
based applications, we adopt a similar strategy for
natural language processing, where each node in
our decision tree embodies a distinct prompt-LM
call. Furthermore, our dynamic prompt setting en-
ables the concurrent learning of prompts and the
decision tree structure, distinguishing our method
from conventional decision tree applications that
function within a pre-defined feature space.

8 Conclusions and Future Work

We introduce the Tree Prompting approach, a use
of decision trees for task adaptation. Experiments
demonstrate that Tree Prompting can offer im-
proved performance across various text classifi-
cation tasks while still remaining efficient during
inference. On many tasks, the model is compet-
itive with gradient fine-tuning. Additionally, the
approach can be used with dynamic prompt cre-
ation to yield interpretable models.

Our results suggest a future direction of explor-
ing a flexible and modularized assembly of models.
One exciting direction is to extend Tree Prompting



to generalize to tasks beyond text classification, us-
ing previous outputs to guide subsequent prompts
and LMs. Further exploration could involve ex-
tending Tree Prompting to jump across nodes in
the tree (similar to Long (2023)) or introduce cy-
cles in the tree (similar to Besta et al. (2023)),
and ultimately developing a program of prompts
by navigating various nodes in a decision tree as
though calling different functions. Another direc-
tion could explore incorporating different criteria
into the tree-building algorithm, e.g. fairness (Jo
et al., 2022), sparsity (Hu et al., 2019; Tan et al.,
2022), or smoothness (Agarwal et al., 2022).

9 Limitations

Sample Complexity While Tree Prompting’s
adaptability and flexibility are its strengths, they
also contribute to its higher sample complexity. As
shown in Sec. 6.3, Tree Prompting lags behind few-
shot prompting in low-data environments. Decision
trees inherently risk overfitting, particularly when
dealing with numerous features. This shortcom-
ing can be partially offset through the use of larger
training sets, and by restricting the tree’s size in
relation to the training set size.

Training Cost Although Tree Prompting de-
mands fewer LM calls during inference compared
to analogous techniques, its training process, which
involves learning the decision tree, requires com-
puting prompt features for every example in the
associated data subset at each node. This can be
resource-intensive for large LMs. Additionally,
when paired with dynamic prompts that leverage
automatic prompting methods (which are typically
computation-heavy), the training process can be
substantially expensive as each node necessitates
running the autoprompting method once.

Interpretability While decision trees are typi-
cally celebrated for their interpretability, the inter-
pretability of Tree Prompting is bounded by the
nature of the prompts and the verbalizer. Specif-
ically, when employing a pre-defined prompt, its
interpretability may not be as intuitive as that of
dynamic prompts. If the prompt itself (such as
when using few-shot demonstrations) lacks inter-
pretability, the entire decision tree’s interpretability
is likely to be compromised.
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A Appendix

A.1 Data
Table 6 presents dataset statistics, and Table 7
shows example input, output pairs from each
dataset.

A.2 Tree Visualizations
Appendix A.2 shows another example tree learned
on the MR dataset.

A.3 Full Ablation Results
Full ablation results for different choices of
prompts and verbalizers can be found in Table 8.
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CB CR RTE TREC Emotion FPB SST2 SUBJ MPQA MR AGNews DBPedia IMDB

Classes 3 2 2 6 6 3 2 2 2 2 4 14 2
Train Size (k) 0.25 1.77 2.49 5.45 5.45 2.31 67.35 8.00 8.60 8.66 120.00 50.00 25.00

Table 6: Dataset statistics

Dataset Text Label

SST2 that loves its characters and communicates something rather beautiful about human
nature

positive

SUBJ the script isn’t very good ; not even someone as gifted as hoffman ( the actor ) can
make it work .

subjective

MPQA victory of democracy positive
AGNews Wall St. Bears Claw Back Into the Black (Reuters). “Reuters - Short-sellers, Wall

Street’s dwindling band of ultra-cynics, are seeing green again.”
business

CB Premise: “Do you mind if I use your phone?” Ronni could see that Guido’s brain
was whirring. Hypothesis: Guido’s brain was whirring

entailment

CR i didn ’t have any major problems installing this software . positive
DBPedia Geoffrey D. Falksen (born July 31 1982) is an American steampunk writer. artist
MR the film is flat . negative
RTE Sentence 1: No Weapons of Mass Destruction Found in Iraq Yet. Sentence 2:

