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ABSTRACT

Post-deployment machine learning algorithms often influence the environments they act in, and thus shift
the underlying dynamics that the standard reinforcement learning (RL) methods ignore. While designing
optimal algorithms in this performative setting has recently been studied in supervised learning, the RL
counterpart remains under-explored. In this paper, we prove the performative counterparts of the perfor-
mance difference lemma and the policy gradient theorem in RL, and further introduce the Performative
Policy Gradient algorithm (PePG). PePG is the first policy gradient algorithm designed to account for
performativity in RL. Under softmax parametrisation, and also with and without entropy regularisation, we
prove that PePG converges to performatively optimal policies, i.e. policies that remain optimal under the
distribution shifts induced by themselves. Thus, PePG significantly extends the prior works in Performative
RL that achieves performative stability but not optimality. Furthermore, our empirical analysis on standard
performative RL environments validate that PePG outperforms standard policy gradient algorithms and the
existing performative RL algorithms aiming for stability.

1 INTRODUCTION

Reinforcement Learning (RL) studies the dynamic decision making problems under incomplete information (Sutton & Barto,
1998). Since an RL algorithm tries and optimises an utility function over a sequence of interactions with an unknown
environment, RL has emerged as a powerful tool for algorithmic decision making. Specially, in the last decade, RL has
underpinned some of the celebrated successes of Al, such as championing Go with AlphaGo (Silver et al., 2014), controlling
particle accelerators (St. John et al., 2021), aligning Large Language Models (LLMs) (Bai et al., 2022), reasoning (Havrilla
et al.), to name a few. But the existing paradigm of RL assumes that the underlying environment with which the algorithm
interacts stays static over time and the goal of the algorithm is to find the utility-maximising, aka optimal policy for choosing
actions over time for this specific environment. But this assumption does not hold universally.

In this digital age, algorithms are not passive. Their decisions also shape the environment they interact
with, inducing distribution shifts.  This phenomenon that predictive Al models often trigger actions that influ-
ences their own outcomes is termed as performativity. In the supervised learning setting, the study of per-
formative prediction is pioneered by Perdomo et al. (2020), and then followed by an extensive literature en-
compassing stochastic optimisation, control, multi-agent RL, games (Izzo et al., 2021; 2022; Miller et al., 2021;
Li & Wai, 2022; Narang et al, 2023; Piliouras & Yu, 2023; Goéis et al., 2024; Barakat et al., 2025) etc.
There has been several attempts to achieve performative optimality or

stability for real-life tasks— recommendation systems (Eilat & Rosen- 42
feld, 2023), measuring the power of firms (Hardt et al., 2022; Mofakhami
et al., 2023), healthcare (Zhang et al., 2022) etc. Performativity of al-
gorithms is also omnipresent in practically deployed RL systems. For
example, an RL algorithm deployed in a recommender system does not
only aim to maximise the user satisfaction but also shifts the preferences
of the users in the long-term (Chaney et al., 2018; Mansoury et al., 2020).
To clarify the impact of performativity, let us consider an example.
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Example 1 (Performative RL in loan approval). Let us consider a loan
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approval problem, where an applicant obtains a loan (or get rejected) teration
according to their credit score x, and x depends on the capital of the Figure 1: Average reward (over 10 runs) obtained
applicant and that of the population. At each time t, a loan applicant by ERM and Performative Optimal policies across
arrives with a credit score z; sampled from N (i, o%). The bank chooses performative strength 3.
whom to give a loan by applying a softmax binary classifier wg : R —
{0, 1} on x with threshold parameter 0. This decision has two effects. (a) The bank receives a positive payoff R, if the loan
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applicant who was granted a loan repays, or else, loses by L. Thus, the bank’s expected utility for policy g is U (0, 1) =
EumN (u,02) [0 () (P(repayment|z)R — (1 — P(repayment|z))L)] . (b) Since the amount of capital both the applicant and
the population influence the credit score, we model that the change in the population mean (1,1 depends on the bank’s policy,
via a grant rate B, nr(,,, 02 (76 (x)]. Specifically, pey1 = (1 — B)ps + Bf (Bpnr(us,02) [T6(2)]), where B € [0,1] is the

t
performative strength and f : R — [—M, M]. Now, if one ignores the performative nature of this decision making problem,
and try to find out the optimal with respect to a static credit distribution, it obtains 0" £ arg max, U(G, ,uo). In contrast, if

it considers performativity, it obtains 077 £ arg max, U (9, w* (9)) In Figure 1, we show that the average reward obtained
by both the solutions are significantly different. This demonstrates why performativity is a common phenomenon across
algorithmic decision making problems, and how it changes the resulting optimal solution. Further details are in Appendix B.

These problem scenarios have motivated the study of performative RL. Though Bell et al. (2021) were the first to propose a
setting where the transition and reward of an underlying MDP depend non-deterministically on the deployed policy, Mandal
et al. (2023) formally introduced Performative RL, and its solution concepts, i.e., performatively stable and optimal policies.
Performative stable policies do not get affected or changed due to distribution shifts after deployment. Performatively optimal
policies yield the highest expected return once deployed in the performative RL environment. Mandal et al. (2023) proposed
direct optimization and ascent based techniques that attains performative stability upon repeated retraining. Extending this
work, Rank et al. (2024) and Mandal & Radanovic (2024) manage to solve the same problem with delayed retraining for
gradually shifting and linear MDPs. However, there exists no algorithm yet in performative RL that provably converges to the
performative optimal policy.

As we know from the RL literature, the Policy Gradient (PG) type of algorithms that treats policy as a parametric function
and updates the parameters through gradient ascent algorithms are efficient and scalable (Williams, 1992; Sutton et al., 1999;
Kakade, 2001). Some examples of successful and popular policy gradient methods include TRPO (Schulman et al., 2015),
PPO (Schulman et al., 2017), DDPG (Silver et al., 2014), SAC (Mnih et al., 2016), which are widely used in modern RL appli-
cations. Recent theoretical advances also establish finite-sample convergence guarantees and complexity analyses (Agarwal
et al., 2021; Yuan et al., 2022) of PG algorithms. Motivated by the simplicity and universality of the PG algorithms, we ask
these two questions in the context of performative RL:

1. How to design PG-type algorithms for performative RL environments to achieve optimality?
2. What are the minimal conditions under which PG-type algorithms converge to the performatively optimal policy?

Our contributions address these questions affirmatively, and showcases the difference of optimality-seeking and stability-
seeking algorithms in performative RL.

I. Algorithm Design: We propose the first Performative Policy Gradient algorithm, PePG, for performative RL environments.
Specifically, we extend the classical vanilla PG and entropy-regularised PG algorithms to Performative RL settings. Though
the general algorithm design stays same, we derive a performative policy gradient theorem that shows, evaluation of the
gradient involves two novel gradient terms in performative RL — (a) the expected gradient of reward, and (b) the expected
gradient of log-transition probabilities times its impact on the expected cumulative return. We leverage this theorem to propose
an estimator of the performative policy gradient under any differentiable parametrisation.

I1. Convergence to Performative Optimality. We further analyse PePG (with and without entropy regularisation) for
softmax policies, and softmax Performative Markov Decision Processes (PeMDPs), i.e. the MDPs with softmax transition
probabilities and linear rewards with respect to the parameters of the softmax policy. We provide a minimal recipe to prove
convergence of PePG using (a) smoothness of the performative value function, and (b) approximate gradient domination
lemma for performative policy gradients. This allows us to show that PePG converges to an e-ball around performative
S|4
B

optimal policy in €2 ( ) iterations, where |S| and |.4| are the number of states and actions, respectively.

Specifically, Mandal et al. (2023) frames the question of using policy gradient to find stable policies as an open problem. The
authors further contemplate, as PG functions in the policy space, whether it is possible to converge towards a stable policy. In
this paper, we affirmatively solve an extension to this open problem for tabular softmax PeMDPs with softmax policies.

II1. Stability- vs. Optimality-seeking Algorithms in Performative RL. We further theoretically and numerically con-
trast the performances of stability-seeking and optimality-seeking algorithms. Theoretically, we derive the performative
performance difference lemma that distinguished the effect of policy update in these two types of algorithms. Numerically,
we compare the performances of PePG with the state-of-the-art MDRR (Mixed Delayed Repeated Retraining (Rank et al.,
2024)) algorithm for finding performatively stable policies in the multi-agent environment proposed by (Mandal et al., 2023).
We show that PePG yields significantly higher values functions than MDRR, while MDRR achieves either similar or lower
distance from stable state-action distribution than PePG .
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2 PRELIMINARIES: FROM RL TO PERFORMATIVE RL
Now, we formalise the RL and performative RL problems, and provide the basics of policy gradient algorithms in RL.

2.1 RL: INFINITE-HORIZON DISCOUNTED MDPSs

In RL, we mostly study Markov Decision Processes (MDPs) defined via the tuple (S, A, P,r,~), where S C R? is the state
space and A C R is the action space. Both the spaces are assumed to be compact. At any time step ¢ € N, an agent
plays an action a; € A at a state s; € S. It transits the MDP environment to a state s;41 according to a transition kernel
P(- | st,a¢) € A(S). The agent further receives a reward r(s¢, a;) € R quantifying the goodness of taking action a; at s;.
The strategy to take an action is represented by a stochastic map, called policy, i.e. w: S — A(A). Given an initial state
distribution p € A(S), the goal is to find the optimal policy ™ that maximises the expected discounted sum of rewards, i.e.,
the value function: V. (p) = B somprs01 P (s (s50) Y2 oir(se, m(se))] , where v € (0,1) is called the discount factor.

~ indicates how much a previous reward matters in the next step, and bounds the effective horizon of a policy to ﬁ

Policy Gradient (PG) Algorithms. PG-type algorithms
Algorithm 1 Vanilla Policy Gradient maximise the value function by directly optimising the pol-
icy through a gradient over value function (Williams, 1992).
To compute the gradient, we choose a parametric family of
policies g for some 8 € R? (e.g. direct (Agarwal et al.,
2021; Wang & Zou, 2022), softmax (Agarwal et al., 2021;
Mei et al., 2020), Gaussian (Ciosek & Whiteson, 2020;
Ghavamzadeh & Engel, 2006)). Specifically, vanilla PG
(Algorithm 1), performs a gradient ascent on the policy pa-
rameter at each step ¢ € N. As the goal is to maximise
V7™ (p), we update 6 towards VoV ™ (p), which is the direction improving the value V™ (p) with a fixed learning rate > 0.
For vanilla PG, the policy gradient takes the convenient form leading to estimators computable only with policy rollouts.

