

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PERFORMATIVE POLICY GRADIENT: ASCENT TO OPTIMALITY IN PERFORMATIVE REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Post-deployment machine learning algorithms often influence the environments they act in, and thus *shift* the underlying dynamics that the standard reinforcement learning (RL) methods ignore. While designing optimal algorithms in this *performative* setting has recently been studied in supervised learning, the RL counterpart remains under-explored. In this paper, we prove the performative counterparts of the performance difference lemma and the policy gradient theorem in RL, and further introduce the **Performative Policy Gradient** algorithm (**PePG**). **PePG** is the first policy gradient algorithm designed to account for performativity in RL. Under softmax parametrisation, and also with and without entropy regularisation, we prove that **PePG** converges to *performatively optimal policies*, i.e. policies that remain optimal under the distribution shifts induced by themselves. Thus, **PePG** significantly extends the prior works in Performative RL that achieves *performative stability* but not optimality. Furthermore, our empirical analysis on standard performative RL environments validate that **PePG** outperforms standard policy gradient algorithms and the existing performative RL algorithms aiming for stability.

1 INTRODUCTION

Reinforcement Learning (RL) studies the dynamic decision making problems under incomplete information (Sutton & Barto, 1998). Since an RL algorithm tries and optimises an utility function over a sequence of interactions with an unknown environment, RL has emerged as a powerful tool for algorithmic decision making. Specially, in the last decade, RL has underpinned some of the celebrated successes of AI, such as championing Go with AlphaGo (Silver et al., 2014), controlling particle accelerators (St. John et al., 2021), aligning Large Language Models (LLMs) (Bai et al., 2022), reasoning (Havrilla et al.), to name a few. But the existing paradigm of RL assumes that the underlying environment with which the algorithm interacts stays static over time and the goal of the algorithm is to find the utility-maximising, aka optimal policy for choosing actions over time for this specific environment. But *this assumption does not hold universally*.

In this digital age, algorithms are not passive. Their decisions also shape the environment they interact with, inducing distribution shifts. This phenomenon that predictive AI models often trigger actions that influences their own outcomes is termed as *performativity*. In the supervised learning setting, the study of *performative prediction* is pioneered by Perdomo et al. (2020), and then followed by an extensive literature encompassing stochastic optimisation, control, multi-agent RL, games (Izzo et al., 2021; 2022; Miller et al., 2021; Li & Wai, 2022; Narang et al., 2023; Piliouras & Yu, 2023; Góis et al., 2024; Barakat et al., 2025) etc. There has been several attempts to achieve performative optimality or stability for real-life tasks— recommendation systems (Eilat & Rosenfeld, 2023), measuring the power of firms (Hardt et al., 2022; Mofakhami et al., 2023), healthcare (Zhang et al., 2022) etc. Performativity of algorithms is also omnipresent in practically deployed RL systems. For example, an RL algorithm deployed in a recommender system does not only aim to maximise the user satisfaction but also shifts the preferences of the users in the long-term (Chaney et al., 2018; Mansoury et al., 2020). To clarify the impact of performativity, let us consider an example.

Example 1 (Performative RL in loan approval). *Let us consider a loan approval problem, where an applicant obtains a loan (or get rejected) according to their credit score x , and x depends on the capital of the applicant and that of the population. At each time t , a loan applicant arrives with a credit score x_t sampled from $\mathcal{N}(\mu_t, \sigma^2)$. The bank chooses whom to give a loan by applying a softmax binary classifier $\pi_\theta : \mathbb{R} \rightarrow \{0, 1\}$ on x with threshold parameter θ . This decision has two effects. (a) The bank receives a positive payoff R , if the loan*

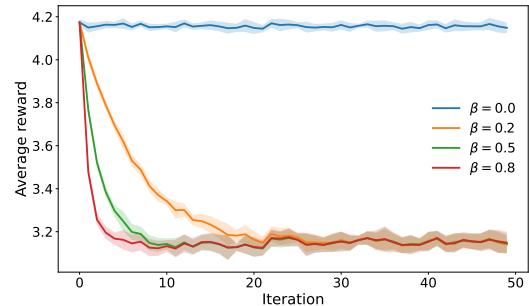


Figure 1: Average reward (over 10 runs) obtained by ERM and Performative Optimal policies across performative strength β .

applicant who was granted a loan repays, or else, loses by L . Thus, the bank's expected utility for policy π_θ is $U(\theta, \mu) = \mathbb{E}_{x \sim \mathcal{N}(\mu, \sigma^2)} [\pi_\theta(x)(\mathbb{P}(\text{repayment}|x)R - (1 - \mathbb{P}(\text{repayment}|x))L)]$. (b) Since the amount of capital both the applicant and the population influence the credit score, we model that the change in the population mean μ_{t+1} depends on the bank's policy, via a grant rate $\mathbb{E}_{x \sim \mathcal{N}(\mu_t, \sigma_t^2)} [\pi_\theta(x)]$. Specifically, $\mu_{t+1} = (1 - \beta)\mu_t + \beta f(\mathbb{E}_{x \sim \mathcal{N}(\mu_t, \sigma_t^2)} [\pi_\theta(x)])$, where $\beta \in [0, 1]$ is the performative strength and $f: \mathbb{R} \rightarrow [-M, M]$. Now, if one ignores the performative nature of this decision making problem, and try to find out the optimal with respect to a static credit distribution, it obtains $\theta^{\text{ERM}} \triangleq \arg \max_\theta U(\theta, \mu_0)$. In contrast, if it considers performativity, it obtains $\theta^{\text{Perf}} \triangleq \arg \max_\theta U(\theta, \mu^*(\theta))$. In Figure 1, we show that the average reward obtained by both the solutions are significantly different. This demonstrates why performativity is a common phenomenon across algorithmic decision making problems, and how it changes the resulting optimal solution. Further details are in Appendix B.

These problem scenarios have motivated the study of performative RL. Though Bell et al. (2021) were the first to propose a setting where the transition and reward of an underlying MDP depend non-deterministically on the deployed policy, Mandal et al. (2023) formally introduced *Performative RL*, and its solution concepts, i.e., performatively stable and optimal policies. Performative stable policies do not get affected or changed due to distribution shifts after deployment. Performatively optimal policies yield the highest expected return once deployed in the performative RL environment. Mandal et al. (2023) proposed direct optimization and ascent based techniques that attains performative stability upon repeated retraining. Extending this work, Rank et al. (2024) and Mandal & Radanovic (2024) manage to solve the same problem with delayed retraining for gradually shifting and linear MDPs. However, *there exists no algorithm yet in performative RL that provably converges to the performative optimal policy*.

As we know from the RL literature, the Policy Gradient (PG) type of algorithms that treats policy as a parametric function and updates the parameters through gradient ascent algorithms are efficient and scalable (Williams, 1992; Sutton et al., 1999; Kakade, 2001). Some examples of successful and popular policy gradient methods include TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017), NPG (Kakade, 2001), which are widely used in modern RL applications. Recent theoretical advances also establish finite-sample convergence guarantees and complexity analyses (Agarwal et al., 2021; Yuan et al., 2022) of PG algorithms. Motivated by the simplicity and universality of the PG algorithms, we ask these two questions in the context of performative RL:

1. *How to design PG-type algorithms for performative RL environments to achieve optimality?*
2. *What are the minimal conditions under which PG-type algorithms converge to the performatively optimal policy?*

Our contributions address these questions affirmatively, and showcases the difference of optimality-seeking and stability-seeking algorithms in performative RL.

I. Algorithm Design: We propose the first Performative Policy Gradient algorithm, **PePG**, for performative RL environments. Specifically, we extend the classical vanilla PG and entropy-regularised PG algorithms to Performative RL settings. Though the general algorithm design stays same, we derive a performative policy gradient theorem that shows, evaluation of the gradient involves two novel gradient terms in performative RL – (a) the expected gradient of reward, and (b) the expected gradient of log-transition probabilities times its impact on the expected cumulative return. We leverage this theorem to propose an estimator of the performative policy gradient under any differentiable parametrisation.

II. Convergence to Performative Optimality. We further analyse **PePG** (with and without entropy regularisation) for softmax policies, and softmax Performative Markov Decision Processes (PeMDPs), i.e. the MDPs with softmax transition probabilities and linear rewards with respect to the parameters of the softmax policy. We provide a minimal recipe to prove convergence of **PePG** using (a) smoothness of the performative value function, and (b) approximate gradient domination lemma for performative policy gradients. This allows us to show that **PePG** converges to an ϵ -ball around performative optimal policy in $\Omega\left(\frac{|\mathcal{S}||\mathcal{A}|^2}{\epsilon^2(1-\gamma)}\right)$ iterations, where $|\mathcal{S}|$ and $|\mathcal{A}|$ are the number of states and actions, respectively.

Specifically, Mandal et al. (2023) frames the question of using policy gradient to find stable policies as an open problem. The authors further contemplate, as PG functions in the policy space, whether it is possible to converge towards a stable policy. In this paper, we affirmatively solve an extension to this open problem for tabular softmax PeMDPs with softmax policies.

III. Stability- vs. Optimality-seeking Algorithms in Performative RL. We further theoretically and numerically contrast the performances of stability-seeking and optimality-seeking algorithms. Theoretically, we derive the performative performance difference lemma that distinguished the effect of policy update in these two types of algorithms. Numerically, we compare the performances of **PePG** with the state-of-the-art MDRR (Mixed Delayed Repeated Retraining (Rank et al., 2024)) algorithm for finding performatively stable policies in the multi-agent environment proposed by (Mandal et al., 2023). We show that **PePG** yields significantly higher values functions than MDRR, while MDRR achieves either similar or lower distance from stable state-action distribution than **PePG**.

108 2 PRELIMINARIES: FROM RL TO PERFORMATIVE RL

110 Now, we formalise the RL and performative RL problems, and provide the basics of policy gradient algorithms in RL.

112 2.1 RL: INFINITE-HORIZON DISCOUNTED MDPs

114 In RL, we mostly study Markov Decision Processes (MDPs) defined via the tuple $(\mathcal{S}, \mathcal{A}, \mathbf{P}, r, \gamma)$, where $\mathcal{S} \subseteq \mathbb{R}^d$ is the state
 115 space and $\mathcal{A} \subseteq \mathbb{R}^d$ is the action space. Both the spaces are assumed to be compact. At any time step $t \in \mathbb{N}$, an agent
 116 plays an action $a_t \in \mathcal{A}$ at a state $s_t \in \mathcal{S}$. It transits the MDP environment to a state s_{t+1} according to a transition kernel
 117 $\mathbf{P}(\cdot | s_t, a_t) \in \Delta(\mathcal{S})$. The agent further receives a reward $r(s_t, a_t) \in \mathbb{R}$ quantifying the goodness of taking action a_t at s_t .
 118 The strategy to take an action is represented by a stochastic map, called *policy*, i.e. $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$. Given an initial state
 119 distribution $\rho \in \Delta(\mathcal{S})$, the goal is to find the optimal policy π^* that maximises the expected discounted sum of rewards, i.e.,
 120 the *value function*: $V_\pi(\rho) \triangleq \mathbb{E}_{s_0 \sim \rho, s_{t+1} \sim \mathbb{P}(\cdot | s_t, \pi(s_t))} [\sum_{t=0}^{\infty} \gamma^t r(s_t, \pi(s_t))]$, where $\gamma \in (0, 1)$ is called the *discount factor*.
 121 γ indicates how much a previous reward matters in the next step, and bounds the effective horizon of a policy to $\frac{1}{1-\gamma}$.

123 Algorithm 1 Vanilla Policy Gradient

125 1: **Input:** Learning rate $\eta > 0$.
 126 2: **Initialize:** Policy parameter $\theta_0(s, a) \forall s \in \mathcal{S}, a \in \mathcal{A}$.
 127 3: **for** $t = 1$ to T **do**
 128 4: Estimate the gradient $\nabla_\theta V^\pi(\rho) |_{\theta=\theta_t}$
 129 5: **Gradient ascent step:** $\theta_{t+1} \leftarrow \theta_t + \eta \nabla_\theta V^\pi(\rho) |_{\theta=\theta_t}$
 130 6: **end for**

131 $V^\pi(\rho)$, we update θ towards $\nabla_\theta V^\pi(\rho)$, which is the direction improving the value $V^\pi(\rho)$ with a fixed learning rate $\eta > 0$.
 132 For vanilla PG, the policy gradient takes the convenient form leading to estimators computable only with policy rollouts.

134 **Theorem 1** (Policy Gradient Theorem (Sutton et al., 1999)). Fix a differentiable parameterisation $\theta \mapsto \pi_\theta(a | s)$ and an initial
 135 distribution ρ . Let us define the *Q*-value function $Q^{\pi_\theta}(s, a) \triangleq \mathbb{E}_{s_{t+1} \sim \mathbb{P}_{\pi_\theta}(\cdot | s_t, \pi(s_t))} [\sum_{t=0}^{\infty} \gamma^t r(s_t, \pi(s_t)) | s_0 = s, a_0 = a]$,
 136 and advantage function $A^{\pi_\theta}(s, a) \triangleq Q^{\pi_\theta}(s, a) - V^{\pi_\theta}(s)$. Then,

$$138 \nabla_\theta V^{\pi_\theta}(\rho) = \frac{1}{1-\gamma} \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_\theta}^{\pi_\theta}} \left[\sum_{t=0}^{\infty} \gamma^t Q^{\pi_\theta}(s_t, a_t) \nabla_\theta \log \pi_\theta(a_t | s_t) \right] = \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_\theta}^{\pi_\theta}} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_\theta}(s_t, a_t) \nabla_\theta \log \pi_\theta(a_t | s_t) \right].$$

141 Since the value function is not concave in the policy parameters, achieving optimality with PG has been a challenge. But practical
 142 scalability and efficiency of these algorithms has motivated a long-line of work to understand the minimum conditions
 143 and parametric forms of policies leading to convergence to the optimal policy (Agarwal et al., 2021; Mei et al., 2020; Wang
 144 & Zou, 2022; Yuan et al., 2022). Our work extends these algorithmic techniques and theoretical insights to performative RL.

146 2.2 PERFORMATIVE RL: INFINITE-HORIZON DISCOUNTED PEMDPs

148 Given a policy set Π , we denote the Performative Markov Decision Process (PeMDP) is defined as the set of MDPs
 149 $\{\mathcal{M}(\pi) | \pi \in \Pi\}$, where each MDP is a tuple $\mathcal{M}(\pi) \triangleq (\mathcal{S}, \mathcal{A}, \mathbf{P}_\pi, \mathbf{r}_\pi, \gamma)$. Note, that the transition kernel and rewards
 150 distribution are no more invariant with respect to the policy. They shift with the deployed policy $\pi \in \Delta(\mathcal{A})$ (Mandal et al.,
 151 2023; Mandal & Radanovic, 2024). In this setting, the probability of generating a trajectory $\tau_\pi \triangleq (s_t, a_t)_{t=0}^\infty$ under policy
 152 π with underlying MDP $\mathcal{M}(\pi')$ is given by¹ $\mathbb{P}_{\pi'}^{\pi}(\tau | \rho) \triangleq \rho(s_0) \prod_{t=0}^{\infty} \pi(a_t | s_t) \mathbf{P}_{\pi'}(s_{t+1} | s_t, a_t)$, where $\rho \in \Delta(\mathcal{S})$
 153 is the initial state distribution. Furthermore, the state-action occupancy measure for deployed policy π and environment-
 154 inducing policy π' is defined as $\mathbf{d}_{\pi', \rho}^\pi \triangleq (1 - \gamma) \mathbb{E}_{\tau \sim \mathbb{P}_\pi^{\pi}} [\sum_{t=0}^{\infty} \gamma^t \mathbf{1}(s_t = s, a_t = a) | s_0 \sim \rho]$. Now, we are ready to define
 155 the performative expected return, referred as the performative value function that we aim to maximise while solving PeMDP.

156 **Definition 1** (Performative Value Function). Given a policy $\pi \in \Pi$ and an initial state distribution $\rho \in \Delta(\mathcal{S})$, the performative
 157 value function $V_\pi^\pi(\rho)$ is

$$158 V_\pi^\pi(\rho) \triangleq \mathbb{E}_{\tau \sim \mathbb{P}_\pi^{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \mathbf{r}_\pi(s_t, \pi(s_t)) | s_0 \sim \rho \right]. \quad (1)$$

161 ¹Hereafter, for relevant quantities, π in superscript denotes the deployed policy, and π' in the subscript denotes the environment-
 inducing, i.e. the policy inducing the transition kernel and reward function that the algorithm interacts with.

162 Equation (2) gives the total expected return that captures the performativity aspect in PeMDPs as the underlying dynamics
 163 changes with a deployed policy $\pi(\cdot | s)$.
 164

165 On a similar note, we define the performative Q-value function (or action-value function) of a policy π as follows.
 166

167 **Definition 2** (Performative Q-value). *Given a policy $\pi \in \Pi$ and a state-action pair $(s, a) \in (\mathcal{S}, \mathcal{A})$, the performative
 168 Q-value function $Q_\pi^\pi(s, a)$ is*

$$168 \quad Q_\pi^\pi(s, a) \triangleq \mathbb{E}_{\tau \sim \mathbb{P}_\pi^\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_\pi(s_t, a_t) \mid s_0 = s, a_0 = a \right] \quad (2)$$

171 The Q-value satisfies the following Bellman equation:
 172

$$173 \quad Q_\pi^\pi(s, a) = r_\pi(s, a) + \gamma \mathbb{E}_{s' \sim \mathbb{P}_\pi(\cdot | s, a)} [V_\pi^\pi(s')] \quad (3)$$

175 Note that, we can maximise performative value function in two ways: (i) considering π as both the environment-inducing
 176 policy and the policy the RL agent deploys, or (ii) deploying π to fix it as the environment-inducing policy and agent plays
 177 another policy π' . At this vantage point, let us introduce the notion of optimality and stability of policies in PeMDPs (Mandal
 178 et al., 2023).

179 **Definition 3** (Performative Optimality). *A policy π_o^* is performatively optimal if it maximizes the performative value function.*
 180

$$181 \quad \pi_o^* \in \arg \max_{\pi \in \Delta(\mathcal{A})} V_\pi^\pi(\rho). \quad (4)$$

183 Thus, if we play the policy π in the environment induced by policy π to maximise the expected return, we land on the
 184 performatively optimal policy.

185 **Definition 4** (Performative Stability). *A policy π_s^* is performatively stable if there is no gain in performative value function
 186 due to deploying any other policy than π_s^* in the environment induced by π_s^* .*

$$187 \quad \pi_s^* \in \arg \max_{\pi \in \Delta(\mathcal{A})} V_{\pi_s^*}^\pi(\rho). \quad (5)$$

189 As noted by Mandal et al. (2023), a performatively optimal policy may not be performatively stable, i.e., π_o^* may not be
 190 optimal for a changed underlying environment $\mathcal{M}(\pi_o^*)$, when it is deployed. Also, in general, the performative value function
 191 of π_o^* might be equal to or higher than that of π_s^* . In this paper, we design PG algorithms computing the performative optimal
 192 policy for a given set of MDPs, and reinstate their differences with performatively stable policies.

193 The existing literature on PeMDPs (Mandal et al., 2023; Mandal & Radanovic, 2024; Rank et al., 2024; Pollatos et al., 2025;
 194 Chen et al., 2024) focused primarily on finding a performatively stable policy, i.e. a π_s^* according to Definition 4. In practice,
 195 while the notion of stable policies matters for very specific applications, a stable policy may not always suffice. But they
 196 might show large sub-optimality gaps, which are often not desired for real-life tasks. *We fill up this gap in literature and
 197 propose the first provably converging and computationally efficient PG algorithm for PeMDPs.* Later on, we also empirically
 198 show the deficiency of the existing stability finding algorithms if we aim for optimality (Section 5).

199 **Entropy Regularised PeMDPs.** Entropy regularisation has emerged as a simple but powerful technique in classical RL
 200 to design smooth and efficient algorithms with sufficient exploration. Thus, we study another variant of the performative
 201 value function that is regularised using discounted entropy (Mei et al., 2020; Neu et al., 2017; Liu et al., 2019; Zhao et al.,
 202 2019). In this setting, the original value function in Definition 1 is regularised using the discounted entropy $H_\pi(\rho) \triangleq$
 203 $\mathbb{E}_{\tau \sim \mathbb{P}_\pi^\pi} [-\sum_{t=0}^{\infty} \gamma^t \log \pi(a_t | s_t)]$. This is equivalent to maximising the expected reward with a shifted reward function
 204 $\tilde{r}_\pi(\pi(s_t), s_t) = r_\pi(\pi(s_t), s_t) - \lambda \log(\pi(a_t | s_t))$ for some $\lambda \geq 0$. \tilde{r}_π is referred as the “soft-reward” in MDP literature
 205 (Wang & Uchibe, 2024; Herman et al., 2016; Shi et al., 2019). This allows us to define the soft performative value function.
 206

207 **Definition 5** (Entropy Regularised (or Soft) Performative Value Function). *Given a policy $\pi \in \Pi$, a starting state distribution
 208 $\rho \in \Delta(\mathcal{S})$, and a regularisation parameter $\lambda \geq 0$, the soft performative value function $V_\pi^\pi(\rho)$ is*

$$209 \quad \tilde{V}_\pi^\pi(\rho) \triangleq \mathbb{E}_{\tau \sim \mathbb{P}_\pi^\pi} \left[\sum_{t=0}^{\infty} \gamma^t (r_\pi(s_t, \pi(s_t)) - \lambda \log \pi(a_t | s_t)) \mid s_0 \sim \rho \right] = \mathbb{E}_{\tau \sim \mathbb{P}_\pi^\pi} \left[\sum_{t=0}^{\infty} \gamma^t \tilde{r}_\pi(s_t, \pi(s_t)) \mid s_0 \sim \rho \right]. \quad (6)$$

212 Since policies belong to the probability simplex, the entropy regularisation naturally lends to smoother and stable PG algorithms.
 213 Later, we show that the discounted entropy is a smooth function of the policy parameters for PeMDPs extending
 214 the optimization-wise benefits of entropy regularisation to PeMDPs. Additionally, using the notion of soft rewards, we can
 215 further define soft performatively optimal and stable policies for entropy regularised PeMDPs. Leveraging it, we *unifiedly*
 216 *design PG algorithms for both the unregularised and the entropy regularised PeMDPs.*

216 3 POLICY GRADIENT ALGORITHMS IN PERFORMATIVE RL

218 In this section, we first study the impact of policy updates in PeMDPs. Then, we leverage it to derive the performative policy
 219 gradient theorem and design Performative Policy Gradient (PePG) algorithm for any differentiable parametric policy class.
 220

221 3.1 IMPACT OF POLICY UPDATES ON PEMDPs

223 Performance difference lemma has been central in RL to understand the impact of changing policies in terms of value functions
 224 (Kakade & Langford, 2002a). It has been also central to analysing and developing PG-type methods (Agarwal et al.,
 225 2021; Silver et al., 2014; Kallel et al., 2024). But the existing versions of performance difference cannot handle performativity.
 226 Here, we derive the performative version of the performance difference lemma that quantifies the shift in the performative
 227 value function due to change the deployed and environment-inducing policies.