"Weapons of Mass Destruction Found in Iraq.
not_entailment

TREC What ’s known as The queen of Drinks ? entity
FPB According to Gran , the company has no plans to move all production to Russia ,

although that is where the company is growing .
neutral

IMDB would put this at the top of my list of films in the category of unwatchable trash! [...] negative
Emotion i can go from feeling so hopeless to so damned hopeful just from being around

someone who cares and is awake
sadness

Table 7: Data examples

“positive”“negative”

Figure 6: Example tree for the MR dataset. We use GPT-J and search for 10 instruction prompts.Class names
(positive/negative) are used as the verbalizer.
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Figure 7: Performance when varying the LLM used to select prompts versus evaluate performance. Each heatmap
shows the test ROC AUC achieved averaged across 4 datasets (SST2, Emotion, Financial Phrasebank, and Rotten
tomatoes) using either a single prompt, Tree Prompting, or a Tree Promptinggradient-boosting ensemble. Unsur-
prisingly, performance is best when building a tree of prompts on the same dataset as is used for testing. Trees
from Tree Prompting still induce better performance when transferring to new LLMs than individual prompts. All
prompting strategies select from 40 “Instructions” prompts as in Table 5).



Dataset Model Prompts Verbalizer Ensemble
(Greedy)

Ensemble
(Boosting)

Tree
Prompting

Emotion

GPT-2
1-Shot Class names 0.56 0.56 0.59
5-Shot Class names 0.59 0.54 0.63
Instruction Class names 0.76 0.63 0.77

GPT-J
1-Shot Class names 0.71 0.68 0.72
5-Shot Class names 0.72 0.70 0.76
Instruction Class names 0.71 0.57 0.73

FPB

GPT-2

1-Shot Class names 0.62 0.60 0.74
Yes/no 0.58 0.59 0.64

5-Shot Class names 0.73 0.74 0.74
Yes/no 0.72 0.73 0.76

Instruction Class names 0.77 0.72 0.81

GPT-J

1-Shot Class names 0.72 0.72 0.76
Yes/no 0.57 0.57 0.72

5-Shot Class names 0.72 0.72 0.84
Yes/no 0.58 0.58 0.65

Instruction Class names 0.80 0.77 0.86

IMDB

GPT-2 1-Shot Class names 0.62 0.62 0.66
Yes/no 0.59 0.59 0.69

Instruction Class names 0.91 0.88 0.92

GPT-J 1-Shot Class names 0.96 0.96 0.97
Yes/no 0.95 0.96 0.97

Instruction Class names 0.93 0.92 0.95

MR

GPT-2

1-Shot Class names 0.65 0.64 0.73
Yes/no 0.72 0.73 0.79

5-Shot Class names 0.50 0.50 0.51
Yes/no 0.58 0.58 0.64

Human-1 Class names 0.84 0.83 0.85

GPT-J

1-Shot Class names 0.92 0.92 0.93
Yes/no 0.88 0.87 0.93

5-Shot Class names 0.93 0.95 0.96
Yes/no 0.80 0.80 0.93

Human-1 Class names 0.86 0.85 0.88

SST2

GPT-2

1-Shot Class names 0.77 0.78 0.80
Yes/no 0.76 0.76 0.77

5-Shot Class names 0.61 0.61 0.74
Yes/no 0.75 0.75 0.80

Instruction Class names 0.88 0.87 0.88

GPT-J

1-Shot Class names 0.93 0.94 0.97
Yes/no 0.90 0.90 0.94

5-Shot Class names 0.93 0.94 0.97
Yes/no 0.58 0.58 0.58

Instruction Class names 0.87 0.87 0.90

Table 8: Performance (ROC AUC) for different ensembling strategies when using at most 5 LM calls across
different datasets, models, prompts, and verbalizers. Emotion is not compatible with a Yes/No verbalizer, so it has
two fewer rows. Some rows are missing for datasets for which 5 demonstrations are too long to fit in context.