: Input: Learning rate n > 0.
: Initialize: Policy parameter 0¢(s,a)Vs € S,a € A.
:fort=1toTdo

Estimate the gradient VoV™ (p) |g—s,

Gradient ascent step: 0, .1 < 0, + VgV ™(p) |g—s,
end for

AN A ey

Theorem 1 (Policy Gradient Theorem (Sutton et al., 1999)). Fix a differentiable paramterisation 0 — my(a | s) and an initial
distribution p. Let us define the Q-value function Q™ (s,a) £ By, b (|s;.m(s0) [Doreo V7 (s, 7(s¢)) | 50 = 5,00 = al,
and advantage function A™ (s, a) = Q™ (s,a) — V™ (s). Then,

L

VeV™(p) = 1—7

]ET~IP’;Z Z“/tQﬂe(S,a)Ve logmg(a| s)
t=0

= ET"‘P:Z [Z A/tAﬂe (87 CL)V@ log o (a | 8)
t=0

Since the value function is not concave in the policy parameters, achieving optimality with PG has been a challenge. But prac-
tical scalability and efficiency of these algorithms has motivated a long-line of work to understand the minimum conditions
and parametric forms of policies leading to convergence to the optimal policy (Agarwal et al., 2021; Mei et al., 2020; Wang
& Zou, 2022; Yuan et al., 2022). Our work extends these algorithmic techniques and theoretical insights to performative RL.

2.2  PERFORMATIVE RL: INFINITE-HORIZON DISCOUNTED PEMDPs

Given a policy set w € II, we denote the Performative Markov Decision Process (PeMDP) is defined as the set of MDPs
{M(m) | ® € 11}, where each MDP is a tuple M(7) = (S, A, P, 7,7). Note, that the transition kernel and rewards
distribution are no more invariant with respect to the policy. They shift with the deployed policy 7w € A(A) (Mandal et al.,
2023; Mandal & Radanovic, 2024). In this setting, the probability of generating a trajectory 7 = (s¢, ;)2 under policy
7 with underlying MDP M(7’) is given by' PZ, (7 | p) £ p(so) [[ieo m(as | s¢)Pr(Ses1 | s¢,ar), where p € A(S)
is the initial state distribution. Furthermore, the state-action occupancy measure for deployed policy 7v and environment-
inducing policy 7’ is defined as d7, , £ {22E__pr [372,7"1(se = 5,0, = a) | s ~ p]. Now, we are ready to define the
performative expected return, referred as the perforfﬁative value function that we aim to maximise while solving PeMDP.

Definition 1 (Performative Value Function). Given a policy 7 € 11 and an initial state distribution p € A(S), the performa-
tive value function V. (p) is
o0

VE(p) 2 E, pr | > A'relse,m(se) [ so~p) - (1)
t=0

"Hereafter, for relevant quantities, 7 in superscript denotes the deployed policy, and 7’ in the subscript denoted the environment-
inducing, i.e. the policy inducing the transition kernel and reward function that the algorithm interacts with.
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Equation (1) gives the total expected return that captures the performativity aspect in PeMDPs as the underlying dynamics
changes with a deployed policy 7 (- | s). Note that, we can maximise performative value function in two ways: (i) considering
7 as both the environment-inducing policy and the policy the RL agent deploys, or (ii) deploying 7 to fix it as the environment-
inducing policy and agent plays another policy 7’. At this vantage point, let us introduce the notion of optimality and stability
of policies in PeMDPs (Mandal et al., 2023).

Definition 2 (Performative Optimality). A policy 7}, is performatively optimal if it maximizes the performative value function.
7, € argmax V.7 (p) . ()
TEA(A)
Thus, if we play the policy 7 in the environment induced by policy 7r to maximise the expected return, we land on the
performatively optimal policy.
Definition 3 (Performative Stability). A policy 7% is performatively stable if there is no gain in performative value function
due to deploying any other policy than 7% in the environment induced by .
7y € argmax V.5 (p). 3)
weA(A)  °
As noted by Mandal et al. (2023), a performatively optimal policy may not be performatively stable, i.e., 7}y may not be
optimal for a changed underlying environment M (7%), when it is deployed. Also, in general, the performative value function
of 75 might be equal to or higher than that of 7. In this paper, we design PG algorithms computing the performative optimal
policy for a given set of MDPs, and reinstate their differences with performatively stable policies.

The existing literature on PeMDPs (Mandal et al., 2023; Mandal & Radanovic, 2024; Rank et al., 2024; Pollatos et al., 2025;
Chen et al., 2024) focused primarily on finding a performatively stable policy, i.e. a 7} according to Definition 3. In practice,
while the notion of stable policies matters for very specific applications, a stable policy may not always suffice. But they
might show large sub-optimality gaps, which are often not desired for real-life tasks. We fill up this gap in literature and
propose the first provably converging and computationally efficient PG algorithm for PeMDPs. Later on, we also empirically
show the deficiency of the existing stability finding algorithms if we aim for optimality (Section 5).

Entropy Regularised PeMDPs. Entropy regularisation has emerged as a simple but powerful technique in classical RL
to design smooth and efficient algorithms with sufficient exploration. Thus, we study another variant of the performative
value function that is regularised using discounted entropy (Mei et al., 2020; Neu et al., 2017; Liu et al., 2019; Zhao et al.,
2019). In this setting, the original value function in Definition 1 is regularised using the discounted entropy H,(p) =
E pr [— > o logm(as | s¢)]. This is equivalent to maximising the expected reward with a shifted reward function

Tr(mw(st),8¢) = ra(7(st),8t) — Alog(m(as | s¢)) for some A > 0. 7 is referred as the “soft-reward” in MDP literature
(Wang & Uchibe, 2024; Herman et al., 2016; Shi et al., 2019). This allows us to define the soft performative value function.
Definition 4 (Entropy Regularised (or Soft) Performative Value Function). Given a policy m € 11, a starting state distribution
p € A(S), and a regularisation parameter \ > 0, the soft performative value function V' (p) is

S A ir(sem(s) [so~p| - @)

VE(p) £E,_pr | 7" (re(se, w(si) — Mogm(ar | 5)) | s0 ~ P} =K. .pr
t=0

t=0

Since policies belong to the probability simplex, the entropy regularisation naturally lends to smoother and stable PG algo-
rithms. Later, we show that the discounted entropy is a smooth function of the policy parameters for PeMDPs extending
the optimization-wise benefits of entropy regularisation to PeMDPs. Additionally, using the notion of soft rewards, we can
further define soft performatively optimal and stable policies for entropy regularised PeMDPs. Leveraging it, we unifiedly
design PG algorithms for both the unregularised and the entropy regularised PeMDPs.

3 PoLIicY GRADIENT ALGORITHMS IN PERFORMATIVE RL

In this section, we first study the impact of policy updates in PeMDPs. Then, we leverage it to derive the performative policy
gradient theorem and design Performative Policy Gradient (PePG) algorithm for any differentiable parametric policy class.

3.1 IMPACT OF PoLiCcY UPDATES ON PEMDPs

Performance difference lemma has been central in RL to understand the impact of changing policies in terms of value func-
tions (Kakade & Langford, 2002a). It has been also central to analysing and developing PG-type methods (Agarwal et al.,
2021; Silver et al., 2014; Kallel et al., 2024). But the existing versions of performance difference cannot handle performativ-
ity. Here, we derive the performative version of the performance difference lemma that quantifies the shift in the performative
value function due to change the deployed and environment-inducing policies.
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Lemma 1 (Performative Performance Difference Lemma). The difference in performative value functions induced by 7 and
7' € Il while starting from the initial state distribution p is

ﬂ, ' 1 o
Vﬂ' (p) - V7'r’ (p) = 7E(S,a)~d:,’p[Aﬂ" (S’ CL)]

L=~
1
4 T B, [(7n(50) = 1o (5,0) £ 9 (PaCls.a) = Pl ) TVEO] . 9
where A;; (s,a) 2 :; (s,a) — 7:',/ (8) is the performative advantage function for any state s € S and action a € A.

The crux of the proof is decomposing the performative value through environment-inducing and deployed policies
Vr (s0) = Vi (50) = Vi (s0) = Vi (s0) + Vi (so) = Voo (so) -

performative shift term performance difference term

(1) Connection to Classical RL. In classical RL, the performance difference lemma yields V™ (p) — V™ (p) =
ﬁE(s,a)ng [A’T/(s7 a)]. The first term in Lemma 1 is equivalent to the classical result in the environment induced by
7’. But due to environment shift, two more terms appear in the performative performance difference incorporating the im-
pacts of reward shifts and transition shifts. (2) Connection to Performative Stability. If we ignore the reward and transition
shift terms, the performance difference term V.7 (s¢) — V,;’,',/ (so) quantifies the impact of changing the deployed policy from
7’ to 7 in an environment induced by 7’. Thus, a stability seeking algorithm would like to minimise this term, while an
optimality seeking algorithm has to incorporate all of the terms.

Now, we ask: how much do the new environment shift terms change the performative performance difference?

For simplicity, we focus on the commonly studied PeMDPs with bounded rewards and gradually shifting environments, i.e.
the ones with Lipschitz transitions and rewards with respect to the deployed policies (Rank et al., 2024).

Assumption 1 (Bounded reward). We assume that the rewards are bounded in [— Rax, Rmax)-

This is the only assumption needed through the paper and is standard in MDP literature (Mei et al., 2020; Li & Yang, 2023).

Lemma 2 (Bounding Performative Performance Difference for Gradually Shifting Environments). Let us assume that both re-

wards and transitions are Lipschitz functions of policy, i.e. ||rx — rn/|| < Ly |7 — 7’| and |Pr — Pn| < Lp |7 — =’

for some L., Lp > 0. Then, under Assumption 1, the performative shift in the sub-optimality gap of a policy g satisfies
1 2v2

Ty ™ ™o Y *
V() = VA D) = 7Bz AT (5,00 < T2 (L + 77 L B By D (5 fs0) [0 f0)
(6)

>

where Dy (x||y) denotes the Hellinger distance between x andy.

Implication. Lemma 2 shows novel characterisation of the extra cost we have to pay to adapt to performativity of the envi-
ronment in terms of Hellinger distance between the true performatively optimal policy 7} and any other parametrised policy
mg. This implies that the order of difference between the optimal performative value function and that of any stability-
seeking algorithm is @(ﬁ) This significantly improves the known order of sub-optimality achieved by existing algorithms.