228 **Lemma 1** (Performative Performance Difference Lemma). *The difference in performative value functions induced by π and
 229 $\pi' \in \Pi$ while starting from the initial state distribution ρ is*

$$231 V_{\pi}^{\pi}(\rho) - V_{\pi'}^{\pi'}(\rho) = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}^{\pi}} [A_{\pi'}^{\pi'}(s, a)] \\ 232 + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}^{\pi}} [(r_{\pi}(s, a) - r_{\pi'}(s, a)) + \gamma(\mathbf{P}_{\pi}(\cdot|s, a) - \mathbf{P}_{\pi'}(\cdot|s, a))^{\top} V_{\pi}^{\pi}(\cdot)]. \quad (7)$$

235 where $A_{\pi'}^{\pi}(s, a) \triangleq Q_{\pi'}^{\pi}(s, a) - V_{\pi'}^{\pi}(s)$ is the performative advantage function for any state $s \in \mathcal{S}$ and action $a \in \mathcal{A}$.
 236

237 The crux of the proof is decomposing the performative value through environment-inducing and deployed policies
 238

$$239 V_{\pi}^{\pi}(s_0) - V_{\pi'}^{\pi'}(s_0) = \underbrace{V_{\pi}^{\pi}(s_0) - V_{\pi'}^{\pi}(s_0)}_{\text{performative shift term}} + \underbrace{V_{\pi'}^{\pi}(s_0) - V_{\pi'}^{\pi'}(s_0)}_{\text{performance difference term}}.$$

242 (1) *Connection to Classical RL.* In classical RL, the performance difference lemma yields $V^{\pi}(\rho) - V^{\pi'}(\rho) = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\rho}^{\pi}} [A^{\pi'}(s, a)]$. The first term in Lemma 1 is equivalent to the classical result in the environment induced by
 243 π' . But due to environment shift, two more terms appear in the performative performance difference incorporating the im-
 244 pacts of reward shifts and transition shifts. (2) *Connection to Performative Stability.* If we ignore the reward and transition
 245 shift terms, the performance difference term $V_{\pi}^{\pi}(s_0) - V_{\pi'}^{\pi'}(s_0)$ quantifies the impact of changing the deployed policy from
 246 π' to π in an environment induced by π' . Thus, a stability seeking algorithm would like to minimise this term, while an
 247 optimality seeking algorithm has to incorporate all of the terms.
 248

249 Now, we ask: *how much do the new environment shift terms change the performative performance difference?*

250 For simplicity, we focus on the commonly studied PeMDPs with bounded rewards and gradually shifting environments, i.e.
 251 the ones with Lipschitz transitions and rewards with respect to the deployed policies (Rank et al., 2024).

253 **Assumption 1** (Bounded reward). *We assume that the rewards are bounded in $[-R_{\max}, R_{\max}]$.*

255 This is the only assumption needed through the paper and is standard in MDP literature (Mei et al., 2020; Li & Yang, 2023).

256 **Lemma 2** (Bounding Performative Performance Difference for Gradually Shifting Environments). *Let us assume that both
 257 rewards and transitions are Lipschitz functions of policy, i.e. $\|r_{\pi} - r_{\pi'}\|_{\infty} \leq L_r \|\pi - \pi'\|_1$ and $\|\mathbf{P}_{\pi} - \mathbf{P}_{\pi'}\|_1 \leq L_{\mathbf{P}} \|\pi - \pi'\|_1$, for some $L_r, L_{\mathbf{P}} \geq 0$. Then, under Assumption 1, the performative shift in the sub-optimality gap of a
 258 policy π_{θ} satisfies*

$$260 \left| V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) - V_{\pi_{\theta}}^{\pi_{\theta}}(\rho) - \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_{\theta},\rho}^{\pi_{\theta}^*}} [A_{\pi_{\theta}}^{\pi_{\theta}}(s, a)] \right| \leq \frac{2\sqrt{2}}{1-\gamma} (L_r + \frac{\gamma}{1-\gamma} L_{\mathbf{P}} R_{\max}) \mathbb{E}_{s_0 \sim \rho} D_{\text{H}}(\pi_{\theta}^*(\cdot|s_0) \| \pi_{\theta}(\cdot|s_0)). \quad (8)$$

264 where $D_{\text{H}}(\mathbf{x} \| \mathbf{y})$ denotes the Hellinger distance between \mathbf{x} and \mathbf{y} .

266 *Implication.* Lemma 2 shows novel characterisation of the *extra cost* we pay to adapt to performativity of the environment
 267 in terms of Hellinger distance between the true performatively optimal policy π_{θ}^* and any other parametrised policy
 268 π_{θ} . This implies that the order of difference between the optimal performative value function and that of any stability-
 269 seeking algorithm is $\Theta(\frac{1}{1-\gamma})$. This significantly improves the known order of sub-optimality achieved by existing algorithms.
 270 Specifically, Mandal et al. (2023) show that using repeated policy optimisation algorithms converges to a suboptimality gap

270 **Algorithm 2** **PePG**: Performative Policy Gradient

271 1: **Input:** Transition Feature Map $\psi(s) \forall s \in \mathcal{S}, \xi \in [-R_{\max}, R_{\max}]$ and discount factor γ .
272 2: **Initialize:** Initial policy parameters θ_0 , initial value function parameters ϕ_0
273 3: **for** $k = 1, 2, \dots$ **do**
274 4: **Collect trajectories:** $\mathcal{D}_k = \{\tau_i\}_{i=1}^I$, where each $\tau_i \triangleq \{(s_{i,t}, a_{i,t}, s_{i,t+1}, r_{i,t})\}_{t=0}^{T-1}$ by playing $\pi_{\theta_k} = \pi(\theta_k)$
275 5: Compute returns $R_k \triangleq \{R_{k,i}\}_{i=1}^I$, where $R_{k,i} = \{R_{k,i,t}\}_{t=0}^{T-1}$
276 6: Compute advantage estimates $\hat{A}_k(\tau_i)$ using value function $\hat{V}_{\phi_k}(\tau_i)$ for each $\tau_i \in \mathcal{D}_k$ (estimate of $V_{\pi_{\theta_k}}^{\pi_{\theta_k}}(\tau_i)$ obtained
277 from fitted value network with parameters ϕ_k)
278 7: **Gradient estimation:** Estimate policy gradient using (12)
279 8: **Gradient ascent step:** Update policy parameters using (9)
280 9: Fit value function $V_{\phi_{k+1}}$:

282
$$\phi_{k+1} \leftarrow \arg \min_{\phi} \frac{1}{I \cdot T} \sum_{i=1}^I \sum_{t=0}^{T-1} \left(\hat{V}_{\phi_k}(s_t \in \tau_i) - R_{k,i,t} \right)^2$$

283 10: **end for**

287 $\mathcal{O} \left(\max \left\{ \frac{S^{5/3} A^{1/3} \epsilon^{2/3}}{(1-\gamma)^{14/3}}, \frac{\epsilon S}{(1-\gamma)^4} \right\} \right)$. Thus, we see an opportunity to improve on the existing works and design algorithms that
288 can achieve suboptimality gap of order $\Theta(\frac{1}{1-\gamma})$.

289 Additionally, we note that an optimality-seeking algorithm tries to minimise both the advantage function and the effect of the
290 shifts in the environment quantified by the Hellinger distance, i.e., $D_H(\pi_o^*(\cdot|s_0) \|\pi_\theta(\cdot|s_0))$. While it suffices for a stability-
291 seeking algorithm to minimise the advantage function, and thus, we cannot minimise the RHS of Equation (8) lower than
292 $D_H(\pi_o^*(\cdot|s_0) \|\pi_\theta(\cdot|s_0))$. Thus, optimality-seeking algorithms can achieve a lower performative performance difference than
293 the stability-seeking algorithms if they also learn and incorporate the performative shifts in the environment.

296 **3.2 ALGORITHM DESIGN: PERFORMATIVE POLICY GRADIENT (PePG)**

298 To achieve performative optimality, the goal is to maximise value function at the end of learning process. Gradient ascent
299 is a standard first-order optimisation method to find maxima of a function. Similar to Algorithm 1, the crux of performative
300 policy gradient method lies in the ascent step:

302

303
$$\theta_{t+1} \leftarrow \begin{cases} \theta_t + \eta_t \nabla_{\theta} V_{\pi_{\theta}}^{\pi_{\theta}}(\tau) \mid_{\theta=\theta_t}, & \text{for unregularised objective} \\ \theta_t + \eta_t \nabla_{\theta} \tilde{V}_{\pi_{\theta}}^{\pi_{\theta}}(\tau) \mid_{\theta=\theta_t}, & \text{for Entropy-regularised objective.} \end{cases} \quad (9)$$

305

306 Given this ascent step, we have to evaluate the gradient at each time step from the rollouts of the present policy. In classical
307 PG, the policy gradient theorem serves this purpose (Williams, 1992; Sutton et al., 1999; Silver et al., 2014). Thus, we derive
308 the performative counterpart of the classic policy gradient theorem.

309 **Theorem 2** (Performative Policy Gradient Theorem). *The gradient of the performative value function w.r.t θ is as follows:*

310 (a) *For the unregularised objective,*

312
$$\nabla_{\theta} V_{\pi_{\theta}}^{\pi_{\theta}}(\tau) = \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t (A_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) (\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) + \nabla_{\theta} \log P_{\pi_{\theta}}(s_{t+1} \mid s_t, a_t)) + \nabla_{\theta} r_{\pi_{\theta}}(s_t, a_t)) \right], \quad (10)$$

314

315 (b) *For the entropy-regularised objective, we define the soft advantage, soft Q, and soft value functions with respect to the soft
316 rewards $\tilde{r}_{\pi_{\theta}}$ satisfying $\tilde{A}_{\pi_{\theta}}^{\pi_{\theta}}(s, a) = \tilde{Q}_{\pi_{\theta}}^{\pi_{\theta}}(s, a) - \tilde{V}_{\pi_{\theta}}^{\pi_{\theta}}(s)$ that further yields*

318
$$\nabla_{\theta} \tilde{V}_{\pi_{\theta}}^{\pi_{\theta}}(\tau) = \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t \left(\tilde{A}_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) (\nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) + \nabla_{\theta} \log P_{\pi_{\theta}}(s_{t+1} \mid s_t, a_t)) + \nabla_{\theta} \tilde{r}_{\pi_{\theta}}(s_t, a_t \mid \theta) \right) \right]. \quad (11)$$

321

322 **PePG:** To elaborate on the design of PePG (Algorithm 2), we focus only on the REINFORCE update and softmax policy
323 parametrisation. With the appropriate parameter choices, and initialisation of the policy parameter θ and value function
parameter ϕ , for each episode $k = 1, 2, \dots$, PePG collects I trajectories to calculate return R^i and estimates advantage

324 function \hat{A}_k (Line 4-6). For a particular trajectory τ_i , the estimated advantage for a given state-action is $\widehat{A_{\pi_{\theta_k}}(s_t^i, a_t^i)} =$
 325 $R_{t,k}^i - V_{\phi_k}(s_t^i)$, where $R^i = \sum_{t=0}^{T-1} \gamma^t r_{\pi_{\theta_k}}(s_t^i, a_t^i)$.
 326

327 **Gradient Estimation (Line 7).** With the necessary estimates in hand for all the collected I trajectories, **PePG** computes
 328 average gradient estimate over all the trajectories using
 329

$$330 \quad \widehat{\nabla_{\theta_k} V_{\pi_{\theta_k}}^{\pi_{\theta_k}}} = \frac{1}{I} \sum_{i=1}^I \sum_{t=0}^T \gamma^t (A_{\pi_{\theta_k}}^{\pi_{\theta_k}}(s_t^i, a_t^i)) \left(\nabla_{\theta_k} \log \pi_{\theta_k}(a_t^i | s_t^i) + \nabla_{\theta_k} \log P_{\pi_{\theta_k}}(s_{t+1}^i | s_t^i, a_t^i) \right) + \nabla_{\theta_k} r_{\pi_{\theta_k}}(s_t^i, a_t^i | \theta_k) \quad (12)$$

333 where all the individual gradients $\nabla_{\theta_k} \log P_{\pi_{\theta_k}}$, $\nabla_{\theta_k} r_{\pi_{\theta_k}}$ and $\nabla_{\theta_k} \log \pi_{\theta_k}$ have the closed form expressions for softmax
 334 parametrisation according to Equation (35). Further, in Line 8, **PePG** updates the policy parameter for the next episode using
 335 a gradient ascent step leveraging the estimated average gradient over all I trajectories. Specifically, we plug in $\widehat{\nabla_{\theta_k} V_{\pi_{\theta_k}}^{\pi_{\theta_k}}}$ to
 336 both the unregularised and entropy-regularised update rules are given in Equation (9). For the next episode, we again run a
 337 regression to update the value network plugging in the current estimates and resume the learning process further.
 338

340 4 CONVERGENCE ANALYSIS OF **PePG**: SOFTMAX POLICIES AND SOFTMAX PeMDPs

342 For rigorous theoretical analysis of **PePG**, we restrict ourselves to *softmax policy class*, and *softmax PeMDPs*. We define the
 343 softmax PeMDPs as the ones having softmax transition kernels with feature map $\psi(\cdot) : \mathcal{S} \rightarrow \mathbb{R}$, and linear reward functions
 344 with respect to the policy parameters, for all state $s \in \mathcal{S}$ and action $a \in \mathcal{A}$. Specifically, the class of softmax PeMDPs is
 345 $\{\mathcal{M}(\theta) = \mathcal{M}(\pi_{\theta}) \mid \theta \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}\}$ such that

$$346 \quad \pi_{\theta}(a|s) = \frac{e^{\theta_{s,a}}}{\sum_{a'} e^{\theta_{s,a'}}}, \mathbf{P}_{\pi_{\theta}}(s'|s, a) = \frac{e^{\theta_{s,a}\psi(s')}}{\sum_{s''} e^{\theta_{s,a}\psi(s'')}}, r_{\pi_{\theta}}(s, a) = \mathcal{P}_{[-R_{\max}, R_{\max}]}[\xi \theta_{s,a}], \quad (13)$$

349 where ψ is non-negative and upper bounded by $\psi_{\max} > 0$, and $\xi \in [0, R_{\max}]$ to align with Assumption 1.

350 Thus, we derive the derivatives of policy, transitions, and rewards as

$$351 \quad \frac{\partial}{\partial \theta_{s',a'}} \log \pi_{\theta}(a|s) = \mathbb{1}[s = s', a = a'] - \pi_{\theta}(a'|s) \mathbb{1}[s = s'],$$

$$354 \quad \frac{\partial}{\partial \theta_{s',a'}} \log \mathbf{P}_{\pi_{\theta}}(s''|s, a) = \psi(s'') \mathbb{1}[s = s', a = a'] (1 - \mathbf{P}_{\pi_{\theta}}(s''|s, a)), \frac{\partial}{\partial \theta_{s',a'}} r_{\pi_{\theta}}(s, a) = \xi \mathbb{1}[s = s', a = a']. \quad (14)$$

356 Given the derivatives, we can now readily estimate the policy gradient and deploy **PePG** for softmax PeMDPs.

358 **Convergence Analysis: Challenges and Three Step Analysis.** The main challenge to prove convergence of **PePG** is that
 359 the performative value function is not concave in the parameterisation θ , in general, and also in softmax PeMDPs. The similar
 360 issue occurs while proving convergence of PG-type algorithms in classical RL, which has been overcome by leveraging
 361 smoothness properties of the value functions and by deriving the local Polyak-Lojasiewicz (PL)-type conditions, known as
 362 *gradient domination*, with respect to the policy parameterisation. Leveraging these insights, we devise a three step convergence
 363 analysis for **PePG**.

364 **Step 1: Smoothness of Performative Value Functions.** First, we prove that the unregularised performative value function is
 365 $\mathcal{O}(\frac{|\mathcal{A}|}{(1-\gamma)^2})$ smooth. As we show that the entropy is also a smooth function for softmax PeMDPs, then under proper choice of
 366 the regularisation parameter, i.e., $\lambda = \frac{1-\gamma}{1+2\log|\mathcal{A}|}$, entropy regularised performative value function is also $\mathcal{O}(\frac{|\mathcal{A}|}{(1-\gamma)^2})$ smooth.
 367 Since gradient ascent/descent methods can work well in smooth functions, we proceed thoroughly.

369 **Step 2: Gradient Domination for Softmax PeMDPs.** Now, the next step is to relate the performative performance difference
 370 with the performative policy gradient. This allows us to connect the per iteration improvement in the performative value
 371 function with the performative gradient descent at that step. These are known as PL-type inequalities. For non-concave
 372 objectives, PL inequalities guarantee convergence to global maxima by showing that the gradient of the objective at any
 373 parameter dominates the sub-optimality w.r.t. that parameter.

374 **Lemma 3** (Performative Gradient Domination for Softmax PeMDPs). *Let us consider PeMDPs defined in (13).*

375 (a) *For unregularised value function,*

$$376 \quad V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) - V_{\pi_{\theta}}^{\pi_{\theta}}(\rho) \leq \sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_{\theta}, \rho}^{\pi_{\theta}^*}}{d_{\pi_{\theta}, \nu}^{\pi_{\theta}}} \right\|_{\infty} \|\nabla_{\theta} V_{\pi_{\theta}}^{\pi_{\theta}}(\nu)\|_2 + \frac{R_{\max}}{1-\gamma} \left(1 + \frac{2\gamma}{1-\gamma} \psi_{\max} \right). \quad (15)$$

Algorithms	Regulariser λ	Min. #samples	Environment
RPO FS (Mandal et al., 2023)	$\mathcal{O}\left(\frac{ \mathcal{S} + \gamma \mathcal{S} ^{5/2}}{(1-\omega)(1-\gamma)^4}\right)$	$\frac{ \mathcal{A} ^2 \mathcal{S} ^3}{\epsilon^4(1-\gamma)^6\lambda^2} \ln(\#\text{iter})$	Direct PeMDPs + quadratic-regul. on occupancy ω -dependence between two envs.
MDRR (Rank et al., 2024)	$\mathcal{O}\left(\frac{ \mathcal{S} + \gamma \mathcal{S} ^{5/2}}{(1-\omega)(1-\gamma)^4}\right)$	$\frac{ \mathcal{A} ^2 \mathcal{S} ^3}{\epsilon^4(1-\gamma)^6\lambda^2} \ln(\#\text{iter})$	Direct PeMDPs + quadratic-regul. on occupancy ω -dependence between two envs.
PePG (This paper)	$\frac{R_{\max}(1-\gamma)}{1+\log(\mathcal{A})}$	$\frac{ \mathcal{S} \mathcal{A} ^2}{\epsilon^2(1-\gamma)^3}$	softmax PeMDPs + entropy regul. on policy
PePG (This paper)	0	$\frac{ \mathcal{S} \mathcal{A} }{\epsilon^2} \max\left\{\frac{\gamma R_{\max} \mathcal{A} }{(1-\gamma)^3}, \frac{\gamma^2}{(1-\gamma)^4}\right\}$	unregularised softmax PeMDPs

Table 1: Comparison of theoretical performance of SOTA stability-seeking algorithms against PePG.

(b) For entropy-regularised value function, $\tilde{V}_{\pi_\theta^*}^*(\rho) - \tilde{V}_{\pi_\theta}^*(\rho) \leq$

$$\sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_\theta^*, \rho}^*}{d_{\pi_\theta, \nu}^*} \right\|_\infty \|\nabla_\theta V_{\pi_\theta}^*(\nu)\|_2 + \frac{R_{\max}}{1-\gamma} \left(1 + \frac{2\gamma}{1-\gamma} \psi_{\max} \left(1 + \frac{\lambda}{R_{\max}} \log |\mathcal{A}| \right) \right) + \frac{\lambda}{1-\gamma} (1 + 2 \log |\mathcal{A}|). \quad (16)$$

Step 3: Iterative Application of Gradient Domination for Smooth Functions. Now, we can apply gradient domination along with the classic iterative convergence proof of gradient ascent for smooth functions. The intuition is that since the per-step sub-optimality is dominated by the gradient and the smooth functions are bounded by quadratic envelopes of parameters, applying gradient ascent iteratively would bring the sub-optimality down to small error level after enough iterations. We formalise this in Theorem 3.

Theorem 3 (Convergence of PePG in softmax PeMDPs). *Let $\text{Cov} \triangleq \max_{\theta, \nu} \left\| \frac{d_{\pi_\theta^*, \rho}^*}{d_{\pi_\theta, \nu}^*} \right\|_\infty$. The gradient ascent algorithm on $V_{\pi_\theta}^*(\rho)$ (Equation (9)) satisfies, for all distributions $\rho \in \Delta(\mathcal{S})$.*

(a) in the unregularised case with $\eta = \Omega(\min\{\frac{(1-\gamma)^2}{\gamma|\mathcal{A}|}, \frac{(1-\gamma)^3}{\gamma^2}\})$, $\min_{t < T} \left\{ V_{\pi_\theta^*}^*(\rho) - V_{\pi_{\theta_t}}^*(\rho) \right\} \leq \epsilon + \mathcal{O}\left(\frac{1}{1-\gamma}\right)$ when $T = \Omega\left(\frac{|\mathcal{S}||\mathcal{A}|}{\epsilon^2} \max\left\{\frac{\gamma R_{\max}|\mathcal{A}|}{(1-\gamma)^3}, \frac{\gamma^2}{(1-\gamma)^4}\right\}\right)$.

(b) in the entropy regularisation scenario with $\lambda = \frac{(1-\gamma)}{1+2\log|\mathcal{A}|}$ and $\eta = \Omega\left(\frac{(1-\gamma)^2}{\gamma|\mathcal{A}|}\right)$, $\min_{t < T} \left\{ \tilde{V}_{\pi_\theta^*}^*(\rho) - \tilde{V}_{\pi_{\theta_t}^{(t)}}^*(\rho) \right\} \leq \epsilon + \mathcal{O}\left(\frac{1}{1-\gamma}\right)$ when $T = \Omega\left(\frac{|\mathcal{S}||\mathcal{A}|^2\text{Cov}^2}{\epsilon^2(1-\gamma)^3}\right)$.

Implications. (1) We observe that PePG converges to an ϵ -optimal policy in $\frac{|\mathcal{S}||\mathcal{A}|^2}{\epsilon^2(1-\gamma)^3}$ iterations. This reduces the sample complexity required for the existing stability-seeking algorithms by at least an order $\frac{|\mathcal{S}|^2}{\epsilon^2(1-\gamma)^3}$, and shows efficiency of using PePG than the algorithms directly optimising the occupancy measures. (2) Additionally, the regularisation parameters needed for the existing algorithms are pretty big and bigger than $\frac{|\mathcal{S}|}{(1-\gamma)^4}$. This is counter-intuitive and does not match the experimental observations. Here, we prove that setting the regularisation parameter to $\frac{1-\gamma}{1+2\log|\mathcal{A}|}$ suffices for proving convergence to optimality. (3) The minimum number of samples required to achieve convergence is proportional to the square of coverage for the softmax PeMDP. This is a ubiquitous quantity dictating convergence of PG-methods in classical RL (Agarwal et al., 2021; Mei et al., 2020), and retraining methods in performative RL (Mandal et al., 2023; Rank et al., 2024). (4) The $\mathcal{O}\left(\frac{1}{1-\gamma}\right)$ suboptimality gap appearing in Theorem 3 is analogous to the effect of using relaxed weak gradient domination result (Yuan et al., 2022, Corollary 3.7). It argues that if the policy gradient in classical MDPs satisfies the relaxed weak gradient domination, i.e., $\epsilon' + \|\nabla_\theta V(\theta)\| \geq 2\sqrt{\mu}(V^* - V(\theta))$ for some $\mu > 0$ and $\epsilon' > 0$, then the corresponding policy gradient method guarantees $\min_{t \in \{0, \dots, T\}} (V^* - V(\theta_t)) \leq \mathcal{O}(\epsilon) + \mathcal{O}(\epsilon')$ for big enough T . Lemma 3 constructs the performative counterpart of this relaxed weak gradient domination property with $\epsilon' = \mathcal{O}\left(\frac{1}{1-\gamma}\right)$. Similarly, (Sahitaj et al., 2025) also supports existence of such a gap empirically for Markov potential games. Thus, this indicates an inherent property of performative policy gradient which has to incorporate gradients of transitions and rewards along with gradients of policies at every step.

