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ABSTRACT

Post-deployment machine learning algorithms often influence the environments they act in, and thus shift
the underlying dynamics that the standard reinforcement learning (RL) methods ignore. While designing
optimal algorithms in this performative setting has recently been studied in supervised learning, the RL
counterpart remains under-explored. In this paper, we prove the performative counterparts of the perfor-
mance difference lemma and the policy gradient theorem in RL, and further introduce the Performative
Policy Gradient algorithm (PePG). PePG is the first policy gradient algorithm designed to account for
performativity in RL. Under softmax parametrisation, and also with and without entropy regularisation, we
prove that PePG converges to performatively optimal policies, i.e. policies that remain optimal under the
distribution shifts induced by themselves. Thus, PePG significantly extends the prior works in Performative
RL that achieves performative stability but not optimality. Furthermore, our empirical analysis on standard
performative RL environments validate that PePG outperforms standard policy gradient algorithms and the
existing performative RL algorithms aiming for stability.

1 INTRODUCTION

Reinforcement Learning (RL) studies the dynamic decision making problems under incomplete information (Sutton & Barto,
1998). Since an RL algorithm tries and optimises an utility function over a sequence of interactions with an unknown
environment, RL has emerged as a powerful tool for algorithmic decision making. Specially, in the last decade, RL has
underpinned some of the celebrated successes of AI, such as championing Go with AlphaGo (Silver et al., 2014), controlling
particle accelerators (St. John et al., 2021), aligning Large Language Models (LLMs) (Bai et al., 2022), reasoning (Havrilla
et al.), to name a few. But the existing paradigm of RL assumes that the underlying environment with which the algorithm
interacts stays static over time and the goal of the algorithm is to find the utility-maximising, aka optimal policy for choosing
actions over time for this specific environment. But this assumption does not hold universally.

In this digital age, algorithms are not passive. Their decisions also shape the environment they interact
with, inducing distribution shifts. This phenomenon that predictive AI models often trigger actions that influ-
ences their own outcomes is termed as performativity. In the supervised learning setting, the study of per-
formative prediction is pioneered by Perdomo et al. (2020), and then followed by an extensive literature en-
compassing stochastic optimisation, control, multi-agent RL, games (Izzo et al., 2021; 2022; Miller et al., 2021;
Li & Wai, 2022; Narang et al., 2023; Piliouras & Yu, 2023; Góis et al., 2024; Barakat et al., 2025) etc.
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Figure 1: Average reward (over 10 runs) obtained
by ERM and Performative Optimal policies across
performative strength β.

There has been several attempts to achieve performative optimality or
stability for real-life tasks— recommendation systems (Eilat & Rosen-
feld, 2023), measuring the power of firms (Hardt et al., 2022; Mofakhami
et al., 2023), healthcare (Zhang et al., 2022) etc. Performativity of al-
gorithms is also omnipresent in practically deployed RL systems. For
example, an RL algorithm deployed in a recommender system does not
only aim to maximise the user satisfaction but also shifts the preferences
of the users in the long-term (Chaney et al., 2018; Mansoury et al., 2020).
To clarify the impact of performativity, let us consider an example.

Example 1 (Performative RL in loan approval). Let us consider a loan
approval problem, where an applicant obtains a loan (or get rejected)
according to their credit score x, and x depends on the capital of the
applicant and that of the population. At each time t, a loan applicant
arrives with a credit score xt sampled fromN (µt, σ

2). The bank chooses
whom to give a loan by applying a softmax binary classifier πθ : R →
{0, 1} on x with threshold parameter θ. This decision has two effects. (a) The bank receives a positive payoff R, if the loan
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applicant who was granted a loan repays, or else, loses by L. Thus, the bank’s expected utility for policy πθ is U(θ, µ) =
Ex∼N (µ,σ2)

[
πθ(x)(P(repayment|x)R − (1 − P(repayment|x))L)

]
. (b) Since the amount of capital both the applicant and

the population influence the credit score, we model that the change in the population mean µt+1 depends on the bank’s policy,
via a grant rate Ex∼N (µt,σ2

t )

[
πθ(x)

]
. Specifically, µt+1 = (1 − β)µt + βf

(
Ex∼N (µt,σ2

t )

[
πθ(x)

])
, where β ∈ [0, 1] is the

performative strength and f : R→ [−M,M ]. Now, if one ignores the performative nature of this decision making problem,
and try to find out the optimal with respect to a static credit distribution, it obtains θERM ≜ argmaxθ U

(
θ, µ0

)
. In contrast, if

it considers performativity, it obtains θPerf ≜ argmaxθ U
(
θ, µ∗(θ)

)
. In Figure 1, we show that the average reward obtained

by both the solutions are significantly different. This demonstrates why performativity is a common phenomenon across
algorithmic decision making problems, and how it changes the resulting optimal solution. Further details are in Appendix B.

These problem scenarios have motivated the study of performative RL. Though Bell et al. (2021) were the first to propose a
setting where the transition and reward of an underlying MDP depend non-deterministically on the deployed policy, Mandal
et al. (2023) formally introduced Performative RL, and its solution concepts, i.e., performatively stable and optimal policies.
Performative stable policies do not get affected or changed due to distribution shifts after deployment. Performatively optimal
policies yield the highest expected return once deployed in the performative RL environment. Mandal et al. (2023) proposed
direct optimization and ascent based techniques that attains performative stability upon repeated retraining. Extending this
work, Rank et al. (2024) and Mandal & Radanovic (2024) manage to solve the same problem with delayed retraining for
gradually shifting and linear MDPs. However, there exists no algorithm yet in performative RL that provably converges to the
performative optimal policy.

As we know from the RL literature, the Policy Gradient (PG) type of algorithms that treats policy as a parametric function
and updates the parameters through gradient ascent algorithms are efficient and scalable (Williams, 1992; Sutton et al., 1999;
Kakade, 2001). Some examples of successful and popular policy gradient methods include TRPO (Schulman et al., 2015),
PPO (Schulman et al., 2017),NPG (Kakade, 2001), which are widely used in modern RL applications. Recent theoretical
advances also establish finite-sample convergence guarantees and complexity analyses (Agarwal et al., 2021; Yuan et al.,
2022) of PG algorithms. Motivated by the simplicity and universality of the PG algorithms, we ask these two questions in the
context of performative RL:

1. How to design PG-type algorithms for performative RL environments to achieve optimality?
2. What are the minimal conditions under which PG-type algorithms converge to the performatively optimal policy?

Our contributions address these questions affirmatively, and showcases the difference of optimality-seeking and stability-
seeking algorithms in performative RL.

I. Algorithm Design: We propose the first Performative Policy Gradient algorithm, PePG, for performative RL environments.
Specifically, we extend the classical vanilla PG and entropy-regularised PG algorithms to Performative RL settings. Though
the general algorithm design stays same, we derive a performative policy gradient theorem that shows, evaluation of the
gradient involves two novel gradient terms in performative RL – (a) the expected gradient of reward, and (b) the expected
gradient of log-transition probabilities times its impact on the expected cumulative return. We leverage this theorem to propose
an estimator of the performative policy gradient under any differentiable parametrisation.

II. Convergence to Performative Optimality. We further analyse PePG (with and without entropy regularisation) for
softmax policies, and softmax Performative Markov Decision Processes (PeMDPs), i.e. the MDPs with softmax transition
probabilities and linear rewards with respect to the parameters of the softmax policy. We provide a minimal recipe to prove
convergence of PePG using (a) smoothness of the performative value function, and (b) approximate gradient domination
lemma for performative policy gradients. This allows us to show that PePG converges to an ϵ-ball around performative
optimal policy in Ω

(
|S||A|2
ϵ2(1−γ)

)
iterations, where |S| and |A| are the number of states and actions, respectively.

Specifically, Mandal et al. (2023) frames the question of using policy gradient to find stable policies as an open problem. The
authors further contemplate, as PG functions in the policy space, whether it is possible to converge towards a stable policy. In
this paper, we affirmatively solve an extension to this open problem for tabular softmax PeMDPs with softmax policies.

III. Stability- vs. Optimality-seeking Algorithms in Performative RL. We further theoretically and numerically con-
trast the performances of stability-seeking and optimality-seeking algorithms. Theoretically, we derive the performative
performance difference lemma that distinguished the effect of policy update in these two types of algorithms. Numerically,
we compare the performances of PePG with the state-of-the-art MDRR (Mixed Delayed Repeated Retraining (Rank et al.,
2024)) algorithm for finding performatively stable policies in the multi-agent environment proposed by (Mandal et al., 2023).
We show that PePG yields significantly higher values functions than MDRR, while MDRR achieves either similar or lower
distance from stable state-action distribution than PePG .
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2 PRELIMINARIES: FROM RL TO PERFORMATIVE RL

Now, we formalise the RL and performative RL problems, and provide the basics of policy gradient algorithms in RL.

2.1 RL: INFINITE-HORIZON DISCOUNTED MDPS

In RL, we mostly study Markov Decision Processes (MDPs) defined via the tuple (S,A,P, r, γ), where S ⊆ Rd is the state
space and A ⊆ Rd is the action space. Both the spaces are assumed to be compact. At any time step t ∈ N, an agent
plays an action at ∈ A at a state st ∈ S. It transits the MDP environment to a state st+1 according to a transition kernel
P(· | st, at) ∈ ∆(S). The agent further receives a reward r(st, at) ∈ R quantifying the goodness of taking action at at st.
The strategy to take an action is represented by a stochastic map, called policy, i.e. π : S → ∆(A). Given an initial state
distribution ρ ∈ ∆(S), the goal is to find the optimal policy π⋆ that maximises the expected discounted sum of rewards, i.e.,
the value function: Vπ(ρ) ≜ Es0∼ρ,st+1∼P(·|st,π(st))

[
∑∞
t=0 γ

tr(st,π(st))] , where γ ∈ (0, 1) is called the discount factor.
γ indicates how much a previous reward matters in the next step, and bounds the effective horizon of a policy to 1

1−γ .

Algorithm 1 Vanilla Policy Gradient

1: Input: Learning rate η > 0.
2: Initialize: Policy parameter θ0(s, a)∀s ∈ S, a ∈ A.
3: for t = 1 to T do
4: Estimate the gradient ∇θV

π(ρ) |θ=θt

5: Gradient ascent step: θt+1 ← θt + η∇θV
π(ρ) |θ=θt

6: end for

Policy Gradient (PG) Algorithms. PG-type algorithms
maximise the value function by directly optimising the pol-
icy through a gradient over value function (Williams, 1992).
To compute the gradient, we choose a parametric family of
policies πθ for some θ ∈ Rd (e.g. direct (Agarwal et al.,
2021; Wang & Zou, 2022), softmax (Agarwal et al., 2021;
Mei et al., 2020), Gaussian (Ciosek & Whiteson, 2020;
Ghavamzadeh & Engel, 2006)). Specifically, vanilla PG
(Algorithm 1), performs a gradient ascent on the policy pa-
rameter at each step t ∈ N. As the goal is to maximise

V π(ρ), we update θ towards ∇θV
π(ρ), which is the direction improving the value V π(ρ) with a fixed learning rate η > 0.

For vanilla PG, the policy gradient takes the convenient form leading to estimators computable only with policy rollouts.
Theorem 1 (Policy Gradient Theorem (Sutton et al., 1999)). Fix a differentiable paramterisation θ 7→ πθ(a | s) and an initial
distribution ρ. Let us define the Q-value function Qπθ (s, a) ≜ Est+1∼Pπ(·|st,π(st)) [

∑∞
t=0 γ

tr(st,π(st)) | s0 = s, a0 = a],
and advantage function Aπθ (s, a) ≜ Qπθ (s, a)− V πθ (s). Then,

∇θV
πθ (ρ) =

1

1− γ
Eτ∼Pπθ

πθ

[ ∞∑
t=0

γtQπθ (s, a)∇θ logπθ(a | s)

]
= Eτ∼Pπθ

πθ

[ ∞∑
t=0

γtAπθ (s, a)∇θ logπθ(a | s)

]
.

Since the value function is not concave in the policy parameters, achieving optimality with PG has been a challenge. But prac-
tical scalability and efficiency of these algorithms has motivated a long-line of work to understand the minimum conditions
and parametric forms of policies leading to convergence to the optimal policy (Agarwal et al., 2021; Mei et al., 2020; Wang
& Zou, 2022; Yuan et al., 2022). Our work extends these algorithmic techniques and theoretical insights to performative RL.

2.2 PERFORMATIVE RL: INFINITE-HORIZON DISCOUNTED PEMDPS

Given a policy set π ∈ Π, we denote the Performative Markov Decision Process (PeMDP) is defined as the set of MDPs
{M(π) | π ∈ Π}, where each MDP is a tuple M(π) ≜ (S,A,Pπ, rπ, γ). Note, that the transition kernel and rewards
distribution are no more invariant with respect to the policy. They shift with the deployed policy π ∈ ∆(A) (Mandal et al.,
2023; Mandal & Radanovic, 2024). In this setting, the probability of generating a trajectory τπ ≜ (st, at)

∞
t=0 under policy

π with underlying MDP M(π′) is given by1 Pπ
π′(τ | ρ) ≜ ρ(s0)

∏∞
t=0 π(at | st)Pπ′(st+1 | st, at) , where ρ ∈ ∆(S)

is the initial state distribution. Furthermore, the state-action occupancy measure for deployed policy π and environment-
inducing policy π′ is defined as dπ

π′,ρ ≜ (1− γ)Eτ∼Pπ

π′
[
∑∞
t=0 γ

t1(st = s, at = a) | s0 ∼ ρ]. Now, we are ready to define
the performative expected return, referred as the performative value function that we aim to maximise while solving PeMDP.
Definition 1 (Performative Value Function). Given a policy π ∈ Π and an initial state distribution ρ ∈ ∆(S), the performa-
tive value function V π

π (ρ) is

V π
π (ρ) ≜ Eτ∼Pπ

π

[ ∞∑
t=0

γtrπ(st,π(st)) | s0 ∼ ρ

]
. (1)

1Hereafter, for relevant quantities, π in superscript denotes the deployed policy, and π′ in the subscript denoted the environment-
inducing, i.e. the policy inducing the transition kernel and reward function that the algorithm interacts with.
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Equation (2) gives the total expected return that captures the performativity aspect in PeMDPs as the underlying dynamics
changes with a deployed policy π(· | s).
On a similar note, we define the performative Q-value function (or action-value function) of a policy π as follows.
Definition 2 (Performative Q-value). Given a policy π ∈ Π and a state-action pair (s, a) ∈ (S,A) , the performative
Q-value function Qπ

π(s, a) is

Qπ
π(s, a) ≜ Eτ∼Pπ

π

[ ∞∑
t=0

γtrπ(st, at)
∣∣∣s0 = s, a0 = a

]
(2)

The Q-value satisfies the following Bellman equation:

Qπ
π(s, a) = rπ(s, a) + γEs′∼Pπ(·|s,a) [V

π
π (s′)] (3)

Note that, we can maximise performative value function in two ways: (i) considering π as both the environment-inducing
policy and the policy the RL agent deploys, or (ii) deploying π to fix it as the environment-inducing policy and agent plays
another policy π′. At this vantage point, let us introduce the notion of optimality and stability of policies in PeMDPs (Mandal
et al., 2023).
Definition 3 (Performative Optimality). A policy π⋆o is performatively optimal if it maximizes the performative value function.

π⋆o ∈ argmax
π∈∆(A)

V π
π (ρ) . (4)

Thus, if we play the policy π in the environment induced by policy π to maximise the expected return, we land on the
performatively optimal policy.
Definition 4 (Performative Stability). A policy π⋆s is performatively stable if there is no gain in performative value function
due to deploying any other policy than π⋆s in the environment induced by π⋆s .