Specifically, Mandal et al. (2023) show that using repeated policy optimisation algorithms converges to a suboptimality gap

§5/3 A1/3,.2/3 €S
O(max{ A=)t/ 2 (1=)*

can achieve suboptimality gap of order @(ﬁ)

). Thus, we see an opportunity to improve on the existing works and design algorithms that

3.2 ALGORITHM DESIGN: PERFORMATIVE POLICY GRADIENT (PePG)

To achieve performative optimality, the goal is to maximise value function at the end of learning process. Gradient ascent
is a standard first-order optimisation method to find maxima of a function. Similar to Algorithm 1, the crux of performative
policy gradient method lies in the ascent step:

6: +mVeVr?(T) lo—o, . for unregularised objective

7
0: +1:VeVI?(T) lo=p, . for Entropy-regularised objective. )

0141 {

Given this ascent step, we have to evaluate the gradient at each time step from the rollouts of the present policy. In classical
PG, the policy gradient theorem serves this purpose (Williams, 1992; Sutton et al., 1999; Silver et al., 2014). Thus, we derive
the performative counterpart of the classic policy gradient theorem.
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Algorithm 2 PePG: Performative Policy Gradient

1: Input: Transition Feature Map ¢(s)Vs € S, £ € [~ Rmax; Rmax) and discount factor ~.

2: Initialize: Initial policy parameters 6y, initial value function parameters ¢

3: fork=1,2,... do

4:  Collect trajectories: Dk = {r;}L_,, where each 7 £ {(sl t al 4y Sitt1s ri,t)}tT;Ol by playing 7, = 7(6%)

5:  Compute returns R, = {Ry i }Y_,, where Ry ; = { Ry t}

6:  Compute advantage estimates Ay (7;) using value function V¢k (7;) for each 7; € Dy, (estimate of V,,e (7;) obtained
from fitted value network with parameters ¢y,)

Gradient estimation: Estimate policy gradient using (10)

8:  Gradient ascent step: Update policy parameters using (7)

9:  Fit value function Vg, _ ,:

~

T—

o1 2
¢]€+1 — arg;nln ﬁ Z (V¢k St € Tz Rk),i,t)

i=1 t=0

i

10: end for

Theorem 2 (Performative Policy Gradient Theorem). The gradient of the performative value function w.r.t @ is as follows:

(a) For unregularised objective,

VoVil(r)=E_ P [Z'y A”" (s¢,ae) (Vo logme(ar | st) + Ve log Pr,(St41|st,at)) JrVgr,Te(st,at))] , (8

(b) For entropy-regularized objective, we define A;g (s,a) = QRe(s,a) — Ve (s) — Nogme(als), and get
VeVire(r) =E_ P lZ’y ( (st,a¢) (Vologme(as | s¢) + Velog Pr,(si41]st,at)) + Vo, (s, aﬂ@))] .

PePG: To elaborate on the design of PePG (Algorithm 2), we focus only on the REINFORCE update and softmax policy
parametrisation. With the appropriate parameter choices, and initialisation of the policy parameter € and value function
parameter ¢, for each episode k = 1,2,..., PePG collects I trajectories to calculate return R* and estimates advantage

function Ay, (Line 4-6). For a particular trajectory 7;, the estimated advantage for a given state-action is A:Z: (si,al) =

R — Vi, (s}), where R = Et 0 7' Tro, (s1,at).

Gradient Estimation (Line 7). With the necessary estimates in hand for all the collected I trajectories, PePG computes
average gradient estimate over all the trajectories using

I T
Vekvﬂ'sek 7 Z St’ a;) (Vek log e, (at | 5¢) + Ve, log Prg, (str1lsts at)) + Vo, rne, (st,a;l0k))

(10)
where all the individual gradients Vg, log Pr, ,Ve,rr, and Vg, logme, have the closed form expressions for softmax
parametrisation according to Equation (26). Further, in Line 8, PePG updates the policy parameter for the next episode using

N - . . . . . . ™o k
a gradient ascent step leveraging the estimated average gradient over all I trajectories. Specifically, we plug in Vg, Vx, * to
both the unregularised and entropy-regularised update rules are given in Equation (7). For the next episode, we again run a
regression to update the value network plugging in the current estimates and resume the learning process further.

4 CONVERGENCE ANALYSIS OF PePG: SOFTMAX POLICIES AND SOFTMAX PEMDPS

For rigorous theoretical analysis of PePG, we restrict ourselves to softmax policy class, and softmax PeMDPs. We define the
softmax PeMDPs as the ones having softmax transition kernesls with feature map ¢(-) : § — R, and linear reward functions
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with respect to the policy parameters, for all state s € S and action a € A. Specifically, the class of softmax PeMDPs is
{M(8) = M(mq) | 6 € RISIXIAIL such that

050 0s,atb(s")
e e
7l9(a|8) =

ﬁ ) P‘rrg(5,|87 a) = W , Trg (8,0) = P[—Rmx,Rmax][fas,a] ) (11)
where v is non-negative and upper bounded by ¥ax > 0, and € € [0, Rinax] to align with Assumption 1.

s,a
a' ©

Thus, we derive the derivatives of policy, transitions, and rewards as

50 logmg(als) = 1[s = s',a = a'] — me(d'|s)1[s = ],

log P, (s"|s,a) = ¢¥(s")[s =5 ,a=ad](1 = Pr,(s"|s,a)) , a%rﬂe(s,a) ={l[s=s",a=4d].

s’,a’

808/ ,a/
Given the derivatives, we can now readily estimate the policy gradient and deploy PePG for softmax PeMDPs.

Convergence Analysis: Challenges and Three Step Analysis. The main challenge to prove convergence of PePG is that
the performative value function is not concave in the paramterisation 6, in general, and also in softmax PeMDPs. The similar
issue occurs while proving convergence of PG-type algorithms in classical RL, which has been overcome by leveraging
smoothness properties of the value functions and by deriving the local Polyak-Lojasiewicz (PL)-type conditions, known as
gradient domination, with respect to the policy paramterisation. Leveraging these insights, we devise a three step convergence
analysis for PePG.

Step 1: Smoothness of Performative Value Functions. First, we prove that the unregularised performative value function is
O( (1| ‘)2 ) smooth. As we show that the entropy is also a smooth function for softmax PeMDPs, then under proper choice of

1Al
t}%e regaula'rlsatlon parameter, i.e., A = m, entropy regularised performative value function is also (9( = 5 ) smooth.
Since gradient ascent/descent methods can work well in smooth functions, we proceed thoroughly.

Step 2: Gradient Domination for Softmax PeMDPs. Now, the next step is to relate the performative performance difference
with the performative policy gradient. This allows us to connect the per iteration improvement in the performative value
function with the performative gradient descent at that step. These are known as PL-type inequalities. For non-concave
objectives, PL inequalities guarantee convergence to global maxima by showing that the gradient of the objective at any
parameter dominates the sub-optimality w.r.t. that parameter.

Lemma 3 (Performative Gradient Domination for Softmax PeMDPs). For PeMDPs defined in (11) and Cy, > —1, we get

(a) For unregularised value function:

7\'* |SHA‘ 7\‘9 P Rmax
V.. Vs : VeVTe + A + max) - 13
T - VE o) < LR T 19OV W)l + T+ 1 b (13)
(b) For entropy—regularised value function, f/,:{*’ (p) — V,Z'; (p) <
VISIAL || d7s.0 0 1 A
’ ﬂ- P 1 — (1421 14
Gy [ | 190V @t = (Bl Al + 57 b R+ Alog | 4] ) + 1= (14 2log A]) (14)

Step 3: Iterative Application of Gradient Domination for Smooth Functions. Now, we can apply gradient domination
along with the classic iterative convergence proof of gradient ascent for smooth functions. The intuition is that since the per-
step sub-optimality is dominated by the gradient and the smooth functions are bounded by quadratic envelopes of parameters,
applying gradient ascent iteratively would bring the sub-optimality down to small error level after enough iterations. We
formalise this in Theorem 3.

Theorem 3 (Convergence of PePG in softmax PeMDPs). Let Cov £ maxg,, j:g'P
7\'9,1—/

VT (p) (Equation (7)) with step size 1 = Q((1 — v)? /| A|) satisfies, for all distributions p € A(S),

. The gradient ascent algorithm on

*

(a) For unregularised case, min; {V:{ (p) — V,:Zt (p)} < ewhenT = (w(}ov ) ,ande = (L) .

e2(1—7) 1—
PO ~ (%)

(b) For entropy regularised case, if we set \ = %, we get ming .o {V:;" (p) — V”(‘j) (p)} < ewhenT =

To
Q (Pl cov’)  and e = (1)
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Algorithms Regulariser A Min. #samples Environment
RPO FS (Mandal et al., 2023) O (Jflt%?l?;) ‘AH;‘ZS,;@) ’ In (% Direct PeMDPs + quadratic-regul. on occupancy
MDRR (Rank et al., 2024) @ (Jfﬁﬁ‘fj:;) 4] ‘ﬁzfj)@) : In (% Direct PeMDPs + quadratic-regul. on occupancy
PePG (This paper) Hﬁo;gw(\f\l) E';ﬂ‘fw‘} softmax PeMDPs + entropy regul. on policy
PePG (This paper) 0 el;ﬂ‘fw‘ﬁ unregularised softmax PeMDPs

Table 1: Comparison of theoretical performance of SOTA stability-seeking algorithms against PePG.

Implications. (1) We observe that PePG converges to an e-optimal policy in 6';?1”:4,53 iterations. This reduces the sample

%, and shows efficiency of using

PePG than the algorithms directly optimising the occupancy measures. (2) Additionally, the regularisation parameters needed
for the existing algorithms are pretty big and bigger than (1‘7% This is counter-intuitive and does not match the experimental
observations. Here, we prove that setting the regularisation parameter to H;%ng suffices for proving convergence to
optimality. (3) The minimum number of samples required to achieve convergence is proportional to the square of coverage
for the softmax PeMDP. This is a ubiquitous quantity dictating convergence of PG-methods in classical RL (Agarwal et al.,

2021; Mei et al., 2020), and retraining methods in performative RL (Mandal et al., 2023; Rank et al., 2024).

complexity required for the existing stability-seeking algorithms by at least an order

5 EXPERIMENTAL ANALYSIS

In this section, we empirically compare the performance of PePG in the performative reinforcement learning setting and
analyse its behaviour against the state-of-the-art stability-finding methods.