432 5 EXPERIMENTAL ANALYSIS

433
434 In this section, we empirically compare the performance of **PePG** in the performative reinforcement learning setting and
435 analyse its behaviour against the state-of-the-art stability-finding methods.²

436
437 **Performative RL Environment.** We evaluate **PePG** in the Gridworld test-bed (Mandal et al., 2023), which has become a
438 standard benchmark in performative RL. This environment consists of a grid where two agents A_1 (the principal) and A_2 (the
439 follower), jointly control an actor navigating from start positions (S) to the goal (G) while avoiding hazards. The environment
440 dynamics are as follows: Agent A_1 proposes a control policy for the actor by selecting one of four directional actions. Agent
441 A_2 can either accept this action (not intervene) or override it with its own directional choice. *This creates a performative
442 environment for A_1 , as its effective policy outcomes depend on A_2 's responses to its deployed strategy.*

443 The cost structure follows: visiting blank cells (S) incurs penalty of -0.01 , goal cells (F) cost -0.02 , hazard cells (H) impose
444 a severe penalty of -0.5 , and any intervention by A_2 results in an additional cost of -0.05 for the intervening agent. The
445 response model also follows that of Mandal et al. (2023), i.e., the agent A_2 responds to A_1 's policy using a Boltzmann
446 softmax operator. Given A_1 's current policy π_1 , we compute the optimal Q-function $Q^*|\pi_1$ for each follower agent A_j
447 relative to a perturbed version of the grid world, where each cell types matches A_1 's environment with probability 0.7.
448 We then define an average Q-function over the follower agents and determine the collective response policy via Boltzmann
449 softmax $Q^{*|\pi_1}(s, a) = \frac{1}{n} \sum_{j=2}^{n+1} Q_j^{*|\pi_1}(s, a), \pi_2(a|s) = \frac{\exp(\beta \cdot Q^{*|\pi_1}(s, a))}{\sum_{a'} \exp(\beta \cdot Q^{*|\pi_1}(s, a'))}.$

450 It is important to note that our experimental setup deliberately uses the immediate response model from the original performative
451 RL framework, rather than the gradually shifting environment introduced by Rank et al. (2024) that assumes slow
452 shifts in the environment. Our choice to use the immediate response model presents a more challenging performative setting
453 where the environment responds instantaneously to policy changes. This allows us to demonstrate that unlike MDRR (Rank
454 et al., 2024), **PePG** can handle the fundamental performative challenge without requiring environmental assumptions that
455 artificially slows down the feedback loop, thereby highlighting the robustness of the proposed **PePG** approach.

456 **Experimental Setup.** We evaluate **PePG** (with and without entropy regularisation) alongside Mixed Delayed Repeated
457 Retraining (MDRR), which represents the current state-of-the-art in performative reinforcement learning under gradually
458 shifting environments (Rank et al., 2024), and Repeated Policy Optimization with Finite Samples (RPO FS). MDRR has
459 demonstrated significant improvements over traditional repeated retraining methods, by leveraging historical data from mul-
460 tiple deployments, while RPO FS is included as the baseline method from (Mandal et al., 2023) for direct comparison with
461 the original performative RL approach.

462 All experiments use a 8×8 grid with $\gamma = 0.9$, exploration parameter $\epsilon = 0.5$ for initial policy construction, one follower
463 agent A_2 , and 100 trajectory samples per iteration. The algorithms share common parameters of $T = 100$ iterations. For
464 regularization, RPO FS and MDRR use $\lambda = 0.1$ from their original experiments, while entropy-regularized PePG uses
465 $\lambda = 2.0$ (ablation studies for this choice are provided in the appendix). **PePG** uses learning rate $\eta = 0.1$, MDRR employs
466 memory weight $v = 1.1$ for historical data utilization, delayed round parameter $k = 3$, and FTRL parameters $N = B = 10$,
467 while RPO FS follows the finite-sample optimization from Mandal et al.

468 **Results and Observations.** Our experimental evaluation across 100 iterations reveals fundamental differences between
469 **PePG** and MDRR and RPO in the immediate response performative setting. We used shorter training compared to (Rank
470 et al., 2024), as this time-frame sufficiently demonstrates RPO and MDRR's stability convergence and **PePG**'s progression
471 toward optimality.

472 **I. Results: Optimality:** The left panel reveals a clear performance hierarchy among the four methods. **PePG** achieves
473 the highest value function performance, with standard PePG reaching approximately 0.1 and regularized PePG (Reg PePG)
474 reaching 0.05, both showing consistent improvement from initial values around -0.15 and still progressing upward at the
475 end of the 100 iteration window. This steady upward progression highlights **PePG**'s effectiveness in discovering better
476 performative equilibria rather than settling for the first stable solution encountered. RPO FS remains relatively stable around
477 -0.05 throughout training, while MDRR stabilizes at the lowest performance level of approximately -0.2 and remains flat
478 throughout training.

479 **II. Results: Comparison of Optimality- and Stability-seeking Algorithms.** The results expose a critical limitation of
480 algorithms designed primarily for stability rather than optimality. MDRR successfully achieves its design goal, with the right
481 panel showing decreasing toward zero in the stability metric $\|d_{t+1} - d_t\|_2$ (the L_2 distance between occupancy measures of
482 consecutive policy iterations), indicating policy stabilization. However, this stability comes at the cost of solution quality,
483 as MDRR becomes trapped in a suboptimal point. The method prioritised finding any stable point over finding an optimal

484
485 ²Anonymous code repository of **PePG** implementation is [Link](#). Further ablation studies w.r.t. hyperparameters are in Appendix H.

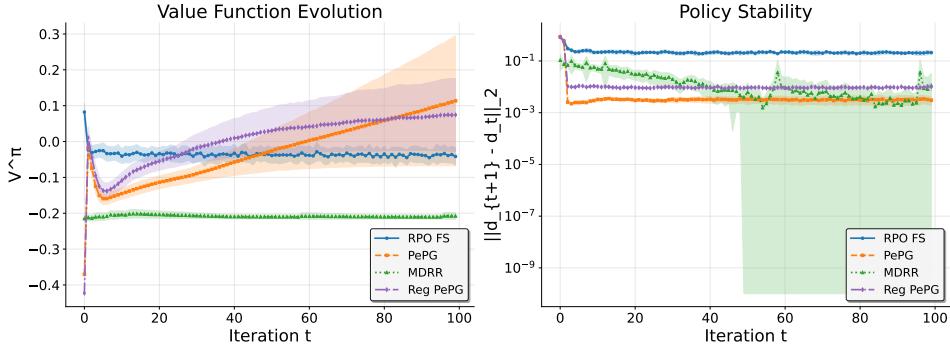


Figure 2: Comparison of evolution in expected average return (both regularised and unregularised) and stability of **PePG** with SOTA stability-achieving methods. Each algorithm is run for 20 random seeds and 100 iterations.

solution. In contrast, both PePG variants exhibit higher policy variability as they actively explore for better solutions. RPO FS maintains moderate stability around 10^{-1} but with limited performance improvement.

6 DISCUSSIONS, LIMITATIONS, AND FUTURE WORKS

We study the problem of Performative Reinforcement learning in tabular MDPs (PeMDPs) using softmax parametrised policies with entropy-regularised objective function, where any action taken by the agent cause potential shift in the MDP's underlying reward and transition dynamics. We are the first to develop PG-type algorithm, **PePG**, that attains performatively optimality against the existing performative stability-seeking algorithms, affirmatively solving an extended open problem in (Mandal et al., 2023). We also derive the novel performative counterpart of classic Performance Difference Lemma and Policy Gradient Theorem that affirmatively captures this performative nature of the environment we act. We provide a sufficient conditions to prove that **PePG** converges to an $(\epsilon + \frac{1}{1-\gamma})$ -ball around performative optimal policy in $\Omega\left(\frac{|\mathcal{S}||\mathcal{A}|^2}{\epsilon^2(1-\gamma)^3}\right)$ iterations.

As we develop a PG-type algorithm, it will be interesting to see how much can we reduce variance (Wu et al., 2018; Papini et al., 2018) while achieving optimality. We are still in the tabular setting with finite set of state-actions. A potential future direction would be to scale **PePG** to continuous state-space with large number of state-actions.

540

REFERENCES

541

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy gradient methods: Optimality, approximation, and distribution shift. *Journal of Machine Learning Research*, 22(98):1–76, 2021. 2, 3, 5, 8, 17

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022. 1

Anas Barakat, John Lazarsfeld, Georgios Piliouras, and Antonios Varvitsiotis. Multi-agent online control with adversarial disturbances. *arXiv preprint arXiv:2506.18814*, 2025. 1, 17

James Bell, Linda Linsefors, Caspar Oesterheld, and Joar Skalse. Reinforcement learning in newcomblike environments. *Advances in Neural Information Processing Systems*, 34:22146–22157, 2021. 2, 17

Gavin Brown, Shlomi Hod, and Iden Kalemaj. Performative prediction in a stateful world. In *International conference on artificial intelligence and statistics*, pp. 6045–6061. PMLR, 2022. 17

Songfu Cai, Fei Han, and Xuanyu Cao. Performative control for linear dynamical systems. *Advances in Neural Information Processing Systems*, 37:70617–70658, 2024. 17

Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. How algorithmic confounding in recommendation systems increases homogeneity and decreases utility. In *Proceedings of the 12th ACM conference on recommender systems*, pp. 224–232, 2018. 1

Qianyi Chen, Ying Chen, and Bo Li. Practical performative policy learning with strategic agents. *arXiv preprint arXiv:2412.01344*, 2024. 4

Kamil Ciosek and Shimon Whiteson. Expected policy gradients for reinforcement learning. *Journal of Machine Learning Research*, 21(52):1–51, 2020. 3

Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2nd edition, 2006. ISBN 978-0-471-24195-9. 35

Itay Eilat and Nir Rosenfeld. Performative recommendation: diversifying content via strategic incentives. In *International Conference on Machine Learning*, pp. 9082–9103. PMLR, 2023. 1, 17

Mohammad Ghavamzadeh and Yaakov Engel. Bayesian policy gradient algorithms. *Advances in neural information processing systems*, 19, 2006. 3

António Góis, Mehrnaz Mofakhami, Fernando P Santos, Gauthier Gidel, and Simon Lacoste-Julien. Performative prediction on games and mechanism design. *arXiv preprint arXiv:2408.05146*, 2024. 1, 17

Moritz Hardt, Meena Jagadeesan, and Celestine Mendler-Dünner. Performative power. *Advances in Neural Information Processing Systems*, 35:22969–22981, 2022. 1, 17

Alexander Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large language models to reason with reinforcement learning. In *AI for Math Workshop@ ICML 2024*. 1

Michael Herman, Tobias Gindele, Jörg Wagner, Felix Schmitt, and Wolfram Burgard. Inverse reinforcement learning with simultaneous estimation of rewards and dynamics. In *Artificial intelligence and statistics*, pp. 102–110. PMLR, 2016. 4

Zachary Izzo, Lexing Ying, and James Zou. How to learn when data reacts to your model: performative gradient descent. In *International Conference on Machine Learning*, pp. 4641–4650. PMLR, 2021. 1, 17

Zachary Izzo, James Zou, and Lexing Ying. How to learn when data gradually reacts to your model. In *International Conference on Artificial Intelligence and Statistics*, pp. 3998–4035. PMLR, 2022. 1, 17

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In *Proceedings of the nineteenth international conference on machine learning*, pp. 267–274, 2002a. 5

Sham M Kakade. A natural policy gradient. *Advances in neural information processing systems*, 14, 2001. 2

Sham M. Kakade. A natural policy gradient. In *Advances in Neural Information Processing Systems 14 (NIPS 2001)*, pp. 1531–1538, 2002. 17

594 Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement learning. In *International Conference on Machine Learning*, 2002b. URL <https://api.semanticscholar.org/CorpusID:31442909>. 18
595 596

597 Mahdi Kallel, Debabrota Basu, Riad Akroud, and Carlo D'Eramo. Augmented bayesian policy search. In *The Twelfth*
598 *International Conference on Learning Representations (ICLR)*, 2024. URL <https://openreview.net/forum?id=OvlcyABNQT>. 5
599 600

600 Vijay R. Konda and John N. Tsitsiklis. Actor-critic algorithms. In *Advances in Neural Information Processing Systems 13*
601 (*NIPS 2000*), pp. 1008–1014, 2000. 17
602 603

603 Qiang Li and Hoi-To Wai. State dependent performative prediction with stochastic approximation. In *International Conference*
604 *on Artificial Intelligence and Statistics*, pp. 3164–3186. PMLR, 2022. 1, 17
605 606

606 Qiang Li, Chung-Yiu Yau, and Hoi-To Wai. Multi-agent performative prediction with greedy deployment and consensus
607 seeking agents. *Advances in Neural Information Processing Systems*, 35:38449–38460, 2022. 17
608 609

609 Shengshi Li and Lin Yang. Horizon-free learning for markov decision processes and games: stochastically bounded rewards
610 and improved bounds. In *International Conference on Machine Learning*, pp. 20221–20252. PMLR, 2023. 5
611 612

612 Jingbin Liu, Xinyang Gu, and Shuai Liu. Policy optimization reinforcement learning with entropy regularization. *arXiv*
613 *preprint arXiv:1912.01557*, 2019. 4
614 615

615 Debmalya Mandal and Goran Radanovic. Performative reinforcement learning with linear markov decision process. *arXiv*
616 *preprint arXiv:2411.05234*, 2024. 2, 3, 4, 17
617 618

618 Debmalya Mandal, Stelios Triantafyllou, and Goran Radanovic. Performative reinforcement learning, 2023. URL <https://arxiv.org/abs/2207.00046>. 2, 3, 4, 5, 8, 9, 10, 17
619 620

620 Masoud Mansouri, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, and Robin Burke. Feedback loop and
621 bias amplification in recommender systems. In *Proceedings of the 29th ACM international conference on information &*
622 *knowledge management*, pp. 2145–2148, 2020. 1
623 624

624 Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence rates of softmax policy
625 gradient methods. In *International conference on machine learning*, pp. 6820–6829. PMLR, 2020. 3, 4, 5, 8, 24, 34
626 627

627 Celestine Mendler-Dünner, Juan Perdomo, Tijana Zrnic, and Moritz Hardt. Stochastic optimization for performative prediction.
628 *Advances in Neural Information Processing Systems*, 33:4929–4939, 2020. 17
629 630

630 John P Miller, Juan C Perdomo, and Tijana Zrnic. Outside the echo chamber: Optimizing the performative risk. In *International Conference on Machine Learning*, pp. 7710–7720. PMLR, 2021. 1, 17
631 632

632 Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and
633 Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In *Proceedings of the 33rd International Conference on Machine Learning (ICML)*, pp. 1928–1937, 2016. 17
634 635

635 Mehrnaz Mofakhami, Ioannis Mitliagkas, and Gauthier Gidel. Performative prediction with neural networks. In *International Conference on Artificial Intelligence and Statistics*, pp. 11079–11093. PMLR, 2023. 1, 17
636 637

637 Adhyyan Narang, Evan Faulkner, Dmitriy Drusvyatskiy, Maryam Fazel, and Lillian J Ratliff. Multiplayer performative prediction:
638 Learning in decision-dependent games. *Journal of Machine Learning Research*, 24(202):1–56, 2023. 1, 17
639 640

640 Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov decision processes. *arXiv*
641 *preprint arXiv:1705.07798*, 2017. 4
642 643

643 Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochastic variance-reduced
644 policy gradient. In *International conference on machine learning*, pp. 4026–4035. PMLR, 2018. 10
645 646

646 Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction. In *International Conference on Machine Learning*, pp. 7599–7609. PMLR, 2020. 1, 17
647 648

648 Georgios Piliouras and Fang-Yi Yu. Multi-agent performative prediction: From global stability and optimality to chaos. In
649 *Proceedings of the 24th ACM Conference on Economics and Computation*, pp. 1047–1074, 2023. 1, 17
650 651

651 Vasilis Pollatos, Debmalya Mandal, and Goran Radanovic. On corruption-robustness in performative reinforcement learning.
652 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 19939–19947, 2025. 4

648 Ben Rank, Stelios Triantafyllou, Debmalya Mandal, and Goran Radanovic. Performative reinforcement learning in gradually
 649 shifting environments. *arXiv preprint arXiv:2402.09838*, 2024. 2, 4, 5, 8, 9, 17
 650

651 Mitas Ray, Lillian J Ratliff, Dmitriy Drusvyatskiy, and Maryam Fazel. Decision-dependent risk minimization in geometrically
 652 decaying dynamic environments. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 8081–
 653 8088, 2022. 17

654 Rilind Sahitaj, Paulius Sasnauskas, Yiğit Yalın, Debmalya Mandal, and Goran Radanović. Independent learning in performa-
 655 tive markov potential games. *arXiv preprint arXiv:2504.20593*, 2025. 8
 656

657 John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region policy optimization. In
 658 *Proceedings of the 32nd International Conference on Machine Learning (ICML)*, pp. 1889–1897, 2015. 2, 17
 659

660 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms.
 661 In *arXiv preprint arXiv:1707.06347*, 2017. 2, 17
 662

663 Wenjie Shi, Shiji Song, and Cheng Wu. Soft policy gradient method for maximum entropy deep reinforcement learning.
 664 *arXiv preprint arXiv:1909.03198*, 2019. 4
 665

666 David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy gradient
 667 algorithms. In *International conference on machine learning*, pp. 387–395. Pmlr, 2014. 1, 5, 6
 668

669 Jason St. John, Christian Herwig, Diana Kafkes, Jovan Mitrevski, William A Pellico, Gabriel N Perdue, Andres Quintero-
 670 Parra, Brian A Schupbach, Kiyomi Seiya, Nhan Tran, et al. Real-time artificial intelligence for accelerator control: A study
 671 at the fermilab booster. *Physical Review Accelerators and Beams*, 24(10):104601, 2021. 1
 672

673 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*, volume 1. MIT press, 1998. 1
 674

675 Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement
 676 learning with function approximation. In *Advances in Neural Information Processing Systems 12 (NIPS 1999)*, pp. 1057–
 677 1063. The MIT Press, 1999. 2, 3, 6, 17
 678

679 Jixin Wang and Eiji Uchibe. Reward-punishment reinforcement learning with maximum entropy. In *2024 International
 680 Joint Conference on Neural Networks (IJCNN)*, pp. 1–7. IEEE, 2024. 4
 681

682 Xiaolu Wang, Chung-Yiu Yau, and Hoi To Wai. Network effects in performative prediction games. In *International Confer-
 683 ence on Machine Learning*, pp. 36514–36540. PMLR, 2023. 17
 684

685 Yue Wang and Shaofeng Zou. Policy gradient method for robust reinforcement learning. In *International conference on
 686 machine learning*, pp. 23484–23526. PMLR, 2022. 3
 687

688 Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine
 689 Learning*, 8:229–256, 1992. 2, 3, 6, 17
 690

691 Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade, Igor Mordatch, and
 692 Pieter Abbeel. Variance reduction for policy gradient with action-dependent factorized baselines. *arXiv preprint
 693 arXiv:1803.07246*, 2018. 10
 694

695 Tengyu Xu, Haoyang Wang, and Yingbin Liang. Improved sample complexity for policy gradient via Poincaré inequality. In
 696 *Advances in Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 15728–15739, 2020. 17
 697

698 Rui Yuan, Robert M Gower, and Alessandro Lazaric. A general sample complexity analysis of vanilla policy gradient. In
 699 *International Conference on Artificial Intelligence and Statistics*, pp. 3332–3380. PMLR, 2022. 2, 3, 8, 17
 700

701 Angela Zhang, Lei Xing, James Zou, and Joseph C Wu. Shifting machine learning for healthcare from development to
 702 deployment and from models to data. *Nature biomedical engineering*, 6(12):1330–1345, 2022. 1, 17
 703

704 Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. On the global convergence of policy gradient methods with variance
 705 reduction. In *Proceedings of the 37th International Conference on Machine Learning (ICML)*, pp. 11106–11115. PMLR,
 706 2020. 17
 707

708 Rui Zhao, Xudong Sun, and Volker Tresp. Maximum entropy-regularized multi-goal reinforcement learning. In *International
 709 Conference on Machine Learning*, pp. 7553–7562. PMLR, 2019. 4
 710

702

703

704

705

706

707

708

Appendix

Table of Contents

709	A Notations	15
710		
711	B Details of the Toy Example: Loan Approval Problem	16
712		
713	C Detailed Related Works	17
714		
715	D Impact of Policy Updates on PeMDPs (Section 3.1)	18
716		
717	E Smoothness of Performative Value Function and Entropy Regulariser	21
718		
719	F Derivation of Performative Policy Gradients	27
720		
721	G Convergence of PePG : Proofs of Section 4	29
722	G.1 Proofs for Unregularised Value Function	29
	G.2 Proofs for Entropy-regularised or Soft Value Function	33
723		
724	H Ablation study on entropy regularisation	38
725		
726	I Technical Lemmas	39

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

A NOTATIONS

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Notation	Description
\mathcal{S}	state space
\mathcal{A}	action space
γ	discount factor
π_θ	policy parametrized by θ
$\Pi(\Theta)$	policy space
\mathbf{P}_π	transition under the environment induced by policy π
r_π	reward under the environment induced by policy π
π_s^*	performatively stable policy
π_o^*	performatively optimal policy
$\mathbf{P}_{\pi_o^*}$	reward under the environment induced by performatively optimal policy
$r_{\pi_o^*}$	reward under the environment induced by performatively optimal policy
$\mathbf{d}_{\pi_o^*}^{\pi_o^*}$	state-action occupancy of optimal policy
$V_{\pi_o^*}^{\pi_o^*}$	value function of optimal policy
$\mathbf{d}_{\pi_2}^{\pi_1}$	state-action occupancy of playing policy π_2 in the environment induced by policy π_1
$V_{\pi_1}^{\pi_2}$	value function for playing policy π_2 in the environment induced by policy π_1
$Q_{\pi_1}^{\pi_2}$	Q-value function for playing policy π_2 in the environment induced by policy π_1
$A_{\pi_1}^{\pi_2}$	advantage function for playing policy π_2 in the environment induced by policy π_1
Δ_K	K -dimensional simplex
ρ	Initial state distribution $\in \Delta_{\mathcal{S}}$

810 B DETAILS OF THE TOY EXAMPLE: LOAN APPROVEMENT PROBLEM

812 *Environment.* We consider a population of loan applicants represented by a scalar feature $x \in \mathbb{R}$, distributed as $x \sim \mathcal{N}(\mu, \sigma^2)$,
 813 where μ is the population mean and $\sigma > 0$ is fixed.

814 *Bank's Policy.* The bank chooses a *threshold policy* parameterized by $\theta \in \mathbb{R}$. A loan is granted to an applicant x if $x \geq \theta$. To
 815 smooth analysis, we use a differentiable approximation: $\pi_\theta(x) = \sigma(k(x - \theta))$, where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the logistic sigmoid
 816 and $k > 0$ controls smoothness.

817 *Rewards.* If a loan is granted to applicant x , the bank receives a random
 818 payoff:

$$819 r(x) = \begin{cases} +R & \text{if applicant repays,} \\ -L & \text{if applicant defaults,} \end{cases}$$

820 with repayment probability $\mathbb{P}(\text{repay} \mid x) = \sigma(\gamma x - c)$, where $\gamma > 0$
 821 controls sensitivity and c is a calibration constant. The expected reward
 822 from granting to x is

$$823 u(x) = \sigma(\gamma x - c) \cdot R - (1 - \sigma(\gamma x - c)) \cdot L.$$

824 *Expected Utility.* Given distribution $x \sim \mathcal{N}(\mu, \sigma^2)$, the bank's expected
 825 utility for policy θ is

$$826 U(\theta, \mu) = \mathbb{E}_{x \sim \mathcal{N}(\mu, \sigma^2)} [\pi_\theta(x) \cdot u(x)].$$

827 *Performative Feedback.* The population mean μ depends on the bank's policy, via the grant rate: $g(\theta, \mu) =$
 828 $\mathbb{E}_{x \sim \mathcal{N}(\mu, \sigma^2)} [\pi_\theta(x)]$.