π⋆s ∈ argmax
π∈∆(A)

V π
π⋆

s
(ρ). (5)

As noted by Mandal et al. (2023), a performatively optimal policy may not be performatively stable, i.e., π⋆o may not be
optimal for a changed underlying environmentM(π⋆o), when it is deployed. Also, in general, the performative value function
of π⋆o might be equal to or higher than that of π⋆s . In this paper, we design PG algorithms computing the performative optimal
policy for a given set of MDPs, and reinstate their differences with performatively stable policies.

The existing literature on PeMDPs (Mandal et al., 2023; Mandal & Radanovic, 2024; Rank et al., 2024; Pollatos et al., 2025;
Chen et al., 2024) focused primarily on finding a performatively stable policy, i.e. a π⋆s according to Definition 4. In practice,
while the notion of stable policies matters for very specific applications, a stable policy may not always suffice. But they
might show large sub-optimality gaps, which are often not desired for real-life tasks. We fill up this gap in literature and
propose the first provably converging and computationally efficient PG algorithm for PeMDPs. Later on, we also empirically
show the deficiency of the existing stability finding algorithms if we aim for optimality (Section 5).

Entropy Regularised PeMDPs. Entropy regularisation has emerged as a simple but powerful technique in classical RL
to design smooth and efficient algorithms with sufficient exploration. Thus, we study another variant of the performative
value function that is regularised using discounted entropy (Mei et al., 2020; Neu et al., 2017; Liu et al., 2019; Zhao et al.,
2019). In this setting, the original value function in Definition 1 is regularised using the discounted entropy Hπ(ρ) ≜
Eτ∼Pπ

π
[−
∑∞
t=0 γ

t logπ(at | st)]. This is equivalent to maximising the expected reward with a shifted reward function
r̃π(π(st), st) = rπ(π(st), st) − λ log(π(at | st)) for some λ ≥ 0. r̃π is referred as the “soft-reward” in MDP literature
(Wang & Uchibe, 2024; Herman et al., 2016; Shi et al., 2019). This allows us to define the soft performative value function.
Definition 5 (Entropy Regularised (or Soft) Performative Value Function). Given a policy π ∈ Π, a starting state distribution
ρ ∈ ∆(S), and a regularisation parameter λ ≥ 0, the soft performative value function V π

π (ρ) is

Ṽ π
π (ρ) ≜ Eτ∼Pπ

π

[ ∞∑
t=0

γt (rπ(st,π(st))− λ logπ(at | st)) | s0 ∼ ρ

]
= Eτ∼Pπ

π

[ ∞∑
t=0

γtr̃π(st,π(st)) | s0 ∼ ρ

]
. (6)

Since policies belong to the probability simplex, the entropy regularisation naturally lends to smoother and stable PG algo-
rithms. Later, we show that the discounted entropy is a smooth function of the policy parameters for PeMDPs extending
the optimization-wise benefits of entropy regularisation to PeMDPs. Additionally, using the notion of soft rewards, we can
further define soft performatively optimal and stable policies for entropy regularised PeMDPs. Leveraging it, we unifiedly
design PG algorithms for both the unregularised and the entropy regularised PeMDPs.

4
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3 POLICY GRADIENT ALGORITHMS IN PERFORMATIVE RL

In this section, we first study the impact of policy updates in PeMDPs. Then, we leverage it to derive the performative policy
gradient theorem and design Performative Policy Gradient (PePG) algorithm for any differentiable parametric policy class.

3.1 IMPACT OF POLICY UPDATES ON PEMDPS

Performance difference lemma has been central in RL to understand the impact of changing policies in terms of value func-
tions (Kakade & Langford, 2002a). It has been also central to analysing and developing PG-type methods (Agarwal et al.,
2021; Silver et al., 2014; Kallel et al., 2024). But the existing versions of performance difference cannot handle performativ-
ity. Here, we derive the performative version of the performance difference lemma that quantifies the shift in the performative
value function due to change the deployed and environment-inducing policies.

Lemma 1 (Performative Performance Difference Lemma). The difference in performative value functions induced by π and
π′ ∈ Π while starting from the initial state distribution ρ is

V π
π (ρ)− V π′

π′ (ρ) =
1

1− γ
E(s,a)∼dπ

π′,ρ
[Aπ′

π′(s, a)]

+
1

1− γ
E(s,a)∼dπ

π′,ρ
[(rπ(s, a)− rπ′(s, a)) + γ(Pπ(·|s, a)−Pπ′(·|s, a))⊤V π

π (·)
]
. (7)

where Aπ′

π′(s, a) ≜ Qπ′

π′(s, a)− V π′

π′ (s) is the performative advantage function for any state s ∈ S and action a ∈ A.

The crux of the proof is decomposing the performative value through environment-inducing and deployed policies

V π
π (s0)− V π′

π′ (s0) = V π
π (s0)− V π

π′(s0)︸ ︷︷ ︸
performative shift term

+ V π
π′(s0)− V π′

π′ (s0)︸ ︷︷ ︸
performance difference term

.

(1) Connection to Classical RL. In classical RL, the performance difference lemma yields V π(ρ) − V π′
(ρ) =

1
1−γE(s,a)∼dπ

ρ
[Aπ′

(s, a)]. The first term in Lemma 1 is equivalent to the classical result in the environment induced by
π′. But due to environment shift, two more terms appear in the performative performance difference incorporating the im-
pacts of reward shifts and transition shifts. (2) Connection to Performative Stability. If we ignore the reward and transition
shift terms, the performance difference term V π

π′(s0) − V π′

π′ (s0) quantifies the impact of changing the deployed policy from
π′ to π in an environment induced by π′. Thus, a stability seeking algorithm would like to minimise this term, while an
optimality seeking algorithm has to incorporate all of the terms.

Now, we ask: how much do the new environment shift terms change the performative performance difference?

For simplicity, we focus on the commonly studied PeMDPs with bounded rewards and gradually shifting environments, i.e.
the ones with Lipschitz transitions and rewards with respect to the deployed policies (Rank et al., 2024).

Assumption 1 (Bounded reward). We assume that the rewards are bounded in [−Rmax, Rmax].

This is the only assumption needed through the paper and is standard in MDP literature (Mei et al., 2020; Li & Yang, 2023).

Lemma 2 (Bounding Performative Performance Difference for Gradually Shifting Environments). Let us assume that both
rewards and transitions are Lipschitz functions of policy, i.e. ∥rπ − rπ′∥∞ ≤ Lr ∥π − π′∥1 and ∥Pπ −Pπ′∥1 ≤
LP ∥π − π′∥1 , for some Lr, LP ≥ 0. Then, under Assumption 1, the performative shift in the sub-optimality gap of a
policy πθ satisfies∣∣∣V π⋆

o
π⋆

o
(ρ)− V πθ

πθ
(ρ)− 1

1− γ
E
(s,a)∼dπ

⋆
o

πθ ,ρ
[Aπθ

πθ
(s, a)]

∣∣∣ ≤ 2
√
2

1− γ
(Lr +

γ

1− γ
LPRmax)Es0∼ρDH (π⋆o(·|s0)∥πθ(·|s0)) .

(8)

where DH (x∥y) denotes the Hellinger distance between x and y.

Implication. Lemma 2 shows novel characterisation of the extra cost we pay to adapt to performativity of the environ-
ment in terms of Hellinger distance between the true performatively optimal policy π⋆o and any other parametrised policy
πθ. This implies that the order of difference between the optimal performative value function and that of any stability-
seeking algorithm is Θ( 1

1−γ ). This significantly improves the known order of sub-optimality achieved by existing algorithms.
Specifically, Mandal et al. (2023) show that using repeated policy optimisation algorithms converges to a suboptimality gap

5
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Algorithm 2 PePG: Performative Policy Gradient

1: Input: Transition Feature Map ψ(s)∀s ∈ S, ξ ∈ [−Rmax, Rmax] and discount factor γ.
2: Initialize: Initial policy parameters θ0, initial value function parameters ϕ0
3: for k = 1, 2, . . . do
4: Collect trajectories: Dk = {τi}Ii=1, where each τi ≜ {(si,t, ai,t, si,t+1, ri,t)}T−1

t=0 by playing πθk
= π(θk)

5: Compute returns Rk ≜ {Rk,i}Ii=1, where Rk,i = {Rk,i,t}T−1
t=0

6: Compute advantage estimates Âk(τi) using value function V̂ϕk
(τi) for each τi ∈ Dk (estimate of V

πθk
πθk

(τi) obtained
from fitted value network with parameters ϕk)

7: Gradient estimation: Estimate policy gradient using (12)
8: Gradient ascent step: Update policy parameters using (9)
9: Fit value function Vϕk+1

:

ϕk+1 ← argmin
ϕ

1

I · T

I∑
i=1

T−1∑
t=0

(
V̂ϕk

(st ∈ τi)−Rk,i,t
)2

10: end for

O
(
max{S

5/3A1/3ϵ2/3

(1−γ)14/3 , ϵS
(1−γ)4 }

)
. Thus, we see an opportunity to improve on the existing works and design algorithms that

can achieve suboptimality gap of order Θ( 1
1−γ ).

Additionally, we note that an optimality-seeking algorithm tries to minimise both the advantage function and the effect of the
shifts in the environment quantified by the Hellinger distance, i.e., DH (π⋆o(·|s0)∥πθ(·|s0)). While it suffices for a stability-
seeking algorithm to minimise the advantage function, and thus, we cannot minimise the RHS of Equation (8) lower than
DH (π⋆o(·|s0)∥πθ(·|s0)). Thus, optimality-seeking algorithms can achieve a lower performative performance difference than
the stability-seeking algorithms if they also learn and incorporate the performative shifts in the environment.

3.2 ALGORITHM DESIGN: PERFORMATIVE POLICY GRADIENT (PePG)

To achieve performative optimality, the goal is to maximise value function at the end of learning process. Gradient ascent
is a standard first-order optimisation method to find maxima of a function. Similar to Algorithm 1, the crux of performative
policy gradient method lies in the ascent step:

θt+1 ←
{
θt + ηt∇θV

πθ
πθ

(τ) |θ=θt
, for unregularised objective

θt + ηt∇θṼ
πθ
πθ

(τ) |θ=θt , for Entropy-regularised objective.
(9)

Given this ascent step, we have to evaluate the gradient at each time step from the rollouts of the present policy. In classical
PG, the policy gradient theorem serves this purpose (Williams, 1992; Sutton et al., 1999; Silver et al., 2014). Thus, we derive
the performative counterpart of the classic policy gradient theorem.
Theorem 2 (Performative Policy Gradient Theorem). The gradient of the performative value function w.r.t θ is as follows:

(a) For the unregularised objective,

∇θV
πθ
πθ

(τ) = Eτ∼Pπθ
πθ

[ ∞∑
t=0

γt
(
Aπθ

πθ
(st, at) (∇θ logπθ(at | st) +∇θ logPπθ

(st+1|st, at)) +∇θrπθ
(st, at)

)]
, (10)

(b) For the entropy-regularised objective, we define the soft advantage, soft Q, and soft value functions with respect to the soft
rewards r̃πθ

satisfying Ãπθ
πθ

(s, a) = Q̃πθ
πθ

(s, a)− Ṽ πθ
πθ

(s) that further yields

∇θṼ
πθ
πθ

(τ) = Eτ∼Pπθ
πθ

[ ∞∑
t=0

γt
(
Ãπθ

πθ
(st, at) (∇θ logπθ(at | st) +∇θ logPπθ

(st+1|st, at)) +∇θ r̃πθ
(st, at|θ)

)]
. (11)

PePG: To elaborate on the design of PePG (Algorithm 2), we focus only on the REINFORCE update and softmax policy
parametrisation. With the appropriate parameter choices, and initialisation of the policy parameter θ and value function
parameter ϕ, for each episode k = 1, 2, . . ., PePG collects I trajectories to calculate return Ri and estimates advantage

6
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function Âk (Line 4-6). For a particular trajectory τi, the estimated advantage for a given state-action is ̂A
πθk
πθk

(sit, a
i
t) =

Rit,k − Vϕk
(sit), where Ri =

∑T−1
t=0 γtrπθk

(sit, a
i
t).

Gradient Estimation (Line 7). With the necessary estimates in hand for all the collected I trajectories, PePG computes
average gradient estimate over all the trajectories using

̂∇θk
V

πθk
πθk

=
1

I

I∑
i=1

T∑
t=0

γt( ̂A
πθk
πθk

(sit, a
i
t)
(
∇θk

logπθk
(ait | sit) +∇θk

logPπθk
(sit+1|sit, ait)

)
+∇θk

rπθk
(sit, a

i
t|θk))

(12)

where all the individual gradients ∇θk
logPπθk

,∇θk
rπθk

and ∇θk
logπθk

have the closed form expressions for softmax
parametrisation according to Equation (35). Further, in Line 8, PePG updates the policy parameter for the next episode using

a gradient ascent step leveraging the estimated average gradient over all I trajectories. Specifically, we plug in ̂∇θk
V

πθk
πθk

to
both the unregularised and entropy-regularised update rules are given in Equation (9). For the next episode, we again run a
regression to update the value network plugging in the current estimates and resume the learning process further.

4 CONVERGENCE ANALYSIS OF PePG: SOFTMAX POLICIES AND SOFTMAX PEMDPS

For rigorous theoretical analysis of PePG, we restrict ourselves to softmax policy class, and softmax PeMDPs. We define the
softmax PeMDPs as the ones having softmax transition kernesls with feature map ψ(·) : S → R, and linear reward functions
with respect to the policy parameters, for all state s ∈ S and action a ∈ A. Specifically, the class of softmax PeMDPs is
{M(θ) =M(πθ) | θ ∈ R|S|×|A|} such that

πθ(a|s) =
eθs,a∑
a′ e

θs,a′
, Pπθ

(s′|s, a) = eθs,aψ(s
′)∑

s′′ e
θs,aψ(s′′)

, rπθ
(s, a) = P[−Rmax,Rmax][ξθs,a] , (13)

where ψ is non-negative and upper bounded by ψmax > 0, and ξ ∈ [0, Rmax] to align with Assumption 1.

Thus, we derive the derivatives of policy, transitions, and rewards as
∂

∂θs′,a′
logπθ(a|s) = 1[s = s′, a = a′]− πθ(a

′|s)1[s = s′],

∂

∂θs′,a′
logPπθ

(s′′|s, a) = ψ(s′′)1[s = s′, a = a′] (1−Pπθ
(s′′|s, a)) , ∂

∂θs′,a′
rπθ

(s, a) = ξ1[s = s′, a = a′] .

(14)

Given the derivatives, we can now readily estimate the policy gradient and deploy PePG for softmax PeMDPs.

Convergence Analysis: Challenges and Three Step Analysis. The main challenge to prove convergence of PePG is that
the performative value function is not concave in the paramterisation θ, in general, and also in softmax PeMDPs. The similar
issue occurs while proving convergence of PG-type algorithms in classical RL, which has been overcome by leveraging
smoothness properties of the value functions and by deriving the local Polyak-Lojasiewicz (PL)-type conditions, known as
gradient domination, with respect to the policy paramterisation. Leveraging these insights, we devise a three step convergence
analysis for PePG.

Step 1: Smoothness of Performative Value Functions. First, we prove that the unregularised performative value function is
O( |A|

(1−γ)2 ) smooth. As we show that the entropy is also a smooth function for softmax PeMDPs, then under proper choice of

the regaularisation parameter, i.e., λ = 1−γ
1+2 log |A| , entropy regularised performative value function is alsoO( |A|

(1−γ)2 ) smooth.
Since gradient ascent/descent methods can work well in smooth functions, we proceed thoroughly.

Step 2: Gradient Domination for Softmax PeMDPs. Now, the next step is to relate the performative performance difference
with the performative policy gradient. This allows us to connect the per iteration improvement in the performative value
function with the performative gradient descent at that step. These are known as PL-type inequalities. For non-concave
objectives, PL inequalities guarantee convergence to global maxima by showing that the gradient of the objective at any
parameter dominates the sub-optimality w.r.t. that parameter.
Lemma 3 (Performative Gradient Domination for Softmax PeMDPs). Let us consider PeMDPs defined in (13).