Performative RL Environment. We evaluate PePG in the Gridworld test-bed (Mandal et al., 2023), which has become a
standard benchmark in performative RL. This environment consists of a grid where two agents A; (the principal) and A, (the
follower), jointly control an actor navigating from start positions (S) to the goal (G) while avoiding hazards. The environment
dynamics are as follows: Agent A; proposes a control policy for the actor by selecting one of four directional actions. Agent
Ay can either accept this action (not intervene) or override it with its own directional choice. This creates a performative
environment for A1, as its effective policy outcomes depend on Ay’s responses to its deployed strategy.

The cost structure follows: visiting blank cells (S) incurs penalty of —0.01, goal cells (F) cost —0.02, hazard cells (H) impose
a severe penalty of —0.5, and any intervention by As results in an additional cost of —0.05 for the intervening agent. The
response model also follows that of Mandal et al. (2023), i.e., the agent A, responds to A;’s policy using a Boltzmann
softmax operator. Given A;’s current policy 71, we compute the optimal Q-function Q*I™* for each follower agent A;
relative to a perturbed version of the grid world, where each cell types matches A;’s environment with probability 0.7.
We then define an average Q-function over the follower agents and determine the collective response policy via Boltzmann
n *| xp(B-Q*I™1

softmax Q*I" (s,0) = £ 327} Q17 (s,0), malals) = 2LLLT )

It is important to note that our experimental setup deliberately uses the immediate response model from the original perfor-
mative RL framework, rather than the gradually shifting environment introduced by Rank et al. (2024) that assumes slow
shifts in the environment. Our choice to use the immediate response model presents a more challenging performative setting
where the environment responds instantaneously to policy changes. This allows us to demonstrate that unlike MDRR (Rank
et al., 2024), PePG can handle the fundamental performative challenge without requiring environmental assumptions that
artificially slows down the feedback loop, thereby highlighting the robustness of the proposed PePG approach.

Experimental Setup. We evaluate PePG (with and without entropy regularisation) alongside Mixed Delayed Repeated
Retraining (MDRR), which represents the current state-of-the-art in performative reinforcement learning under gradually
shifting environments (Rank et al., 2024), and Repeated Policy Optimization with Finite Samples (RPO FS). MDRR has
demonstrated significant improvements over traditional repeated retraining methods, by leveraging historical data from mul-
tiple deployments, while RPO FS is included as the baseline method from (Mandal et al., 2023) for direct comparison with
the original performative RL approach.

2 Anonymous code repository of PePG implementation is Link. Further ablation studies w.r.t. hyperparameters are in Appendix H.
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Figure 2: Comparison of evolution in expected average return (both regularised and unregularised) and stability of PePG with
SOTA stability-achieving methods. Each algorithm is run for 20 random seeds and 100 iterations.

All experiments use a 8 x 8 grid with v = 0.9, exploration parameter ¢ = 0.5 for initial policy construction, one follower
agent Ao, and 100 trajectory samples per iteration. The algorithms share common parameters of 7" = 100 iterations. For
regularization, RPO FS and MDRR use A\ = 0.1 from their original experiments, while entropy-regularized PePG uses
A = 2.0 (ablation studies for this choice are provided in the appendix). PePG uses learning rate = 0.1, MDRR employs
memory weight v = 1.1 for historical data utilization, delayed round parameter k¥ = 3, and FTRL parameters N = B = 10,
while RPO FS follows the finite-sample optimization from Mandal et al.

Results and Observations. Our experimental evaluation across 100 iterations reveals fundamental differences between
PePG and MDRR and RPO in the immediate response performative setting. We used shorter training compared to (Rank
et al., 2024), as this time-frame sufficiently demonstrates RPO and MDRR’s stability convergence and PePG’s progression
toward optimality.

I. Results: Optimality: The left panel reveals a clear performance hierarchy among the four methods. PePG achieves
the highest value function performance, with standard PePG reaching approximately 0.1 and regularized PePG (Reg PePG)
reaching 0.05, both showing consistent improvement from initial values around —0.15 and still progressing upward at the
end of the 100 iteration window. This steady upward progression highlights PePG’s effectiveness in discovering better
performative equilibria rather than settling for the first stable solution encountered. RPO FS remains relatively stable around
—0.05 throughout training, while MDRR stabilizes at the lowest performance level of approximately —0.2 and remains flat
throughout training.

II. Results: Comparison of Optimality- and Stability-seeking Algorithms. The results expose a critical limitation of
algorithms designed primarily for stability rather than optimality. MDRR successfully achieves its design goal, with the right
panel showing decreasing toward zero in the stability metric ||d;41 — d¢||2 (the Lo distance between occupancy measures of
consecutive policy iterations), indicating policy stabilization. However, this stability comes at the cost of solution quality,
as MDRR becomes trapped in a suboptimal point. The method prioritised finding any stable point over finding an optimal
solution. In contrast, both PePG variants exhibit higher policy variability as they actively explore for better solutions. RPO
FS maintains moderate stability around 10~ but with limited performance improvement.

6 DISCUSSIONS, LIMITATIONS, AND FUTURE WORKS

We study the problem of Performative Reinforcement learning in tabular MDPs (PeMDPs) using softmax parametrised poli-
cies with entropy-regularised objective function, where any action taken by the agent cause potential shift in the MDP’s
underlying reward and transition dynamics. We are the first to develop PG-type algorithm, PePG, that attains performatively
optimality against the existing performative stability-seeking algorithms, affirmatively solving an extended open problem in
(Mandal et al., 2023). We also derive the novel performative counterpart of classic Performance Difference Lemma and Pol-
icy Gradient Theorem that affirmatively captures this performative nature of the environment we act. We provide a sufficient

2
conditions to prove that PePG converges to an e-ball around performative optimal policy in (2 (!f(‘l‘flw)) iterations.

As we develop a PG-type algorithm, it will be interesting to see how much can we reduce variance (Wu et al., 2018; Papini
et al., 2018) while achieving optimality. We are still in the tabular setting with finite set of state-actions. A potential future
direction would be to scale PePG to continuous state-space with large number of state-actions.
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A NOTATIONS

Notation Description

S state space

A action space

¥ discount factor

To policy parametrized by 6

I1(©) policy space

P, transition under the environment induced by policy 7
T reward under the environment induced by policy
5 performatively stable policy
5 performatively optimal policy
Pr: reward under the environment induced by performatively optimal policy
T reward under the environment induced by performatively optimal policy
d:é state-action occupancy of optimal policy
V:ZZ value function of optimal policy
dr: state-action occupancy of playing policy 75 in the environment induced by policy 71
Vi? value function for playing policy 72 in the environment induced by policy 7,
e Q-value function for playing policy 75 in the environment induced by policy 7y
AZ? advantage function for playing policy 7r, in the environment induced by policy 7
Ak K-dimensional simplex
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B DETAILS OF THE TOY EXAMPLE: LOAN APPROVEMENT PROBLEM
Environment. We consider a population of loan applicants represented by a scalar feature x € R, distributed as z ~ N (u, 02),
where p is the population mean and o > 0 is fixed.

Bank’s Policy. The bank chooses a threshold policy parameterized by 8 € R. A loan is granted to an applicant x if x > 6. To
smooth analysis, we use a differentiable approximation: my(z) = o (k(z — 0)), where o(2) = H% is the logistic sigmoid
and k£ > 0 controls smoothness.

Rewards. 1f a loan is granted to applicant z, the bank receives a random

payoft:
+R if applicant repays, 4.0
r(z) =

w
©

—L if applicant defaults,

with repayment probability P(repay | ) = o(yx — ¢), where v > 0
controls sensitivity and c is a calibration constant. The expected reward
from granting to x is

u(@)=oc(yzx—c)-R— (1—o(yz—c))- L.

Average reward
!}J w
=y (o))

w
N

0 10 20 30 40
Iteration

Expected Utility. Given distribution = ~ N (11, 0?), the bank’s expected
utility for policy 6 is

U(97 M) = EwwN(M,UQ) [71'0(1‘) ’ u(x)] :
Performative Feedback. —The population mean p depends on the bank’s policy, via the grant rate: g¢(0,u) =

Esz(%gZ’) [7T9 (CC)] .

We assume a bounded performative update rule: ;11 = (1 — B)ps + B8+ f(9(6, ), where 8 € [0,1] is the performative
strength and f(g) € [—M, M| maps the grant rate to a feasible population mean.

At equilibrium, the induced feature distribution satisfies the fixed point condition:
p(0) = (1= B)u(0) + Bf (9(0, 1" (0)))-

Optimization Problems. ERM Optimum. Ignoring performative effects (i.e. assuming pu = pg is fixed), the ERM-optimal

policy solves

OFRM = arg max U8, po)-

Performative Optimum. Accounting for performative feedback, the performative-optimal policy solves

oFt = arg max U(6,1*(9)).

Learning via Reinforcement Learning

An RL agent plays policies 0; sequentially. At each round ¢:

Sample z ~ N (u, 02).

Grant loan with probability 7y, ().

Observe reward ;.

Update 6,1 using policy gradient (REINFORCE).

Update population mean via performative dynamics:

provr = (1= B)pe + Bf (9(0s, 1))

A
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C DETAILED RELATED WORKS

Performative Prediction. The study of performative prediction started with the pioneering work of (Perdomo et al., 2020),
where they leveraged repeated retraining with the aim to converge towards a performatively stable point. We see extension
of this work trying to achieve performative optimality (Izzo et al., 2021; 2022; Miller et al., 2021). This further opened a
plethora of works in various other domains such as Multi-agent systems (Narang et al., 2023; Li et al., 2022; Piliouras & Yu,
2023), control systems (Cai et al., 2024; Barakat et al., 2025), stochastic optimisation (Li & Wai, 2022; Mendler-Diinner et al.,
2020), games (Wang et al., 2023; Gdis et al., 2024) etc. There has been several attempt of achieve performative optimality
or stability for real-life tasks like recommendation (Eilat & Rosenfeld, 2023), to measure the power of firms (Hardt et al.,
2022; Mofakhami et al., 2023), in healthcare (Zhang et al., 2022) etc. Another interesting setting is the stateful performative
prediction i.e. prediction under gradual shifts in the distribution (Brown et al., 2022; 1zzo et al., 2022; Ray et al., 2022), that
paved the way for incorporating performative prediction in Reinforcement Learning.

