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ABSTRACT

The increasing interest in serverless computation and ubiquitous
wireless networks has led to numerous connected devices in our
surroundings. Among such devices, IoT devices have access to an
abundance of raw data, but their inadequate resources in comput-
ing limit their capabilities. Specifically, with the emergence of deep
neural networks (DNNs), not only is the demand for the comput-
ing power of IoT devices increasing but also privacy concerns are
pushing computations towards the edge. To overcome inadequate
resources, several studies have proposed the distribution of work
among IoT devices. These promising methods harvest the aggre-
gated computing power of the idle IoT devices in an environment.
However, since such a distributed system strongly relies on each
device, unstable latencies, and intermittent failures, the common
characteristics of IoT devices and wireless networks, cause high
recovery overheads. To reduce this overhead, we propose a novel
robustness method with a close-to-zero recovery latency for DNN
computations. Our solution never loses a request or spends time
recovering from a failure. To do so, first, we analyze the underly-
ing matrix-matrix computations affected by distribution. Then, we
introduce a new coded distributed computing (CDC) method that
has a constant cost with the increasing number of devices, unlike
the linear cost of modular redundancies. Moreover, our method is
applied in the library level, without requiring extensive changes to
the program, while still ensuring a balanced work assignment dur-
ing distribution. To illustrate our method, we perform experiments
with distributed systems comprising up to 12 Raspberry Pis.

1 INTRODUCTION

Recent years have witnessed an emergence of deep neural networks
(DNNis) applications and their represented services [1]. Additionally,
with the proliferation of Internet-of-Things (IoT) devices, these
devices are inseparable from our daily lives [2-4]. The conventional
methods to process raw IoT data are to offloaded them to cloud
services [5, 6]. However, moving such a tremendous amount of
data incurs a high amount of monetary cost and delay, besides
creating a major concern of privacy leakages. Therefore, to provide
a solution to this challenge and meet the demand for data explosion,
serverless and edge computation paradigms are recognized as a
promising solution [7-9]. As a result, pushing the frontier of DNNs
computations to the edge is receiving a tremendous amount of
interest both from academia with new exciting methods [7, 9-15]
and from the industry with commercial edge-tailored hardware
accelerators [16-18].

Processing the IoT data locally in-the-edge and on each indi-
vidual device may suffer from poor performance and energy effi-
ciency [7, 9]. This is because the demanded computational power
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from resource-hungry DNN-based applications outweighs the com-
putation capacity and energy constraints of IoT devices. Further-
more, the computational demands are escalated because these de-
vices have to meet real-time and time-sensitive constraints while
processing raw information that is directly gathered from their
environment. Even for edge-tailored hardware accelerators, it has
been shown that the real timeliness of applications is not guaran-
teed because of a wide variety in machine learning frameworks and
DNN applications [19, 20]. Nevertheless, privacy concerns [21, 22],
unreliable connection to the cloud, tight real-time requirements,
and personalization are still pushing inferencing to the edge.

To address the mentioned resource constraint challenges, a promis-
ing solution is the distribution of heavy computations among idle
devices present in the environment [10-12, 15]. This is because the
state-of-the-art IoT networks are formed with various IoT sensors
and recording agents, such as HD cameras and temperature sensors,
many of which are capable of performing computations. Moreover,
for any given time, some IoT devices are idle. However, such a
distribution is susceptible to failures, from short disconnectivity
and user interaction to losing a device. With these intermittent or
permanent failures, we may lose valuable time-sensitive and real-
time information. This fact necessitates developing a robust method
for tolerating these failures. Additionally, since IoT networks use
wireless technology, unreliability and variability in their networks
are much higher than acceptable limits to ensure a robust system.

This work extends current studies that enable distributed single-
batch inference of DNNs in the edge [10-12, 15] to tolerate failures
with close-to-zero recovery latency. To do so, first, we analyze gen-
eral methods of distributing the computations of DNNs (with a
focus on convolution neural networks (CNNs)) and how their un-
derlying matrix-matrix computations are affected by distribution.
Such a detailed study is necessary to introduce a general seamless
method within the underlying library or machine learning frame-
work. Then, we propose a new recovery method based on coded
distributed computing (CDC) that enables distributed DNN models
on IoT devices to tolerate failures and not lose time-sensitive and
real-time information. Our method is inspired by CDC applications
in big data analytics [23, 24], and speeding up distributed learning
using codes [25]. In summary, these works theoretically analyze
CDC methods that reduce latency by increasing computation (See
related work, Section 8).