829 We assume a bounded performative update rule: $\mu_{t+1} = (1 - \beta)\mu_t + \beta \cdot f(g(\theta, \mu_t))$, where $\beta \in [0, 1]$ is the performative
 830 strength and $f(g) \in [-M, M]$ maps the grant rate to a feasible population mean.

831 At equilibrium, the induced feature distribution satisfies the fixed point condition:

$$832 \mu^*(\theta) = (1 - \beta)\mu^*(\theta) + \beta f(g(\theta, \mu^*(\theta))).$$

833 *Optimization Problems.* **ERM Optimum.** Ignoring performative effects (i.e. assuming $\mu = \mu_0$ is fixed), the ERM-optimal
 834 policy solves

$$835 \theta^{\text{ERM}} = \arg \max_{\theta} U(\theta, \mu_0).$$

836 **Performative Optimum.** Accounting for performative feedback, the performative-optimal policy solves

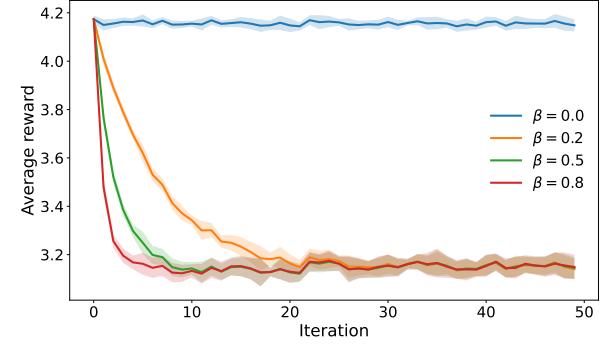
$$837 \theta^{\text{Perf}} = \arg \max_{\theta} U(\theta, \mu^*(\theta)).$$

838 *Learning via Reinforcement Learning*

839 An RL agent plays policies θ_t sequentially. At each round t :

- 840 1. Sample $x \sim \mathcal{N}(\mu_t, \sigma^2)$.
- 841 2. Grant loan with probability $\pi_{\theta_t}(x)$.
- 842 3. Observe reward r_t .
- 843 4. Update θ_{t+1} using policy gradient (REINFORCE).
- 844 5. Update population mean via performative dynamics:

$$845 \mu_{t+1} = (1 - \beta)\mu_t + \beta f(g(\theta_t, \mu_t)).$$



864

C DETAILED RELATED WORKS

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Performative Prediction. The study of performative prediction started with the pioneering work of (Perdomo et al., 2020), where they leveraged repeated retraining with the aim to converge towards a performatively stable point. We see extension of this work trying to achieve performative optimality (Izzo et al., 2021; 2022; Miller et al., 2021). This further opened a plethora of works in various other domains such as Multi-agent systems (Narang et al., 2023; Li et al., 2022; Piliouras & Yu, 2023), control systems (Cai et al., 2024; Barakat et al., 2025), stochastic optimisation (Li & Wai, 2022; Mendler-Dünner et al., 2020), games (Wang et al., 2023; Góis et al., 2024) etc. There has been several attempt of achieve performative optimality or stability for real-life tasks like recommendation (Eilat & Rosenfeld, 2023), to measure the power of firms (Hardt et al., 2022; Mofakhami et al., 2023), in healthcare (Zhang et al., 2022) etc. Another interesting setting is the *stateful* performative prediction i.e. prediction under gradual shifts in the distribution (Brown et al., 2022; Izzo et al., 2022; Ray et al., 2022), that paved the way for incorporating performative prediction in Reinforcement Learning.

Performative Reinforcement Learning. Bell et al. (2021) were the first to propose a setting where the transition and reward of an underlying MDP depend non-deterministically on the deployed policy, thus capturing the essence of performativity to some extent. However, Mandal et al. (2023) can be considered the pioneer in introducing the notion of “*Performative Reinforcement Learning*” and its solution concepts, performatively stable and optimal policy. They propose direct optimization and ascent based techniques which manage to attain performative stability upon repeated retraining. Extensions to this work, Rank et al. (2024) and Mandal & Radanovic (2024) manage to solve the same problem with delayed retraining for linear MDPs. However, there exists no literature that proposes a performative RL algorithm that converges to the performative optimal policy.

Specifically, Mandal et al. (2023) frames the question of using policy gradient to find stable policies as an open problem. The authors further contemplate, as PG functions in the policy space, whether it is possible to converge towards a stable policy. Thus, in this paper, we affirmatively solve an extension (rather a harder problem) of this open problem for tabular MDPs with softmax policies.

Policy Gradient Algorithms. Policy gradient algorithms build a central paradigm in reinforcement learning, directly optimizing parametrised policies by estimating the gradient of expected return. The foundational policy gradient theorem (Sutton et al., 1999) established an expression for this gradient in terms of the score and action-value function, while Williams (1992) introduced the REINFORCE algorithm, providing an unbiased likelihood-ratio estimator. Convergence properties of stochastic gradient ascent in policy space were analysed in these early works. Subsequently, Konda & Tsitsiklis (2000) formalized actor-critic methods via two-timescale stochastic approximation, and Kakade (2002) proposed the natural policy gradient, leveraging the Fisher information geometry to accelerate learning. Extensions to trust region methods (Schulman et al., 2015), proximal policy optimization (Schulman et al., 2017), and entropy-regularized objectives (Mnih et al., 2016) have made policy gradient methods widely practical in high-dimensional settings. Recent theoretical advances provide finite-sample convergence guarantees and complexity analyses (Agarwal et al., 2021; Yuan et al., 2022), as well as robustness to distributional shift and adversarial perturbations (Zhang et al., 2020; Xu et al., 2020). Collectively, this body of work establishes policy gradient methods as both practically effective and theoretically grounded method for solving MDP.

918 D IMPACT OF POLICY UPDATES ON PEMDPs (SECTION 3.1)

920 **Lemma 1** (Peformative Performance Difference Lemma). *The difference in performative value functions induced by π and*
 921 *$\pi' \in \Pi$ while starting from the initial state distribution ρ is*

$$923 \quad (1) \quad V_{\pi}^{\pi}(\rho) - V_{\pi'}^{\pi'}(\rho) = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}} [A_{\pi'}^{\pi'}(s, a)] \\ 924 \quad + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}} [(r_{\pi}(s, a) - r_{\pi'}(s, a)) + \gamma(\mathbf{P}_{\pi}(\cdot|s, a) - \mathbf{P}_{\pi'}(\cdot|s, a))^{\top} V_{\pi}^{\pi}(\cdot)]. \quad (17)$$

927 where $A_{\pi'}^{\pi'}(s, a) \triangleq Q_{\pi'}^{\pi'}(s, a) - V_{\pi'}^{\pi'}(s)$ is the performative advantage function for any state $s \in \mathcal{S}$ and action $a \in \mathcal{A}$.

$$929 \quad (2) \quad V_{\pi}^{\pi}(\rho) - V_{\pi'}^{\pi'}(\rho) = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}} [A_{\pi'}^{\pi'}(s, a)] \\ 930 \quad + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}} [(r_{\pi}(s, a) - r_{\pi'}(s, a)) + \gamma(\mathbf{P}_{\pi}(\cdot|s, a) - \mathbf{P}_{\pi'}(\cdot|s, a))^{\top} V_{\pi'}^{\pi'}(\cdot)]. \quad (18)$$

934 where $A_{\pi'}^{\pi'}(s, a) \triangleq Q_{\pi'}^{\pi'}(s, a) - V_{\pi'}^{\pi'}(s)$ is the performative advantage function for any state $s \in \mathcal{S}$ and action $a \in \mathcal{A}$.

$$935 \quad (3) \quad V_{\pi}^{\pi}(\rho) - V_{\pi'}^{\pi'}(\rho) = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}} [A_{\pi'}^{\pi'}(s, a)] \quad (19)$$

$$938 \quad + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}} [(r_{\pi}(s, a) - r_{\pi'}(s, a)) + \gamma(\mathbf{P}_{\pi}(\cdot|s, a) - \mathbf{P}_{\pi'}(\cdot|s, a))^{\top} V_{\pi'}^{\pi'}(\cdot)]. \quad (20)$$

940 where $A_{\pi'}^{\pi'}(s, a) \triangleq Q_{\pi'}^{\pi'}(s, a) - V_{\pi'}^{\pi'}(s)$ is the performative advantage function for any state $s \in \mathcal{S}$ and action $a \in \mathcal{A}$.

942 We only use the first version of this lemma in the main draft, and also hereafter, for the proofs.

944 *Proof of Lemma 1.* We do this proof in two steps. First step involves a decomposition of the difference in value function
 945 into two terms : (i) difference in value function after deploying the same policy while agent plays two different policies i.e.
 946 the difference that explains stability of the deployed policy, and (ii) difference in value function for deploying two different
 947 policies i.e. performance difference for changing the deployed policy. While the second term can be bounded using classic
 948 performance difference lemma, in the next and final step, we control the stability inducing term (i).

950 **Part(1) – Step 1: Decomposition.** We start by decomposing the performative performance difference to get a stability and a
 951 performance difference terms separately.

$$953 \quad V_{\pi}^{\pi}(s_0) - V_{\pi'}^{\pi'}(s_0) = \underbrace{V_{\pi}^{\pi}(s_0) - V_{\pi'}^{\pi'}(s_0)}_{\text{performative shift term}} + \underbrace{V_{\pi'}^{\pi'}(s_0) - V_{\pi'}^{\pi'}(s_0)}_{\text{performance difference term}} \\ 954 \quad = V_{\pi}^{\pi}(s_0) - V_{\pi'}^{\pi'}(s_0) + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',(\cdot|s_0)}} [A_{\pi'}^{\pi'}(s, a)] \quad (21)$$

959 The last equality is a consequence of the classical performance difference lemma (Kakade & Langford, 2002b).

960 **Step 2: Controlling the performative shift term.** First, let us define $\mathbf{P}_{\pi}^{\pi}(s', s) \triangleq \sum_{a \in \mathcal{A}} \mathbf{P}_{\pi}(s'|s, a) \pi(a|s)$, and
 961 $\langle \mathbf{P}_{\pi}^{\pi}(\cdot, s_0), V_{\pi}^{\pi}(\cdot) \rangle \triangleq \sum_{s \in \mathcal{S}} V_{\pi}^{\pi}(s) \mathbf{P}_{\pi}^{\pi}(s, s_0)$.

963 We first observe that

$$965 \quad V_{\pi}^{\pi}(s_0) - V_{\pi'}^{\pi'}(s_0) = \mathbb{E}_{a \sim \pi(\cdot|s_0)} [r_{\pi}(s_0, a) - r_{\pi'}(s_0, a)] + \gamma \mathbb{E}_{s \sim \mathbf{P}_{\pi}^{\pi}(\cdot, s_0)} [V_{\pi}^{\pi}(s)] - \gamma \mathbb{E}_{s \sim \mathbf{P}_{\pi'}^{\pi'}(\cdot, s_0)} [V_{\pi'}^{\pi'}(s)] \\ 966 \quad = \mathbb{E}_{a \sim \pi(\cdot|s_0)} [r_{\pi}(s_0, a) - r_{\pi'}(s_0, a)] \\ 967 \quad + \gamma \sum_s (\mathbf{P}_{\pi}^{\pi}(s, s_0) - \mathbf{P}_{\pi'}^{\pi'}(s, s_0)) V_{\pi}^{\pi}(s) + \gamma \sum_s \mathbf{P}_{\pi'}^{\pi'}(s, s_0) (V_{\pi}^{\pi}(s) - V_{\pi'}^{\pi'}(s)) \\ 968 \quad = \mathbb{E}_{(s,a) \sim d_{\pi',(\cdot|s_0)}} [r_{\pi}(s, a) - r_{\pi'}(s, a) + \gamma(\mathbf{P}_{\pi}(\cdot|s, a) - \mathbf{P}_{\pi'}(\cdot|s, a))^{\top} V_{\pi}^{\pi}(\cdot)] \\ 969 \\ 970 \\ 971$$

972 The last equality is obtained by recurring the preceding step iteratively.
 973
 974

Combining steps 1 and 2 and taking expectation over $s_0 \sim \rho$, we get

$$975 \quad V_{\pi}(\rho) - V_{\pi'}(\rho) = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}} \left[A_{\pi'}(s,a) + (r_{\pi}(s,a) - r_{\pi'}(s,a)) + \gamma (\mathbf{P}_{\pi}(\cdot|s,a) - \mathbf{P}_{\pi'}(\cdot|s,a))^{\top} V_{\pi}(\cdot) \right].$$

977 Part(2) – The second equality is obtained by changing the Step 2 as follows:
 978

$$979 \quad V_{\pi}(\rho) - V_{\pi'}(\rho) = \mathbb{E}_{a \sim \pi(\cdot|s_0)} \left[r_{\pi}(s_0, a) - r_{\pi'}(s_0, a) \right] + \gamma \mathbb{E}_{s \sim \mathbf{P}_{\pi}(\cdot, s_0)} [V_{\pi}(\rho)] - \gamma \mathbb{E}_{s \sim \mathbf{P}_{\pi'}(\cdot, s_0)} [V_{\pi'}(\rho)]$$

$$980 \quad = \mathbb{E}_{a \sim \pi(\cdot|s_0)} \left[r_{\pi}(s_0, a) - r_{\pi'}(s_0, a) \right]$$

$$981 \quad + \gamma \sum_s (\mathbf{P}_{\pi}(s, s_0) - \mathbf{P}_{\pi'}(s, s_0)) V_{\pi'}(s) + \gamma \sum_s \mathbf{P}_{\pi}(s, s_0) (V_{\pi}(\rho) - V_{\pi'}(\rho))$$

$$982 \quad = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}} \left[A_{\pi'}(s,a) \right]$$

$$983 \quad + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}} \left[(r_{\pi}(s,a) - r_{\pi'}(s,a)) + \gamma (\mathbf{P}_{\pi}(\cdot|s,a) - \mathbf{P}_{\pi'}(\cdot|s,a))^{\top} V_{\pi'}(\cdot) \right].$$

984 The last equality is obtained by recurring the preceding step iteratively.
 985
 986

987 Part(3) – The third equality is obtained through the following steps.
 988

$$989 \quad V_{\pi}(\rho) - V_{\pi'}(\rho) = V_{\pi}(\rho) - V_{\pi'}(\rho) + V_{\pi'}(\rho) - V_{\pi'}(\rho)$$

$$990 \quad = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi}(\cdot|s_0)} [A_{\pi'}(s,a)] + V_{\pi'}(\rho) - V_{\pi'}(\rho)$$

$$991 \quad = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi}(\cdot|s_0)} [A_{\pi'}(s,a)] + \mathbb{E}_{a \sim \pi'(\cdot|s_0)} [r_{\pi}(s_0, a) - r_{\pi'}(s_0, a)]$$

$$992 \quad + \gamma \sum_s (\mathbf{P}_{\pi'}(s, s_0) - \mathbf{P}_{\pi'}(s, s_0)) V_{\pi'}(s) + \gamma \sum_s \mathbf{P}_{\pi'}(s, s_0) (V_{\pi'}(\rho) - V_{\pi'}(\rho))$$

$$993 \quad = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}} \left[A_{\pi'}(s,a) \right]$$

$$994 \quad + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi',\rho}} \left[(r_{\pi}(s,a) - r_{\pi'}(s,a)) + \gamma (\mathbf{P}_{\pi}(\cdot|s,a) - \mathbf{P}_{\pi'}(\cdot|s,a))^{\top} V_{\pi'}(\cdot) \right].$$

1000 \square

1001 **Lemma 2** (Bounding Performative Performance Difference for Gradually Shifting Environments). *Let us assume that both rewards and transitions are Lipschitz functions of policy, i.e. $\|r_{\pi} - r_{\pi'}\| \leq L_r \|\pi - \pi'\|$ and $\|\mathbf{P}_{\pi} - \mathbf{P}_{\pi'}\| \leq L_{\mathbf{P}} \|\pi - \pi'\|$, for some $L_r, L_{\mathbf{P}} \geq 0$. Then, under Assumption 1, the performative shift in the sub-optimality gap of a policy π_{θ} satisfies*

$$1002 \quad \left| V_{\pi_{\theta}^*}(\rho) - V_{\pi_{\theta}}(\rho) - \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_{\theta}^*,\rho}} [A_{\pi_{\theta}}(s,a)] \right| \leq \frac{2\sqrt{2}}{1-\gamma} (L_r + \frac{\gamma}{1-\gamma} L_{\mathbf{P}} R_{\max}) \mathbb{E}_{s_0 \sim \rho} D_{\text{H}}(\pi_{\theta}^*(\cdot|s_0) \| \pi_{\theta}(\cdot|s_0)). \quad (22)$$

1003 where $D_{\text{H}}(\mathbf{x} \| \mathbf{y})$ denotes the Hellinger distance between \mathbf{x} and \mathbf{y} .

1004 *Proof of Lemma 2.* We do this proof in three steps. We start from the final expression in Lemma 1, then in step 2 we impose
 1005 bounds on reward and transition differences leveraging the Lipschitz assumption. Lastly, we bound the policy difference in
 1006 first order norm using relation between Total Variation (TV) and Hellinger distance.
 1007

1018 **Step 1:** From Lemma 1, we get

$$1021 \quad V_{\pi_{\theta}^*}(s_0) - V_{\pi_{\theta}}(s_0) = \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_{\theta}^*,\rho}} \left[A_{\pi_{\theta}}(s,a) + (r_{\pi_{\theta}^*}(s,a) - r_{\pi_{\theta}}(s,a)) + \gamma (\mathbf{P}_{\pi_{\theta}^*}(\cdot|s,a) - \mathbf{P}_{\pi_{\theta}}(\cdot|s,a))^{\top} V_{\pi_{\theta}^*}(\cdot) \right].$$

1022 Thus,

$$1023 \quad \left| V_{\pi_{\theta}^*}(\rho) - V_{\pi_{\theta}}(\rho) - \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_{\theta}^*,\rho}} [A_{\pi_{\theta}}(s,a)] \right|$$

$$= \frac{1}{1-\gamma} \left| \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}} (r_{\pi_o^*}(s, a) - r_{\pi_\theta}(s, a)) + \gamma (\mathbf{P}_{\pi_o^*}(\cdot | s, a) - \mathbf{P}_{\pi_\theta}(\cdot | s, a))^\top V_{\pi_o^*}^{\pi_o^*}(\cdot) \right| \quad (23)$$

Step 2: Using Jensen's inequality together with the fact that $d_{\pi_\theta, \rho}^{\pi_o^*}(s, a | s_0) \leq 1$, for rewards, we get

$$\left| \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}(\cdot, \cdot | s_0)} [r_{\pi_o^*}(s, a) - r_{\pi_\theta}(s, a)] \right| \leq \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}(\cdot, \cdot | s_0)} |r_{\pi_o^*}(s, a) - r_{\pi_\theta}(s, a)| \leq \|r_{\pi_o^*} - r_{\pi_\theta}\|_1$$

Similarly for transitions, we get

$$\begin{aligned} \left| \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}(\cdot, \cdot | s_0)} [(\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_\theta})^\top V_{\pi}^{\pi}] \right| &\leq \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}(\cdot, \cdot | s_0)} |(\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_\theta})^\top V_{\pi}^{\pi}| \\ &\stackrel{(a)}{\leq} \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}(\cdot, \cdot | s_0)} [\|\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_\theta}\|_1 \cdot \|V_{\pi_o^*}^{\pi_o^*}\|_\infty] \\ &= \|\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_\theta}\|_1 \cdot \|V_{\pi_o^*}^{\pi_o^*}\|_\infty, \end{aligned}$$

(a) holds due to Hölder's inequality.

Now, leveraging the triangle inequality and Lipschitzness assumption on reward and transitions, we further get

$$\left| \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}(\cdot, \cdot | s_0)} [r_{\pi_o^*}(s, a) - r_{\pi_\theta}(s, a) + \gamma (\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_\theta})^\top V_{\pi}^{\pi}] \right| \leq L_r \|\pi_o^* - \pi_\theta\|_1 + \gamma L_{\mathbf{P}} \|V_{\pi_o^*}^{\pi_o^*}\|_\infty \|\pi_o^* - \pi_\theta\|_1$$

Finally, due to Assumption 1, we get $\|V_{\pi_o^*}^{\pi_o^*}\|_\infty \leq \frac{R_{\max}}{1-\gamma}$, and thus,

$$\left| \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}(\cdot, \cdot | s_0)} [r_{\pi_o^*}(s, a) - r_{\pi_\theta}(s, a) + \gamma (\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_\theta})^\top V_{\pi_o^*}^{\pi_o^*}] \right| \leq L_r \|\pi_o^* - \pi_\theta\|_1 + \frac{\gamma}{1-\gamma} L_{\mathbf{P}} R_{\max} \|\pi_o^* - \pi_\theta\|_1$$

Step 3: We know $\|\pi_o^* - \pi_\theta\|_1 = 2\text{TV}(\pi_o^* \parallel \pi_\theta) \leq 2\sqrt{2}D_{\mathbf{H}}(\pi_o^* \parallel \pi_\theta)$. Thus,

$$\begin{aligned} &\left| \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}(\cdot, \cdot | s_0)} [r_{\pi_o^*}(s, a) - r_{\pi_\theta}(s, a) + \gamma (\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_\theta})^\top V_{\pi_o^*}^{\pi_o^*}] \right| \\ &\leq 2\sqrt{2} \left(L_r + \frac{\gamma}{1-\gamma} L_{\mathbf{P}} R_{\max} \right) D_{\mathbf{H}}(\pi_o^* \parallel \pi_\theta) \end{aligned} \quad (24)$$

We conclude this proof by putting the upper bound in Equation (24) in Equation (23) and taking expectation over $s_0 \sim \rho$ to get the desired expression. \square

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 E SMOOTHNESS OF PERFORMATIVE VALUE FUNCTION AND ENTROPY REGULARISER
1081

1082 **Lemma 4** (Performative Smoothness Lemma). *Let $\pi_\alpha \triangleq \pi_{\theta+\alpha u}$, and let $V_\alpha^\alpha(s_0)$ be the corresponding value at a fixed state
1083 s_0 , i.e., $V_\alpha^\alpha(s_0) \triangleq V_{\pi_\alpha}^\alpha(s_0)$. If the following conditions hold true,*

$$1085 \quad \sum_{a \in \mathcal{A}} \left| \frac{d\pi_\alpha(a \mid s_0)}{d\alpha} \right|_{\alpha=0} \leq C_1, \quad \sum_{a \in \mathcal{A}} \left| \frac{d^2\pi_\alpha(a \mid s_0)}{d\alpha^2} \right|_{\alpha=0} \leq C_2, \sum_{s \in \mathcal{S}} \left| \frac{d\mathbf{P}_\alpha(s \mid s_0, a_0)}{d\alpha} \right|_{\alpha=0} \leq T_1, \\ 1086 \\ 1087 \quad \sum_{s \in \mathcal{S}} \left| \frac{d^2\mathbf{P}_\alpha(s \mid s_0, a_0)}{d\alpha^2} \right|_{\alpha=0} \leq T_2, \sum_{a \in \mathcal{A}} \left| \frac{dr_\alpha(s_0, a)}{d\alpha} \right|_{\alpha=0} \leq R_1, \quad \sum_{a \in \mathcal{A}} \left| \frac{d^2r_\alpha(s_0, a)}{d\alpha^2} \right|_{\alpha=0} \leq R_2,$$

1090 we get

$$1091 \quad \max_{\|u\|_2=1} \left\| \frac{d^2V_\alpha^\alpha(s_0)}{d\alpha^2} \right\|_{\alpha=0} \leq \frac{C_2}{1-\gamma} + 2C_1\beta_1 + C_2\beta_2 \triangleq L,$$