Performative Reinforcement Learning. Bell et al. (2021) were the first to propose a setting where the transition and reward
of an underlying MDP depend non-deterministically on the deployed policy, thus capturing the essence of performativity to
some extent. However, Mandal et al. (2023) can be considered the pioneer in introducing the notion of “Performative Rein-
forcement Learning” and its solution concepts, performatively stable and optimal policy. They propose direct optimization
and ascent based techniques which manage to attain performative stability upon repeated retraining. Extensions to this work,
Rank et al. (2024) and Mandal & Radanovic (2024) manage to solve the same problem with delayed retraining for linear
MDPs. However, there exists no literature that proposes a performative RL algorithm that converges to the performative
optimal policy.

Specifically, Mandal et al. (2023) frames the question of using policy gradient to find stable policies as an open problem. The
authors further contemplate, as PG functions in the policy space, whether it is possible to converge towards a stable policy.
Thus, in this paper, we affirmatively solve an extension (rather a harder problem) of this open problem for tabular MDPs with
softmax policies.

Policy Gradient Algorithms. Policy gradient algorithms build a central paradigm in reinforcement learning, directly opti-
mizing parametrised policies by estimating the gradient of expected return. The foundational policy gradient theorem (Sutton
et al., 1999) established an expression for this gradient in terms of the score and action-value function, while Williams (1992)
introduced the REINFORCE algorithm, providing an unbiased likelihood-ratio estimator. Convergence properties of stochas-
tic gradient ascent in policy space were analysed in these early works. Subsequently, Konda & Tsitsiklis (2000) formalized
actor—critic methods via two-timescale stochastic approximation, and Kakade (2002) proposed the natural policy gradient,
leveraging the Fisher information geometry to accelerate learning. Extensions to trust region methods (Schulman et al., 2015),
proximal policy optimization (Schulman et al., 2017), and entropy-regularized objectives (Mnih et al., 2016) have made policy
gradient methods widely practical in high-dimensional settings. Recent theoretical advances provide finite-sample conver-
gence guarantees and complexity analyses (Agarwal et al., 2021; Yuan et al., 2022), as well as robustness to distributional
shift and adversarial perturbations (Zhang et al., 2020; Xu et al., 2020). Collectively, this body of work establishes policy
gradient methods as both practically effective and theoretically grounded method for solving MDP.

16
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D IMPACT OF PoLICY UPDATES ON PEMDPS (SECTION 3.1)

Proof of Lemma 1.  'We do this proof in majorly two steps. First step involves a decomposition of the difference in value
function into two terms : (i) difference in value function after deploying the same policy while agent plays two different
policies i.e. the difference that explains stability of the deployed policy, and (ii) difference in value function for deploying
two different policies i.e. performance difference for changing the deployed policy. While the second term can be bounded
using classic performance difference lemma, in the next and final step, we control the stability inducing term (i).

Step 1: Decomposition. We start by decomposing the performative performance difference to get a stability and a perfor-
mance difference terms separately.

VT (s0) = Vi (s0) = V¥ (s0) = V7 (s0) + Vi (s0) = Vi& (s0)

performative shift term performance difference term

T T 1 7\',
:Vﬂ_ (80) — Vﬂ/(SO) + EE(S’Q)Nd:/(.‘SO)[A,‘./(S, a)] (15)

The last equality is a consequence of the classical performance difference lemma (Kakade & Langford, 2002b).

Step 2: Controlling the performative stability term. First, let us define P%(s',s) £ Y, Px(s'|s,a)m(als), and
<P:('7 80)’ V;r(» = Zses V:(S)P:(& 50)-
Now, we observe that

Ve (s0) = Vi (s0) = E(s,a)~dr (-]s0) [Tw(&a) — (s, a)}

+ E(s,a)~dg (-Is0) [7<Pw(-|s, a) = Pri(-]s,0), VI () + 7(Px([s,a), VI () = VI ()
Combining steps 1 and 2 and taking expectation over sy ~ p, we get
’ 1 ’
V:(p) - 717'1; (p) = mE(S’G)Nd:ﬂp[A:/ (57 a)]
1 ™
B, [(ra(5,0) (s, 0) +3(Pr(Cls,0) — P (s, @) TVE()].
O

Proof of Lemma 2.  'We do this proof in three steps. We start from the final expression in Lemma 1, then in step 2 we impose
bounds on reward and transition differences leveraging the Lipschitz assumption. Lastly, we bound the policy difference in
first order norm using relation between Total Variation (TV) and Hellinger distance.

Step 1: From Lemma 1, we have
V;TZ“ (80) — V,;;B (So) = ‘V::,:“ (50) — V.;;g (80)‘
1

= ™ Ty =™
Bt 50 Bl )42 < PV

: 1 . : Ty /m
< S‘E(s,a)Nd:é(-ﬂ.lso)[Anz (s, GJ)]‘ + m E(s,a)wd:(.’,|30) [TT"Z (S, a) — T (s,a) + ’y(Pﬂ_; B Pﬂe) v }
® 1
< ok e
T 1-y ’E(s,a)~d,,;(.’.|50)[Aﬂe (s, a)]‘
1
+ m ]E(s,a)'vd:('v"s(’) {7",7; (s,a) =g (s, a)} ‘ (16)
v T
T |Beanaz s (P = Pry) V] (17)

17
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where both (a) and (b) are due to applying triangle inequality

Step 2: Using Jensen’s Inequality together with the fact that d7x (s, a|sg) < 1 and leveraging the Lipschitzness assumption
on reward and transitions, we get

<L, |l — moll, +Lp |V

E (s.0)dg - fso) T3 (5:@) = Tg (5,0) + 7 (P = Pry) TV | s = ol

Finally, due to Assumption 1, we get HV:S < %"‘;‘, and thus,
°lloco

gl
-~

E(s,a)~dz(-,-150) [r,,; (5,0) = Tmg(s,a) +7(Pry — P”Q)TV,Z’} <L,||w; — moll; + Lp Ruax ||} — ol

Step 3: We know ||} — mg||1 = 2TV (7} || wg) < Dy (7}||7e). Thus,

E(s,a)wd;(-,~\so) [Tw; (57 a) —Trg (57 a) + 'Y(P‘lrg - Prg)TV:}

<22 (Lo 12 LR ) Da (- |so)lmol- | s0)

(18)

We conclude this proof by putting the upper bound in Equation (18) in Equation (17) and taking expectation over sg ~ p to
get the desired expression.

O

18
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E SMOOTHNESS OF PERFORMATIVE VALUE FUNCTION AND ENTROPY REGULARISER

Lemma 4 (Performative Smoothness Lemma). Let 7w, = Tot+au, and let V' (sg) be the corresponding value at a fixed state
s0, i.e., VE(s0) £ Vo (so) . If the following conditions hold true,

dry(al s 2w, (als dP.(s | so,a
) CIEDT R PP of i, MCIET R PP S LI KD R
acA o a=0 acA o a=0 sES Q a=0
d?P, (s | s0,a0) dra(s0, a) d?r4(s0, )
ZT §T27Z T da < Ry, ZT <R,
sES a=0 acA a=0 acA a=0
we get
d2 fe
max || SYal0)l o @ oo e,
=1 da? |,_ol| T 1=7
2
where ﬁl = W(Cl + Tl) + 11317 and 52 = (12:/,\/)3 (Cl + T1)2 —+ ﬁ(c& =+ QClTl + TQ) + (?11’332 (CQ + QClTl =+

To) + £ + 1%

Proof. Step 1: To prove the second order smoothness of the value function we start by taking its second derivative. Consider
the expected return under policy 7,:

Vi'(s0) = > mala | 50)Q%(s0, )

Differentiating twice with respect to o, we obtain:

d2V(s) _ Z d27'ra(a2| 80)@3(80761) i QZ dﬁa((ia | s0) dQ%(s0,a) n Zﬂ'a(a | 50) d2Q%(sg,a)

do? do o do da?

a

Q%(s0, ap) is the Q-function corresponding to the policy 7, at state sy and action ag. Observe that Q% (sg, ap) can further
be written as:

Q0 (50, 80) = €(sy.00) (I = YP() 70 = €y 00) M ()10
where M (a) £ (I — yP(a))~" and P(a) is the state-action transition matrix under policy 7, defined as:

[P())(s'a’ | 5,a) & ma(a' | 8" )Pals’ | s,a)

Differentiating Q2 (s, a) with respect to « gives:

dQ%(se, ap) T dP(« T drg
 da | s0.a0) (@) o M(a)ra + e(so,ao)M(a)a
And correspondingly,
d2Q%(so, ag) 9 T dP(a) dP(a) T d?P(a)
Oéa2 =2y e(éo,ao)M(a) da M(a) do M(a)ra + 76(307%)M(0¢) da? M(a)rq
dP(«) dr d?r
T @ T @
+ Y€(50,00) M (@) do M(OZ)E + €(s9,00) M (@) da2
dP(a) drg
+ €000 M (@) =M (@) 7= (19)

Step 2: Now we need to find the derivative of P(a) w.r.t v in order to substitute in (19). Hence, we can differentiate P ()
with respect to « to obtain:

dP(a)
da

dm,(a' | ¢)
da

dP,(s" | s,a)
da

P.(s' | s,a)+ ma(a’ | s)

a=0

(s',d" | 5,a) =

a=0 =0

19
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Now, for an arbitrary vector x, we have:

dP(a dmw,(a' | ¢ dP.(s' | s,a
I T e " o LT
a=0 J(s,a) sa = s',a =
Taking the maximum over unit vectors u in £o-norm:
dpP dma(a | s’
max () x| < max M P.(s' | s,a)xs o
lalj2=1 da lull=1 | &~ doa =0
a=0 s’,a
dP, (s’ | s,a) R
At Z —da |, el [
dma(a’ | 8)
! [e%
< IISI)%XZPQ(S | Sva)z T da || (3|
s/ a’ a=0
dP,(s" | s,a)
EORXGEDWES T RN
a/ S/ =

< max " Pa(s' | 5,) X Cr + max 3 w(@ | )T
< Clxlloo + Tillxlloe = (C1 + Th) ]

By the definition of the {,,-norm, we conclude:

dP,
da

max
llull2=1

x| < (Cr+T)[xl

a=0 e}

Similarly, differentiating P (/) twice w.r.t. o, we get

d?P,(s' | 5,a)

P, (s
(s [ 5,0) + 0

a=0
dP,(s" | s,a)
da

[d P(a) _ Pma(d'|s) Tald' | s')

da? ’a_0:| (5.0)(s/.a") B (da)?
dm,(a' | s)
da

a=0

+ 2

a=0 a=0

Hence, we can consider the following norm bound:

d?P(a)
da?