(a) For unregularised value function,

V
π⋆

o
π⋆

o
(ρ)− V πθ

πθ
(ρ) ≤

√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θV
πθ
πθ

(ν)∥2 +
Rmax

1− γ

(
1 +

2γ

1− γ
ψmax

)
. (15)
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Algorithms Regulariser λ Min. #samples Environment

RPO FS (Mandal et al., 2023) O
(

|S|+γ|S|5/2
(1−ω)(1−γ)4

)
|A|2|S|3

ϵ4(1−γ)6λ2 ln (#iter) Direct PeMDPs + quadratic-regul. on occupancy
ω-dependence between two envs.

MDRR (Rank et al., 2024) O
(

|S|+γ|S|5/2
(1−ω)(1−γ)4

)
|A|2|S|3

ϵ4(1−γ)6λ2 ln (#iter) Direct PeMDPs + quadratic-regul. on occupancy
ω-dependence between two envs.

PePG (This paper) Rmax(1−γ)
1+log(|A|)

|S||A|2
ϵ2(1−γ)3 softmax PeMDPs + entropy regul. on policy

PePG (This paper) 0 |S||A|
ϵ2 max

{
γRmax|A|
(1−γ)3 , γ2

(1−γ)4

}
unregularised softmax PeMDPs

Table 1: Comparison of theoretical performance of SOTA stability-seeking algorithms against PePG.

(b) For entropy-regularised value function, Ṽ π⋆
o

π⋆
o
(ρ)− Ṽ πθ

πθ
(ρ) ≤

√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θV
πθ
πθ

(ν)∥2 +
Rmax

1− γ

(
1 +

2γ

1− γ
ψmax

(
1 +

λ

Rmax
log |A|

))
+

λ

1− γ
(1 + 2 log |A|) . (16)

Step 3: Iterative Application of Gradient Domination for Smooth Functions. Now, we can apply gradient domination
along with the classic iterative convergence proof of gradient ascent for smooth functions. The intuition is that since the per-
step sub-optimality is dominated by the gradient and the smooth functions are bounded by quadratic envelopes of parameters,
applying gradient ascent iteratively would bring the sub-optimality down to small error level after enough iterations. We
formalise this in Theorem 3.

Theorem 3 (Convergence of PePG in softmax PeMDPs). Let Cov ≜ maxθ,ν

∥∥∥∥∥d
π⋆
o

πθ ,ρ

d
πθ
πθ ,ν

∥∥∥∥∥
∞

. The gradient ascent algorithm on

V πθ
πθ

(ρ) (Equation (9)) satisfies, for all distributions ρ ∈ ∆(S).

(a) in the unregularised case with η = Ω(min{ (1−γ)
2

γ|A| ,
(1−γ)3
γ2 }), mint<T

{
V

π⋆
o

π⋆
o
(ρ) − V πθt

πθt
(ρ)
}
≤ ϵ + O

(
1

1−γ

)
when

T = Ω

(
|S||A|
ϵ2 max

{
γRmax|A|
(1−γ)3 , γ2

(1−γ)4

})
.

(b) in the entropy regularisation scenario with λ = (1−γ)
1+2 log |A| and η = Ω

(
(1−γ)2
γ|A|

)
, mint<T

{
Ṽ

π⋆
o

π⋆
o
(ρ) − Ṽ π

(t)
θ

π
(t)
θ

(ρ)
}
≤

ϵ+O
(

1
1−γ

)
when T = Ω

(
|S||A|2Cov2

ϵ2(1−γ)3

)
.

Implications. (1) We observe that PePG converges to an ϵ-optimal policy in |S||A|2
ϵ2(1−γ)3 iterations. This reduces the sample

complexity required for the existing stability-seeking algorithms by at least an order |S|2
ϵ2(1−γ)3 , and shows efficiency of using

PePG than the algorithms directly optimising the occupancy measures. (2) Additionally, the regularisation parameters needed
for the existing algorithms are pretty big and bigger than |S|

(1−γ)4 . This is counter-intuitive and does not match the experimen-

tal observations. Here, we prove that setting the regularisation parameter to 1−γ
1+2 log |A| suffices for proving convergence to

optimality. (3) The minimum number of samples required to achieve convergence is proportional to the square of coverage
for the softmax PeMDP. This is a ubiquitous quantity dictating convergence of PG-methods in classical RL (Agarwal et al.,
2021; Mei et al., 2020), and retraining methods in performative RL (Mandal et al., 2023; Rank et al., 2024). (4) TheO

(
1

1−γ

)
suboptimality gap appearing in Theorem 3 is analogous to the effect of using relaxed weak gradient domination result (Yuan
et al., 2022, Corollary 3.7). It argues that if the policy gradient in classical MDPs satisfies the relaxed weak gradient domina-
tion, i.e., ϵ′ + ∥∇θV (θ)∥ ≥ 2

√
µ (V ∗ − V (θ)) for some µ > 0 and ϵ′ > 0, then the corresponding policy gradient method

guarantees mint∈{0,...,T}(V
∗ − V (θt)) ≤ O(ϵ) +O(ϵ′) for big enough T . Lemma 3 constructs the performative counterpart

of this relaxed weak gradient domination property with ϵ′ = O
(

1
1−γ

)
. Similarly, (Sahitaj et al., 2025) also supports exis-

tence of such a gap empirically for Markov potential games. Thus, this indicates an inherent property of performative policy
gradient which has to incorporate gradients of transitions and rewards along with gradients of policies at every step.
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5 EXPERIMENTAL ANALYSIS

In this section, we empirically compare the performance of PePG in the performative reinforcement learning setting and
analyse its behaviour against the state-of-the-art stability-finding methods. 2

Performative RL Environment. We evaluate PePG in the Gridworld test-bed (Mandal et al., 2023), which has become a
standard benchmark in performative RL. This environment consists of a grid where two agents A1 (the principal) and A2 (the
follower), jointly control an actor navigating from start positions (S) to the goal (G) while avoiding hazards. The environment
dynamics are as follows: Agent A1 proposes a control policy for the actor by selecting one of four directional actions. Agent
A2 can either accept this action (not intervene) or override it with its own directional choice. This creates a performative
environment for A1, as its effective policy outcomes depend on A2’s responses to its deployed strategy.

The cost structure follows: visiting blank cells (S) incurs penalty of−0.01, goal cells (F) cost−0.02, hazard cells (H) impose
a severe penalty of −0.5, and any intervention by A2 results in an additional cost of −0.05 for the intervening agent. The
response model also follows that of Mandal et al. (2023), i.e., the agent A2 responds to A1’s policy using a Boltzmann
softmax operator. Given A1’s current policy π1, we compute the optimal Q-function Q∗|π1 for each follower agent Aj
relative to a perturbed version of the grid world, where each cell types matches A1’s environment with probability 0.7.
We then define an average Q-function over the follower agents and determine the collective response policy via Boltzmann
softmax Q∗|π1(s, a) = 1

n

∑n+1
j=2 Q

∗|π1

j (s, a), π2(a|s) = exp(β·Q∗|π1 (s,a))∑
a′ exp(β·Q∗|π1 (s,a′))

.

It is important to note that our experimental setup deliberately uses the immediate response model from the original perfor-
mative RL framework, rather than the gradually shifting environment introduced by Rank et al. (2024) that assumes slow
shifts in the environment. Our choice to use the immediate response model presents a more challenging performative setting
where the environment responds instantaneously to policy changes. This allows us to demonstrate that unlike MDRR (Rank
et al., 2024), PePG can handle the fundamental performative challenge without requiring environmental assumptions that
artificially slows down the feedback loop, thereby highlighting the robustness of the proposed PePG approach.

Experimental Setup. We evaluate PePG (with and without entropy regularisation) alongside Mixed Delayed Repeated
Retraining (MDRR), which represents the current state-of-the-art in performative reinforcement learning under gradually
shifting environments (Rank et al., 2024), and Repeated Policy Optimization with Finite Samples (RPO FS). MDRR has
demonstrated significant improvements over traditional repeated retraining methods, by leveraging historical data from mul-
tiple deployments, while RPO FS is included as the baseline method from (Mandal et al., 2023) for direct comparison with
the original performative RL approach.

All experiments use a 8 × 8 grid with γ = 0.9, exploration parameter ϵ = 0.5 for initial policy construction, one follower
agent A2, and 100 trajectory samples per iteration. The algorithms share common parameters of T = 100 iterations. For
regularization, RPO FS and MDRR use λ = 0.1 from their original experiments, while entropy-regularized PePG uses
λ = 2.0 (ablation studies for this choice are provided in the appendix). PePG uses learning rate η = 0.1, MDRR employs
memory weight v = 1.1 for historical data utilization, delayed round parameter k = 3, and FTRL parameters N = B = 10,
while RPO FS follows the finite-sample optimization from Mandal et al.

Results and Observations. Our experimental evaluation across 100 iterations reveals fundamental differences between
PePG and MDRR and RPO in the immediate response performative setting. We used shorter training compared to (Rank
et al., 2024), as this time-frame sufficiently demonstrates RPO and MDRR’s stability convergence and PePG’s progression
toward optimality.

I. Results: Optimality: The left panel reveals a clear performance hierarchy among the four methods. PePG achieves
the highest value function performance, with standard PePG reaching approximately 0.1 and regularized PePG (Reg PePG)
reaching 0.05, both showing consistent improvement from initial values around −0.15 and still progressing upward at the
end of the 100 iteration window. This steady upward progression highlights PePG’s effectiveness in discovering better
performative equilibria rather than settling for the first stable solution encountered. RPO FS remains relatively stable around
−0.05 throughout training, while MDRR stabilizes at the lowest performance level of approximately −0.2 and remains flat
throughout training.

II. Results: Comparison of Optimality- and Stability-seeking Algorithms. The results expose a critical limitation of
algorithms designed primarily for stability rather than optimality. MDRR successfully achieves its design goal, with the right
panel showing decreasing toward zero in the stability metric ∥dt+1 − dt∥2 (the L2 distance between occupancy measures of
consecutive policy iterations), indicating policy stabilization. However, this stability comes at the cost of solution quality,
as MDRR becomes trapped in a suboptimal point. The method prioritised finding any stable point over finding an optimal

2Anonymous code repository of PePG implementation is Link. Further ablation studies w.r.t. hyperparameters are in Appendix H.
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Figure 2: Comparison of evolution in expected average return (both regularised and unregularised) and stability of PePG with
SOTA stability-achieving methods. Each algorithm is run for 20 random seeds and 100 iterations.

solution. In contrast, both PePG variants exhibit higher policy variability as they actively explore for better solutions. RPO
FS maintains moderate stability around 10−1 but with limited performance improvement.

6 DISCUSSIONS, LIMITATIONS, AND FUTURE WORKS

We study the problem of Performative Reinforcement learning in tabular MDPs (PeMDPs) using softmax parametrised poli-
cies with entropy-regularised objective function, where any action taken by the agent cause potential shift in the MDP’s
underlying reward and transition dynamics. We are the first to develop PG-type algorithm, PePG, that attains performatively
optimality against the existing performative stability-seeking algorithms, affirmatively solving an extended open problem in
(Mandal et al., 2023). We also derive the novel performative counterpart of classic Performance Difference Lemma and
Policy Gradient Theorem that affirmatively captures this performative nature of the environment we act. We provide a suf-
ficient conditions to prove that PePG converges to an

(
ϵ+ 1

1−γ

)
-ball around performative optimal policy in Ω

(
|S||A|2
ϵ2(1−γ)3

)
iterations.

As we develop a PG-type algorithm, it will be interesting to see how much can we reduce variance (Wu et al., 2018; Papini
et al., 2018) while achieving optimality. We are still in the tabular setting with finite set of state-actions. A potential future
direction would be to scale PePG to continuous state-space with large number of state-actions.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. Journal of Machine Learning Research, 22(98):1–76, 2021. 2, 3, 5, 8, 17

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep
Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback.
arXiv preprint arXiv:2204.05862, 2022. 1

Anas Barakat, John Lazarsfeld, Georgios Piliouras, and Antonios Varvitsiotis. Multi-agent online control with adversarial
disturbances. arXiv preprint arXiv:2506.18814, 2025. 1, 17

James Bell, Linda Linsefors, Caspar Oesterheld, and Joar Skalse. Reinforcement learning in newcomblike environments.
Advances in Neural Information Processing Systems, 34:22146–22157, 2021. 2, 17

Gavin Brown, Shlomi Hod, and Iden Kalemaj. Performative prediction in a stateful world. In International conference on
artificial intelligence and statistics, pp. 6045–6061. PMLR, 2022. 17

Songfu Cai, Fei Han, and Xuanyu Cao. Performative control for linear dynamical systems. Advances in Neural Information
Processing Systems, 37:70617–70658, 2024. 17

Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. How algorithmic confounding in recommendation systems
increases homogeneity and decreases utility. In Proceedings of the 12th ACM conference on recommender systems, pp.
224–232, 2018. 1

Qianyi Chen, Ying Chen, and Bo Li. Practical performative policy learning with strategic agents. arXiv preprint
arXiv:2412.01344, 2024. 4

Kamil Ciosek and Shimon Whiteson. Expected policy gradients for reinforcement learning. Journal of Machine Learning
Research, 21(52):1–51, 2020. 3

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience [John Wiley & Sons], Hoboken,
NJ, 2nd edition, 2006. ISBN 978-0-471-24195-9. 35

Itay Eilat and Nir Rosenfeld. Performative recommendation: diversifying content via strategic incentives. In International
Conference on Machine Learning, pp. 9082–9103. PMLR, 2023. 1, 17

Mohammad Ghavamzadeh and Yaakov Engel. Bayesian policy gradient algorithms. Advances in neural information process-
ing systems, 19, 2006. 3
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A NOTATIONS

Notation Description

S state space

A action space

γ discount factor

πθ policy parametrized by θ

Π(Θ) policy space

Pπ transition under the environment induced by policy π

rπ reward under the environment induced by policy π

π⋆s performatively stable policy

π⋆o performatively optimal policy

Pπ⋆
o

reward under the environment induced by performatively optimal policy

rπ⋆
o

reward under the environment induced by performatively optimal policy

d
π⋆

o
π⋆

o
state-action occupancy of optimal policy

V
π⋆

o
π⋆

o
value function of optimal policy

dπ1
π2

state-action occupancy of playing policy π2 in the environment induced by policy π1

V π2
π1

value function for playing policy π2 in the environment induced by policy π1

Qπ2
π1

Q-value function for playing policy π2 in the environment induced by policy π1

Aπ2
π1

advantage function for playing policy π2 in the environment induced by policy π1

∆K K-dimensional simplex

ρ Initial state distribution ∈ ∆S
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B DETAILS OF THE TOY EXAMPLE: LOAN APPROVEMENT PROBLEM

Environment. We consider a population of loan applicants represented by a scalar feature x ∈ R, distributed as x ∼ N (µ, σ2),
where µ is the population mean and σ > 0 is fixed.

Bank’s Policy. The bank chooses a threshold policy parameterized by θ ∈ R. A loan is granted to an applicant x if x ≥ θ. To
smooth analysis, we use a differentiable approximation: πθ(x) = σ

(
k(x− θ)

)
, where σ(z) = 1

1+e−z is the logistic sigmoid
and k > 0 controls smoothness.

0 10 20 30 40 50
Iteration
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3.4

3.6

3.8

4.0

4.2
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wa
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Rewards. If a loan is granted to applicant x, the bank receives a random
payoff:

r(x) =


+R if applicant repays,

−L if applicant defaults,

with repayment probability P(repay | x) = σ(γx − c), where γ > 0
controls sensitivity and c is a calibration constant. The expected reward
from granting to x is

u(x) = σ(γx− c) ·R−
(
1− σ(γx− c)

)
· L.