1094 where $\beta_1 = \frac{\gamma}{(1-\gamma)^2}(C_1 + T_1) + \frac{R_1}{1-\gamma}$ and $\beta_2 = \frac{2\gamma^2}{(1-\gamma)^3}(C_1 + T_1)^2 + \frac{\gamma}{(1-\gamma)^2}(C_2 + 2C_1T_1 + T_2) + \frac{2\gamma R_1}{(1-\gamma)^2}(C_2 + 2C_1T_1 + T_2) + \frac{R_2}{1-\gamma} + \frac{\gamma C_2 R_1}{(1-\gamma)^2}$.
1095
1096

1097 **Proof. Step 1:** To prove the second order smoothness of the value function we start by taking its second derivative. Consider
1098 the expected return under policy π_α :

$$1100 \quad V_\alpha^\alpha(s_0) = \sum_a \pi_\alpha(a \mid s_0) Q_\alpha^\alpha(s_0, a)$$

1102 Differentiating twice with respect to α , we obtain:

$$1104 \quad \frac{d^2V_\alpha^\alpha(s_0)}{d\alpha^2} = \sum_a \frac{d^2\pi_\alpha(a \mid s_0)}{d\alpha^2} Q_\alpha^\alpha(s_0, a) + 2 \sum_a \frac{d\pi_\alpha(a \mid s_0)}{d\alpha} \frac{dQ_\alpha^\alpha(s_0, a)}{d\alpha} + \sum_a \pi_\alpha(a \mid s_0) \frac{d^2Q_\alpha^\alpha(s_0, a)}{d\alpha^2}$$

1107 $Q_\alpha^\alpha(s_0, a_0)$ is the Q-function corresponding to the policy π_α at state s_0 and action a_0 . Observe that $Q_\alpha^\alpha(s_0, a_0)$ can further
1108 be written as:

$$1109 \quad Q_\alpha^\alpha(s_0, a_0) = e_{(s_0, a_0)}^\top (I - \gamma \tilde{\mathbf{P}}(\alpha))^{-1} r_\alpha = e_{(s_0, a_0)}^\top M(\alpha) r_\alpha$$

1111 where $M(\alpha) \triangleq (I - \gamma \mathbf{P}(\alpha))^{-1}$ and $\tilde{\mathbf{P}}(\alpha)$ is the state-action transition matrix under policy π_α , defined as:

$$1113 \quad [\tilde{\mathbf{P}}(\alpha)](s', a' \mid s, a) \triangleq \pi_\alpha(a' \mid s') \mathbf{P}_\alpha(s' \mid s, a)$$

1114 Differentiating $Q_\alpha^\alpha(s, a)$ with respect to α gives:

$$1117 \quad \frac{dQ_\alpha^\alpha(s_0, a_0)}{d\alpha} = \gamma e_{(s_0, a_0)}^\top M(\alpha) \frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} M(\alpha) r_\alpha + e_{(s_0, a_0)}^\top M(\alpha) \frac{dr_\alpha}{d\alpha}$$

1119 And correspondingly,

$$1122 \quad \frac{d^2Q_\alpha^\alpha(s_0, a_0)}{d\alpha^2} = 2\gamma^2 e_{(s_0, a_0)}^\top M(\alpha) \frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} M(\alpha) \frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} M(\alpha) r_\alpha + \gamma e_{(s_0, a_0)}^\top M(\alpha) \frac{d^2\tilde{\mathbf{P}}(\alpha)}{d\alpha^2} M(\alpha) r_\alpha \\ 1123 \quad + \gamma e_{(s_0, a_0)}^\top M(\alpha) \frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} M(\alpha) \frac{dr_\alpha}{d\alpha} + e_{(s_0, a_0)}^\top M(\alpha) \frac{d^2r_\alpha}{d\alpha^2} \\ 1124 \quad + \gamma e_{(s_0, a_0)}^\top M(\alpha) \frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} M(\alpha) \frac{dr_\alpha}{d\alpha} \tag{25}$$

1129 **Step 2:** Now we need to find the derivative of $\tilde{\mathbf{P}}(\alpha)$ w.r.t α in order to substitute in (25). Hence, we can differentiate $\tilde{\mathbf{P}}(\alpha)$
1130 with respect to α to obtain:

$$1132 \quad \frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} \Big|_{\alpha=0} (s', a' \mid s, a) = \frac{d\pi_\alpha(a' \mid s')}{d\alpha} \Big|_{\alpha=0} \mathbf{P}_\alpha(s' \mid s, a) + \frac{d\mathbf{P}_\alpha(s' \mid s, a)}{d\alpha} \Big|_{\alpha=0} \pi_\alpha(a' \mid s')$$

1134 Now, for an arbitrary vector \mathbf{x} , we have:

1135

$$\left[\frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} \Big|_{\alpha=0} \mathbf{x} \right]_{(s,a)} = \sum_{s',a'} \frac{d\pi_\alpha(a' | s')}{d\alpha} \Big|_{\alpha=0} \mathbf{P}_\alpha(s' | s, a) \mathbf{x}_{s',a'} + \sum_{s',a'} \frac{d\mathbf{P}_\alpha(s' | s, a)}{d\alpha} \Big|_{\alpha=0} \pi_\alpha(a' | s') \mathbf{x}_{s',a'}$$

1136

1137 Taking the maximum over unit vectors \mathbf{u} in ℓ_2 -norm:

1138

$$\begin{aligned} \max_{\|\mathbf{u}\|_2=1} \left\| \frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} \Big|_{\alpha=0} \mathbf{x} \right\|_\infty &\leq \max_{\|\mathbf{u}\|_2=1} \left| \sum_{s',a'} \frac{d\pi_\alpha(a' | s')}{d\alpha} \Big|_{\alpha=0} \mathbf{P}_\alpha(s' | s, a) \mathbf{x}_{s',a'} \right| \\ &\quad + \max_{\|\mathbf{u}\|_2=1} \left| \sum_{s',a'} \frac{d\mathbf{P}_\alpha(s' | s, a)}{d\alpha} \Big|_{\alpha=0} \pi_\alpha(a' | s') \mathbf{x}_{s',a'} \right| \\ &\leq \max_{s,a} \sum_{s'} \mathbf{P}_\alpha(s' | s, a) \sum_{a'} \left| \frac{d\pi_\alpha(a' | s')}{d\alpha} \Big|_{\alpha=0} \right| \cdot \|\mathbf{x}\|_\infty \\ &\quad + \max_{s,a} \sum_{a'} \pi_\alpha(a' | s') \sum_{s'} \left| \frac{d\mathbf{P}_\alpha(s' | s, a)}{d\alpha} \Big|_{\alpha=0} \right| \cdot \|\mathbf{x}\|_\infty \\ &\leq \max_{s,a} \sum_{s'} \mathbf{P}_\alpha(s' | s, a) \|\mathbf{x}\|_\infty C_1 + \max_{s,a} \sum_{a'} \pi_\alpha(a' | s') \|\mathbf{x}\|_\infty T_1 \\ &\leq C_1 \|\mathbf{x}\|_\infty + T_1 \|\mathbf{x}\|_\infty = (C_1 + T_1) \|\mathbf{x}\|_\infty \end{aligned}$$

1139

1140 By the definition of the ℓ_∞ -norm, we conclude:

1141

$$\max_{\|\mathbf{u}\|_2=1} \left\| \frac{d\mathbf{P}_\alpha}{d\alpha} \Big|_{\alpha=0} \mathbf{x} \right\|_\infty \leq (C_1 + T_1) \|\mathbf{x}\|_\infty \tag{26}$$

1142

1143 Similarly, differentiating $\tilde{\mathbf{P}}(\alpha)$ twice w.r.t. α , we get

1144

$$\begin{aligned} \left[\frac{d^2\tilde{\mathbf{P}}(\alpha)}{d\alpha^2} \Big|_{\alpha=0} \right]_{(s,a) \rightarrow (s',a')} &= \frac{d^2\pi_\alpha(a' | s')}{(d\alpha)^2} \Big|_{\alpha=0} \mathbf{P}_\alpha(s' | s, a) + \frac{d^2\mathbf{P}_\alpha(s' | s, a)}{d\alpha^2} \Big|_{\alpha=0} \pi_\alpha(a' | s') \\ &\quad + 2 \frac{d\pi_\alpha(a' | s')}{d\alpha} \Big|_{\alpha=0} \frac{d\mathbf{P}_\alpha(s' | s, a)}{d\alpha} \Big|_{\alpha=0} \end{aligned}$$

1145

1146 Hence, we can consider the following norm bound:

1147

$$\max_{\|\mathbf{u}\|_2=1} \left\| \frac{d^2\tilde{\mathbf{P}}(\alpha)}{d\alpha^2} \Big|_{\alpha=0} \mathbf{x} \right\|_\infty \leq C_2 \|\mathbf{x}\|_\infty + 2C_1 T_1 \|\mathbf{x}\|_\infty + T_2 \|\mathbf{x}\|_\infty = (C_2 + 2C_1 T_1 + T_2) \|\mathbf{x}\|_\infty \tag{27}$$

1148

1149 **Step 3:** Now we need to put the pieces back together in order to calculate the second derivative of V_α^α w.r.t α . Let us recall
1150 $M(\alpha)$. Using the power series expansion of the matrix inverse, we can write $M(\alpha)$ as:

1151

$$M(\alpha) = (I - \gamma \tilde{\mathbf{P}}(\alpha))^{-1} = \sum_{n=0}^{\infty} \gamma^n \tilde{\mathbf{P}}(\alpha)^n$$

1152

1153 which implies that $M(\alpha) \geq 0$ (component-wise), and

1154

$$M(\alpha) \mathbf{1} = \frac{1}{1-\gamma} \mathbf{1},$$

1155

1156 i.e., each row of $M(\alpha)$ is positive and sums to $\frac{1}{1-\gamma}$.

1157 This implies:

1158

$$\max_{\|\mathbf{u}\|_2=1} \|M(\alpha) \mathbf{x}\|_\infty \leq \frac{1}{1-\gamma} \|\mathbf{x}\|_\infty.$$

1159

1188 This gives, using the expressions for $\frac{d^2 Q_\alpha^\alpha(s_0, a_0)}{d\alpha^2}$ and $\frac{d Q_\alpha^\alpha(s_0, a_0)}{d\alpha}$, an upper bound on their magnitudes based on $\|\mathbf{x}\|_\infty$ and
 1189 constants arising from bounds on the derivatives of $\tilde{\mathbf{P}}(\alpha)$ and r_α .
 1190

$$\begin{aligned} & \max_{\|\mathbf{u}\|_2=1} \left\| \frac{d^2 Q_\alpha^\alpha(s_0, a_0)}{d\alpha^2} \right\|_\infty \\ & \leq 2\gamma^2 \left\| M(\alpha) \frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} M(\alpha) \frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} M(\alpha) r_\alpha \right\|_\infty + \gamma \left\| M(\alpha) \frac{d^2 \tilde{\mathbf{P}}(\alpha)}{d\alpha^2} M(\alpha) r_\alpha \right\|_\infty \\ & \quad + \gamma \left\| M(\alpha) \frac{d^2 \tilde{\mathbf{P}}(\alpha)}{d\alpha^2} M(\alpha) \frac{dr_\alpha}{d\alpha} \right\|_\infty + \left\| M(\alpha) \frac{d^2 r_\alpha}{d\alpha^2} \right\|_\infty + 2\gamma \left\| M(\alpha) \frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} M(\alpha) \frac{dr_\alpha}{d\alpha} \right\|_\infty \end{aligned}$$

1201 Bounding using known bounds on transitions and rewards:
 1202

$$\begin{aligned} & \max_{\|\mathbf{u}\|_2=1} \left\| \frac{d^2 Q_\alpha^\alpha(s_0, a_0)}{d\alpha^2} \right\|_\infty \leq \frac{2\gamma^2}{(1-\gamma)^3} (C_1 + T_1)^2 + \frac{\gamma}{(1-\gamma)^2} (C_2 + 2C_1 T_1 + T_2) \\ & \quad + \frac{2\gamma R_1}{(1-\gamma)^2} (C_2 + 2C_1 T_1 + T_2) + \frac{R_2}{1-\gamma} + \frac{\gamma C_1 R_1}{(1-\gamma)^2} = \beta_2 \end{aligned}$$

1209 Corresponding bound on the first derivative is:
 1210

$$\begin{aligned} & \max_{\|\mathbf{u}\|_2=1} \left\| \frac{d Q_\alpha^\alpha(s_0, a_0)}{d\alpha} \right\|_\infty \leq \gamma \left\| M(\alpha) \frac{d\tilde{\mathbf{P}}(\alpha)}{d\alpha} M(\alpha) \frac{dr_\alpha}{d\alpha} \right\|_\infty + \left\| M(\alpha) \frac{dr_\alpha}{d\alpha} \right\|_\infty \\ & \leq \frac{\gamma}{(1-\gamma)^2} (C_1 + T_1) + \frac{R_1}{1-\gamma} = \beta_1 \end{aligned}$$

1217 **Step 4:** Finally, putting all the bounds together to evaluate the upper bound of the desired quantity, we get,
 1218

$$\max_{\|\mathbf{u}\|_2=1} \left\| \frac{d^2 V_\alpha^\alpha(s_0)}{d\alpha^2} \right\|_\infty \leq \frac{C_2}{1-\gamma} + 2C_1\beta_1 + \beta_2 \quad (28)$$

1223 \square

1224 **Corollary 1.** For softmax PeMDPs, we characterise
 1225

$$C_1 = 2, \quad C_2 = 6, \quad T_1 = L_{\mathbf{P}} = \max_s |\psi(s)| \triangleq \psi_{\max}, \quad T_2 = \max_s |\psi(s)|^2, \quad R_1 = L_r |\mathcal{A}| = \xi |\mathcal{A}|, \quad R_2 = 0$$

1228 *Thus,*

$$\max_{\|\mathbf{u}\|_2=1} \left\| \frac{d^2 V_\alpha^\alpha(s_0)}{d\alpha^2} \Big|_{\alpha=0} \right\| \leq \mathcal{O} \left(\max \left\{ \frac{\gamma R_{\max} |\mathcal{A}|}{(1-\gamma)^2}, \frac{\gamma^2}{(1-\gamma)^3} \right\} \right) \triangleq \mathcal{O}(L). \quad (29)$$

1233 *Proof.* We use the expressions already found in (35) to state the following:
 1234

$$\sum_{a \in \mathcal{A}} \left| \frac{d}{d\alpha} \pi_{\theta+\alpha \mathbf{u}}(a \mid s) \Big|_{\alpha=0} \right| \leq \sum_{a \in \mathcal{A}} \pi_\theta(a \mid s) |\mathbf{u}_s^\top (\mathbf{e}_a - \pi(\cdot \mid s))| \leq \max_{a \in \mathcal{A}} (\mathbf{u}_s^\top \mathbf{e}_a + \mathbf{u}_s^\top \pi(\cdot \mid s)) \leq 2.$$

1239 Similarly, differentiating once again w.r.t. α , we get
 1240

$$\sum_{a \in \mathcal{A}} \left| \frac{d^2}{d\alpha^2} \pi_{\theta+\alpha \mathbf{u}}(a \mid s) \Big|_{\alpha=0} \right| \leq \max_{a \in \mathcal{A}} (\mathbf{u}_s^\top \mathbf{e}_a \mathbf{e}_a^\top \mathbf{u}_s + \mathbf{u}_s^\top \mathbf{e}_a \pi(\cdot \mid s)^\top \mathbf{u}_s + \mathbf{u}_s^\top \pi(\cdot \mid s) \mathbf{e}_a^\top \mathbf{u}_s)$$

$$+ 2 \mathbf{u}_s^\top \boldsymbol{\pi}(\cdot | s) \boldsymbol{\pi}(\cdot | s)^\top \mathbf{u}_s + \mathbf{u}_s^\top \text{diag}(\boldsymbol{\pi}(\cdot | s)) \mathbf{u}_s \Big) \leq 6.$$

And hence for transition we get,

$$\sum_{s' \in \mathcal{S}} \left| \frac{d}{d\alpha} \mathbf{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}+\alpha\mathbf{u}}}(a | s) \right|_{\alpha=0} \leq \sum_{s' \in \mathcal{S}} |\psi(s')| \mathbf{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s' | s, a) |\mathbf{u}_{s,a}(1 - \mathbf{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(\cdot | s, a))| \leq |\mathbf{u}_{s,a}| \max_s |\psi(s)| \leq \max_s |\psi(s)|$$

And similarly, it can be shown that:

$$\sum_{a \in \mathcal{A}} \left| \frac{d^2}{d\alpha^2} \mathbf{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}+\alpha\mathbf{u}}}(a | s) \right|_{\alpha=0} \leq |\mathbf{u}_{s,a}|^2 \max_s |\psi(s)|^2 \leq \max_s |\psi(s)|^2$$

Similarly for rewards we get:

$$\sum_{a \in \mathcal{A}} \left| \frac{d}{d\alpha} r_{\boldsymbol{\pi}_{\boldsymbol{\theta}+\alpha\mathbf{u}}}(a | s) \right|_{\alpha=0} \leq \xi |\mathcal{A}| , \quad \sum_{a \in \mathcal{A}} \left| \frac{d^2}{d\alpha^2} r_{\boldsymbol{\pi}_{\boldsymbol{\theta}+\alpha\mathbf{u}}}(a | s) \right|_{\alpha=0} = 0$$

Hence, we can use the following choice of constants for softmax parametrization,

$$\begin{aligned} C_1 &= 2 , \quad C_2 = 6 \\ T_1 &= L_{\mathbf{P}} = \max_s |\psi(s)| , \quad T_2 = \max_s |\psi(s)|^2 \\ R_1 &= L_r |\mathcal{A}| = \xi |\mathcal{A}| , \quad R_2 = 0 \end{aligned}$$

to get the desired order of $\max_{\|u\|_2=1} \left\| \frac{d^2 V_{\alpha}^{\alpha}(s_0)}{d\alpha^2} \right\|_{\alpha=0}$.

□

Lemma 5 (Smoothness of Entropy Regularizer). *Define the discounted entropy regularizer as:*

$$\mathcal{H}_{\boldsymbol{\pi}_{\boldsymbol{\theta}_{\alpha}}}(s) = \mathbb{E}_{\tau \sim \mathbf{P}_{\boldsymbol{\pi}}} \left[\sum_{t=0}^{\infty} -\gamma^t \log \boldsymbol{\pi}_{\boldsymbol{\theta}_{\alpha}}(a_t | s_t) \right]$$

Under the same assumptions as 4, the following holds:

$$\max_{\|u\|_2=1} \left\| \frac{\partial^2 \mathcal{H}_{\boldsymbol{\pi}_{\boldsymbol{\theta}_{\alpha}}}(s)}{\partial \alpha^2} \right\|_{\alpha=0} \leq \beta_{\lambda}$$

where

$$\beta_{\lambda} = 2\gamma^2 \frac{3(1 + \log |\mathcal{A}|)}{1 - \gamma} + \gamma \frac{2 \log |\mathcal{A}|}{(1 - \gamma)^2} (C_1 + T_1) + 2\gamma \frac{\log |\mathcal{A}|}{(1 - \gamma)^2} (C_2 + 2C_1 T_1 + T_2) + \frac{\log |\mathcal{A}|}{(1 - \gamma)^3} (C_1 + T_1)^2.$$

Proof. Step 1: Define the state-wise entropy term:

$$h_{\boldsymbol{\theta}_{\alpha}}(s) = - \sum_a \boldsymbol{\pi}_{\boldsymbol{\theta}_{\alpha}}(a | s) \log \boldsymbol{\pi}_{\boldsymbol{\theta}_{\alpha}}(a | s).$$

From [Mei et al. \(2020\)](#) (Lemma 7) we report that,

$$\left\| \frac{\partial h_{\boldsymbol{\theta}_{\alpha}}}{\partial \alpha} \right\|_{\infty} \leq 2 \cdot \log |\mathcal{A}| \cdot \|u\|_2, \quad \left\| \frac{\partial^2 h_{\boldsymbol{\theta}_{\alpha}}}{\partial \alpha^2} \right\|_{\infty} \leq 3 \cdot (1 + \log |\mathcal{A}|) \cdot \|u\|_2^2. \quad (30)$$

Additionally, [Mei et al. \(2020\)](#) also presents a second result expressing the second derivative of the entropy w.r.t α ,

$$\frac{\partial^2 \mathcal{H}_{\boldsymbol{\pi}_{\boldsymbol{\theta}_{\alpha}}}(s)}{\partial \alpha^2} = 2\gamma^2 \mathbf{e}_s^\top M(\alpha) \frac{\partial \mathbf{P}(\alpha)}{\partial \alpha} M(\alpha) \frac{\partial \mathbf{P}(\alpha)}{\partial \alpha} M(\alpha) h_{\boldsymbol{\theta}_{\alpha}}$$

$$+ \gamma \mathbf{e}_s^\top M(\alpha) \frac{\partial^2 \mathbf{P}(\alpha)}{\partial \alpha^2} M(\alpha) h_{\theta_\alpha} + 2\gamma \mathbf{e}_s^\top M(\alpha) \frac{\partial \mathbf{P}(\alpha)}{\partial \alpha} M(\alpha) \frac{\partial h_{\theta_\alpha}}{\partial \alpha} + \mathbf{e}_s^\top M(\alpha) \frac{\partial^2 h_{\theta_\alpha}}{\partial \alpha^2}.$$

Step 2: Now we proceed with bounding the absolute value of each term which will contribute towards bounding the overall second derivative of the regulariser.