< Cofx[|oe + 201 T ||X| 00 + T2l[%[[c0 = (C2 + 2C1T1 + T2) [|X]| 0

oo

[lall2=1
a=0

(20)

2y

Step 3: Now we need to put the pieces back together in order to calculate the second derivative of V¥ w.r.t a. Let us recall

M («). Using the power series expansion of the matrix inverse, we can write M () as:
M(a) = (I =~P(a)™' =Y 7"P(a)"
n=0

which implies that M («) > 0 (component-wise), and

i.e., each row of M («) is positive and sums to 1.
This implies:

1
max | M (a)x[[oc < ——[[%]|oc-
[lull2=1 1-

20
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dQ3q (s0,a0)

This gives, using th ions for - 2als0:00)
1S g1ves, using the expressions 10r do2

constants arising from bounds on the derivatives of 15(04) and rq.

d?Q%(so, ao)

max

‘ oo

lujj2=1 da?
dP(a) dP(a) d?P(a)
<2v* M M M M
<292 || M(0) = P M (0) = P M(ayra|| 7 | M) g M@
d2f’(a) dr,, d?r, df’(a) dr,,
M(a)———M 2v (| M M(a)—
o0
Bounding using known bounds on transitions and rewards:
d*Q4 (0, ao) 27° gl
’ < Ci+T)?+ ———(Co+2C/ Ty + T
hula=t || da? Sop G (@ 2ah )
2vR; Ry vC1Ry
_— 20,17y + T =
+ (1_7)2(Cg+ CiTh + Tz) + 1_7+ e B2
Corresponding bound on the first derivative is:
dQ% (sg,ap) dP(a) dry, drg,
——e N <~||M M(a)— M(a)——
T da = (@)= M@ || FIM )55 ~
v Ry
< Ci+T; =
S0- )2( 1+T1) + I B
Step 4: Finally, putting all the bounds together to evaluate the upper bound of the desired quantity, we get,
d2ve C
max || Ve (50) ‘ <2 1908+
lullz=1 da -7
Corollary 1. For softmax PeMDPs, we characterise
Cy=2 , Co=06,Ti=Lp=max|[¢(s)| £ Ymax , To=max|i(s)|* R =L, =¢Al

Thus,
d? Vi (s0)
do?

o5,

Proof. We use the expressions already found in (26) to state the following:

X
flullz=1 a=0

|wa+au<a )
o

acA acA

Similarly, differentiating once again w.r.t. o, we get

> |L

Ao Toroula | s)
acA

< max (ujeael—uS +ule,w(-|s) Tus +ulw(-|s)elu,

a=0 acA

21

Ry=0

<Y molals) u (eq —m( |s)|<m€aj<<uTea+u (- |s))§2.

and —=="%%2 "an upper bound on their magnitudes based on [|x||o and

(22)
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roul (- | s)m(- | s)Tus + u) diag(m(- | s))us> < 6.

And hence for transition we get,

d
> |5 Proseulals )
s'eS do

<D ()Pay (8" | 8,0) [Usa(1 = Py (-]s,0))| < [usa| max|t(s)] < max|i(s)]

s'eS

And similarly, it can be shown that:

d2
> Ao Ererau(al s)

acA

< oty max () < max [(s)

a=0

Similarly for rewards we get:

d
D | a rrerlal )| el 'd s Troen(@]5) =0
acA =0 acA =0
Hence, we can use the following choice of constants for softmax parametrization,
Ci=2 , (Cy=6
Th=Lp= m3x|z/J(s)| ;o Tr= m3x|w(s)|2
Ri=L,=¢A , Ry=0
to get the desired order of max |y ,—1 H % H
a=0
O
Lemma 5 (Smoothness of Entropy Regularizer). Define the discounted entropy regularizer as:
oo
Hroo (s) = Ernpr [Z —~'log mea (ay | st)]
t=0
Under the same assumptions as 4, the following holds:
O*Hrox (s)
max ||[————s— <
lull2=1 da? < B
a=01lco
where
3-(1+loglA 2o A
1—v (1=
log|A| log|A|
+2y 5 (C2 +2C1T1 + To) + ;(Ch +T1)?
(1—79)? (1—=7)?
Proof. Step 1: Define the state-wise entropy term:
ho.(s)=—> mo,(a|s)logma,(a]s).
From Mei et al. (2020) (Lemma 7) we report that,
Ohe,, 0?he,,
H <2toglAl e, |20 <3+ togla) - i 3

22
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Additionally, Mei et al. (2020) also presents a second result expressing the second derivative of the entropy w.r.t c,

O*Hrmoo (s) OP(a) P ()

0. 2.T orla) oria)
Do =27"e, M(a) e M () e M(a)hg,
82P(04) 8P(a) 8h9 82}19
T T o T o
el M@ TP prayng, + 2yel M(@) 2 nr(a) 20 4 o] nr(e) LN

Step 2: Now we proceed with bounding the absolute value of each term which will contribute towards bounding the overall

second derivative of the regulariser.

For the last term,

0he,,
Oa?

el M(a)

a=0

1
S15
3-(1+logl|Al)

For the second last term,

OP ()
Oa

Ohe,

e, M) o

M(e)

a=0

< llel Il - |[M(@)

< [m(@)

?he,,
0a?

a=0 ‘ ’ o0
82he,
da?

a=0

o0

L L3

OP ()

OP ()

Ohe,,
O

M(a) Ohe,,

a:OHoo

1

(C1+T) - [[ul2

1—nv
(Cr+T1) - Jlull2

a:OHoo

Oa Oa
Ohg.,

. HM(Q) o]

a:OHoo

1—7

2 -log | A

1

For the second term,

a=0

1
<75
a3

L=~

IN

[|ull3
(11—~
< log |.A|2
)

S

For the first term,

0P ()
Ja

OP(a)
da

el M(a) M () M(a)he,

Y

23

<ot

a)

oz:OHoo

dhe,,
(e

oo
—) (C1+Th) - 3.

0?P(a)
0a?
0?P(a)

0o

)

||M (@b,

.

(CQ + QClTl + TQ) . ||UH%

M(a)hg

M(a)he,,

a:OHoo

(02 + 20Ty + TQ)

a:OHoo

(02 + 20117 + Tg)

a:OHoo

)2

OP ()
Oa

0P ()
Ja

M(a) M(a)hg

a
(x:OHoo
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1 1 1
< - . R, R | . T, )?
<l sl = - dog Al (Cy 4 T3
log | A|
BROEE (C1+T1)% - [[ulf3.
Step 3: Now combining all the above equations, we get the final expression,
O*Hrmox (s)
— o 7 <
alla=t da? = A
a=0llco
where
3-(1+loglA 2-log|A
log | A| log | A| 2
+ 2 - W(OQ +2C1 Ty + Tg) + W(Cl + Tl)

O

By definition of smoothness, the “soft performative value function” f/,f is Lipschitz smooth with Lipschitz constant Ly
where Ly £ L + /3x. Once again, we can choose C;, Cy, Ty, T5 according to Corollary 1 for simplification to get the order

Br=9Q ((l‘l”flf)i ) Thus, the final bound for L) as

Ly = max {Q(L). Q(B)} = 0 <<1—A|7>>
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F DERIVATION OF PERFORMATIVE POLICY GRADIENTS

Proof of Theorem 2. We prove each part of this theorem separately i.e. first we derive explicit closed form gradient for
unregularised performative value function.

Proof of part (a). Let us remind the definition of the regularised objective function,
(o9}
T) = Z ,Ytrﬂ'g (Sta at)
t=0

Thus, VoVTe (1) = VeE__pre[fe(T)]. Further,
e

Vo, pro [fo(7)] = Vo > _PRe(7) fo(r)
= Vo(PF(r)fo(T))
:Z (Vo Pro(r +ZP 7)(Vefo(T))

(a)ZIP’ )(VologPZ2(7)) fo(T) + E, _pro (Vo fo(T)]

= ETNP;Z [(Velog PZE(7)) fo ()] +E, _pro[Vefo(7)]

: ™ Vo P70 (1)
where (@) holds since Vg log P79 (7) = }P’T(er)
e
We build a sample-based estimator for VoE__pro [fo(7)]. Let 7M., 7(") be n empirical samples from PZe (which are
NG

obtained by playing the policy 7rg for n times, with 1" steps for each run). Thus, we estimate the gradient by,

1 — _
E, pro [(VologPZ3(7)) 72 Vo log P7o (7)) fo (7)) (24)

3

Here recall that p is used to denote the density of the distribution of sy. Hence, we further have,

log P70 (7) = log p(s0) +log we(ao | s0) +log P, (s1]50,a0) + log we(ay | s1)
+1log Pr,(s2]81,01) + -+ - +1og Pry (St]87-1,07-1)
Taking the gradient with respect to 8, we obtain
Vo logPZo(1) = Vglogme(ao | s0) + Velogme(ay | s1) +---+ Velogme(ar—1 | s7-1)
+ Vo log P, (s1]80, a0) + Ve log Prg(sals1,a1) -+ + Ve log Py (sr|s7-1,a1-1)

Hence, substituting the value of Vg log(P7¢) in equation (24) we get,

VQV:;( ) veETNP‘"’e [fg( )] ETNP"9 [(Z Vo logﬂ'g(at | 3t)> . <Z ’)/trﬂ'e (8,5,&,5))]

t=0

+E, ~PTe l(ZVQlong9(8t|St 1, Q- 1)) : <thrﬂe(5t,at)>]

t=0

+ E ]P)‘"e [Z ")/tvg?“ﬂ-o (8,57 G,t)‘|

t=0
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o0

= ]ETNP:Z [Z o(st,a1)Velogme(ay | st)l

+ET~]P>:Z lZVtAﬂe (st,a1)VelogPrg(se|si—1,ar— 1)]

+ET~]P:2 lz 'ythr,,g(st,at)] .

t=0

Hence, we conclude the proof for part (a) of the theorem. O
Now we move on to the proof of part (b), i.e., deriving explicit gradient form for entropy-regularised value function