Expected Utility. Given distribution x ∼ N (µ, σ2), the bank’s expected
utility for policy θ is

U(θ, µ) = Ex∼N (µ,σ2)

[
πθ(x) · u(x)

]
.

Performative Feedback. The population mean µ depends on the bank’s policy, via the grant rate: g(θ, µ) =
Ex∼N (µ,σ2)

[
πθ(x)

]
.

We assume a bounded performative update rule: µt+1 = (1 − β)µt + β · f
(
g(θ, µt)

)
, where β ∈ [0, 1] is the performative

strength and f(g) ∈ [−M,M ] maps the grant rate to a feasible population mean.

At equilibrium, the induced feature distribution satisfies the fixed point condition:

µ∗(θ) = (1− β)µ∗(θ) + βf
(
g(θ, µ∗(θ))

)
.

Optimization Problems. ERM Optimum. Ignoring performative effects (i.e. assuming µ = µ0 is fixed), the ERM-optimal
policy solves

θERM = argmax
θ
U(θ, µ0).

Performative Optimum. Accounting for performative feedback, the performative-optimal policy solves

θPerf = argmax
θ
U
(
θ, µ∗(θ)

)
.

Learning via Reinforcement Learning

An RL agent plays policies θt sequentially. At each round t:

1. Sample x ∼ N (µt, σ
2).

2. Grant loan with probability πθt(x).
3. Observe reward rt.
4. Update θt+1 using policy gradient (REINFORCE).
5. Update population mean via performative dynamics:

µt+1 = (1− β)µt + βf
(
g(θt, µt)

)
.
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C DETAILED RELATED WORKS

Performative Prediction. The study of performative prediction started with the pioneering work of (Perdomo et al., 2020),
where they leveraged repeated retraining with the aim to converge towards a performatively stable point. We see extension
of this work trying to achieve performative optimality (Izzo et al., 2021; 2022; Miller et al., 2021). This further opened a
plethora of works in various other domains such as Multi-agent systems (Narang et al., 2023; Li et al., 2022; Piliouras & Yu,
2023), control systems (Cai et al., 2024; Barakat et al., 2025), stochastic optimisation (Li & Wai, 2022; Mendler-Dünner et al.,
2020), games (Wang et al., 2023; Góis et al., 2024) etc. There has been several attempt of achieve performative optimality
or stability for real-life tasks like recommendation (Eilat & Rosenfeld, 2023), to measure the power of firms (Hardt et al.,
2022; Mofakhami et al., 2023), in healthcare (Zhang et al., 2022) etc. Another interesting setting is the stateful performative
prediction i.e. prediction under gradual shifts in the distribution (Brown et al., 2022; Izzo et al., 2022; Ray et al., 2022), that
paved the way for incorporating performative prediction in Reinforcement Learning.

Performative Reinforcement Learning. Bell et al. (2021) were the first to propose a setting where the transition and reward
of an underlying MDP depend non-deterministically on the deployed policy, thus capturing the essence of performativity to
some extent. However, Mandal et al. (2023) can be considered the pioneer in introducing the notion of “Performative Rein-
forcement Learning” and its solution concepts, performatively stable and optimal policy. They propose direct optimization
and ascent based techniques which manage to attain performative stability upon repeated retraining. Extensions to this work,
Rank et al. (2024) and Mandal & Radanovic (2024) manage to solve the same problem with delayed retraining for linear
MDPs. However, there exists no literature that proposes a performative RL algorithm that converges to the performative
optimal policy.

Specifically, Mandal et al. (2023) frames the question of using policy gradient to find stable policies as an open problem. The
authors further contemplate, as PG functions in the policy space, whether it is possible to converge towards a stable policy.
Thus, in this paper, we affirmatively solve an extension (rather a harder problem) of this open problem for tabular MDPs with
softmax policies.

Policy Gradient Algorithms. Policy gradient algorithms build a central paradigm in reinforcement learning, directly opti-
mizing parametrised policies by estimating the gradient of expected return. The foundational policy gradient theorem (Sutton
et al., 1999) established an expression for this gradient in terms of the score and action-value function, while Williams (1992)
introduced the REINFORCE algorithm, providing an unbiased likelihood-ratio estimator. Convergence properties of stochas-
tic gradient ascent in policy space were analysed in these early works. Subsequently, Konda & Tsitsiklis (2000) formalized
actor–critic methods via two-timescale stochastic approximation, and Kakade (2002) proposed the natural policy gradient,
leveraging the Fisher information geometry to accelerate learning. Extensions to trust region methods (Schulman et al., 2015),
proximal policy optimization (Schulman et al., 2017), and entropy-regularized objectives (Mnih et al., 2016) have made policy
gradient methods widely practical in high-dimensional settings. Recent theoretical advances provide finite-sample conver-
gence guarantees and complexity analyses (Agarwal et al., 2021; Yuan et al., 2022), as well as robustness to distributional
shift and adversarial perturbations (Zhang et al., 2020; Xu et al., 2020). Collectively, this body of work establishes policy
gradient methods as both practically effective and theoretically grounded method for solving MDP.
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D IMPACT OF POLICY UPDATES ON PEMDPS (SECTION 3.1)

Lemma 1 (Peformative Performance Difference Lemma). The difference in performative value functions induced by π and
π′ ∈ Π while starting from the initial state distribution ρ is

(1) V π
π (ρ)− V π′

π′ (ρ) =
1

1− γ
E(s,a)∼dπ

π′,ρ
[Aπ′

π′(s, a)]

+
1

1− γ
E(s,a)∼dπ

π′,ρ
[(rπ(s, a)− rπ′(s, a)) + γ(Pπ(·|s, a)−Pπ′(·|s, a))⊤V π

π (·)
]
. (17)

where Aπ′

π′(s, a) ≜ Qπ′

π′(s, a)− V π′

π′ (s) is the performative advantage function for any state s ∈ S and action a ∈ A.

(2) V π
π (ρ)− V π′

π′ (ρ) =
1

1− γ
E(s,a)∼dπ

π′,ρ

[
Aπ′

π′(s, a)
]

+
1

1− γ
E(s,a)∼dπ

π,ρ

[
(rπ(s, a)− rπ′(s, a)) + γ(Pπ(·|s, a)−Pπ′(·|s, a))⊤V π

π′(·)
]
. (18)

where Aπ′

π′(s, a) ≜ Qπ′

π′(s, a)− V π′

π′ (s) is the performative advantage function for any state s ∈ S and action a ∈ A.

(3) V π
π (ρ)− V π′

π′ (ρ) =
1

1− γ
E(s,a)∼dπ

π,ρ

[
Aπ′

π (s, a)
]

(19)

+
1

1− γ
E(s,a)∼dπ′

π′,ρ

[
(rπ(s, a)− rπ′(s, a)) + γ(Pπ(·|s, a)−Pπ′(·|s, a))⊤V π′

π (·)
]
. (20)

where Aπ′

π (s, a) ≜ Qπ′

π (s, a)− V π′

π (s) is the performative advantage function for any state s ∈ S and action a ∈ A.

We only use the first version of this lemma in the main draft, and also hereafter, for the proofs.

Proof of Lemma 1. We do this proof in two steps. First step involves a decomposition of the difference in value function
into two terms : (i) difference in value function after deploying the same policy while agent plays two different policies i.e.
the difference that explains stability of the deployed policy, and (ii) difference in value function for deploying two different
policies i.e. performance difference for changing the deployed policy. While the second term can be bounded using classic
performance difference lemma, in the next and final step, we control the stability inducing term (i).

Part(1) – Step 1: Decomposition. We start by decomposing the performative performance difference to get a stability and a
performance difference terms separately.

V π
π (s0)− V π′

π′ (s0) =V π
π (s0)− V π

π′(s0)︸ ︷︷ ︸
performative shift term

+ V π
π′(s0)− V π′

π′ (s0)︸ ︷︷ ︸
performance difference term

=V π
π (s0)− V π

π′(s0) +
1

1− γ
E(s,a)∼dπ

π′ (·|s0)[A
π′

π′(s, a)] (21)

The last equality is a consequence of the classical performance difference lemma (Kakade & Langford, 2002b).

Step 2: Controlling the performative shift term. First, let us define Pπ
π(s

′, s) ≜
∑
a∈A Pπ(s

′|s, a)π(a|s), and
⟨Pπ

π(·, s0), V π
π (·)⟩ ≜

∑
s∈S V

π
π (s)Pπ

π(s, s0).

We first observe that

V π
π (s0)− V π

π′(s0) = Ea∼π(·|s0)

[
rπ(s0, a)− rπ′(s0, a)

]
+ γEs∼Pπ

π(·,s0)[V
π
π (s)]− γEs∼Pπ

π′ (·,s0)[V
π
π′(s)]

= Ea∼π(·|s0)

[
rπ(s0, a)− rπ′(s0, a)

]
+ γ

∑
s

(Pπ
π(s, s0)−Pπ

π′(s, s0))V
π
π (s) + γ

∑
s

Pπ
π′(s, s0) (V

π
π (s)− V π

π′(s))

= E(s,a)∼dπ
π′ (·|s0)

[
rπ(s, a)− rπ′(s, a) + γ(Pπ(·|s, a)−Pπ′(·|s, a))⊤V π

π (·)
]
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The last equality is obtained by recurring the preceding step iteratively.

Combining steps 1 and 2 and taking expectation over s0 ∼ ρ, we get

V π
π (ρ)− V π′

π′ (ρ) =
1

1− γ
E(s,a)∼dπ

π′,ρ

[
Aπ′

π′(s, a) + (rπ(s, a)− rπ′(s, a)) + γ(Pπ(·|s, a)−Pπ′(·|s, a))⊤V π
π (·)

]
.

Part(2) – The second equality is obtained by changing the Step 2 as follows:

V π
π (s0)− V π

π′(s0) = Ea∼π(·|s0)

[
rπ(s0, a)− rπ′(s0, a)

]
+ γEs∼Pπ

π(·,s0)[V
π
π (s)]− γEs∼Pπ

π′ (·,s0)[V
π
π′(s)]

= Ea∼π(·|s0)

[
rπ(s0, a)− rπ′(s0, a)

]
+ γ

∑
s

(Pπ
π(s, s0)−Pπ

π′(s, s0))V
π
π′(s) + γ

∑
s

Pπ
π(s, s0) (V

π
π (s)− V π

π′(s))

=
1

1− γ
E(s,a)∼dπ

π′,ρ

[
Aπ′

π′(s, a)
]

+
1

1− γ
E(s,a)∼dπ

π,ρ

[
(rπ(s, a)− rπ′(s, a)) + γ(Pπ(·|s, a)−Pπ′(·|s, a))⊤V π

π′(·)
]
.

The last equality is obtained by recurring the preceding step iteratively.

Part(3) – The third equality is obtained through the following steps.

V π
π (ρ)− V π′

π′ (ρ) = V π
π (s0)− V π′

π (s0) + V π′

π (s0)− V π′

π′ (s0)

=
1

1− γ
E(s,a)∼dππ(·|s0)[A

π′

π (s, a)] + V π′

π (s0)− V π′

π′ (s0)

=
1

1− γ
E(s,a)∼dππ(·|s0)[A

π′

π (s, a)] + Ea∼π′(·|s0)
[
rπ(s0, a)− rπ′(s0, a)

]
+ γ

∑
s

(
Pπ′

π (s, s0)−Pπ′

π′(s, s0)
)
V π′

π (s) + γ
∑
s

Pπ′

π′(s, s0)
(
V π′

π (s)− V π′

π′ (s)
)

=
1

1− γ
E(s,a)∼dπ

π,ρ

[
Aπ′

π (s, a)
]

+
1

1− γ
E(s,a)∼dπ′

π′,ρ

[
(rπ(s, a)− rπ′(s, a)) + γ(Pπ(·|s, a)−Pπ′(·|s, a))⊤V π′

π (·)
]
.

Lemma 2 (Bounding Performative Performance Difference for Gradually Shifting Environments). Let us assume that both re-
wards and transitions are Lipschitz functions of policy, i.e. ∥rπ − rπ′∥ ≤ Lr ∥π − π′∥ and ∥Pπ −Pπ′∥ ≤ LP ∥π − π′∥ ,
for some Lr, LP ≥ 0. Then, under Assumption 1, the performative shift in the sub-optimality gap of a policy πθ satisfies∣∣∣V π⋆

o
π⋆

o
(ρ)− V πθ

πθ
(ρ)− 1

1− γ
E
(s,a)∼dπ

⋆
o

πθ ,ρ
[Aπθ

πθ
(s, a)]

∣∣∣ ≤ 2
√
2

1− γ
(Lr +

γ

1− γ
LPRmax)Es0∼ρDH (π⋆o(·|s0)∥πθ(·|s0)) .

(22)

where DH (x∥y) denotes the Hellinger distance between x and y.

Proof of Lemma 2. We do this proof in three steps. We start from the final expression in Lemma 1, then in step 2 we impose
bounds on reward and transition differences leveraging the Lipschitz assumption. Lastly, we bound the policy difference in
first order norm using relation between Total Variation (TV) and Hellinger distance.

Step 1: From Lemma 1, we get

V
π⋆

o
π⋆

o
(s0)− V πθ

πθ
(s0) =

1

1− γ
E
(s,a)∼d

π⋆
o

πθ ,ρ

[
Aπθ

πθ
(s, a) + (rπ⋆

o
(s, a)− rπθ

(s, a)) + γ(Pπ⋆
o
(·|s, a)−Pπθ

(·|s, a))⊤V π⋆
o

π⋆
o
(·)
]∣∣∣∣∣ .

Thus, ∣∣∣V π⋆
o

π⋆
o
(ρ)− V πθ

πθ
(ρ)− 1

1− γ
E
(s,a)∼dπ

⋆
o

πθ ,ρ
[Aπθ

πθ
(s, a)]

∣∣∣
19
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=
1

1− γ

∣∣∣E
(s,a)∼d

π⋆
o

πθ ,ρ
(rπ⋆

o
(s, a)− rπθ

(s, a)) + γ(Pπ⋆
o
(·|s, a)−Pπθ

(·|s, a))⊤V π⋆
o

π⋆
o
(·)
∣∣∣ (23)

Step 2: Using Jensen’s inequality together with the fact that dπ⋆
o

πθ,ρ
(s, a|s0) ≤ 1, for rewards, we get∣∣∣∣∣E(s,a)∼d

π⋆
o

πθ ,ρ(·,·|s0)

[
rπ⋆

o
(s, a)− rπθ

(s, a)
]∣∣∣∣∣ ≤ E

(s,a)∼d
π⋆
o

πθ ,ρ(·,·|s0)

∣∣∣rπ⋆
o
(s, a)− rπθ

(s, a)
∣∣∣ ≤ ∥rπ⋆

o
− rπθ

∥1

Similarly for transitions, we get∣∣∣∣∣E(s,a)∼d
π⋆
o

πθ ,ρ(·,·|s0)

[
(Pπ⋆

o
−Pπθ

)⊤V π
π

]∣∣∣∣∣ ≤ E
(s,a)∼d

π⋆
o

πθ ,ρ(·,·|s0)

∣∣∣∣∣(Pπ⋆
o
−Pπθ

)⊤V π
π

∣∣∣∣∣
(a)

≤ E
(s,a)∼d

π⋆
o

πθ ,ρ(·,·|s0)

[
∥Pπ⋆

o
−Pπθ

∥1 · ∥V
π⋆

o
π⋆

o
∥∞
]

= ∥Pπ⋆
o
−Pπθ

∥1 · ∥V
π⋆

o
π⋆

o
∥∞ ,

(a) holds due to Hölder’s inequality.