For the last term,

$$\begin{aligned} \left| \mathbf{e}_s^\top M(\alpha) \frac{\partial^2 h_{\theta_\alpha}}{\partial \alpha^2} \Big|_{\alpha=0} \right| &\leq \|\mathbf{e}_s^\top\|_1 \cdot \left\| M(\alpha) \frac{\partial^2 h_{\theta_\alpha}}{\partial \alpha^2} \Big|_{\alpha=0} \right\|_\infty \\ &\leq \frac{1}{1-\gamma} \cdot \left\| \frac{\partial^2 h_{\theta_\alpha}}{\partial \alpha^2} \Big|_{\alpha=0} \right\|_\infty \\ &\leq \frac{3 \cdot (1 + \log |\mathcal{A}|)}{1-\gamma} \cdot \|\mathbf{u}\|_2^2. \end{aligned}$$

For the second last term,

$$\begin{aligned} \left| \mathbf{e}_s^\top M(\alpha) \frac{\partial \mathbf{P}(\alpha)}{\partial \alpha} M(\alpha) \frac{\partial h_{\theta_\alpha}}{\partial \alpha} \Big|_{\alpha=0} \right| &\leq \left\| M(\alpha) \frac{\partial \mathbf{P}(\alpha)}{\partial \alpha} M(\alpha) \frac{\partial h_{\theta_\alpha}}{\partial \alpha} \Big|_{\alpha=0} \right\|_\infty \\ &\leq \frac{1}{1-\gamma} \cdot \left\| \frac{\partial \mathbf{P}(\alpha)}{\partial \alpha} M(\alpha) \frac{\partial h_{\theta_\alpha}}{\partial \alpha} \Big|_{\alpha=0} \right\|_\infty \\ &\leq \frac{(C_1 + T_1) \cdot \|\mathbf{u}\|_2}{1-\gamma} \cdot \left\| M(\alpha) \frac{\partial h_{\theta_\alpha}}{\partial \alpha} \Big|_{\alpha=0} \right\|_\infty \\ &\leq \frac{(C_1 + T_1) \cdot \|\mathbf{u}\|_2}{(1-\gamma)^2} \cdot \left\| \frac{\partial h_{\theta_\alpha}}{\partial \alpha} \Big|_{\alpha=0} \right\|_\infty \\ &\leq \frac{2 \cdot \log |\mathcal{A}|}{(1-\gamma)^2} (C_1 + T_1) \cdot \|\mathbf{u}\|_2^2. \end{aligned}$$

For the second term,

$$\begin{aligned} \left| \mathbf{e}_s^\top M(\alpha) \frac{\partial^2 \mathbf{P}(\alpha)}{\partial \alpha^2} M(\alpha) h_{\theta_\alpha} \Big|_{\alpha=0} \right| &\leq \left\| M(\alpha) \frac{\partial^2 \mathbf{P}(\alpha)}{\partial \alpha^2} M(\alpha) h_{\theta_\alpha} \Big|_{\alpha=0} \right\|_\infty \\ &\leq \frac{1}{1-\gamma} \cdot \left\| \frac{\partial^2 \mathbf{P}(\alpha)}{\partial \alpha^2} M(\alpha) h_{\theta_\alpha} \Big|_{\alpha=0} \right\|_\infty \\ &\leq \frac{\|\mathbf{u}\|_2^2}{1-\gamma} \cdot \left\| M(\alpha) h_{\theta_\alpha} \Big|_{\alpha=0} \right\|_\infty (C_2 + 2C_1T_1 + T_2) \\ &\leq \frac{\|\mathbf{u}\|_2^2}{(1-\gamma)^2} \cdot \left\| h_{\theta_\alpha} \Big|_{\alpha=0} \right\|_\infty (C_2 + 2C_1T_1 + T_2) \\ &\leq \frac{\log |\mathcal{A}|}{(1-\gamma)^2} (C_2 + 2C_1T_1 + T_2) \cdot \|\mathbf{u}\|_2^2. \end{aligned}$$

For the first term,

$$\begin{aligned} \left| \mathbf{e}_s^\top M(\alpha) \frac{\partial \mathbf{P}(\alpha)}{\partial \alpha} M(\alpha) \frac{\partial \mathbf{P}(\alpha)}{\partial \alpha} M(\alpha) h_{\theta_\alpha} \Big|_{\alpha=0} \right| &\leq \left\| M(\alpha) \frac{\partial \mathbf{P}(\alpha)}{\partial \alpha} M(\alpha) \frac{\partial \mathbf{P}(\alpha)}{\partial \alpha} M(\alpha) h_{\theta_\alpha} \Big|_{\alpha=0} \right\|_\infty \\ &\leq \frac{1}{1-\gamma} \cdot \|\mathbf{u}\|_2 \cdot \frac{1}{1-\gamma} \cdot \|\mathbf{u}\|_2 \cdot \frac{1}{1-\gamma} \cdot \log |\mathcal{A}| \cdot (C_1 + T_1)^2 \\ &= \frac{\log |\mathcal{A}|}{(1-\gamma)^3} (C_1 + T_1)^2 \cdot \|\mathbf{u}\|_2^2. \end{aligned}$$

1350 **Step 3:** Now combining all the above equations, we get the final expression,
 1351

$$1353 \quad \max_{\|\mathbf{u}\|_2=1} \left\| \frac{\partial^2 \mathcal{H}_{\pi_{\theta_\alpha}}^{\pi_{\theta_\alpha}}(s)}{\partial \alpha^2} \Big|_{\alpha=0} \right\|_\infty \leq \beta_\lambda$$

$$1354$$

$$1355$$

1356 where
 1357

$$1358 \quad \beta_\lambda = 2\gamma^2 \cdot \frac{3 \cdot (1 + \log |\mathcal{A}|)}{1 - \gamma} + \gamma \cdot \frac{2 \cdot \log |\mathcal{A}|}{(1 - \gamma)^2} (C_1 + T_1)$$

$$1359$$

$$1360 \quad + 2\gamma \cdot \frac{\log |\mathcal{A}|}{(1 - \gamma)^2} (C_2 + 2C_1T_1 + T_2) + \frac{\log |\mathcal{A}|}{(1 - \gamma)^3} (C_1 + T_1)^2$$

$$1361$$

$$1362$$

□

1363 By definition of smoothness, the “soft performative value function” \tilde{V}_π^π is Lipschitz smooth with Lipschitz constant L_λ
 1364 where $L_\lambda \triangleq L + \beta_\lambda$. Once again, we can choose C_1, C_2, T_1, T_2 according to Corollary 1 for simplification to get the order
 1365 $\beta_\lambda = \mathcal{O}\left(\frac{\log |\mathcal{A}|}{(1 - \gamma)^3} \psi_{\max}^2\right)$. Thus, the final bound for L_λ as
 1366

$$1367 \quad L_\lambda = \mathcal{O}(\max\{L, \lambda\beta_\lambda\}) = \mathcal{O}\left(\max\left\{\frac{\gamma R_{\max} |\mathcal{A}|}{(1 - \gamma)^2}, \frac{\lambda \log |\mathcal{A}| \psi_{\max}^2}{(1 - \gamma)^3}\right\}\right). \quad (31)$$

$$1368$$

$$1369$$

$$1370$$

$$1371$$

$$1372$$

$$1373$$

$$1374$$

$$1375$$

$$1376$$

$$1377$$

$$1378$$

$$1379$$

$$1380$$

$$1381$$

$$1382$$

$$1383$$

$$1384$$

$$1385$$

$$1386$$

$$1387$$

$$1388$$

$$1389$$

$$1390$$

$$1391$$

$$1392$$

$$1393$$

$$1394$$

$$1395$$

$$1396$$

$$1397$$

$$1398$$

$$1399$$

$$1400$$

$$1401$$

$$1402$$

$$1403$$

1404 **F DERIVATION OF PERFORMATIVE POLICY GRADIENTS**

1405 **Theorem 2** (Performative Policy Gradient Theorem). *The gradient of the performative value function w.r.t θ is as follows:*

1406 *(a) For the unregularised objective,*

$$1407 \quad \nabla_{\theta} V_{\pi_{\theta}}^{\pi_{\theta}}(\tau) = \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t (A_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) (\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) + \nabla_{\theta} \log P_{\pi_{\theta}}(s_{t+1} | s_t, a_t)) + \nabla_{\theta} r_{\pi_{\theta}}(s_t, a_t)) \right]. \quad (32)$$

1412 *(b) For the entropy-regularised objective, we define the soft advantage, soft Q, and soft value functions with respect to the soft*
 1413 *rewards $\tilde{r}_{\pi_{\theta}}$ satisfying $\tilde{A}_{\pi_{\theta}}^{\pi_{\theta}}(s, a) = \tilde{Q}_{\pi_{\theta}}^{\pi_{\theta}}(s, a) - \tilde{V}_{\pi_{\theta}}^{\pi_{\theta}}(s)$ that further yields*

$$1415 \quad \nabla_{\theta} \tilde{V}_{\pi_{\theta}}^{\pi_{\theta}}(\tau) = \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t (\tilde{A}_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) (\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) + \nabla_{\theta} \log P_{\pi_{\theta}}(s_{t+1} | s_t, a_t)) + \nabla_{\theta} \tilde{r}_{\pi_{\theta}}(s_t, a_t | \theta)) \right]. \quad (33)$$

1419 *Proof of Theorem 2.* We prove each part of this theorem separately.

1420 *Proof of part (a).* First, we derive explicit closed form gradient for unregularised performative value function.

1421 **Step 1.** Given a trajectory $\tau = \{s_0, a_0, \dots, s_t, a_t, \dots\}$, let us denote the unregularised objective function as

$$1423 \quad f_{\theta}(\tau) = \sum_{t=0}^{\infty} \gamma^t r_{\pi_{\theta}}(s_t, a_t)$$

1426 *Thus,*

$$1428 \quad \begin{aligned} \nabla_{\theta} V_{\pi_{\theta}}^{\pi_{\theta}}(\tau) &= \nabla_{\theta} \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} [f_{\theta}(\tau)] = \nabla_{\theta} \sum_{\tau} \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau) f_{\theta}(\tau) \\ 1429 &= \sum_{\tau} \nabla_{\theta} (\mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau) f_{\theta}(\tau)) \\ 1430 &= \sum_{\tau} (\nabla_{\theta} \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau)) f_{\theta}(\tau) + \sum_{\tau} \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau) (\nabla_{\theta} f_{\theta}(\tau)) \\ 1431 &\stackrel{(a)}{=} \sum_{\tau} \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau) (\nabla_{\theta} \log \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau)) f_{\theta}(\tau) + \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} [\nabla_{\theta} f_{\theta}(\tau)] \\ 1432 &= \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} [(\nabla_{\theta} \log \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau)) f_{\theta}(\tau)] + \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} [\nabla_{\theta} f_{\theta}(\tau)]. \end{aligned}$$

1433 *(a) holds since $\nabla_{\theta} \log \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau) = \frac{\nabla_{\theta} \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau)}{\mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau)}$.*

1434 **Step 2.** Given the initial state distribution ρ , we further have

$$1435 \quad \log \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau) = \log \rho(s_0) + \sum_{t=0}^{\infty} \log \pi_{\theta}(a_t | s_t) + \sum_{t=0}^{\infty} \log P_{\pi_{\theta}}(s_{t+1} | s_t, a_t)$$

1436 *Taking the gradient with respect to θ , we obtain*

$$1437 \quad \nabla_{\theta} \log \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\tau) = \sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) + \sum_{t=0}^{\infty} \nabla_{\theta} \log P_{\pi_{\theta}}(s_{t+1} | s_t, a_t)$$

1438 **Step 3.** Now, by substituting the value of $\nabla_{\theta} \log(P_{\pi_{\theta}}^{\pi_{\theta}})$ in $\nabla_{\theta} V_{\pi_{\theta}}^{\pi_{\theta}}(\tau)$, we get,

$$1439 \quad \begin{aligned} \nabla_{\theta} V_{\pi_{\theta}}^{\pi_{\theta}}(\tau) &= \nabla_{\theta} \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} [f_{\theta}(\tau)] = \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\left(\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \cdot \left(\sum_{t=0}^{\infty} \gamma^t r_{\pi_{\theta}}(s_t, a_t) \right) \right] \\ 1440 &\quad + \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\left(\sum_{t=1}^{\infty} \nabla_{\theta} \log P_{\pi_{\theta}}(s_t | s_{t-1}, a_{t-1}) \right) \cdot \left(\sum_{t=0}^{\infty} \gamma^t r_{\pi_{\theta}}(s_t, a_t) \right) \right] \end{aligned}$$

$$\begin{aligned}
& + \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t \nabla_{\theta} r_{\pi_{\theta}}(s_t, a_t) \right] \\
& = \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right] \\
& + \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=1}^{\infty} \gamma^t A_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \mathbf{P}_{\pi_{\theta}}(s_t | s_{t-1}, a_{t-1}) \right] \\
& + \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t \nabla_{\theta} r_{\pi_{\theta}}(s_t, a_t) \right].
\end{aligned}$$

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470 The last equality is due to the definition of advantage function

$$A_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) \triangleq \sum_{i=t}^{\infty} \gamma^{t-i} r_{\pi_{\theta}}(s_i, \pi_{\theta}(s_i)) - \mathbb{E}_{s_{t'+1} \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\cdot | s_{t'}, a_{t'})} \left[\sum_{i=t}^{\infty} \gamma^{t-i} r_{\pi_{\theta}}(s_i, \pi_{\theta}(s_i)) \right] \triangleq Q_{\pi_{\theta}}^{\pi_{\theta}}(s_t) - V_{\pi_{\theta}}^{\pi_{\theta}}(s_t)$$

1471
1472
1473
1474 as in classical policy gradient theorem. Hence, we conclude the proof for part (a) of the theorem.

1475
1476 *Proof of part (b).* Now, we derive explicit gradient form for entropy-regularised value function.

1477
1478 Let us define the soft reward as $\tilde{r}_{\pi_{\theta}}(s_t, a_t) \triangleq r_{\pi_{\theta}}(s_t, a_t) - \lambda \log \pi_{\theta}(a_t | s_t)$. Again, we start by defining regularised objective function

$$\tilde{f}_{\theta}(\tau) = \sum_{t=0}^{\infty} \gamma^t \tilde{r}_{\pi_{\theta}}(s_t, a_t)$$

1479
1480
1481
1482 Following the same steps as that of *Part (a)*, we get

$$\begin{aligned}
\nabla_{\theta} \tilde{V}_{\pi_{\theta}}^{\pi_{\theta}}(\tau) &= \nabla_{\theta} \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} [\tilde{f}_{\theta}(\tau)] = \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t \tilde{A}_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right] \\
& + \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=1}^{\infty} \gamma^t \tilde{A}_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \mathbf{P}_{\pi_{\theta}}(s_t | s_{t-1}, a_{t-1}) \right] \\
& + \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t \nabla_{\theta} \tilde{r}_{\pi_{\theta}}(s_t, a_t) \right] \\
& = \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t \tilde{A}_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right] \\
& + \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=1}^{\infty} \gamma^t \tilde{A}_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) \nabla_{\theta} \log \mathbf{P}_{\pi_{\theta}}(s_t | s_{t-1}, a_{t-1}) \right] \\
& + \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t \nabla_{\theta} r_{\pi_{\theta}}(s_t, a_t) \right] - \lambda \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]
\end{aligned}$$

1500
1501 Here,

$$\tilde{A}_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) \triangleq \sum_{i=t}^{\infty} \gamma^{t-i} \tilde{r}_{\pi_{\theta}}(s_i, \pi_{\theta}(s_i)) - \mathbb{E}_{s_{t'+1} \sim \mathbb{P}_{\pi_{\theta}}^{\pi_{\theta}}(\cdot | s_{t'}, a_{t'})} \left[\sum_{i=t}^{\infty} \gamma^{t-i} \tilde{r}_{\pi_{\theta}}(s_i, \pi_{\theta}(s_i)) \right] \triangleq \tilde{Q}_{\pi_{\theta}}^{\pi_{\theta}}(s_t, a_t) - \tilde{V}_{\pi_{\theta}}^{\pi_{\theta}}(s_t)$$

1502
1503
1504
1505
1506
1507
1508
1509
1510
1511 denotes the advantage function with soft rewards, or in brief, the soft advantage function. Hence, we conclude proof of part (b). \square

1512 **G CONVERGENCE OF PePG : PROOFS OF SECTION 4**

1513 **G.1 PROOFS FOR UNREGULARISED VALUE FUNCTION**

1514 **Lemma 6** (Performative Policy Gradient for Softmax PeMDPs). *Given softmax PeMDPs defined by (13), for all $(s, a, s') \in$*

1515 *$(\mathcal{S}, \mathcal{A}, \mathcal{S})$, derivative of the performative value function w.r.t $\theta_{s,a}$ satisfies:*

$$1519 \quad \frac{\partial V_{\pi_\theta}(\rho)}{\partial \theta_{s,a}} \geq \frac{1}{1-\gamma} d_{\pi_\theta}^{\pi_\theta}(s, a | \rho) (A_{\pi_\theta}^{\pi_\theta}(s, a) + \xi) . \quad (34)$$

1522 *Proof.* First, we note that

$$1523 \quad \begin{aligned} \frac{\partial}{\partial \theta_{s',a'}} \log \pi_\theta(a | s) &= \mathbb{1}[s = s', a = a'] - \pi_\theta(a' | s) \mathbb{1}[s = s'] \\ 1524 \quad \frac{\partial}{\partial \theta_{s',a'}} \log \mathbf{P}_{\pi_\theta}(s'' | s, a) &= \psi(s'') \mathbb{1}[s = s', a = a'] (1 - \mathbf{P}_{\pi_\theta}(s'' | s, a)) \\ 1525 \quad \frac{\partial}{\partial \theta_{s',a'}} r_{\pi_\theta}(s, a) &= \xi \mathbb{1}[s = s', a = a'] . \end{aligned} \quad (35)$$

1531 In this proof, we further substitute the expressions of individual gradients in Equation (35) into Equation (10).

1532 Therefore, for a given initial state distribution ρ , we get

$$1533 \quad \begin{aligned} \frac{\partial}{\partial \theta_{s,a}} V_{\pi_\theta}(\rho) &= \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_\theta}^{\pi_\theta}} \left[\sum_{t=0}^{\infty} \gamma^t \left(A_{\pi_\theta}^{\pi_\theta}(s_t, a_t) \frac{\partial}{\partial \theta_{s,a}} \log \pi_\theta(a_t | s_t) \right. \right. \\ 1534 \quad &\quad \left. \left. + A_{\pi_\theta}^{\pi_\theta}(s_t, a_t) \frac{\partial}{\partial \theta_{s,a}} \log \mathbf{P}_{\pi_\theta}(s_{t+1} | s_t, a_t) \right. \right. \\ 1535 \quad &\quad \left. \left. + \frac{\partial}{\partial \theta_{s,a}} r_{\pi_\theta}(s_t, a_t) \right) \right] \\ 1536 \quad &= \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_\theta}^{\pi_\theta}} \left[\sum_{t=0}^{\infty} \gamma^t \left(A_{\pi_\theta}^{\pi_\theta}(s_t, a_t) (\mathbb{1}[s_t = s, a_t = a] - \pi_\theta(a | s) \mathbb{1}[s_t = s]) \right. \right. \\ 1537 \quad &\quad \left. \left. + A_{\pi_\theta}^{\pi_\theta}(s_t, a_t) \psi(s_{t+1}) \mathbb{1}[s_t = s, a_t = a] (1 - \mathbf{P}_{\pi_\theta}(s_{t+1} | s, a)) \right. \right. \\ 1538 \quad &\quad \left. \left. + \xi \mathbb{1}[s_t = s, a_t = a] \right) \right] \\ 1539 \quad &\stackrel{(a)}{\geq} \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_\theta}^{\pi_\theta}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi_\theta}^{\pi_\theta}(s_t, a_t) \mathbb{1}[s_t = s, a_t = a] \right] - \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_\theta}^{\pi_\theta}} \left[\sum_{t=0}^{\infty} \gamma^t \pi_\theta(a | s) \mathbb{1}[s_t = s] A_{\pi_\theta}^{\pi_\theta}(s_t, a_t) \right] \\ 1540 \quad &\quad + \mathbb{E}_{\tau \sim \mathbb{P}_{\pi_\theta}^{\pi_\theta}} \left[\sum_{t=0}^{\infty} \gamma^t \xi \mathbb{1}[s_t = s, a_t = a] \right] \\ 1541 \quad &\stackrel{(b)}{=} \frac{1}{1-\gamma} d_{\pi_\theta, \rho}^{\pi_\theta}(s, a) A_{\pi_\theta}^{\pi_\theta}(s, a) + \frac{1}{1-\gamma} \xi d_{\pi_\theta, \rho}^{\pi_\theta}(s, a) \end{aligned}$$

1542 (a) is due to the fact that $1 - \mathbf{P}_{\pi_\theta}(s, a) \geq 0$ for all s, a . (b) is due to $\mathbb{E}_{\tau \sim \mathbb{P}_{\pi_\theta}^{\pi_\theta}} \left[\sum_{t=0}^{\infty} \gamma^t \pi_\theta(a | s) \mathbb{1}[s_t = s] A_{\pi_\theta}^{\pi_\theta}(s_t, a_t) \right] = 0$.

1543 \square

1544 **Lemma 3.** *Performative Gradient Domination for Softmax PeMDPs* Let us consider PeMDPs defined in (13).

1545 (a) For unregularised value function,

$$1546 \quad V_{\pi_\theta^*}^{\pi_\theta^*}(\rho) - V_{\pi_\theta}^{\pi_\theta}(\rho) \leq \sqrt{|\mathcal{S}| |\mathcal{A}|} \left\| \frac{d_{\pi_\theta^*, \rho}^{\pi_\theta^*}}{d_{\pi_\theta, \nu}^{\pi_\theta}} \right\|_\infty \|\nabla_\theta V_{\pi_\theta}^{\pi_\theta}(\nu)\|_2 + \frac{R_{\max}}{1-\gamma} \left(1 + \frac{2\gamma}{1-\gamma} \psi_{\max} \right) . \quad (36)$$

1547 *Proof of Lemma 3–Part (a).* This proof is divided into two parts. In the first part we bound the expected advantage term
1548 from Lemma 2 with the norm of the gradient of value function. During this step, we need to express the expected advantage
1549

1566 as a linear combination of the advantage itself and the occupancy measure over all states and actions like in equation (34).
 1567 The expectation however is taken w.r.t the occupancy measure $d_{\pi_\theta}^{\pi_o^*}$, thus we need to perform a change of measure which
 1568 introduces a coverage term as shown below. In the second step we directly use the bound of rewards and transitions obtained
 1569 from their Lipchitzness in lemma 2. We know by Lemma 1 that
 1570

$$\begin{aligned} V_{\pi_o^*}^*(\rho) - V_{\pi_\theta}^*(\rho) &= \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}(\cdot | \rho)} [A_{\pi_\theta}^*(s, a)] \\ &\quad + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}} [(r_{\pi_o^*}(s, a) - r_{\pi_\theta}(s, a)) + \gamma (\mathbf{P}_{\pi_o^*}(\cdot | s, a) - \mathbf{P}_{\pi_\theta}(\cdot | s, a))^\top V_{\pi_o^*}^*(\cdot)]. \end{aligned}$$

1571 **Step 1: Upper bounding Term 1.**

$$\begin{aligned} \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}} [A_{\pi_\theta}^*(s, a)] &= \sum_{s,a} d_{\pi_\theta}^{\pi_o^*}(s, a | \rho) A_{\pi_\theta}^*(s, a) = \sum_{s,a} \frac{d_{\pi_\theta}^{\pi_o^*}(s, a | \rho)}{d_{\pi_\theta}^{\pi_o^*}(s, a | \nu)} d_{\pi_\theta}^{\pi_\theta}(s, a | \nu) A_{\pi_\theta}^*(s, a) \\ &\leq \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \sum_{s,a} d_{\pi_\theta}^{\pi_\theta}(s, a | \nu) A_{\pi_\theta}^*(s, a) \end{aligned} \quad (37)$$

1572 Now, we leverage the gradient of softmax performative MDPs to obtain

$$\begin{aligned} \sum_{s,a} d_{\pi_\theta}^{\pi_\theta}(s, a | \nu) A_{\pi_\theta}^*(s, a) &\leq (1-\gamma) \sum_{s,a} \frac{\partial V_{\pi_\theta}^*(\nu)}{\partial \theta_{s,a}} - \xi \\ &= (1-\gamma) \mathbf{1}^\top \nabla_\theta V_{\pi_\theta}^*(\nu) - \xi \\ &\leq (1-\gamma) \sqrt{|\mathcal{S}||\mathcal{A}|} \|\nabla_\theta V_{\pi_\theta}^*(\nu)\|_2 - \xi \end{aligned}$$

1573 The last inequality is obtained by applying Cauchy-Schwarz inequality.

1574 Now, substituting the above result back in Equation (37), we get

$$\frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}(\cdot | s_0)} [A_{\pi_\theta}^*(s, a)] \leq \sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \|\nabla_\theta V_{\pi_\theta}^*(\nu)\|_2 - \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \frac{\xi}{1-\gamma} \quad (38)$$

1575 **Step 2: Upper bounding Term 2.** For softmax rewards and transitions, we further obtain from Lemma 2,

$$\begin{aligned} \text{Term 2} &= \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_\theta, \rho}^{\pi_o^*}} [(r_{\pi_o^*}(s, a) - r_{\pi_\theta}(s, a)) + \gamma (\mathbf{P}_{\pi_o^*}(\cdot | s, a) - \mathbf{P}_{\pi_\theta}(\cdot | s, a))^\top V_{\pi_o^*}^*(\cdot)] \\ &\leq \frac{1}{1-\gamma} (\xi + \frac{\gamma}{1-\gamma} R_{\max} \psi_{\max}) \|\pi_o^*(\cdot | s_0) - \pi_\theta(\cdot | s_0)\|_1 \end{aligned} \quad (39)$$

$$\leq \frac{2}{1-\gamma} (\xi + \frac{\gamma}{1-\gamma} R_{\max} \psi_{\max}). \quad (40)$$

1576 **Step 3:** Now, if we use Equation (38) and (40) together, we get

$$\begin{aligned} V_{\pi_o^*}^*(\rho) - V_{\pi_\theta}^*(\rho) &\leq \sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \|\nabla_\theta V_{\pi_\theta}^*(\nu)\|_2 + \left(2 - \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \right) \frac{\xi}{1-\gamma} + \frac{2\gamma}{(1-\gamma)^2} R_{\max} \psi_{\max} \\ &\leq \sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \|\nabla_\theta V_{\pi_\theta}^*(\nu)\|_2 + \frac{R_{\max}}{1-\gamma} + \frac{2\gamma}{(1-\gamma)^2} R_{\max} \psi_{\max} \\ &= \sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \|\nabla_\theta V_{\pi_\theta}^*(\nu)\|_2 + \frac{R_{\max}}{1-\gamma} \left(1 + \frac{2\gamma}{1-\gamma} \psi_{\max} \right) \end{aligned}$$

1577 The last inequality is true since $\left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \geq 1$ (Lemma 9) and $\xi \leq R_{\max}$.