Proof of part (b). Let T, (St,at) = T'rg(St, ar) — Alog we(as|s:). Again we start from the definition of regularised objective

function.
oo

fe(T) = Z’ytﬁﬂ'e (stv at)
t=0

So, VoV/To(r) = VoE, pro(fo(7)]

Therefore, Equation (24) yields,

NE

VoVy (1) = VoE,_prolfo(r)] = E,_pro

;
J(¢

Vologmg(as | st ) (ny Trg (St, Q1 )]
Vo logPrg(si|si—1,at-1 ) : (Z’thwg(sndt))]
t=0

> ' Voirg (s, at))]

I
o

[M]=

1

|
>

~+
| |
O

’ytA”" (s¢,at)Velog me(ay | st)]

81M8

= ETNP‘NQ l
e

+ ]ETNIP’;'Z tzl AT (st,a:)Velog Py (selsi—1,a0-1) | +E_ ~PTe ;7 VoTry (5t at)
- ETNIP? li ytAT °(st,ar)Velogme(ay | st)]

t=0
+E7—~IP’:9 [C’O 'ytA"" (st,at)Volog Pry(se]St—1, ar— 1)1

t=1

t=
—AE_ ~PTo [iy Ve log we(at|st)1

t=0
Hence, we conclude proof of part (b). O

Combining the results found in part (a) and (b) we get the final expressions in Theorem 2.
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G CONVERGENCE OF PePG : PROOFS OF SECTION 4

G.1 PROOFS FOR UNREGULARISED VALUE FUNCTION

Lemma 6 (Performative Policy Gradient for Softmax PeMDPs). Given softmax PeMDPs defined by (11), for all (s,a,s’) €

(S, A,S), derivative of the performative value function w.r.t 85 o satisfies:
(a) For unregularised objective:

Vs (p) 1
> e e
B 2 T AT s.alp) (AT 5, )1+ Cy) +.)

Proof. ] Notice that:

808 logmg(als) =1[s =5s",a=a'] —mg(a|s)1[s = ]
808 logPr,(s"]|s,a) = (s")1[s = s",a =ad'] (1 = Pr,(s"|s,a))
mrﬂe(s,a) ={l[s=s",a=4d].

Now, we get from Theorem 2,

0

™ ™ a
0. ——V7e(r)=E_ P""{ZV (A o( st7at)aTlog7r9(at|st)

t=0 $a

0
+ AT (s¢,a¢) 90 log Pr, (St4+1]8¢t, at)

s,a

+ aeimrﬂg(st,at))]
=E_ P70 {Z'y ( 9 (sy,at) (1]sy = s,a; = a] — wg(als)l[s; = s])

+ AR (st, an)¥(se+1)Lse = s,ar = a] (1 — Pry (5415, 0))
+&lsy = s,a; = a])}

P e_ZZ:v/ o (st ag) st = s,0; = a]| —E_pro ;;;v/ﬂe(ab) (st
+E__pre Z'ytA"" St, Q) (st+1)]l[st:s,at=a}]

—E,_ _pro _Z’YtAM st a)Y(se1) st = 5,0, = a]Pr, (5t+1|8,a)}

+E__pro :Zwtfﬂ[st =35,a; = a]}

1 T T
— mdﬂg (s, a)A,rz (s,a) =0

+ET~P:2 [Z’ytA:g (st,a0)Y(se41)1[st = s,ar = aﬂ

t=0

(25)

(26)

= s|AZS (51, ar)

o0
1
—]ETN[ED:Z [Z’YtA:g(St, at)¢(3t+1)]1[8t =S,a¢ = a}Pm, (3t+1|57a)} + mfd:g (s,0)
t=0

> %dﬂ'e (5 a,) (A:g (S, a)(l + Cw) + f) )
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Finally, for some initial state distribution p, the gradient can be expressed as:

Ve (p) 1

20, > T me(5alp) (A5, a)(1+Cy) +€) @7)
O
Proof of Lemma 3— Part (a). We know by Lemma 1 that
£ 1
e — - m™e
V‘lr; ( ) V ( ) 1— ’YE(SJI)Ndﬂ-g("p) [A‘I\'g (830’)]
1
7= By, [(m(5,0) =75, 0) 4 3(Pr(Cls,0) = Pl ) TVEQ)]
Step 1: Upper bounding Term 1.
* 71'9
E(s,a)~d:g(-\ )A s,a)] Zd s,al|p) A8 (s, a)
drs(s.alp) . .
= SZ; m‘iwz (s,alv)AZo(s,a)
dre
<l Do dme(s.al)ATs(s.0) (28)
oV || s,a
Now, we leverage the gradient of softmax performative MDPs to obtain
1—9 ovVre(v) 1
dre ATe < o _
sza: mo 5 ) Az (s 0) = 1+Cy & 00sa 1+Cw§
11—~ + 1
= 1'VoVTre(v) —
1+C¢ 0 %o (V) 1+C¢§
ST 1TV () —
= ——— — V _—————
1+c VISIA] 0 1+ Cy
1
S||A VoVl -
< VISl | H @)l2 chf
Hence, substituting it back to (28) and using the fact that d"g 2 > 1 (from lemma 10) we get,
7\'9 v
1 / VISIIAl| d 3
——E (s a)mdn (1s0) [AR (8,a)] < m”p VeV.Te -
1_,}/ (s,0) d,r(\o)[ ﬂ.(S a)]f 1+C¢ d:gy H 0Vre (V)HZ (1+C¢)(1—7)
Step 2: Upper bounding Term 2. For Lipschitz rewards and transitions, we further get that
1
Term 2 = 1By, [(7n(5,) = 7 (5,0)) +7(Pr(-}s,0) ~ P (s,0)) V()
2v2
< 5 (L + 12 L Ruvw) Dit (3 s0) o s0)
O

Proof of Theorem 3— Part (a). Step 1: By the L-smoothness of V¢ we get,

ﬂe . L
Vg (p) = V2 (p) = (VoViry (), 0 — 0')| < |0 — ']

L
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Thus,

2D

yTe —V”é) VoV 2<£9 — 0,7
|,,<9t+1>(p) ,réw() Ve <t>()|||_2|\ t41 — 04|

This implies that

(t+1)

g o L 2
VT 2D (p) =V ¢ e (p) > 77||VV 0 ( bl *||9t+1 - 9t||
(t+1)

™ T 7\' L
= Vi (0) = Ve () 2V, <‘f> () = Vi (p )+77HV0V o ( |~ 510t — 0.7

=V () -V )+n(1*£)HVV 7 I

<) - )
Define 7; = ||V9Vﬂ<?> (p)ll2 and 5; £ Vs (p) — V& (p)
6

n(l— %)ﬁ <O — 0ty
(1- n)wﬂ“t (5t Sepr) < D=ls — D
Now telescoping overt = 0,1,...,7 — 1 we get,
(1- %) ;wtrf < %50 Wt
(15 mpnri < TR SRRl
minr? < M% (29)
Step 2: Now, we know that
(V:;*( ) — Vﬁe( )) < (\1/@ d%gz OOHVGVJ:(V)M* (1+C’f)(1—’y)
" f_*/i@r + 1 Lo R D (w3 map) )
sz({'f'? d£§’,’f IVovz k) +4 (e )

+32( (L + 1 L R Da (w30 malp) )

This implies that

‘SH‘A‘ 7"970 T ™ ) 5 2
(Y56, | am Oonvev,, W) = V0 Va0 -4 i)
~82(T (L + 1 L R Da (w30 ol )
|$||'A| d:e 4 e 2 1 ™ T € 2
e i ||vev,,e<u>||225<v,,;<> e’ -2 g resa)
1 ¥ 2
— 16(1 _ ’7)2 (Lr + 1— ’yLPRmax)
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T 1+C 2 1 L ™ ! 52
— VoV )3 > (—%i(vw;° () = Vg (p))* =2 21—
114 i o
B (1+ Cw)z 1 v ’
16 2 (1—~)2 (LT Tz VLPRmaX)
ISIIA ""f

Step 3: Now, replacing this in the iterative upper bound, we get

1+Cy)? 1, n ,, 1 £2
(—%§<vﬂ;<p>—vﬂ:<p>>2gz — T T
51141 G752 S1AJ| G
(1+Cy)? 1 Y 2 1
1 L
+ 6| HA| o 2 (177)2( r+17 PRmax) +7]T(1—%)60
S "“
x 4&2 -

T (1+ Gy (1 —n)?

2

ISIIAll 3 drp
32 5y 2 do v
+ Lr + 7L Rmax + = 30
(1- )2< 1-+"F ) nT(1— L) (1+C¢)2 (30)
Step 4: Now, we solve for T’
71-* 1r(t) 4§2
Vi (p) = Ve (p)” <
Itrgjl}( T (p) Vﬂ_g) (p)> — (1 +O¢)2(1 _,}/)2
2
[S11Al| a2
32 v 2 do B 2
+ (Lo + 12 LpRux) + o < ¢
(1—7)? 1—vy nT(1— &) (1+Cw)
Hence, solving for T' we get,
2
260/S||Al|| o

T>

(1= 5 (1+Cy)? e

— 4¢2 _ 32 )’ +LL R 2
(1+Cy)2(1—v)? (1—7)2 T T— ~“P1llmax

<2R

Choosing n = ﬁ and using the fact that dg max we get the final expression,

2

_— 32Rmax LS| A|(1 = 7) dz;
= 32(1—7)2(1+ Cy)2 — 1262 = 96(1 + Cy)*(Lp + Ly Rnax 1) || dje,

This implies a non-trivial bound

4£2 32 % 2
2 Lr_ L Rmax
> raya = o (b oy e )
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21/2¢ N 8
L+Cy)(1—7)  (1-7)

> (1+C?w\§(§17) (g +2v3(1+Cy) (L, + LpRmaxlvv))

5
1—x

= > ( (Lr + LPRmax)
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G.2 PROOFS FOR ENTROPY-REGULARISED OR SOFT VALUE FUNCTION

Lemma 7 (Regularized Performative Policy Difference: Generic Upper Bound). Under Assumption 1, the sub-optimality
gap of a policy g is

~ * ~ 1
*O —_ o < S — T
Vg (50) = Vg (50) < 772 Byt oo |

o

= (Bt 12 I (R + Alog JA)) Dyt (3 -hso) o -150)

1_’}/ r 1_7 P max H o 0 2] 0
A

— T2 Ermag(ien Dt (3(s0) || o [30) &)

Az (s,a)]