Now, leveraging the triangle inequality and Lipschitzness assumption on reward and transitions, we further get∣∣∣∣∣E(s,a)∼d
π⋆
o

πθ ,ρ(·,·|s0)

[
rπ⋆

o
(s, a)− rπθ

(s, a) + γ(Pπ⋆
o
−Pπθ

)⊤V π
π

]∣∣∣∣∣ ≤Lr ∥π⋆o − πθ∥1 + γLP

∥∥∥Vπ⋆
o

π⋆
o

∥∥∥
∞
∥π⋆o − πθ∥1

Finally, due to Assumption 1, we get
∥∥∥Vπ⋆

o
π⋆

o

∥∥∥
∞
≤ Rmax

1−γ , and thus,∣∣∣∣∣E(s,a)∼d
π⋆
o

πθ ,ρ(·,·|s0)

[
rπ⋆

o
(s, a)− rπθ

(s, a) + γ(Pπ⋆
o
−Pπθ

)⊤V
π⋆

o
π⋆

o

]∣∣∣∣∣ ≤Lr ∥π⋆o − πθ∥1 +
γ

1− γ
LPRmax ∥π⋆o − πθ∥1

Step 3: We know ∥π⋆o − πθ∥1 = 2TV (π⋆o ∥ πθ) ≤ 2
√
2DH (π⋆o∥πθ). Thus,∣∣∣∣∣E(s,a)∼d

π⋆
o

πθ ,ρ(·,·|s0)

[
rπ⋆

o
(s, a)− rπθ

(s, a) + γ(Pπ⋆
o
−Pπθ

)⊤V
π⋆

o
π⋆

o

]∣∣∣∣∣
≤ 2
√
2

(
Lr +

γ

1− γ
LPRmax

)
DH (π⋆o(· | s0)∥πθ(· | s0)) (24)

We conclude this proof by putting the upper bound in Equation (24) in Equation (23) and taking expectation over s0 ∼ ρ to
get the desired expression.
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E SMOOTHNESS OF PERFORMATIVE VALUE FUNCTION AND ENTROPY REGULARISER

Lemma 4 (Performative Smoothness Lemma). Let πα ≜ πθ+αu, and let V αα (s0) be the corresponding value at a fixed state
s0, i.e., V αα (s0) ≜ V πα

πα
(s0) . If the following conditions hold true,∑

a∈A

∣∣∣∣ dπα(a | s0)dα

∣∣∣∣
α=0

∣∣∣∣ ≤ C1,
∑
a∈A

∣∣∣∣ d2πα(a | s0)dα2

∣∣∣∣
α=0

∣∣∣∣ ≤ C2 ,
∑
s∈S

∣∣∣∣ dPα(s | s0, a0)
dα

∣∣∣∣
α=0

∣∣∣∣ ≤ T1,
∑
s∈S

∣∣∣∣ d2Pα(s | s0, a0)
dα2

∣∣∣∣
α=0

∣∣∣∣ ≤ T2 ,∑
a∈A

∣∣∣∣ drα(s0, a)dα

∣∣∣∣
α=0

∣∣∣∣ ≤ R1,
∑
a∈A

∣∣∣∣ d2rα(s0, a)dα2

∣∣∣∣
α=0

∣∣∣∣ ≤ R2 ,

we get

max
∥u∥2=1

∥∥∥∥ d2V αα (s0)

dα2

∣∣∣∣
α=0

∥∥∥∥ ≤ C2

1− γ
+ 2C1β1 + C2β2 ≜ L ,

where β1 = γ
(1−γ)2 (C1 + T1) +

R1

1−γ and β2 = 2γ2

(1−γ)3 (C1 + T1)
2 + γ

(1−γ)2 (C2 + 2C1T1 + T2) +
2γR1

(1−γ)2 (C2 + 2C1T1 +

T2) +
R2

1−γ + γC1R1

(1−γ)2 .

Proof. Step 1: To prove the second order smoothness of the value function we start by taking its second derivative. Consider
the expected return under policy πα:

V αα (s0) =
∑
a

πα(a | s0)Qαα(s0, a)

Differentiating twice with respect to α, we obtain:

d2V αα (s0)

dα2
=
∑
a

d2πα(a | s0)
dα2

Qαα(s0, a) + 2
∑
a

dπα(a | s0)
dα

dQαα(s0, a)

dα
+
∑
a

πα(a | s0)
d2Qαα(s0, a)

dα2

Qαα(s0, a0) is the Q-function corresponding to the policy πα at state s0 and action a0. Observe that Qαα(s0, a0) can further
be written as:

Qαα(s0, a0) = e⊤(s0,a0)(I − γP̃(α))−1rα = e⊤(s0,a0)M(α)rα

where M(α) ≜ (I − γP(α))−1 and P̃(α) is the state-action transition matrix under policy πα, defined as:

[P̃(α)](s′, a′ | s, a) ≜ πα(a
′ | s′)Pα(s

′ | s, a)

Differentiating Qαα(s, a) with respect to α gives:

dQαα(s0, a0)

dα
= γe⊤(s0,a0)M(α)

dP̃(α)

dα
M(α)rα + e⊤(s0,a0)M(α)

drα
dα

And correspondingly,

d2Qαα(s0, a0)

dα2
= 2γ2e⊤(s0,a0)M(α)

dP̃(α)

dα
M(α)

dP̃(α)

dα
M(α)rα + γe⊤(s0,a0)M(α)

d2P̃(α)

dα2
M(α)rα

+ γe⊤(s0,a0)M(α)
dP̃(α)

dα
M(α)

drα
dα

+ e⊤(s0,a0)M(α)
d2rα
dα2

+ γe⊤(s0,a0)M(α)
dP̃(α)

dα
M(α)

drα
dα

(25)

Step 2: Now we need to find the derivative of P̃(α) w.r.t α in order to substitute in (25). Hence, we can differentiate P̃(α)
with respect to α to obtain:

dP̃(α)

dα

∣∣∣∣∣
α=0

(s′, a′ | s, a) = dπα(a
′ | s′)

dα

∣∣∣∣
α=0

Pα(s
′ | s, a) + dPα(s

′ | s, a)
dα

∣∣∣∣
α=0

πα(a
′ | s′)
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Now, for an arbitrary vector x, we have:[
dP̃(α)

dα

∣∣∣∣∣
α=0

x

]
(s,a)

=
∑
s′,a′

dπα(a
′ | s′)

dα

∣∣∣∣
α=0

Pα(s
′ | s, a)xs′,a′ +

∑
s′,a′

dPα(s
′ | s, a)

dα

∣∣∣∣
α=0

πα(a
′ | s′)xs′,a′

Taking the maximum over unit vectors u in ℓ2-norm:

max
∥u∥2=1

∥∥∥∥∥ dP̃(α)

dα

∣∣∣∣∣
α=0

x

∥∥∥∥∥
∞

≤ max
∥u∥2=1

∣∣∣∣∣∣
∑
s′,a′

dπα(a
′ | s′)

dα

∣∣∣∣
α=0

Pα(s
′ | s, a)xs′,a′

∣∣∣∣∣∣
+ max

∥u∥2=1

∣∣∣∣∣∣
∑
s′,a′

dPα(s
′ | s, a)

dα

∣∣∣∣
α=0

πα(a
′ | s′)xs′,a′

∣∣∣∣∣∣
≤ max

s,a

∑
s′

Pα(s
′ | s, a)

∑
a′

∣∣∣∣ dπα(a′ | s′)dα

∣∣∣∣
α=0

∣∣∣∣ · ∥x∥∞
+max

s,a

∑
a′

πα(a
′ | s′)

∑
s′

∣∣∣∣ dPα(s
′ | s, a)

dα

∣∣∣∣
α=0

∣∣∣∣ · ∥x∥∞
≤ max

s,a

∑
s′

Pα(s
′ | s, a)∥x∥∞C1 +max

s,a

∑
a′

π(a′ | s′)∥x∥∞T1

≤ C1∥x∥∞ + T1∥x∥∞ = (C1 + T1)∥x∥∞

By the definition of the ℓ∞-norm, we conclude:

max
∥u∥2=1

∥∥∥∥ dPα

dα

∣∣∣∣
α=0

x

∥∥∥∥
∞
≤ (C1 + T1)∥x∥∞ (26)

Similarly, differentiating P̃(α) twice w.r.t. α, we get

[
d2P̃(α)

dα2

∣∣
α=0

]
(s,a)→(s′,a′)

=
d2πα(a

′ | s′)
( dα)2

∣∣∣∣
α=0

Pα(s
′ | s, a) + d2Pα(s

′ | s, a)
dα2

∣∣∣∣
α=0

πα(a
′ | s′)

+ 2
dπα(a

′ | s′)
dα

∣∣∣∣
α=0

dPα(s
′ | s, a)

dα

∣∣∣∣
α=0

Hence, we can consider the following norm bound:

max
∥u∥2=1

∥∥∥∥∥ d2P̃(α)

dα2

∣∣∣∣∣
α=0

x

∥∥∥∥∥
∞

≤ C2∥x∥∞ + 2C1T1∥x∥∞ + T2∥x∥∞ = (C2 + 2C1T1 + T2) ∥x∥∞ (27)

Step 3: Now we need to put the pieces back together in order to calculate the second derivative of V αα w.r.t α. Let us recall
M(α). Using the power series expansion of the matrix inverse, we can write M(α) as:

M(α) = (I − γP̃(α))−1 =

∞∑
n=0

γnP̃(α)n

which implies that M(α) ≥ 0 (component-wise), and

M(α)1 =
1

1− γ
1,

i.e., each row of M(α) is positive and sums to 1
1−γ .

This implies:

max
∥u∥2=1

∥M(α)x∥∞ ≤
1

1− γ
∥x∥∞.
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This gives, using the expressions for d2Qα
α(s0,a0)
dα2 and dQα

α(s0,a0)
dα , an upper bound on their magnitudes based on ∥x∥∞ and

constants arising from bounds on the derivatives of P̃(α) and rα.

max
∥u∥2=1

∥∥∥∥ d2Qαα(s0, a0)

dα2

∥∥∥∥
∞

≤2γ2
∥∥∥∥∥M(α)

dP̃(α)

dα
M(α)

dP̃(α)

dα
M(α)rα

∥∥∥∥∥
∞

+ γ

∥∥∥∥∥M(α)
d2P̃(α)

dα2
M(α)rα

∥∥∥∥∥
∞

+ γ

∥∥∥∥∥M(α)
d2P̃(α)

dα2
M(α)

drα
dα

∥∥∥∥∥
∞

+

∥∥∥∥M(α)
d2rα
dα2

∥∥∥∥
∞

+ 2γ

∥∥∥∥∥M(α)
dP̃(α)

dα
M(α)

drα
dα

∥∥∥∥∥
∞

Bounding using known bounds on transitions and rewards:

max
∥u∥2=1

∥∥∥∥ d2Qαα(s0, a0)

dα2

∥∥∥∥
∞
≤ 2γ2

(1− γ)3
(C1 + T1)

2 +
γ

(1− γ)2
(C2 + 2C1T1 + T2)

+
2γR1

(1− γ)2
(C2 + 2C1T1 + T2) +

R2

1− γ
+

γC1R1

(1− γ)2
= β2

Corresponding bound on the first derivative is:

max
∥u∥2=1

∥∥∥∥ dQαα(s0, a0)

dα

∥∥∥∥
∞
≤ γ

∥∥∥∥∥M(α)
dP̃(α)

dα
M(α)

drα
dα

∥∥∥∥∥
∞

+

∥∥∥∥M(α)
drα
dα

∥∥∥∥
∞

≤ γ

(1− γ)2
(C1 + T1) +

R1

1− γ
= β1

Step 4: Finally, putting all the bounds together to evaluate the upper bound of the desired quantity, we get,

max
∥u∥2=1

∥∥∥∥ d2V αα (s0)

dα2

∥∥∥∥
∞
≤ C2

1− γ
+ 2C1β1 + β2 (28)

Corollary 1. For softmax PeMDPs, we characterise

C1 = 2, C2 = 6, T1 = LP = max
s
|ψ(s)| ≜ ψmax, T2 = max

s
|ψ(s)|2, R1 = Lr|A| = ξ|A|, R2 = 0

Thus,

max
∥u∥2=1

∥∥∥∥ d2V αα (s0)

dα2

∣∣∣∣
α=0

∥∥∥∥ ≤ O
(
max

{
γRmax | A |
(1− γ)2

,
γ2

(1− γ)3

})
≜ O (L) . (29)

Proof. We use the expressions already found in (35) to state the following:

∑
a∈A

∣∣∣∣ d

dα
πθ+αu(a | s)

∣∣∣∣
α=0

∣∣∣∣ ≤∑
a∈A

πθ(a | s)
∣∣u⊤
s

(
ea − π(· | s)

)∣∣ ≤ max
a∈A

(
u⊤
s ea + u⊤

s π(· | s)
)
≤ 2.

Similarly, differentiating once again w.r.t. α, we get∑
a∈A

∣∣∣∣ d2

dα2
πθ+αu(a | s)

∣∣∣
α=0

∣∣∣∣ ≤ max
a∈A

(
u⊤
s eae

⊤
a us + u⊤

s eaπ(· | s)⊤us + u⊤
s π(· | s)e⊤a us
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+ 2u⊤
s π(· | s)π(· | s)⊤us + u⊤

s diag(π(· | s))us
)
≤ 6.

And hence for transition we get,∑
s′∈S

∣∣∣∣ d

dα
Pπθ+αu

(a | s)
∣∣∣∣
α=0

∣∣∣∣ ≤∑
s′∈S
|ψ(s′)|Pπθ

(s′ | s, a) |us,a(1−Pπθ
(·|s, a))| ≤ |us,a|max

s
|ψ(s)| ≤ max

s
|ψ(s)|

And similarly, it can be shown that:

∑
a∈A

∣∣∣∣ d2

dα2
Pπθ+αu

(a | s)
∣∣∣∣
α=0

∣∣∣∣ ≤ |us,a|2 max
s
|ψ(s)|2 ≤ max

s
|ψ(s)|2

Similarly for rewards we get:

∑
a∈A

∣∣∣∣ d

dα
rπθ+αu

(a | s)
∣∣∣∣
α=0

∣∣∣∣ ≤ ξ|A| ,
∑
a∈A

∣∣∣∣ d2

dα2
rπθ+αu

(a | s)
∣∣∣∣
α=0

∣∣∣∣ = 0

Hence, we can use the following choice of constants for softmax parametrization,

C1 = 2 , C2 = 6

T1 = LP = max
s
|ψ(s)| , T2 = max

s
|ψ(s)|2

R1 = Lr|A| = ξ|A| , R2 = 0

to get the desired order of max∥u∥2=1

∥∥∥ d2V α
α (s0)
dα2

∣∣∣
α=0

∥∥∥.

Lemma 5 (Smoothness of Entropy Regularizer). Define the discounted entropy regularizer as:

Hπθα
πθα

(s) = Eτ∼Pπ
π

[ ∞∑
t=0

−γt logπθα(at | st)

]
Under the same assumptions as 4, the following holds:

max
∥u∥2=1

∥∥∥∥∥∂2H
πθα
πθα

(s)

∂α2

∣∣∣∣∣
α=0

∥∥∥∥∥
∞

≤ βλ

where

βλ =2γ2
3(1 + log |A|)

1− γ
+ γ

2 log |A|
(1− γ)2

(C1 + T1) + 2γ
log |A|
(1− γ)2

(C2 + 2C1T1 + T2) +
log |A|
(1− γ)3

(C1 + T1)
2 .

Proof. Step 1: Define the state-wise entropy term:

hθα(s) = −
∑
a

πθα(a | s) logπθα(a | s).