1620
1621 **Theorem 3** (Convergence of PePG in softmax PeMDPs – Part (a)). *Let $\text{Cov} \triangleq \max_{\theta, \nu} \left\| \frac{d\pi_{\theta, \nu}^*}{d\pi_{\theta, \nu}} \right\|_{\infty}$. The gradient ascent*
1622 *algorithm on $V_{\pi_{\theta}}^{\pi_{\theta}}(\rho)$ (Equation (9)) with step size $\eta = \Omega(\min\{\frac{(1-\gamma)^2}{\gamma|\mathcal{A}|}, \frac{(1-\gamma)^3}{\gamma^2}\})$ satisfies, for all distributions $\rho \in \Delta(\mathcal{S})$.*
1623
1624 (a) *For unregularised case,*
1625

1626
1627
$$\min_{t < T} \left\{ V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) - V_{\pi_{\theta_t}^*}^{\pi_{\theta_t}^*}(\rho) \right\} \leq \epsilon \text{ when } T = \Omega \left(\frac{|\mathcal{S}||\mathcal{A}|}{\epsilon^2} \max \left\{ \frac{\gamma R_{\max} |\mathcal{A}|}{(1-\gamma)^3}, \frac{\gamma^2}{(1-\gamma)^4} \right\} \right), \text{ and } \epsilon = \Omega \left(\frac{1}{1-\gamma} \right).$$

1628

1629
1630 *Proof of Theorem 3– Part (a).* We proceed with this proof by dividing it in four steps. In the first step, we use the smoothness
1631 of the value function to prove an upper bound for the minimum squared gradient norm of the value over time which is a
1632 constant times $1/T$. In the second step, we derive a lower bound on the norm of gradient of value function using Lemma 3.
1633 In the final two steps, we combine the bounds obtained from the first two steps to derive lower bounds for T and ϵ , i.e. the
1634 error threshold.
1635

Step 1: As $V_{\pi_{\theta}}^{\pi_{\theta}}$ is L -smooth (Lemma 4), it satisfies

1636
1637
$$\left| V_{\pi_{\theta}}^{\pi_{\theta}}(\rho) - V_{\pi_{\theta}'}^{\pi_{\theta}'}(\rho) - \langle \nabla_{\theta} V_{\pi_{\theta}}^{\pi_{\theta}}(\rho), \theta - \theta' \rangle \right| \leq \frac{L}{2} \|\theta - \theta'\|^2$$

1638

1639 Thus, taking θ as θ_{t+1} and θ' as θ_t and using the gradient ascent expression (Equation (9)) yields
1640

1641
1642
$$\left| V_{\pi_{\theta}^{(t+1)}}^{\pi_{\theta}^{(t+1)}}(\rho) - V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho) - \eta \|\nabla_{\theta} V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho)\|^2 \right| \leq \frac{L}{2} \|\theta_{t+1} - \theta_t\|^2$$

1643
1644
$$\implies V_{\pi_{\theta}^{(t+1)}}^{\pi_{\theta}^{(t+1)}}(\rho) - V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho) \geq \eta \|\nabla V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho)\|^2 - \frac{L}{2} \|\theta_{t+1} - \theta_t\|^2$$

1645

1646 This further implies that

1647
1648
$$\begin{aligned} V_{\pi_{\theta}^{(t+1)}}^{\pi_{\theta}^{(t+1)}}(\rho) - V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) &\geq V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho) - V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) + \eta \|\nabla_{\theta} V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho)\|^2 - \frac{L}{2} \|\theta_{t+1} - \theta_t\|^2 \\ &= V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho) - V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) + \eta \left(1 - \frac{L\eta}{2}\right) \|\nabla V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho)\|^2 \end{aligned} \quad (41)$$

1649
1650
1651

1652 The last equality is due to Equation (9).

1653 Now, telescoping Equation (41) leads to
1654

1655
1656
$$\eta \left(1 - \frac{L\eta}{2}\right) \sum_{t=0}^{T-1} \|\nabla V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho)\|^2 \leq \left(V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) - V_{\pi_{\theta}^0}^{\pi_{\theta}^0}(\rho) \right) - \left(V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) - V_{\pi_{\theta}^T}^{\pi_{\theta}^T}(\rho) \right) \quad (42)$$

1657
1658

1659
$$\leq \left(V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) - V_{\pi_{\theta}^0}^{\pi_{\theta}^0}(\rho) \right) \quad (43)$$

1660 Since $\sum_{t=0}^{T-1} \|\nabla V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho)\|^2 \geq T \min_{t \in [T-1]} \|\nabla V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho)\|^2$, we obtain
1661

1662
1663
$$\min_{t \in [T-1]} \|\nabla V_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho)\|^2 \leq \frac{1}{T\eta \left(1 - \frac{L\eta}{2}\right)} \left(V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) - V_{\pi_{\theta}^0}^{\pi_{\theta}^0}(\rho) \right) \leq \frac{R_{\max}}{T\eta \left(1 - \frac{L\eta}{2}\right) (1-\gamma)}.$$

1664

1665 The last inequality comes from $V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) \leq \frac{R_{\max}}{1-\gamma}$ (Assumption 1).

1666 **Step 2:** We derive from Equation (15) that
1667

1668
1669
$$\begin{aligned} (V_{\pi_{\theta}^*}^{\pi_{\theta}^*}(\rho) - V_{\pi_{\theta}}^{\pi_{\theta}}(\rho))^2 &\leq \left(\sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d\pi_{\theta, \rho}^*}{d\pi_{\theta, \nu}} \right\|_{\infty} \|\nabla_{\theta} V_{\pi_{\theta}}^{\pi_{\theta}}(\nu)\|_2 + \frac{2R_{\max}}{1-\gamma} \left(\frac{1}{2} + \frac{\gamma}{1-\gamma} \psi_{\max} \right) \right)^2 \\ &\leq 2|\mathcal{S}||\mathcal{A}| \left\| \frac{d\pi_{\theta, \rho}^*}{d\pi_{\theta, \nu}} \right\|_{\infty}^2 \|\nabla_{\theta} V_{\pi_{\theta}}^{\pi_{\theta}}(\nu)\|_2^2 + \frac{8R_{\max}^2}{(1-\gamma)^2} \left(\frac{1}{2} + \frac{\gamma}{1-\gamma} \psi_{\max} \right)^2. \end{aligned}$$

1670
1671
1672
1673

1674
1675

Thus, we further get

$$\begin{aligned}
1676 \quad & \min_{t \in [T]} (V_{\pi_o^*}(\rho) - V_{\pi_\theta^{(t)}}(\rho))^2 \leq 2|\mathcal{S}||\mathcal{A}| \min_{t \in [T]} \left\| \frac{d_{\pi_\theta^{(t)}, \rho}^{\pi_o^*}}{d_{\pi_\theta^{(t)}, \nu}} \right\|_\infty^2 \|\nabla_\theta V_{\pi_\theta^{(t)}}(\nu)\|_2^2 + \frac{8R_{\max}^2}{(1-\gamma)^2} \left(\frac{1}{2} + \frac{\gamma}{1-\gamma} \psi_{\max} \right)^2 \\
1677 \quad & \leq 2|\mathcal{S}||\mathcal{A}| \text{Cov}^2 \min_{t \in [T]} \|\nabla_\theta V_{\pi_\theta^{(t)}}(\nu)\|_2^2 + \frac{8R_{\max}^2}{(1-\gamma)^2} \left(\frac{1}{2} + \frac{\gamma}{1-\gamma} \psi_{\max} \right)^2 \\
1678 \quad & \leq 2|\mathcal{S}||\mathcal{A}| \text{Cov}^2 \frac{R_{\max}}{T\eta \left(1 - \frac{L\eta}{2}\right) (1-\gamma)} + \frac{8R_{\max}^2}{(1-\gamma)^2} \left(\frac{1}{2} + \frac{\gamma}{1-\gamma} \psi_{\max} \right)^2.
\end{aligned}$$

1685 **Step 3:** Now, we set

$$\begin{aligned}
1686 \quad & \min_{t \in [T]} (V_{\pi_o^*}(\rho) - V_{\pi_\theta^{(t)}}(\rho))^2 \leq 2|\mathcal{S}||\mathcal{A}| \text{Cov}^2 \frac{R_{\max}}{T\eta \left(1 - \frac{L\eta}{2}\right) (1-\gamma)} + \frac{8R_{\max}^2}{(1-\gamma)^2} \left(\frac{1}{2} + \frac{\gamma}{1-\gamma} \psi_{\max} \right)^2 \\
1687 \quad & \leq \left(\sqrt{2|\mathcal{S}||\mathcal{A}| \frac{R_{\max}}{T\eta \left(1 - \frac{L\eta}{2}\right) (1-\gamma)}} \text{Cov} + \frac{2\sqrt{2}R_{\max}}{(1-\gamma)} \left(\frac{1}{2} + \frac{\gamma}{1-\gamma} \psi_{\max} \right) \right)^2 \\
1688 \quad & \leq \left(\epsilon + \frac{\sqrt{2}R_{\max}}{(1-\gamma)} \left(1 + \frac{2\gamma}{1-\gamma} \psi_{\max} \right) \right)^2,
\end{aligned}$$

1689 and solve for T to get

$$1690 \quad T \geq \frac{2|\mathcal{S}||\mathcal{A}| \text{Cov}^2 R_{\max}}{\eta(1 - \frac{L\eta}{2})(1-\gamma)\epsilon^2} \quad (44)$$

1691 Choosing $\eta = \frac{1}{L}$, we get the final expression

$$1692 \quad T \geq \frac{4L|\mathcal{S}||\mathcal{A}| \text{Cov}^2 R_{\max}}{\epsilon^2(1-\gamma)}. \quad (45)$$

1693 for any $\epsilon > 0$ and the smoothness constant $L = \mathcal{O} \left(\max \left\{ \frac{\gamma R_{\max} |\mathcal{A}|}{(1-\gamma)^2}, \frac{\gamma^2}{(1-\gamma)^3} \right\} \right)$.

1694 Hence, we conclude that for $T = \Omega \left(\frac{|\mathcal{S}||\mathcal{A}|}{\epsilon^2} \max \left\{ \frac{\gamma R_{\max} |\mathcal{A}|}{(1-\gamma)^3}, \frac{\gamma^2}{(1-\gamma)^4} \right\} \right)$ and $\psi_{\max} = \mathcal{O}(\frac{1-\gamma}{\gamma})$,

$$1695 \quad \min_{t \in [T]} (V_{\pi_o^*}(\rho) - V_{\pi_\theta^{(t)}}(\rho)) \leq \epsilon + \mathcal{O} \left(\frac{1}{1-\gamma} \right).$$

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

□

1728

G.2 PROOFS FOR ENTROPY-REGULARISED OR SOFT VALUE FUNCTION

1729

1730 **Definition 6.** The discounted state occupancy measure $\mathbf{d}_{\pi'}^{\pi}(s|s_0)$ induced by a policy π and an MDP environment defined by
 1731 π' is defined as

1732

1733

1734

1735

1736

1737 **Lemma 7** (Regularized Performative Policy Difference: Generic Upper Bound). *Under Assumption 1, the sub-optimality
 1738 gap of a policy π_{θ} is*

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

$$\begin{aligned} \tilde{V}_{\pi_o^*}^{\pi}(s_0) - \tilde{V}_{\pi_{\theta}}^{\pi}(s_0) &\leq \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim \mathbf{d}_{\pi_{\theta}}^{\pi}(\cdot|s_0)} [\tilde{A}_{\pi_{\theta}}^{\pi}(s,a)] \\ &\quad + \frac{2}{1-\gamma} \left(\xi + \frac{\gamma}{1-\gamma} \psi_{\max}(R_{\max} + \lambda \log |\mathcal{A}|) \right) \\ &\quad - \frac{\lambda}{1-\gamma} \sum_s \mathbf{d}_{\pi_{\theta}}^{\pi}(s|s_0) D_{\text{KL}}(\pi_o^*(\cdot|s) \parallel \pi_{\theta}(\cdot|s)) \end{aligned} \quad (46)$$

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

Proof. This lemma follows the same sketch as Lemma 2 with an exception in the way the soft rewards are handled. The difference in the soft rewards equals the difference of the original rewards with a lagrange dependent term. This term is the expected KL divergence over the state visitation distribution. Lemma 1 for regularized rewards reduces to,

$$\begin{aligned} \tilde{V}_{\pi}^{\pi}(s_0) - \tilde{V}_{\pi'}^{\pi'}(s_0) &= \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim \mathbf{d}_{\pi'}^{\pi}(\cdot|s_0)} [\tilde{A}_{\pi'}^{\pi'}(s,a)] \\ &\quad + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim \mathbf{d}_{\pi'}^{\pi}(\cdot|s_0)} \left([\tilde{r}_{\pi}(s,a) - \tilde{r}_{\pi'}(s,a)] + \gamma(\mathbf{P}_{\pi} - \mathbf{P}_{\pi'})^{\top} \tilde{V}_{\pi}^{\pi}(s_0) \right). \end{aligned} \quad (47)$$

Therefore,

$$\tilde{r}_{\pi_o^*}(s,a) - \tilde{r}_{\pi_{\theta}}(s,a) = r_{\pi_o^*}(s,a) - r_{\pi_{\theta}}(s,a) + \lambda \left(\log \pi_{\theta}(a|s) - \log \pi_o^*(a|s) \right)$$

Therefore, we can write (47) in the following way,

$$\begin{aligned} \tilde{V}_{\pi_o^*}^{\pi}(s_0) - \tilde{V}_{\pi_{\theta}}^{\pi}(s_0) &= \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim \mathbf{d}_{\pi_{\theta}}^{\pi}(\cdot|s_0)} [\tilde{A}_{\pi_{\theta}}^{\pi}(s,a)] \\ &\quad + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim \mathbf{d}_{\pi_{\theta}}^{\pi}(\cdot|s_0)} \left([\tilde{r}_{\pi_o^*}(s,a) - \tilde{r}_{\pi_{\theta}}(s,a)] + \gamma(\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_{\theta}})^{\top} \tilde{V}_{\pi_o^*}^{\pi}(s_0) \right) \\ &\quad + \frac{\lambda}{1-\gamma} \sum_{s,a} [\log \pi_{\theta}(a|s) - \log \pi_o^*(a|s)] \mathbf{d}_{\pi_{\theta}}^{\pi}(s,a|s_0) \\ &= \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim \mathbf{d}_{\pi_{\theta}}^{\pi}(\cdot|s_0)} [\tilde{A}_{\pi_{\theta}}^{\pi}(s,a)] \\ &\quad + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim \mathbf{d}_{\pi_{\theta}}^{\pi}(\cdot|s_0)} \left([\tilde{r}_{\pi_o^*}(s,a) - \tilde{r}_{\pi_{\theta}}(s,a)] + \gamma(\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_{\theta}})^{\top} \tilde{V}_{\pi_o^*}^{\pi}(s_0) \right) \\ &\quad + \frac{\lambda}{1-\gamma} \sum_{s,a} \mathbf{d}_{\pi_{\theta}}^{\pi}(s|s_0) \pi_o^*(a|s) [\log \pi_{\theta}(a|s) - \log \pi_o^*(a|s)] \\ &= \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim \mathbf{d}_{\pi_{\theta}}^{\pi}(\cdot|s_0)} [\tilde{A}_{\pi_{\theta}}^{\pi}(s,a)] \\ &\quad + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim \mathbf{d}_{\pi_{\theta}}^{\pi}(\cdot|s_0)} \left([\tilde{r}_{\pi_o^*}(s,a) - \tilde{r}_{\pi_{\theta}}(s,a)] + \gamma(\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_{\theta}})^{\top} \tilde{V}_{\pi_o^*}^{\pi}(s_0) \right) \\ &\quad - \frac{\lambda}{1-\gamma} \sum_s \mathbf{d}_{\pi_{\theta}}^{\pi}(s|s_0) D_{\text{KL}}(\pi_o^*(\cdot|s) \parallel \pi_{\theta}(\cdot|s)) \\ &\stackrel{\text{Holder's ineq.}}{\leq} \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim \mathbf{d}_{\pi_{\theta}}^{\pi}(\cdot|s_0)} [\tilde{A}_{\pi_{\theta}}^{\pi}(s,a)] \end{aligned}$$

$$\begin{aligned}
& + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_\theta}^{\pi_o^*}(\cdot|s_0)} \left([\tilde{r}_{\pi_o^*}(s,a) - \tilde{r}_{\pi_\theta}(s,a)] + \gamma \|\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_\theta}\|_1 \|\tilde{V}_{\pi_o^*}^{\pi_\theta}(s_0)\|_\infty \right) \\
& - \frac{\lambda}{1-\gamma} \sum_s d_{\pi_\theta}^{\pi_o^*}(s|s_0) D_{\text{KL}}(\pi_o^*(\cdot|s) \parallel \pi_\theta(\cdot|s)) \\
& \stackrel{(b)}{\leq} \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_\theta}^{\pi_o^*}(\cdot|s_0)} [\tilde{A}_{\pi_\theta}(s,a)] \\
& + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_\theta}^{\pi_o^*}(\cdot|s_0)} \left([\tilde{r}_{\pi_o^*}(s,a) - \tilde{r}_{\pi_\theta}(s,a)] + \gamma \|\mathbf{P}_{\pi_o^*} - \mathbf{P}_{\pi_\theta}\|_1 \frac{R_{\max} + \lambda \log |\mathcal{A}|}{1-\gamma} \right) \\
& - \frac{\lambda}{1-\gamma} \sum_s d_{\pi_\theta}^{\pi_o^*}(s|s_0) D_{\text{KL}}(\pi_o^*(\cdot|s) \parallel \pi_\theta(\cdot|s)) \\
& \stackrel{\text{Lipschitz } r \text{ & } \mathbf{P}}{\leq} \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_\theta}^{\pi_o^*}(\cdot|s_0)} [\tilde{A}_{\pi_\theta}(s,a)] \\
& + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_\theta}^{\pi_o^*}(\cdot|s_0)} \left(L_r + L_{\mathbf{P}} \frac{\gamma(R_{\max} + \lambda \log |\mathcal{A}|)}{1-\gamma} \right) \|\pi_o^* - \pi_\theta\|_1 \\
& - \frac{\lambda}{1-\gamma} \sum_s d_{\pi_\theta}^{\pi_o^*}(s|s_0) D_{\text{KL}}(\pi_o^*(\cdot|s) \parallel \pi_\theta(\cdot|s)) \\
& \stackrel{(c)}{\leq} \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_\theta}^{\pi_o^*}(\cdot|s_0)} [\tilde{A}_{\pi_\theta}(s,a)] \\
& + \frac{2}{1-\gamma} \mathbb{E}_{(s,a) \sim d_{\pi_\theta}^{\pi_o^*}(\cdot|s_0)} \left(L_r + L_{\mathbf{P}} \frac{\gamma(R_{\max} + \lambda \log |\mathcal{A}|)}{1-\gamma} \right) \\
& - \frac{\lambda}{1-\gamma} \sum_s d_{\pi_\theta}^{\pi_o^*}(s|s_0) D_{\text{KL}}(\pi_o^*(\cdot|s) \parallel \pi_\theta(\cdot|s))
\end{aligned}$$

1808 The equality (a) holds since,

$$1810 \mathbb{E}_{a \sim \pi_o^*(\cdot|s)} [\log \pi_\theta(a|s) - \log \pi_o^*(a|s)] = -D_{\text{KL}}(\pi_o^*(\cdot|s) \parallel \pi_\theta(\cdot|s))$$

1811 The inequality (b) holds due to the result of [Mei et al. \(2020\)](#), i.e.

$$1813 \|\tilde{V}_{\pi_o^*}^{\pi_\theta}\|_\infty \leq \frac{R_{\max} + \lambda \log |\mathcal{A}|}{1-\gamma} \quad (48)$$

1816 Finally, (c) is due to the fact that $\|\pi_o^* - \pi_\theta\|_1 \leq 2$. □

1818 **Lemma 8** (Regularized Performative Policy gradient for softmax policies and softmax MDPs). *For a class of PeMDPs*
1819 $\mathcal{M} \triangleq (\mathcal{S}, \mathcal{A}, \pi, \mathbf{P}_\pi, r_\pi, \theta, \rho)$ *consider softmax parametrization for policy* $\pi_\theta \in \Delta(\theta \in \Theta)$ *and transition dynamics* \mathbf{P}_{π_θ}
1820 *and linear parametrization for reward* r_{π_θ} . *For all* $(s, a, s') \in (\mathcal{S}, \mathcal{A}, \mathcal{S})$, *derivative of the expected return w.r.t* $\theta_{s,a}$ *satisfies:*

$$1822 \frac{\partial \tilde{V}_{\pi_\theta}^{\pi_\theta}(\rho)}{\partial \theta_{s,a}} \geq \frac{1}{1-\gamma} d_{\pi_\theta}^{\pi_\theta}(s, a | \rho) \left(\tilde{A}_{\pi_\theta}^{\pi_\theta}(s, a) + \xi \right) - \frac{\lambda}{1-\gamma} (1 + \log |\mathcal{A}|). \quad (49)$$

1825 *Proof.* This proof follows the same sketch as the proof of Theorem 3. However, we get two additional λ -dependent terms—
1826 (a) one from the log policy term in the soft advantage, and (b) the other from the log policy term in the soft rewards. We then
1827 simplify these terms to obtain the final expression.