1

Proof. Lemma 1 for regularized rewards reduces to,

T ra’ 1 i’
V‘rr (50) - Vﬂ" (SO) = jE(S,a)Nd:,("SO)[Aﬂ"(S7 (l)]

1
1 ~ ~ vaud
+ jE(SaG)Nd:HSO) ([7‘,‘-(5, a) - Tﬂ'/(‘sa a)] + ’Y(Pﬂ' - P‘IT')TVﬂ' (SO)) ! (32)
Therefore,
Tres (5,a) = Tr(s,a) = rrs(s,0) — rx(s,a) + A(log m(als) — log 7r;(a|s)>
Therefore,
T Cr’ 1 i’
Va(s0) = V& (s0) = mms,a)wg,(wsﬂ)mﬂf(87 a)]
1 ~ ~ e
o Bzt ([ (5,0) = P (s, 0)] +7(Pr = Pr) TV s0) ) (33)
A *
+ T s~d:§(-\so) {EQN,,*(,‘S)[Iog m(als) — log ﬁo(a\s)]] (34)
Now,

Eagmme (150 log w(als) —logw*(als)] = —Dkw (75 (-[s) [| w(-[s))
Following Mei et al. (2020),
- Rinax + Aog | A
V7o < S T2 08
v

A point to keep in mind is that the || - ||o-norm here is taken with respect to all starting states sy € S. Putting all these
together we get our desired expression. [

Lemma 8 (Regularized Performative Policy gradient for softmax policies and softmax MDPs). For a class of PeMDPs
M =& (S8, A, 7w, Pr, 7,0, p) consider softmax parametrization for policy wg € A(0 € @) and transition dynamics P,
and linear parametrization for reward rr,. For all (s,a,s’) € (S, A, S), derivative of the expected return w.r.t 0 ,, satisfies:
WVag(p) 1

00,, —1-

where (s") = 1(s') — Esnp,, [¢¥(s")] and Cy £ ming ¢(s").

AT (s, alp) (AT2(5,0)(1 4 Cy) +) (1 + log |A) (35)

_ﬁ

Proof. Notice that:

logmg(als) =1[s =s',a=d'] — me(d'|s)1[s = §]
803/7(1/

50 log Pr,(s"]s,a) = ¢ (s")[s = s',a =a'] (1 — Pr,(s"]s,a))
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9 /
mrﬂ.e(s,a) ={l[s=s",a=4d]. (36)
Now, we get from Theorem 2,
0 0
WV“’Q( =E__pro [Zry ( sf,af)m log g (as | s¢)

bt 0
+ A:Z (st at)W log Pry (St41]5t, at)

0
+ WMT“ (st,a:) — A

82 - log g (ay | st))]

=E_ ~Pre [Z’Y <Aﬂe stya) (U[st = s,ar = a] — wo(a|s)1[s; = s])

+ A7 (st an)¥(se41)L[se = 5,00 = a] (1 = Py (54115, a))
+&l[sy = s,a = a] — M[sy = s,a; = a] + Amwg(als)1[s; = s])]

=E__pre Z’yt/ﬁ:g (stya)l[se = s,ar = a]} - ETNP:Z [thﬂg(a\s)ﬂ[st = s}fl;g(st, at)}
=0 t=0

+ETN]P)‘"Z Z’ytﬁzg (st,at)¢(st+1)]l[st = S,a¢ — a]]

_ETN]P’ZZ > A AT (s, an)(se1)Lse = s, a0 = Py (50415, a)}

+E, prg | D 1"€Lls = 5o =al] = B, pro [ 30" st = s, = al] + A, pra | 30" mo(adlse)Lls: = 5]
t=0 t=0 t=0
1 - o0
= 75 Mmo(5 @) Axi(s,a) + AR, pro [gytﬂe(aﬂst)log wo(ar|se)1]s = 8]}
+E, ~Pre [Z’YtAqrg (5t;a0)Y(se41) s = s,a0 = a]}
t=0
1
~E.ppe [ZWtAre (st, ar)y(se1) st = s, a0 = G]Pm(st+1|5,a)} MR (s,a)
t=0
- 71 d7o (s, also) + —Zd s,also)mel(als)
> —d’fe(s a) (Azs(s,a)(1+Cy) +€) - Ld% also)(1 — —)
1 e ’ 1 _ ’y Ly b |A|
A - 1
T Ea: dz’(s,also)me(als)log —rp
Finally, for some initial state distribution sq, the gradient can be expressed as:
aVze (p) 1 . A
™o > Uy e _
so . = T (salo) (AR (s,0) 1+ Co) 1 6) - =
A dz?(s,also)me(als)lo 1
1y o S RO g a]s)
1 ™ A )\
> = dRs(s,0lp) (AT2(5,0) (14 Cy) 1 €) = 17 (14 log A (37)
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O

Lemma 9 (Regularized Performative Gradient Domination: Part(b) of Lemma 3). For regularized PeMDPs the following
inequality holds:

T ™ S||A 71'97 )
V0 -V < e dmﬂ VoV Wl = e
1 0% A
s (Bt T LB+ Alog JA) ) + 17 (1 + 2log A (38)

Proof. We know,
—Dkw (75 (-[s) [ wa(-|s)) < log|Al
This follows from the fact that KL divergence is upper bounded by entropy which is further upper bounded by log |.A|. Hence,
—Esar(s0) DL (75(:|s) | wo(-|s)) < log | A

From (37), it is to see that following the exact steps as lemma 3, we can achieve,

uy AT ™ A
> dzo(s,a)ATo(s,a) < \/ISHAI HVoV s (V)l2 = & +——(2log|A[ +1)
o 1+O¢ 17’}/
Therefore, using 31 we finally get,
- VISTHA || dzs., ¢ A
VI (p) — Ve (p) < : VoV,re — 2log|A| + 1
= (p) = Vas (p) (11 Cy)|ldme, DOII oVag (V)2 (1+Cw)(1—7)1—7( og Al +1)
(Lot 12 L (R + Mog [AD ) Dit (w5 10) [0 10)) (39)
1—’}/ r 1_7 max o
VISIAL dzs 13 A
< 0, VoV, e — 2log | A| + 1
=+ d:z, eVl = ey Ty e Y
1
= (L 2 Lo (R + Mo | A)) (40)

Now substitute the values of L, and Lp to get the desired inequality.

Theorem 4 (Convergence of Entropy-regularised PePG: Part(b) of Theorem 3).

Proof. Step 1: In Lemma 5 we proved that the soft-value function f/,fe" is Ly-smooth. Combining this fact with (29) of
Theorem 3 we get the following inequality:

1 ~

—
nT(1— £31)

min ry <
¢

(0)

5 Rinax+log | A
where ; = ”V@V @ ||2 and &) £ e (p) = V:g% (p) < Q(%Afg‘l)

Again, we know,

L e V |S||A| 7Te 14 Yaul’) f
(Vﬂ'; (p) - Vﬂ'e (p)) S (( 1+ Cw) d;’:g , OOHVGV‘KQ (V)||2 - m
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2
2\[ vy A
1_ (L + 17 LP( max +)\log\A|)> - m(210g|d4| - 1))
2|S]|A4] |75, : 2 ¢
VeV e 4
T (14 Cy)? | drg oo” Ve e+ (1+Cy)*(1—7)?
32 2 4N2 )
-s—ﬁ(L + 2 L Ruax + Mog | 4))) "+ TGl + 1)

Finally, using the sub-steps followed in Step 3 of 3 we get,

o) 4€2 32

grilql}(vﬂo (p) — Vﬂ_f) (p))? < (15 Cy)2(1 =) + A=)

v 2
(Lo 2 Lol maﬁnogmn)
2

wep

ISIIAll|

N

AN2 2
+ 2 (2log A + 1)% + 0

0 62
(1=7) nT(1 — 231) (1+C¢)2 =

Hence, we arrive at the final expression for 7',

2

‘rl'ep

260S]1Al|| 5

2
(e8]

2
(= 521+ Cy)? e (Hcfﬁu_w—(133)2(LwﬁLp(Rmaleog\AD) 725 (210g | A| + 1)

Hence,

Choosing n = 1/2L,, we get,

2

*
7r9p

(32Rumax + 32X log |A|)

(o]

T >
= 2
3e2(1 — )(1 + Cy)2 — 1262 — 96(1 + C,y)?2 (LT + 12 Lp (Runax + Alog |A|)) —12)2(1 + Cy)2(2log | A] + 1)2

And consequently,

4¢2 32 v 2 4N
’ L, Lp (Rumax + A1 2log |A| — 1)°
_(1+Cw)2(1—7)2+(1—7)2< +1_ P (Rmax + A 0g|-/4\)) +(1_7)2( og|Al —1)
21/2¢ 8 v 22\
= € > + L, + Lp(Rmax + Alog|A]) ) + ——(2log |A| + 1
Troi =7 Aot e AD) + 7= @losll+
Choose A\ = H—Tg)lfl\)to get
8 gl
>
6—<1_7)<L o L B+ 1) +2v3
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H ABLATION STUDY ON ENTROPY REGULARISATION

Effect of Entropy Regularization

0.2
0.1
[~
> 0.0
=
o
.E
S 0.1
=
=
Q0.2
c
> Entropy Reg.
—0.31 A =0.01
— A=05
sews A =1
—0.4 1 —_—— A =2
0 20 40 60 80 100

Iteration

Figure 3: Ablation study for PePG for different values of regularised A with 20 random seeds, each for 100 iterations

We conducted an ablation study across four entropy regularization strengths (A € {0.01,0.5, 1,2} to determine the optimale
balance between exploration and convergence stability in RegPePG. The results demonstrate that A\ = 2 achieves the highest
final performance ( 0.05), while smaller values (A < 1) converge to similar suboptimal levels around —0.01 to 0, indicating
that stronger entropy regularization enables more effective exploration of the policy space in performative settings.
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I TECHNICAL LEMMAS

Lemma 10. For any 7, ' € II(©), the following non-trivial lower bound holds,

du || o 1
d,. . -
Proof.
d_, d_ (s,a 1 d_ (s,a
7 = max —= > u cw
dr e dp(s,a) ~ >, Wsa > dr(s,a) 7

Choose wy,, = dr(s,a) Hence, we get,

(S, CL) Zs,a d‘l\',(s’ a’) o
(5.0) © Y. di(sa)

d,
max
s,a clTr

The last equality holds from the fact that the state-action occupancy measure is a distribution over S x A. Hence,

Zs,a dﬂ’(s’a) = Zs,a dﬂ'(s’a) =1
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