From Mei et al. (2020) (Lemma 7) we report that,∥∥∥∥∂hθα

∂α

∥∥∥∥
∞
≤ 2 · log |A| · ∥u∥2,

∥∥∥∥∂2hθα

∂α2

∥∥∥∥
∞
≤ 3 · (1 + log |A|) · ∥u∥22. (30)

Additionally, Mei et al. (2020) also presents a second result expressing the second derivative of the entropy w.r.t α,

∂2Hπθα
πθα

(s)

∂α2
=2γ2 e⊤s M(α)

∂P(α)

∂α
M(α)

∂P(α)

∂α
M(α)hθα
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+ γ e⊤s M(α)
∂2P(α)

∂α2
M(α)hθα

+ 2γ e⊤s M(α)
∂P(α)

∂α
M(α)

∂hθα

∂α
+ e⊤s M(α)

∂2hθα

∂α2
.

Step 2: Now we proceed with bounding the absolute value of each term which will contribute towards bounding the overall
second derivative of the regulariser.

For the last term,

∣∣∣∣e⊤s M(α)
∂2hθα

∂α2

∣∣∣
α=0

∣∣∣∣ ≤ ∥e⊤s ∥1 · ∥∥∥M(α)
∂2hθα

∂α2

∣∣∣
α=0

∥∥∥
∞

≤ 1

1− γ
·
∥∥∥∥∂2hθα

∂α2

∣∣∣
α=0

∥∥∥∥
∞

≤ 3 · (1 + log |A|)
1− γ

· ∥u∥22.

For the second last term,

∣∣∣∣e⊤s M(α)
∂P(α)

∂α
M(α)

∂hθα

∂α

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥M(α)
∂P(α)

∂α
M(α)

∂hθα

∂α

∣∣∣
α=0

∥∥∥
∞

≤ 1

1− γ
·
∥∥∥∂P(α)

∂α
M(α)

∂hθα

∂α

∣∣∣
α=0

∥∥∥
∞

≤ (C1 + T1) · ∥u∥2
1− γ

·
∥∥∥M(α)

∂hθα

∂α

∣∣∣
α=0

∥∥∥
∞

≤ (C1 + T1) · ∥u∥2
(1− γ)2

·
∥∥∥∂hθα

∂α

∣∣∣
α=0

∥∥∥
∞

≤ 2 · log |A|
(1− γ)2

(C1 + T1) · ∥u∥22.

For the second term,

∣∣∣∣e⊤s M(α)
∂2P(α)

∂α2
M(α)hθα

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥M(α)
∂2P(α)

∂α2
M(α)hθα

∣∣∣
α=0

∥∥∥
∞

≤ 1

1− γ
·
∥∥∥∂2P(α)

∂α2
M(α)hθα

∣∣∣
α=0

∥∥∥
∞

≤ ∥u∥
2
2

1− γ
·
∥∥∥M(α)hθα

∣∣∣
α=0

∥∥∥
∞
(C2 + 2C1T1 + T2)

≤ ∥u∥22
(1− γ)2

·
∥∥∥hθα

∣∣∣
α=0

∥∥∥
∞
(C2 + 2C1T1 + T2)

≤ log |A|
(1− γ)2

(C2 + 2C1T1 + T2) · ∥u∥22.

For the first term,

∣∣∣∣e⊤s M(α)
∂P(α)

∂α
M(α)

∂P(α)

∂α
M(α)hθα

∣∣∣
α=0

∣∣∣∣ ≤ ∥∥∥M(α)
∂P(α)

∂α
M(α)

∂P(α)

∂α
M(α)hθα

∣∣∣
α=0

∥∥∥
∞

≤ 1

1− γ
· ∥u∥2 ·

1

1− γ
· ∥u∥2 ·

1

1− γ
· log |A| · (C1 + T1)

2

=
log |A|
(1− γ)3

(C1 + T1)
2 · ∥u∥22.
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Step 3: Now combining all the above equations, we get the final expression,

max
∥u∥2=1

∥∥∥∥∥∂2H
πθα
πθα

(s)

∂α2

∣∣∣∣∣
α=0

∥∥∥∥∥
∞

≤ βλ

where

βλ =2γ2 · 3 · (1 + log |A|)
1− γ

+ γ · 2 · log |A|
(1− γ)2

(C1 + T1)

+ 2γ · log |A|
(1− γ)2

(C2 + 2C1T1 + T2) +
log |A|
(1− γ)3

(C1 + T1)
2

By definition of smoothness, the “soft performative value function” Ṽ π
π is Lipschitz smooth with Lipschitz constant Lλ

where Lλ ≜ L + βλ. Once again, we can choose C1, C2, T1, T2 according to Corollary 1 for simplification to get the order
βλ = O

(
log |A|
(1−γ)3ψ

2
max

)
. Thus, the final bound for Lλ as

Lλ = O (max {L, λβλ}) = O

(
max

{
γRmax | A |
(1− γ)2

,
λ log |A|ψ2

max

(1− γ)3

})
. (31)
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F DERIVATION OF PERFORMATIVE POLICY GRADIENTS

Theorem 2 (Performative Policy Gradient Theorem). The gradient of the performative value function w.r.t θ is as follows:

(a) For the unregularised objective,

∇θV
πθ
πθ

(τ) = Eτ∼Pπθ
πθ

[ ∞∑
t=0

γt
(
Aπθ

πθ
(st, at) (∇θ logπθ(at | st) +∇θ logPπθ

(st+1|st, at)) +∇θrπθ
(st, at)

)]
. (32)

(b) For the entropy-regularised objective, we define the soft advantage, soft Q, and soft value functions with respect to the soft
rewards r̃πθ

satisfying Ãπθ
πθ

(s, a) = Q̃πθ
πθ

(s, a)− Ṽ πθ
πθ

(s) that further yields

∇θṼ
πθ
πθ

(τ) = Eτ∼Pπθ
πθ

[ ∞∑
t=0

γt
(
Ãπθ

πθ
(st, at) (∇θ logπθ(at | st) +∇θ logPπθ

(st+1|st, at)) +∇θ r̃πθ
(st, at|θ)

)]
. (33)

Proof of Theorem 2. We prove each part of this theorem separately.

Proof of part (a). First, we derive explicit closed form gradient for unregularised performative value function.

Step 1. Given a trajectory τ = {s0, a0, . . . , st, at, . . .}, let us denote the unregularised objective function as

fθ(τ) =

∞∑
t=0

γtrπθ
(st, at)

Thus,

∇θV
πθ
πθ

(τ) = ∇θEτ∼Pπθ
πθ

[fθ(τ)] = ∇θ

∑
τ

Pπθ
πθ

(τ)fθ(τ)

=
∑
τ

∇θ(Pπθ
πθ

(τ)fθ(τ))

=
∑
τ

(∇θ Pπθ
πθ

(τ))fθ(τ) +
∑
τ

Pπθ
πθ

(τ)(∇θfθ(τ))

(a)
=
∑
τ

Pπθ
πθ

(τ)(∇θ logPπθ
πθ

(τ))fθ(τ) + Eτ∼Pπθ
πθ

[∇θfθ(τ)]

= Eτ∼Pπθ
πθ

[
(∇θ logPπθ

πθ
(τ))fθ(τ)

]
+ Eτ∼Pπθ

πθ

[∇θfθ(τ)] .

(a) holds since ∇θ logPπθ
πθ

(τ) =
∇θ Pπθ

πθ
(τ)

Pπθ
πθ

(τ)
.

Step 2. Given the initial state distribution ρ, we further have

logPπθ
πθ

(τ) = logρ(s0) +

∞∑
t=0

logπθ(at | st) +
∞∑
t=0

logPπθ
(st+1|st, at)

Taking the gradient with respect to θ, we obtain

∇θ logPπθ
πθ

(τ) =

∞∑
t=0

∇θ logπθ(at | st) +
∞∑
t=0

∇θ logPπθ
(st+1|st, at)

Step 3. Now, by substituting the value of ∇θ log(P
πθ
πθ

) in ∇θV
πθ
πθ

(τ), we get,

∇θV
πθ
πθ

(τ) = ∇θEτ∼Pπθ
πθ

[fθ(τ)] = Eτ∼Pπθ
πθ

[( ∞∑
t=0

∇θ logπθ(at | st)

)
·

( ∞∑
t=0

γtrπθ
(st, at)

)]

+ Eτ∼Pπθ
πθ

[( ∞∑
t=1

∇θ logPπθ
(st|st−1, at−1)

)
·

( ∞∑
t=0

γtrπθ
(st, at)

)]
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+ Eτ∼Pπθ
πθ

[ ∞∑
t=0

γt∇θrπθ
(st, at)

]

= Eτ∼Pπθ
πθ

[ ∞∑
t=0

γtAπθ
πθ

(st, at)∇θ logπθ(at | st)

]

+ Eτ∼Pπθ
πθ

[ ∞∑
t=1

γtAπθ
πθ

(st, at)∇θ logPπθ
(st|st−1, at−1)

]

+ Eτ∼Pπθ
πθ

[ ∞∑
t=0

γt∇θrπθ
(st, at)

]
.

The last equality is due to the definition of advantage function

Aπθ
πθ

(st, at) ≜
∞∑
i=t

γt−irπθ
(si,πθ(si))− Est′+1∼P

πθ
πθ

(·|st′ ,at′ )
∀t′∈[t,∞)

[ ∞∑
i=t

γt−irπθ
(si,πθ(si))

]
≜ Qπθ

πθ
(st)− V πθ

πθ
(st)

as in classical policy gradient theorem. Hence, we conclude the proof for part (a) of the theorem.

Proof of part (b). Now, we derive explicit gradient form for entropy-regularised value function.

Let us define the soft reward as r̃πθ
(st, at) ≜ rπθ

(st, at)−λ logπθ(at|st). Again, we start by defining regularised objective
function

f̃θ(τ) =

∞∑
t=0

γtr̃πθ
(st, at)

Following the same steps as that of Part (a), we get

∇θṼ
πθ
πθ

(τ) = ∇θEτ∼Pπθ
πθ

[f̃θ(τ)] = Eτ∼Pπθ
πθ

[ ∞∑
t=0

γtÃπθ
πθ

(st, at)∇θ logπθ(at | st)

]

+ Eτ∼Pπθ
πθ

[ ∞∑
t=1

γtÃπθ
πθ

(st, at)∇θ logPπθ
(st|st−1, at−1)

]

+ Eτ∼Pπθ
πθ

[ ∞∑
t=0

γt∇θ r̃πθ
(st, at)

]
.

= Eτ∼Pπθ
πθ

[ ∞∑
t=0

γtÃπθ
πθ

(st, at)∇θ logπθ(at | st)

]

+ Eτ∼Pπθ
πθ

[ ∞∑
t=1

γtÃπθ
πθ

(st, at)∇θ logPπθ
(st|st−1, at−1)

]

+ Eτ∼Pπθ
πθ

[ ∞∑
t=0

γt∇θrπθ
(st, at)

]
− λEτ∼Pπθ

πθ

[ ∞∑
t=0

γt∇θ logπθ(at|st)

]
Here,

Ãπθ
πθ

(st, at) ≜
∞∑
i=t

γt−ir̃πθ
(si,πθ(si))− Est′+1∼P

πθ
πθ

(·|st′ ,at′ )
∀t′∈[t,∞)

[ ∞∑
i=t

γt−ir̃πθ
(si,πθ(si))

]
≜ Q̃πθ

πθ
(st, at)− Ṽ πθ

πθ
(st)

denotes the advantage function with soft rewards, or in brief, the soft advantage function. Hence, we conclude proof of part
(b).
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G CONVERGENCE OF PePG : PROOFS OF SECTION 4

G.1 PROOFS FOR UNREGULARISED VALUE FUNCTION

Lemma 6 (Performative Policy Gradient for Softmax PeMDPs). Given softmax PeMDPs defined by (13), for all (s, a, s′) ∈
(S,A,S), derivative of the performative value function w.r.t θs,a satisfies:

∂V πθ
πθ

(ρ)

∂θs,a
≥ 1

1− γ
dπθ
πθ

(s, a|ρ)
(
Aπθ

πθ
(s, a) + ξ

)
. (34)

Proof. First, we note that

∂

∂θs′,a′
logπθ(a|s) = 1[s = s′, a = a′]− πθ(a

′|s)1[s = s′]

∂

∂θs′,a′
logPπθ

(s′′|s, a) = ψ(s′′)1[s = s′, a = a′] (1−Pπθ
(s′′|s, a))

∂

∂θs′,a′
rπθ

(s, a) = ξ1[s = s′, a = a′] . (35)

In this proof, we further substitute the expressions of individual gradients in Equation (35) into Equation (10).

Therefore, for a given initial state distribution ρ, we get

∂

∂θs,a
V πθ
πθ

(ρ) = Eτ∼Pπθ
πθ

[ ∞∑
t=0

γt
(
Aπθ

πθ
(st, at)

∂

∂θs,a
logπθ(at | st)

+Aπθ
πθ

(st, at)
∂

∂θs,a
logPπθ

(st+1|st, at)

+
∂

∂θs,a
rπθ

(st, at)
)]

= Eτ∼Pπθ
πθ

[ ∞∑
t=0

γt
(
Aπθ

πθ
(st, at) (1[st = s, at = a]− πθ(a|s)1[st = s])

+Aπθ
πθ

(st, at)ψ(st+1)1[st = s, at = a] (1−Pπθ
(st+1|s, a))

+ ξ1[st = s, at = a]
)]

≥
(a)

Eτ∼Pπθ
πθ

[ ∞∑
t=0

γtAπθ
πθ

(st, at)1[st = s, at = a]
]
− Eτ∼Pπθ

πθ

[ ∞∑
t=0

γtπθ(a|s)1[st = s]Aπθ
πθ

(st, at)
]

+Eτ∼Pπθ
πθ

[ ∞∑
t=0

γtξ1[st = s, at = a]
]

=
(b)

1

1− γ
dπθ
πθ,ρ

(s, a)Aπθ
πθ

(s, a) +
1

1− γ
ξdπθ

πθ,ρ
(s, a)

(a) is due to the fact that 1−Pπθ
(s, a) ≥ 0 for all s, a. (b) is due to Eτ∼Pπθ

πθ

[∑∞
t=0 γ

tπθ(a|s)1[st = s]Aπθ
πθ

(st, at)
]
= 0.

Lemma 3. Performative Gradient Domination for Softmax PeMDPs Let us consider PeMDPs defined in (13).

(a) For unregularised value function,

V
π⋆

o
π⋆

o
(ρ)− V πθ

πθ
(ρ) ≤

√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θV
πθ
πθ

(ν)∥2 +
Rmax

1− γ
(1 +

2γ

1− γ
ψmax) . (36)

Proof of Lemma 3– Part (a). This proof is divided into two parts. In the first part we bound the expected advantage term
from Lemma 2 with the norm of the gradient of value function. During this step, we need to express the expected advantage
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as a linear combination of the advantage itself and the occupancy measure over all states and actions like in equation (34).
The expectation however is taken w.r.t the occupancy measure dπ⋆

o
πθ

, thus we need to perform a change of measure which
introduces a coverage term as shown below. In the second step we directly use the bound of rewards and transitions obtained
from their Lipchitzness in lemma 2. We know by Lemma 1 that

V
π⋆

o
π⋆

o
(ρ)− V πθ

πθ
(ρ) =

1

1− γ
E
(s,a)∼d

π⋆
o

πθ ,ρ(·|ρ)
[Aπθ

πθ
(s, a)]

+
1

1− γ
E
(s,a)∼d

π⋆
o

πθ ,ρ
[(rπ⋆

o
(s, a)− rπθ

(s, a)) + γ(Pπ⋆
o
(·|s, a)−Pπθ

(·|s, a))⊤V π⋆
o

π⋆
o
(·)
]
.

Step 1: Upper bounding Term 1.