1828 First, let us note that

$$\begin{aligned}
& \frac{\partial}{\partial \theta_{s',a'}} \log \pi_\theta(a|s) = \mathbb{1}[s = s', a = a'] - \pi_\theta(a'|s) \mathbb{1}[s = s'] \\
& \frac{\partial}{\partial \theta_{s',a'}} \log \mathbf{P}_{\pi_\theta}(s''|s, a) = \psi(s'') \mathbb{1}[s = s', a = a'] (1 - \mathbf{P}_{\pi_\theta}(s''|s, a)) \\
& \frac{\partial}{\partial \theta_{s',a'}} r_{\pi_\theta}(s, a) = \xi \mathbb{1}[s = s', a = a'].
\end{aligned} \quad (50)$$

1836 Now, we get from Theorem 2,

1837

$$\begin{aligned}
 1838 \frac{\partial}{\partial \boldsymbol{\theta}_{s,a}} \tilde{V}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(\rho) &= \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_{t=0}^{\infty} \gamma^t \left(\tilde{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s_t, a_t) \frac{\partial}{\partial \boldsymbol{\theta}_{s,a}} \log \boldsymbol{\pi}_{\boldsymbol{\theta}}(a_t | s_t) \right. \right. \\
 1839 &\quad + \tilde{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s_t, a_t) \frac{\partial}{\partial \boldsymbol{\theta}_{s,a}} \log P_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s_{t+1} | s_t, a_t) \\
 1840 &\quad \left. \left. + \frac{\partial}{\partial \boldsymbol{\theta}_{s,a}} r_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s_t, a_t) - \lambda \frac{\partial}{\partial \boldsymbol{\theta}_{s,a}} \log \boldsymbol{\pi}_{\boldsymbol{\theta}}(a_t | s_t) \right) \right] \\
 1841 &= \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_{t=0}^{\infty} \gamma^t \left(\tilde{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s_t, a_t) (\mathbb{1}[s_t = s, a_t = a] - \boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s) \mathbb{1}[s_t = s]) \right. \right. \\
 1842 &\quad + \tilde{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s_t, a_t) \psi(s_{t+1}) \mathbb{1}[s_t = s, a_t = a] (1 - \mathbf{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s_{t+1} | s, a)) \\
 1843 &\quad \left. \left. + \xi \mathbb{1}[s_t = s, a_t = a] - \lambda \mathbb{1}[s_t = s, a_t = a] + \lambda \boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s) \mathbb{1}[s_t = s] \right) \right] \\
 1844 &\stackrel{(a)}{\geq} \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_{t=0}^{\infty} \gamma^t \tilde{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s_t, a_t) \mathbb{1}[s_t = s, a_t = a] \right] - \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_{t=0}^{\infty} \gamma^t \boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s) \mathbb{1}[s_t = s] \tilde{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s_t, a_t) \right] \\
 1845 &\quad + \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_{t=0}^{\infty} \gamma^t \xi \mathbb{1}[s_t = s, a_t = a] \right] - \lambda \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_{t=0}^{\infty} \gamma^t \mathbb{1}[s_t = s, a_t = a] \right] + \lambda \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_{t=0}^{\infty} \gamma^t \boldsymbol{\pi}_{\boldsymbol{\theta}}(a_t | s_t) \mathbb{1}[s_t = s] \right] \\
 1846 &= \frac{1}{1-\gamma} d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) \tilde{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) + \lambda \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_{t=0}^{\infty} \gamma^t \boldsymbol{\pi}_{\boldsymbol{\theta}}(a_t | s_t) \log \boldsymbol{\pi}_{\boldsymbol{\theta}}(a_t | s_t) \mathbb{1}[s_t = s] \right] \\
 1847 &\quad + \frac{1}{1-\gamma} \xi d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) - \frac{\lambda}{1-\gamma} d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a | s_0) + \lambda \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_{t=0}^{\infty} \gamma^t \boldsymbol{\pi}_{\boldsymbol{\theta}}(a_t | s_t) \sum_a \mathbb{1}[s_t = s, a_t = a] \right] \\
 1848 &= \frac{1}{1-\gamma} d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) \tilde{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) + \lambda \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_{t=0}^{\infty} \gamma^t \boldsymbol{\pi}_{\boldsymbol{\theta}}(a_t | s_t) \log \boldsymbol{\pi}_{\boldsymbol{\theta}}(a_t | s_t) \sum_a \mathbb{1}[s_t = s, a_t = a] \right] \\
 1849 &\quad + \frac{1}{1-\gamma} \xi d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) - \frac{\lambda}{1-\gamma} d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) + \lambda \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_a \boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s) \sum_{t=0}^{\infty} \gamma^t \mathbb{1}[s_t = s, a_t = a] \right] \\
 1850 &= \frac{1}{1-\gamma} d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) \tilde{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) + \lambda \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_a \boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s) \log \boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s) \sum_{t=0}^{\infty} \gamma^t \mathbb{1}[s_t = s, a_t = a] \right] \\
 1851 &\quad + \frac{1}{1-\gamma} \xi d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) - \frac{\lambda}{1-\gamma} d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) + \lambda \mathbb{E}_{\tau \sim \mathbb{P}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \left[\sum_a \boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s) \sum_{t=0}^{\infty} \gamma^t \mathbb{1}[s_t = s, a_t = a] \right] \\
 1852 &\geq \frac{1}{1-\gamma} d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) \left(\tilde{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) + \xi \right) - \frac{\lambda}{1-\gamma} d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) - \frac{\lambda}{1-\gamma} \sum_a d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) \boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s) \log \frac{1}{\boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s)} \\
 1853 &\stackrel{(b)}{\geq} \frac{1}{1-\gamma} d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) \left(\tilde{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) + \xi \right) - \frac{\lambda}{1-\gamma} d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}, \rho}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a) (1 + \log |\mathcal{A}|).
 \end{aligned}$$

1878 (b) holds from the following:

$$\begin{aligned}
 1879 - \sum_a d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s, a | s_0) \log \boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s) &= d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s | s_0) \left(- \sum_a \boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s) \log \boldsymbol{\pi}_{\boldsymbol{\theta}}(a|s) \right) \\
 1880 &\stackrel{(c)}{\leq} d_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(s | s_0) \log |\mathcal{A}| \leq \log |\mathcal{A}|
 \end{aligned}$$

1884 and (c) holds as entropy is upper bounded by $\log |\mathcal{A}|$ (Cover & Thomas, 2006, Theorem 2.6.4). □

1885 **Lemma 3** (Regularized Performative Gradient Domination: Part(b) of Lemma 3). *For regularized PeMDPs the following*

1886 *inequality holds:*

$$1887 \tilde{V}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}^*}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}^*}(\rho) - \tilde{V}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}(\rho)$$

$$1890 \leq \sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \|\nabla_\theta \tilde{V}_{\pi_\theta}^{\pi_\theta}(\nu)\|_2 + \frac{R_{\max}}{1-\gamma} \left(1 + \frac{2\gamma}{1-\gamma} \psi_{\max} \left(1 + \frac{\lambda}{R_{\max}} \log |\mathcal{A}| \right) \right) + \frac{\lambda}{1-\gamma} (1 + \log |\mathcal{A}|). \quad (51)$$

1893 **Proof. Step 1.** First, we observe that

$$1895 -D_{\text{KL}}(\pi_o^*(\cdot|s) \parallel \pi_\theta(\cdot|s)) \leq -\sum_{a \in \mathcal{A}} \pi_o^*(a|s) \log \pi_o^*(a|s) \leq \log |\mathcal{A}|$$

1897 Hence, we get

$$1898 -\sum_s d_{\pi_\theta}^{\pi_o^*}(s|s_0) D_{\text{KL}}(\pi_o^*(\cdot|s) \parallel \pi_\theta(\cdot|s)) \leq \log |\mathcal{A}| \quad (52)$$

1901 **Step 2.** Using Lemma 8 and applying Cauchy-Schwarz inequality, we get

$$1902 \sum_{s,a} d_{\pi_\theta}^{\pi_\theta}(s,a) \tilde{A}_{\pi_\theta}^{\pi_\theta}(s,a) \leq \sqrt{|\mathcal{S}||\mathcal{A}|} (1-\gamma) \|\nabla_\theta \tilde{V}_{\pi_\theta}^{\pi_\theta}(\nu)\|_2 - \xi + \lambda(\log |\mathcal{A}| + 1) \quad (53)$$

1905 **Step 3.** Now, substituting Equation (52) and (53) in Equation (46), we finally get

$$\begin{aligned} 1906 \tilde{V}_{\pi_o^*}^{\pi_o^*}(\rho) - \tilde{V}_{\pi_\theta}^{\pi_\theta}(\rho) &\leq \sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \|\nabla_\theta \tilde{V}_{\pi_\theta}^{\pi_\theta}(\nu)\|_2 - \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \frac{\xi}{1-\gamma} + \frac{\lambda}{1-\gamma} (\log |\mathcal{A}| + 1) \\ 1907 &\quad + \frac{2}{1-\gamma} \left(L_r + \frac{\gamma}{1-\gamma} L_P (R_{\max} + \lambda \log |\mathcal{A}|) \right) \\ 1908 &\stackrel{(a)}{=} \sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \|\nabla_\theta \tilde{V}_{\pi_\theta}^{\pi_\theta}(\nu)\|_2 - \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \frac{\xi}{1-\gamma} + \frac{\lambda}{1-\gamma} (1 + \log |\mathcal{A}|) \\ 1909 &\quad + \frac{2}{1-\gamma} \left(\xi + \frac{\gamma}{1-\gamma} \psi_{\max}(R_{\max} + \lambda \log |\mathcal{A}|) \right) \\ 1910 &\stackrel{(b)}{\leq} \sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \|\nabla_\theta \tilde{V}_{\pi_\theta}^{\pi_\theta}(\nu)\|_2 + \frac{\xi}{1-\gamma} \\ 1911 &\quad + \frac{2\gamma}{1-\gamma} \psi_{\max}(R_{\max} + \lambda \log |\mathcal{A}|) + \frac{\lambda}{1-\gamma} (1 + \log |\mathcal{A}|) \\ 1912 &= \sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \|\nabla_\theta \tilde{V}_{\pi_\theta}^{\pi_\theta}(\nu)\|_2 \\ 1913 &\quad + \frac{2}{1-\gamma} \left(\frac{\xi}{2} + \frac{\gamma}{1-\gamma} \psi_{\max}(R_{\max} + \lambda \log |\mathcal{A}|) \right) + \frac{\lambda}{1-\gamma} (1 + \log |\mathcal{A}|) \\ 1914 &\leq \sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \|\nabla_\theta \tilde{V}_{\pi_\theta}^{\pi_\theta}(\nu)\|_2 \\ 1915 &\quad + \frac{R_{\max}}{1-\gamma} \left(1 + \frac{2\gamma}{1-\gamma} \psi_{\max} \left(1 + \frac{\lambda}{R_{\max}} \log |\mathcal{A}| \right) \right) + \frac{\lambda}{1-\gamma} (1 + \log |\mathcal{A}|) \end{aligned}$$

1916 In (a), we substitute the values of L_r and L_P for softmax PeMDPs, and in (b), we use $\left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty \geq 1$ (Lemma 9).

1917 \square

1918 **Theorem 3** (Convergence of PePG in softmax PeMDPs – Part (b)). *Let $\text{Cov} \triangleq \max_{\theta, \nu} \left\| \frac{d_{\pi_\theta, \rho}^{\pi_o^*}}{d_{\pi_\theta, \nu}^{\pi_o^*}} \right\|_\infty$. The gradient ascent*
 1919 *algorithm on $V_{\pi_\theta}^{\pi_\theta}(\rho)$ (Equation (9)) with step size $\eta = \Omega \left(\frac{(1-\gamma)^2}{\gamma |\mathcal{A}|} \right)$ satisfies, for all distributions $\rho \in \Delta(\mathcal{S})$.*

1920 *(b) For entropy regularised case, if we set $\lambda = \frac{(1-\gamma)R_{\max}}{1+\log |\mathcal{A}|}$, we get*

$$1921 \min_{t < T} \left\{ \tilde{V}_{\pi_o^*}^{\pi_o^*}(\rho) - \tilde{V}_{\pi_\theta^{(t)}}^{\pi_\theta^{(t)}}(\rho) \right\} \leq \epsilon \text{ when } T = \Omega \left(\frac{R_{\max} |\mathcal{S}||\mathcal{A}|^2}{\epsilon^2 (1-\gamma)^3} \text{Cov}^2 \right), \text{ and } \epsilon = \Omega \left(\frac{1}{1-\gamma} \right).$$

1944 *Proof.* This proof follows similar steps as part (a) of Theorem 3 with two additional changes: (i) We have a λ , i.e. regularisation coefficient, dependent term due to the entropy regulariser. (ii) The maximum value of the soft value function is $\frac{R_{\max} + \lambda \log |\mathcal{A}|}{1-\gamma}$ instead of $\frac{R_{\max}}{1-\gamma}$ for the unregularised value function.

1948 **Step 1:** From Equation (31), we observe that the soft-value function $\tilde{V}_{\pi_{\theta}}^{\pi_{\theta}^{(t)}}$ is L_{λ} -smooth.

1949 Thus, following the Step 1 of Theorem 3, we get

$$\begin{aligned} \min_{t \in [T-1]} \|\nabla \tilde{V}_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho)\|^2 &\leq \frac{1}{T\eta\left(1 - \frac{L_{\lambda}\eta}{2}\right)} \left(\tilde{V}_{\pi_{\theta}^{(0)}}^{\pi_{\theta}^{(0)}}(\rho) - \tilde{V}_{\pi_{\theta}^{(0)}}^{\pi_{\theta}^{(0)}}(\rho) \right) \\ &\leq \frac{R_{\max} + \lambda \log |\mathcal{A}|}{T\eta\left(1 - \frac{L_{\lambda}\eta}{2}\right)(1-\gamma)}. \end{aligned} \quad (54)$$

1957 The last inequality is true due to the fact that $\tilde{V}_{\pi_{\theta}^{(0)}}^{\pi_{\theta}^{(0)}}(\rho) - \tilde{V}_{\pi_{\theta}^{(0)}}^{\pi_{\theta}^{(0)}}(\rho) \leq \tilde{V}_{\pi_{\theta}^{(0)}}^{\pi_{\theta}^{(0)}}(\rho) \leq \frac{R_{\max} + \lambda \log |\mathcal{A}|}{1-\gamma}$.

1958

1959 **Step 2:** Now, from Part (b) of Lemma 3, we obtain that

$$\begin{aligned} \min_{t \in [T-1]} \left(\tilde{V}_{\pi_{\theta}^{(0)}}^{\pi_{\theta}^{(0)}}(\rho) - \tilde{V}_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho) \right)^2 &\leq \min_{t \in [T-1]} \left(\sqrt{|\mathcal{S}||\mathcal{A}|} \left\| \frac{\mathbf{d}_{\pi_{\theta}^{(t)}, \rho}^{\pi_{\theta}^{(t)}}}{\mathbf{d}_{\pi_{\theta}^{(t)}, \nu}^{\pi_{\theta}^{(t)}}} \right\|_{\infty} \|\nabla_{\theta} \tilde{V}_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\nu)\|_2 + \frac{R_{\max}}{1-\gamma} \left(1 + \frac{2\gamma}{1-\gamma} \psi_{\max} \left(1 + \frac{\lambda}{R_{\max}} \log |\mathcal{A}| \right) \right) + \frac{\lambda}{1-\gamma} (1 + \log |\mathcal{A}|) \right)^2 \\ &\leq 2|\mathcal{S}||\mathcal{A}| \min_{t \in [T-1]} \left\| \frac{\mathbf{d}_{\pi_{\theta}^{(t)}, \rho}^{\pi_{\theta}^{(t)}}}{\mathbf{d}_{\pi_{\theta}^{(t)}, \nu}^{\pi_{\theta}^{(t)}}} \right\|_{\infty}^2 \|\nabla_{\theta} \tilde{V}_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\nu)\|_2^2 + 2 \left(\frac{R_{\max}}{1-\gamma} \left(1 + \frac{2\gamma}{1-\gamma} \psi_{\max} \left(1 + \frac{\lambda}{R_{\max}} \log |\mathcal{A}| \right) \right) + \frac{\lambda}{1-\gamma} (1 + \log |\mathcal{A}|) \right)^2 \\ &\leq \frac{2|\mathcal{S}||\mathcal{A}| \text{Cov}^2(R_{\max} + \lambda \log |\mathcal{A}|)}{T\eta\left(1 - \frac{L_{\lambda}\eta}{2}\right)(1-\gamma)} + 2 \left(\frac{R_{\max}}{1-\gamma} \left(1 + \frac{2\gamma}{1-\gamma} \psi_{\max} \left(1 + \frac{\lambda}{R_{\max}} \log |\mathcal{A}| \right) \right) + \frac{\lambda}{1-\gamma} (1 + \log |\mathcal{A}|) \right)^2. \end{aligned}$$

1974 The last inequality is due to the upper bound on the minimum gradient norm as in Equation (54) and by definition of the
1975 coverage parameter Cov.

1976 Thus, we conclude that

$$\begin{aligned} \min_{t \in [T-1]} \tilde{V}_{\pi_{\theta}^{(0)}}^{\pi_{\theta}^{(0)}}(\rho) - \tilde{V}_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho) &\leq \sqrt{\frac{2|\mathcal{S}||\mathcal{A}| \text{Cov}^2(R_{\max} + \lambda \log |\mathcal{A}|)}{T\eta\left(1 - \frac{L_{\lambda}\eta}{2}\right)(1-\gamma)}} + \sqrt{2} \left(\frac{R_{\max}}{1-\gamma} \left(1 + \frac{2\gamma}{1-\gamma} \psi_{\max} \left(1 + \frac{\lambda}{R_{\max}} \log |\mathcal{A}| \right) \right) + \frac{\lambda}{1-\gamma} (1 + \log |\mathcal{A}|) \right). \end{aligned} \quad (55)$$

1985 **Step 4:** Now, by setting the T -dependent term in Equation (55) to ϵ , we get $T \geq \frac{2|\mathcal{S}||\mathcal{A}| \text{Cov}^2(R_{\max} + \lambda \log |\mathcal{A}|)}{\eta\left(1 - \frac{L_{\lambda}\eta}{2}\right)(1-\gamma)\epsilon^2}$.

1986 Choosing $\eta = \frac{1}{L_{\lambda}}$, $\lambda = \frac{(1-\gamma)R_{\max}}{(1+\log |\mathcal{A}|)}$, and $\psi_{\max} = \mathcal{O}(\frac{1-\gamma}{\gamma})$, we get the final expression $T \geq \frac{8|\mathcal{S}||\mathcal{A}| \text{Cov}^2 L_{\lambda} R_{\max}}{(1-\gamma)\epsilon^2}$, and

$$\min_{t \in [T-1]} \tilde{V}_{\pi_{\theta}^{(0)}}^{\pi_{\theta}^{(0)}}(\rho) - \tilde{V}_{\pi_{\theta}^{(t)}}^{\pi_{\theta}^{(t)}}(\rho) \leq \epsilon + \mathcal{O}\left(\frac{1}{1-\gamma}\right).$$

1991 Finally, noting that $L_{\lambda} = \mathcal{O}\left(\max\left\{\frac{\gamma R_{\max} |\mathcal{A}| \psi_{\max}^2}{(1-\gamma)^2}, \frac{R_{\max} \psi_{\max}^2}{(1-\gamma)^2}\right\}\right)$, we get

$$T = \Omega\left(\frac{|\mathcal{S}||\mathcal{A}|}{\epsilon^2(1-\gamma)^3} \max\{1, \gamma |\mathcal{A}|\}\right).$$

□

1998

H ABLATION STUDY ON ENTROPY REGULARISATION

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

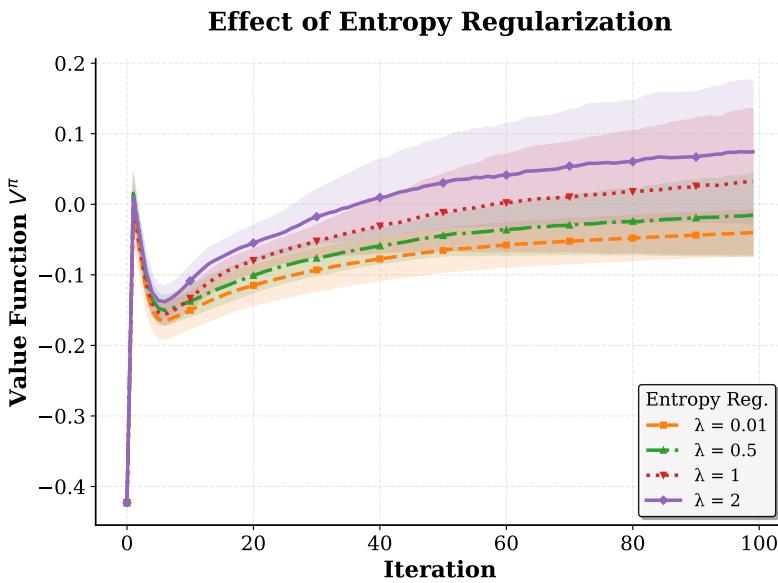


Figure 3: Ablation study for PePG for different values of regularised λ with 20 random seeds, each for 100 iterations

We conducted an ablation study across four entropy regularization strengths ($\lambda \in \{0.01, 0.5, 1, 2\}$) to determine the optimal balance between exploration and convergence stability in RegPePG. The results demonstrate that $\lambda = 2$ achieves the highest final performance (0.05), while smaller values ($\lambda \leq 1$) converge to similar suboptimal levels around -0.01 to 0, indicating that stronger entropy regularization enables more effective exploration of the policy space in performative settings.

2052 I TECHNICAL LEMMAS
20532054 **Lemma 9** (Lower Bound of Coverage). *For any $\pi, \pi' \in \Pi(\Theta)$, the following non-trivial lower bound holds,*
2055

2056
$$\left\| \frac{\mathbf{d}_{\pi'}}{\mathbf{d}_{\pi}} \right\|_{\infty} \geq 1$$

2057
2058

2059 *Proof.*
2060

2061
$$\left\| \frac{\mathbf{d}_{\pi'}}{\mathbf{d}_{\pi}} \right\|_{\infty} = \max_{s,a} \frac{\mathbf{d}_{\pi'}(s,a)}{\mathbf{d}_{\pi}(s,a)} \geq \frac{1}{\sum_{s,a} w_{s,a}} \sum_{s,a} \frac{\mathbf{d}_{\pi'}(s,a)}{\mathbf{d}_{\pi}(s,a)} \cdot w_{s,a}$$

2062
2063

2064 Choose $w_{s,a} = \mathbf{d}_{\pi}(s,a)$ Hence, we get,
2065

2066
$$\max_{s,a} \frac{\mathbf{d}_{\pi'}(s,a)}{\mathbf{d}_{\pi}(s,a)} \geq \frac{\sum_{s,a} \mathbf{d}_{\pi'}(s,a)}{\sum_{s,a} \mathbf{d}_{\pi}(s,a)} = 1$$

2067
2068

2069 The last equality holds from the fact that the state-action occupancy measure is a distribution over $\mathcal{S} \times \mathcal{A}$. Hence,
2070 $\sum_{s,a} \mathbf{d}_{\pi'}(s,a) = \sum_{s,a} \mathbf{d}_{\pi}(s,a)$ \square
20712072 **Lemma 10.** *The discounted state occupancy measure*

2073
$$\mathbf{d}_{\pi'}^{\pi'}(s|s_0) \triangleq (1 - \gamma) \mathbb{E}_{\tau \sim \mathbb{P}_{\pi'}^{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \mathbf{1}\{s_t = s\} \right]$$

2074
2075

2076 *is a probability mass function over the state-space \mathcal{S} .*2077 *Proof.* For each fixed s the integrand $\sum_{t=0}^{\infty} \gamma^t \mathbf{1}\{s_t = s\} \geq 0$, hence $\mathbf{d}_{\pi'}^{\pi'}(s|s_0) \geq 0$.
20782079 To check normalization, we sum over all states and use Tonelli/Fubini (permitted because the summand is non-negative) to
2080 exchange sums and expectation:
2081

2082
$$\sum_{s \in \mathcal{S}} \mathbf{d}_{\pi'}^{\pi'}(s|s_0) = (1 - \gamma) \mathbb{E}_{\tau \sim \mathbb{P}_{\pi'}^{\pi}(\cdot|s_0)} \left[\sum_{t=0}^{\infty} \gamma^t \sum_{s \in \mathcal{S}} \mathbf{1}\{s_t = s\} \right] = (1 - \gamma) \mathbb{E}_{\tau \sim \mathbb{P}_{\pi'}^{\pi}(\cdot|s_0)} \left[\sum_{t=0}^{\infty} \gamma^t \cdot 1 \right] = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t = 1.$$

2083
2084

2085 Therefore ρ is a probability mass function on \mathcal{S} . \square
20862087 A very similar argument holds for the discounted state-action occupancy measure $\mathbf{d}_{\pi'}^{\pi'}(s, a|s_0)$ as well.
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105