E
(s,a)∼d

π⋆
o

πθ ,ρ
[Aπθ

πθ
(s, a)] =

∑
s,a

dπ⋆
o

πθ
(s, a|ρ)Aπθ

πθ
(s, a) =

∑
s,a

dπ⋆
o

πθ
(s, a|ρ)

dπθ
πθ

(s, a|ν)
dπθ
πθ

(s, a|ν)Aπθ
πθ

(s, a)

≤

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∑
s,a

dπθ
πθ

(s, a|ν)Aπθ
πθ

(s, a) (37)

Now, we leverage the gradient of softmax performative MDPs to obtain∑
s,a

dπθ
πθ

(s, a|ν)Aπθ
πθ

(s, a) ≤ (1− γ)
∑
s,a

∂V πθ
πθ

(ν)

∂θs,a
− ξ

= (1− γ)1⊤∇θV
πθ
πθ

(ν)− ξ

≤ (1− γ)
√
|S||A|∥∇θV

πθ
πθ

(ν)∥2 − ξ

The last inequality is obtained by applying Cauchy-Schwarz inequality.

Now, substituting the above result back in Equation (37), we get

1

1− γ
E
(s,a)∼d

π⋆
o

πθ ,ρ(·|s0)
[Aπθ

πθ
(s, a)] ≤

√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θV
πθ
πθ

(ν)∥2 −

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

ξ

1− γ
(38)

Step 2: Upper bounding Term 2. For softmax rewards and transitions, we further obtain from Lemma 2,

Term 2 =
1

1− γ
E
(s,a)∼d

π⋆
o

πθ ,ρ

[
(rπ⋆

o
(s, a)− rπθ

(s, a)) + γ(Pπ⋆
o
(·|s, a)−Pπθ

(·|s, a))⊤V π⋆
o

π⋆
o
(·)
]

≤ 1

1− γ
(ξ +

γ

1− γ
Rmaxψmax)∥π⋆o(·|s0)− πθ(·|s0)∥1 (39)

≤ 2

1− γ
(ξ +

γ

1− γ
Rmaxψmax) . (40)

Step 3: Now, if we use Equation (38) and (40) together, we get

V
π⋆

o
π⋆

o
(ρ)− V πθ

πθ
(ρ) ≤

√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θV
πθ
πθ

(ν)∥2 +

(
2−

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

)
ξ

1− γ
++

2γ

(1− γ)2
Rmaxψmax

≤
√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θV
πθ
πθ

(ν)∥2 +
Rmax

1− γ
+

2γ

(1− γ)2
Rmaxψmax

=
√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θV
πθ
πθ

(ν)∥2 +
Rmax

1− γ

(
1 +

2γ

1− γ
ψmax

)

The last inequality is true since

∥∥∥∥∥d
π⋆
o

πθ ,ρ

d
πθ
πθ ,ν

∥∥∥∥∥
∞

≥ 1 (Lemma 9) and ξ ≤ Rmax.
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Theorem 3 (Convergence of PePG in softmax PeMDPs – Part (a)). Let Cov ≜ maxθ,ν

∥∥∥∥∥d
π⋆
o

πθ ,ρ

d
πθ
πθ ,ν

∥∥∥∥∥
∞

. The gradient ascent

algorithm on V πθ
πθ

(ρ) (Equation (9)) with step size η = Ω(min{ (1−γ)
2

γ|A| ,
(1−γ)3
γ2 }) satisfies, for all distributions ρ ∈ ∆(S).

(a) For unregularised case,

min
t<T

{
V

π⋆
o

π⋆
o
(ρ)− V πθt

πθt
(ρ)
}
≤ ϵ when T = Ω

(
|S||A|
ϵ2

max

{
γRmax | A |
(1− γ)3

,
γ2

(1− γ)4

})
, and ϵ = Ω

(
1

1− γ

)
.

Proof of Theorem 3– Part (a). We proceed with this proof by dividing it in four steps. In the first step, we use the smoothness
of the value function to prove an upper bound for the minimum squared gradient norm of the value over time which is a
constant times 1/T . In the second step, we derive a lower bound on the norm of gradient of value function using Lemma 3.
In the final two steps, we combine the bounds obtained from the first two steps to derive lower bounds for T and ϵ, i.e. the
error threshold.

Step 1: As V πθ
πθ

is L-smooth (Lemma 4), it satisfies∣∣∣V πθ
πθ

(ρ)− V π′
θ

π′
θ
(ρ)− ⟨∇θV

πθ
πθ

(ρ),θ − θ′⟩
∣∣∣ ≤ L

2
∥θ − θ′∥2

Thus, taking θ as θt+1 and θ′ as θt and using the gradient ascent expression (Equation (9)) yields∣∣∣V π
(t+1)
θ

π
(t+1)
θ

(ρ)− V π
(t)
θ

π
(t)
θ

(ρ)− η∥∇θV
π

(t)
θ

π
(t)
θ

(ρ)∥2
∣∣∣ ≤ L

2
∥θt+1 − θt∥2

=⇒ V
π

(t+1)
θ

π
(t+1)
θ

(ρ)− V π
(t)
θ

π
(t)
θ

(ρ) ≥ η∥∇V π
(t)
θ

π
(t)
θ

(ρ)∥2 − L

2
∥θt+1 − θt∥2

This further implies that

V
π

(t+1)
θ

π
(t+1)
θ

(ρ)− V π⋆
o

π⋆
o
(ρ) ≥ V π

(t)
θ

π
(t)
θ

(ρ)− V π⋆
o

π⋆
o
(ρ) + η∥∇θV

π
(t)
θ

π
(t)
θ

(ρ)∥2 − L

2
∥θt+1 − θt∥2

= V
π

(t)
θ

π
(t)
θ

(ρ)− V π⋆
o

π⋆
o
(ρ) + η(1− Lη

2
)∥∇V π

(t)
θ

π
(t)
θ

(ρ)∥2 (41)

The last equality is due to Equation (9).

Now, telescoping Equation (41) leads to

η(1− Lη

2
)

T−1∑
t=0

∥∇V π
(t)
θ

π
(t)
θ

(ρ)∥2 ≤
(
V

π⋆
o

π⋆
o
(ρ)− V π0

θ

π0
θ
(ρ)
)
−
(
V

π⋆
o

π⋆
o
(ρ)− V πT

θ

πT
θ

(ρ)
)

(42)

≤
(
V

π⋆
o

π⋆
o
(ρ)− V π0

θ

π0
θ
(ρ)
)

(43)

Since
∑T−1
t=0 ∥∇V

π
(t)
θ

π
(t)
θ

(ρ)∥2 ≥ T mint∈[T−1] ∥∇V
π

(t)
θ

π
(t)
θ

(ρ)∥2, we obtain

min
t∈[T−1]

∥∇V π
(t)
θ

π
(t)
θ

(ρ)∥2 ≤ 1

Tη
(
1− Lη

2

) (V π⋆
o

π⋆
o
(ρ)− V π0

θ

π0
θ
(ρ)
)
≤ Rmax

Tη
(
1− Lη

2

)
(1− γ)

.

The last inequality comes from V
π⋆

o
π⋆

o
(ρ) ≤ Rmax

1−γ (Assumption 1).

Step 2: We derive from Equation (15) that

(V
π⋆

o
π⋆

o
(ρ)− V πθ

πθ
(ρ))2 ≤

(√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θV
πθ
πθ

(ν)∥2 +
2Rmax

1− γ

(
1

2
+

γ

1− γ
ψmax

))2
≤ 2|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
2

∞

∥∇θV
πθ
πθ

(ν)∥22 +
8R2

max

(1− γ)2

(
1

2
+

γ

1− γ
ψmax

)2

.
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Thus, we further get

min
t∈[T ]

(V
π⋆

o
π⋆

o
(ρ)− V π

(t)
θ

π
(t)
θ

(ρ))2 ≤ 2|S||A| min
t∈[T ]

∥∥∥∥∥d
π⋆

o

π
(t)
θ ,ρ

dπθ

π
(t)
θ ,ν

∥∥∥∥∥
2

∞

∥∇θV
π

(t)
θ

π
(t)
θ

(ν)∥22 +
8R2

max

(1− γ)2

(
1

2
+

γ

1− γ
ψmax

)2

≤ 2|S||A|Cov2 min
t∈[T ]

∥∇θV
π

(t)
θ

π
(t)
θ

(ν)∥22 +
8R2

max

(1− γ)2

(
1

2
+

γ

1− γ
ψmax

)2

≤ 2|S||A|Cov2 Rmax

Tη
(
1− Lη

2

)
(1− γ)

+
8R2

max

(1− γ)2

(
1

2
+

γ

1− γ
ψmax

)2

.

Step 3: Now, we set

min
t∈[T ]

(V
π⋆

o
π⋆

o
(ρ)− V π

(t)
θ

π
(t)
θ

(ρ))2 ≤ 2|S||A|Cov2 Rmax

Tη
(
1− Lη

2

)
(1− γ)

+
8R2

max

(1− γ)2

(
1

2
+

γ

1− γ
ψmax

)2

≤

√√√√2|S||A| Rmax

Tη
(
1− Lη

2

)
(1− γ)

Cov +
2
√
2Rmax

(1− γ)
(
1

2
+

γ

1− γ
ψmax)


2

≤

(
ϵ+

√
2Rmax

(1− γ)

(
1 +

2γ

1− γ
ψmax

))2

,

and solve for T to get

T ≥ 2|S||A|Cov2Rmax

η(1− Lη
2 )(1− γ)ϵ2

(44)

Choosing η = 1
L , we get the final expression

T ≥ 4L|S||A|Cov2Rmax

ϵ2(1− γ)
. (45)

for any ϵ > 0 and the smoothness constant L = O

(
max

{
γRmax|A|
(1−γ)2 , γ2

(1−γ)3

})
.

Hence, we conclude that for T = Ω

(
|S||A|
ϵ2 max

{
γRmax|A|
(1−γ)3 , γ2

(1−γ)4

})
and ψmax = O( 1−γγ ),

min
t∈[T ]

(V
π⋆

o
π⋆

o
(ρ)− V π

(t)
θ

π
(t)
θ

(ρ)) ≤ ϵ+O
(

1

1− γ

)
.
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G.2 PROOFS FOR ENTROPY-REGULARISED OR SOFT VALUE FUNCTION

Definition 6. The discounted state occupancy measure dπ
π′(s|s0) induced by a policy π and an MDP environment defined by

π′ is defined as

dπ
π′(s|s0) ≜

∑
a∈A

dπ
π′(s, a|s0) = (1− γ)

∑
a∈A

Eτ∼Pπ

π′

[ ∞∑
t=0

γt1{st = s, at = a}
]
.

Lemma 7 (Regularized Performative Policy Difference: Generic Upper Bound). Under Assumption 1, the sub-optimality
gap of a policy πθ is

Ṽ
π⋆

o
π⋆

o
(s0)− Ṽ πθ

πθ
(s0) ≤

1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

[Ãπθ
πθ

(s, a)]

+
2

1− γ

(
ξ +

γ

1− γ
ψmax(Rmax + λ log |A|)

)
− λ

1− γ
∑
s

dπ⋆
o

πθ
(s|s0)DKL (π

⋆
o(·|s) ∥ πθ(·|s)) (46)

Proof. This lemma follows the same sketch as Lemma 2 with an exception in the way the soft rewards are handled. The
difference in the soft rewards equals the difference of the original rewards with a lagrange dependent term. This term is the
expected KL divergence over the state visitation distribution. Lemma 1 for regularized rewards reduces to,

Ṽ π
π (s0)− Ṽ π′

π′ (s0) =
1

1− γ
E(s,a)∼dπ

π′ (·|s0)[Ã
π′

π′(s, a)]

+
1

1− γ
E(s,a)∼dπ

π′ (·|s0)

(
[r̃π(s, a)− r̃π′(s, a)] + γ(Pπ −Pπ′)⊤Ṽ π

π (s0)
)
. (47)

Therefore,

r̃π⋆
o
(s, a)− r̃πθ

(s, a) = rπ⋆
o
(s, a)− rπθ

(s, a) + λ
(
logπθ(a|s)− logπ⋆o(a|s)

)

Therefore, we can write (47) in the following way,

Ṽ
π⋆

o
π⋆

o
(s0)− Ṽ πθ

πθ
(s0) =

1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

[Ãπθ
πθ

(s, a)]

+
1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

(
[r̃π⋆

o
(s, a)− r̃πθ

(s, a)] + γ(Pπ⋆
o
−Pπθ

)⊤Ṽ
π⋆

o
π⋆

o
(s0)

)
.

+
λ

1− γ
∑
s,a

[logπθ(a|s)− logπ⋆o(a|s)]d
π⋆

o
πθ

(s, a|s0)

=
1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

[Ãπθ
πθ

(s, a)]

+
1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

(
[r̃π⋆

o
(s, a)− r̃πθ

(s, a)] + γ(Pπ⋆
o
−Pπθ

)⊤Ṽ
π⋆

o
π⋆

o
(s0)

)
+

λ

1− γ
∑
s,a

dπ⋆
o

πθ
(s|s0)π⋆o(a|s)[logπθ(a|s)− logπ⋆o(a|s)]

=
(a)

1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

[Ãπθ
πθ

(s, a)]

+
1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

(
[r̃π⋆

o
(s, a)− r̃πθ

(s, a)] + γ(Pπ⋆
o
−Pπθ

)⊤Ṽ
π⋆

o
π⋆

o
(s0)

)
− λ

1− γ
∑
s

dπ⋆
o

πθ
(s|s0)DKL (π

⋆
o(·|s) ∥ πθ(·|s))

≤
Holder’s ineq.

1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

[Ãπθ
πθ

(s, a)]
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+
1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

(
[r̃π⋆

o
(s, a)− r̃πθ

(s, a)] + γ∥Pπ⋆
o
−Pπθ

∥1∥Ṽ
π⋆

o
π⋆

o
(s0)∥∞

)
− λ

1− γ
∑
s

dπ⋆
o

πθ
(s|s0)DKL (π

⋆
o(·|s) ∥ πθ(·|s))

≤
(b)

1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

[Ãπθ
πθ

(s, a)]

+
1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

(
[r̃π⋆

o
(s, a)− r̃πθ

(s, a)] + γ∥Pπ⋆
o
−Pπθ

∥1
Rmax + λ log |A|

1− γ

)
− λ

1− γ
∑
s

dπ⋆
o

πθ
(s|s0)DKL (π

⋆
o(·|s) ∥ πθ(·|s))

≤
Lipschitz r & P

1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

[Ãπθ
πθ

(s, a)]

+
1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

(
Lr + LP

γ(Rmax + λ log |A|)
1− γ

)
∥π⋆o − πθ∥1

− λ

1− γ
∑
s

dπ⋆
o

πθ
(s|s0)DKL (π

⋆
o(·|s) ∥ πθ(·|s))

≤
(c)

1

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

[Ãπθ
πθ

(s, a)]

+
2

1− γ
E
(s,a)∼d

π⋆
o

πθ
(·|s0)

(
Lr + LP

γ(Rmax + λ log |A|)
1− γ

)
− λ

1− γ
∑
s

dπ⋆
o

πθ
(s|s0)DKL (π

⋆
o(·|s) ∥ πθ(·|s))

The equality (a) holds since,

Ea∼π⋆
o(·|s)[logπθ(a|s)− logπ⋆o(a|s)] = −DKL (π

⋆
o(·|s) ∥ πθ(·|s))

The inequality (b) holds due to the result of Mei et al. (2020), i.e.

∥Ṽ π⋆
o

π⋆
o
∥∞ ≤

Rmax + λ log |A|
1− γ

(48)

Finally, (c) is due to the fact that ∥π⋆o − πθ∥1 ≤ 2.

Lemma 8 (Regularized Performative Policy gradient for softmax policies and softmax MDPs). For a class of PeMDPs
M ≜ (S,A,π,Pπ, rπ,θ, ρ) consider softmax parametrization for policy πθ ∈ ∆(θ ∈ Θ) and transition dynamics Pπθ

and linear parametrization for reward rπθ
. For all (s, a, s′) ∈ (S,A,S), derivative of the expected return w.r.t θs,a satisfies:

∂Ṽ πθ
πθ

(ρ)

∂θs,a
≥ 1

1− γ
dπθ
πθ

(s, a|ρ)
(
Ãπθ

πθ
(s, a) + ξ

)
− λ

1− γ
(1 + log |A|) . (49)

Proof. This proof follows the same sketch as the proof of Theorem 3. However, we get two additional λ-dependent terms–
(a) one from the log policy term in the soft advantage, and (b) the other from the log policy term in the soft rewards. We then
simplify these terms to obtain the final expression.

First, let us note that

∂

∂θs′,a′
logπθ(a|s) = 1[s = s′, a = a′]− πθ(a

′|s)1[s = s′]

∂

∂θs′,a′
logPπθ

(s′′|s, a) = ψ(s′′)1[s = s′, a = a′] (1−Pπθ
(s′′|s, a))

∂

∂θs′,a′
rπθ

(s, a) = ξ1[s = s′, a = a′] . (50)
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Now, we get from Theorem 2,

∂

∂θs,a
Ṽ πθ
πθ

(ρ) = Eτ∼Pπθ
πθ

[ ∞∑
t=0

γt
(
Ãπθ

πθ
(st, at)

∂

∂θs,a
logπθ(at | st)

+ Ãπθ
πθ

(st, at)
∂

∂θs,a
logPπθ

(st+1|st, at)

+
∂

∂θs,a
rπθ

(st, at)− λ
∂

∂θs,a
logπθ(at | st)

)]
= Eτ∼Pπθ

πθ

[ ∞∑
t=0

γt
(
Ãπθ

πθ
(st, at) (1[st = s, at = a]− πθ(a|s)1[st = s])

+ Ãπθ
πθ

(st, at)ψ(st+1)1[st = s, at = a] (1−Pπθ
(st+1|s, a))

+ ξ1[st = s, at = a]− λ1[st = s, at = a] + λπθ(a|s)1[st = s]
)]

≥
(a)

Eτ∼Pπθ
πθ

[ ∞∑
t=0

γtÃπθ
πθ

(st, at)1[st = s, at = a]
]
− Eτ∼Pπθ

πθ

[ ∞∑
t=0

γtπθ(a|s)1[st = s]Ãπθ
πθ

(st, at)
]

+Eτ∼Pπθ
πθ

[ ∞∑
t=0

γtξ1[st = s, at = a]
]
− λEτ∼Pπθ

πθ

[ ∞∑
t=0

γt1[st = s, at = a]
]
+ λEτ∼Pπθ

πθ

[ ∞∑
t=0

γtπθ(at|st)1[st = s]
]

=
1

1− γ
dπθ
πθ,ρ

(s, a)Ãπθ
πθ

(s, a) + λEτ∼Pπθ
πθ

[ ∞∑
t=0

γtπθ(at|st) logπθ(at|st)1[st = s]
]

+
1

1− γ
ξdπθ

πθ,ρ
(s, a)− λ

1− γ
dπθ
πθ,ρ

(s, a|s0) + λEτ∼Pπθ
πθ

[ ∞∑
t=0

γtπθ(at|st)
∑
a

1[st = s, at = a]
]

=
1

1− γ
dπθ
πθ,ρ

(s, a)Ãπθ
πθ

(s, a) + λEτ∼Pπθ
πθ

[ ∞∑
t=0

γtπθ(at|st) logπθ(at|st)
∑
a

1[st = s, at = a]
]

+
1

1− γ
ξdπθ

πθ,ρ
(s, a)− λ

1− γ
dπθ
πθ,ρ

(s, a) + λEτ∼Pπθ
πθ

[∑
a

πθ(a|s)
∞∑
t=0

γt1[st = s, at = a]
]

=
1

1− γ
dπθ
πθ,ρ

(s, a)Ãπθ
πθ

(s, a) + λEτ∼Pπθ
πθ

[∑
a

πθ(a|s) logπθ(a|s)
∞∑
t=0

γt1[st = s, at = a]
]

+
1

1− γ
ξdπθ

πθ,ρ
(s, a)− λ

1− γ
dπθ
πθ,ρ

(s, a) +
λ

1− γ
∑
a

dπθ
πθ,ρ

(s, a)πθ(a|s)

≥ 1

1− γ
dπθ
πθ,ρ

(s, a)
(
Ãπθ

πθ
(s, a) + ξ

)
− λ

1− γ
dπθ
πθ,ρ

(s, a)− λ

1− γ
∑
a

dπθ
πθ,ρ

(s, a)πθ(a|s) log
1

πθ(a|s)

≥
(b)

1

1− γ
dπθ
πθ,ρ

(s, a)
(
Ãπθ

πθ
(s, a) + ξ

)
− λ

1− γ
dπθ
πθ,ρ

(s, a)(1 + log |A|) .

(b) holds from the following:

−
∑
a

dπθ
πθ

(s, a|s0) logπθ(a|s) = dπθ
πθ

(s|s0)
(
−
∑
a

πθ(a|s) logπθ(a|s)
)

≤
(c)

dπθ
πθ

(s|s0) log |A| ≤ log |A|

and (c) holds as entropy is upper bounded by log |A| (Cover & Thomas, 2006, Theorem 2.6.4).

Lemma 3 (Regularized Performative Gradient Domination: Part(b) of Lemma 3). For regularized PeMDPs the following
inequality holds:

Ṽ
π⋆

o
π⋆

o
(ρ)− Ṽ πθ

πθ
(ρ)
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≤
√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θṼ
πθ
πθ

(ν)∥2 +
Rmax

1− γ

(
1 +

2γ

1− γ
ψmax

(
1 +

λ

Rmax
log |A|

))
+

λ

1− γ
(1 + log |A|) . (51)

Proof. Step 1. First, we observe that

−DKL (π
⋆
o(·|s) ∥ πθ(·|s)) ≤ −

∑
a∈A

π⋆o(a|s) logπ⋆o(a|s) ≤ log |A|

Hence, we get

−
∑
s

dπ⋆
o

πθ
(s|s0)DKL (π

⋆
o(·|s) ∥ πθ(·|s)) ≤ log |A| (52)

Step 2. Using Lemma 8 and applying Cauchy-Schwarz inequality, we get∑
s,a

dπθ
πθ

(s, a)Ãπθ
πθ

(s, a) ≤
√
|S||A|(1− γ)∥∇θṼ

πθ
πθ

(ν)∥2 − ξ + λ(log |A|+ 1) (53)

Step 3. Now, substituting Equation (52) and (53) in Equation (46), we finally get

Ṽ
π⋆

o
π⋆

o
(ρ)− Ṽ πθ

πθ
(ρ) ≤

√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θṼ
πθ
πθ

(ν)∥2 −

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

ξ

1− γ
+

λ

1− γ
(log |A|+ 1)

+
2

1− γ

(
Lr +

γ

1− γ
LP(Rmax + λ log |A|)

)
=
(a)

√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θṼ
πθ
πθ

(ν)∥2 −

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

ξ

1− γ
+

λ

1− γ
(1 + log |A|)

+
2

1− γ

(
ξ +

γ

1− γ
ψmax(Rmax + λ log |A|)

)
≤
(b)

√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θṼ
πθ
πθ

(ν)∥2 +
ξ

1− γ

+
2γ

1− γ
ψmax(Rmax + λ log |A|) + λ

1− γ
(1 + log |A|)

=
√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θṼ
πθ
πθ

(ν)∥2

+
2

1− γ

(ξ
2
+

γ

1− γ
ψmax(Rmax + λ log |A|)

)
+

λ

1− γ
(1 + log |A|)

≤
√
|S||A|

∥∥∥∥∥d
π⋆

o
πθ,ρ

dπθ
πθ,ν

∥∥∥∥∥
∞

∥∇θṼ
πθ
πθ

(ν)∥2

+
Rmax

1− γ

(
1 +

2γ

1− γ
ψmax

(
1 +

λ

Rmax
log |A|

))
+

λ

1− γ
(1 + log |A|)

In (a), we substitute the values of Lr and LP for softmax PeMDPs, and in (b), we use

∥∥∥∥∥d
π⋆
o

πθ ,ρ

d
πθ
πθ ,ν

∥∥∥∥∥
∞

≥ 1 (Lemma 9).

Theorem 3 (Convergence of PePG in softmax PeMDPs – Part (b)). Let Cov ≜ maxθ,ν

∥∥∥∥∥d
π⋆
o

πθ ,ρ

d
πθ
πθ ,ν

∥∥∥∥∥
∞

. The gradient ascent

algorithm on V πθ
πθ

(ρ) (Equation (9)) with step size η = Ω
(

(1−γ)2
γ|A|

)
satisfies, for all distributions ρ ∈ ∆(S).

(b) For entropy regularised case, if we set λ = (1−γ)Rmax

1+log |A| , we get

min
t<T

{
Ṽ

π⋆
o

π⋆
o
(ρ)− Ṽ π

(t)
θ

π
(t)
θ

(ρ)
}
≤ ϵ when T = Ω

(
Rmax|S||A|2

ϵ2(1− γ)3
Cov2

)
, and ϵ = Ω

(
1

1− γ

)
.
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Proof. This proof follows similar steps as part (a) of Theorem 3 with two additional changes: (i) We have a λ, i.e. regu-
larisation coefficient, dependent term due to the entropy regulariser. (ii) The maximum value of the soft value function is
Rmax+λ log |A|

1−γ instead of Rmax

1−γ for the unregularised value function.

Step 1: From Equation (31), we observe that the soft-value function Ṽ πθ
πθ

is Lλ-smooth.

Thus, following the Step 1 of Theorem 3, we get

min
t∈[T−1]

∥∇Ṽ π
(t)
θ

π
(t)
θ

(ρ)∥2 ≤ 1

Tη
(
1− Lλη

2

) (Ṽ π⋆
o

π⋆
o
(ρ)− Ṽ π0

θ

π0
θ
(ρ)
)

≤ Rmax + λ log |A|

Tη
(
1− Lλη

2

)
(1− γ)

. (54)

The last inequality is true due to the fact that Ṽ π⋆
o

π⋆
o
(ρ)− Ṽ π

(0)
θ

π
(0)
θ

(ρ) ≤ Ṽ π⋆
o

π⋆
o
(ρ) ≤ Rmax+λ log |A|

1−γ .

Step 2: Now, from Part (b) of Lemma 3, we obtain that

min
t∈[T−1]

(
Ṽ

π⋆
o

π⋆
o
(ρ)− Ṽ π

(t)
θ

π
(t)
θ

(ρ)

)2

≤ min
t∈[T−1]

√|S||A|∥∥∥∥∥d
π⋆

o

π
(t)
θ ,ρ

d
π

(t)
θ

π
(t)
θ ,ν

∥∥∥∥∥
∞

∥∇θṼ
π

(t)
θ

π
(t)
θ

(ν)∥2 +
Rmax

1− γ

(
1 +

2γ

1− γ
ψmax

(
1 +

λ

Rmax
log |A|

))
+

λ

1− γ
(1 + log |A|)


2

≤ 2|S||A| min
t∈[T−1]

∥∥∥∥∥d
π⋆

o

π
(t)
θ ,ρ

d
π

(t)
θ

π
(t)
θ ,ν

∥∥∥∥∥
2

∞

∥∇θṼ
π

(t)
θ

π
(t)
θ

(ν)∥22 + 2

(
Rmax

1− γ

(
1 +

2γ

1− γ
ψmax

(
1 +

λ

Rmax
log |A|

))
+

λ

1− γ
(1 + log |A|)

)2

≤ 2|S||A|Cov2 (Rmax + λ log |A|)

Tη
(
1− Lλη

2

)
(1− γ)

+ 2

(
Rmax

1− γ

(
1 +

2γ

1− γ
ψmax

(
1 +

λ

Rmax
log |A|

))
+

λ

1− γ
(1 + log |A|)

)2

.

The last inequality is due to the upper bound on the minimum gradient norm as in Equation (54) and by definition of the
coverage parameter Cov.

Thus, we conclude that

min
t∈[T−1]

Ṽ
π⋆

o
π⋆

o
(ρ)− Ṽ π

(t)
θ

π
(t)
θ

(ρ)

≤

√√√√2|S||A|Cov2 (Rmax + λ log |A|)

Tη
(
1− Lλη

2

)
(1− γ)

+
√
2

(
Rmax

1− γ

(
1 +

2γ

1− γ
ψmax

(
1 +

λ

Rmax
log |A|

))
+

λ

1− γ
(1 + log |A|)

)
.

(55)

Step 4: Now, by setting the T -dependent term in Equation (55) to ϵ, we get T ≥ 2|S||A|Cov2(Rmax+λ log |A|)
η
(
1−Lλη

2

)
(1−γ)ϵ2

.

Choosing η = 1
Lλ

, λ = (1−γ)Rmax

(1+log |A|) , and ψmax = O( 1−γγ ), we get the final expression T ≥ 8|S||A|Cov2LλRmax

(1−γ)ϵ2 , and

min
t∈[T−1]

Ṽ
π⋆

o
π⋆

o
(ρ)− Ṽ π

(t)
θ

π
(t)
θ

(ρ) ≤ ϵ+O( 1

1− γ
) .

Finally, noting that Lλ = O

(
max

{
γRmax|A|ψ2

max

(1−γ)2 ,
Rmaxψ

2
max

(1−γ)2

})
, we get

T = Ω

(
|S||A|

ϵ2(1− γ)3
max{1, γ|A|}

)
.
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H ABLATION STUDY ON ENTROPY REGULARISATION
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Figure 3: Ablation study for PePG for different values of regularised λ with 20 random seeds, each for 100 iterations

We conducted an ablation study across four entropy regularization strengths (λ ∈ {0.01, 0.5, 1, 2} to determine the optimale
balance between exploration and convergence stability in RegPePG. The results demonstrate that λ = 2 achieves the highest
final performance ( 0.05), while smaller values (λ ≤ 1) converge to similar suboptimal levels around −0.01 to 0, indicating
that stronger entropy regularization enables more effective exploration of the policy space in performative settings.
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I TECHNICAL LEMMAS

Lemma 9 (Lower Bound of Coverage). For any π,π′ ∈ Π(Θ), the following non-trivial lower bound holds,∥∥∥∥∥dπ′

dπ

∥∥∥∥∥
∞

≥ 1

Proof. ∥∥∥∥∥dπ′

dπ

∥∥∥∥∥
∞

= max
s,a

dπ′(s, a)

dπ(s, a)
≥ 1∑

s,a ws,a

∑
s,a

dπ′(s, a)

dπ(s, a)
· ws,a

Choose ws,a = dπ(s, a) Hence, we get,

max
s,a

dπ′(s, a)

dπ(s, a)
≥
∑
s,a dπ′(s, a)∑
s,a dπ(s, a)

= 1

The last equality holds from the fact that the state-action occupancy measure is a distribution over S × A. Hence,∑
s,a dπ′(s, a) =

∑
s,a dπ(s, a)

Lemma 10. The discounted state occupancy measure

dπ
π′(s|s0) ≜ (1− γ)Eτ∼Pπ

π′

[ ∞∑
t=0

γt1{st = s}
]

is a probability mass function over the state-space S.

Proof. For each fixed s the integrand
∑∞
t=0 γ

t1{st = s} ≥ 0, hence dπ
π′(s|s0) ≥ 0.

To check normalization, we sum over all states and use Tonelli/Fubini (permitted because the summand is non-negative) to
exchange sums and expectation:∑
s∈S

dπ
π′(s|s0) = (1− γ)Eτ∼Pπ

π′ (·|s0)

[ ∞∑
t=0

γt
∑
s∈S

1{st = s}
]
= (1− γ)Eτ∼Pπ

π′ (·|s0)

[ ∞∑
t=0

γt · 1
]
= (1− γ)

∞∑
t=0

γt = 1.

Therefore ρ is a probability mass function on S.

A very similar argument holds for the discounted state-action occupancy measure dπ
π′(s, a|s0) as well.
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