To introduce robustness in distributed IoT systems, we introduce
an extra coded computation per device. The introduced extra com-
putations are derived by thoroughly studying various distribution
techniques in their underlying matrix-matrix computations for in-
ference operation in DNNs. These extra computations are similar in
nature to those of DNNs, which ease balancing the work among IoT
devices and reduce the deployment cost. Such a balanced distribu-
tion is essential in attaining the expected performance. Additionally,
since our method is implemented in the underlying matrix-matrix
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computations of DNN layers, it does not require extensive changes
to the user’s program and is implemented at the library level. More-
over, our method, even at the time of failures, provides close-to-zero
recovery time, which is necessary for critical time-sensitive tasks.
This is in contrast with approaches that sacrifice latency for robust-
ness to recompute the missing part of the data. Finally, compared
with conventional modular redundancy methods, that introduce
redundancy in computation by introducing a linear number of addi-
tional devices, our method has a constant cost with the increasing
number of devices. We demonstrate our method on distributed
systems comprising of Raspberry Pis (RPis), which represent the
de facto choice for several small and edge use cases.

In summary, this is the first work, to the best of our knowl-
edge, that improves robustness in distributed IoT systems, with the
following contributions:

e We thoroughly analyze how general methods of distribut-
ing the computation of DNNs affect the underlying matrix-
matrix computations.

e We propose a novel fault recovery method based on CDC
that has close-to-zero recovery latency, does not disturb the
balanced work assignment in distribution, requires minimal
changes to the user’s program, and has a constant cost with
the increasing number of devices.

e We demonstrate our method on distributed systems of up to
12 Raspberry Pis and report our experimental results.

2 MOTIVATION

Distributed IoT systems are a good candidate for creating in-the-
edge computing domains for the user-space applications. This ap-
proach has many advantages; for instance, since the collected raw
data remains local, user privacy is less exposed and vulnerable to
attacks. Furthermore, such a platform does not depend on the net-
work availability and does not require expensive quality-of-service
guarantees [26, 27] for several time-sensitive applications. Addi-
tionally, several applications in robotics [28-30] and unmanned
aerial vehicles (UAVs) [31, 32] benefit from such systems. Neverthe-
less, the disadvantage is that a connected IoT system is a dynamic
system and some devices may unexpectedly become busy or lose
their connection. In a distributed design, in which each device is
important, such failures are destructive. For instance, the system
may go offline for a long duration or accuracy may drop signifi-
cantly. Thus, the robustness of the entire system becomes a concern,
specifically when users may rely on this system for many sensitive
and time-critical applications. Moreover, the robustness issue is ex-
acerbated by the local wireless networks of these systems, causing
the latency between the devices to be unreliable and unstable.

To illustrate unreliability in the communication latency of IoT
systems, Figure 1 shows a histogram of the arrival times for data
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Figure 1: Arrival time histogram of data packets in a WiFi network
for a four-device IoT system with RPis.
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Figure 2: High percentage data loss, common in distributed IoT sys-
tems, causes destructive accuracy drops.

packets in a four-device IoT system with four RPis [33] (see sys-
tem setup in Section 6). This system performs the computation for
a fully-connected layer of size 2048 in a distributed fashion and
waits for the response. The measured time for the computation
of a fully-connected layer of size 2048 on a single device is 50 ms.
This is why, in Figure 1, no packet arrives earlier than 50 ms. As
seen, around 34% of the arrival times is within 100 ms, and 42% is
within 150 ms. So, even after 2x the computation time, around 34%
of the packets have not arrived yet. Such behavior in distributed
systems causes straggler problem, in which the slowest node in the
distributed system defines the total latency. Our method, by intro-
ducing robustness in such systems, can additionally alleviate the
straggler problem while also guaranteeing close-to-zero recovery
latency.

To understand how failures are destructive in DNN applications,
we perform another set of experiments, in which some part of data
within a layer is lost. We choose two models: LeNet-5 [34] and
Inception v3 [35]. LeNet-5 is a simple model that detects hand-
written digits from 10 classes and consists of only five layers. On
the other hand, Inception v3 is a modern DNN model for image
recognition for 1k classes with 159 layers. Figure 2 illustrates the
accuracy drop in these models when some part of the data in a layer
is lost. As seen, for large percentages of data loss (> 70%) per layer
that are common in distributed IoT systems, the accuracy drop is
destructive. Additionally, by comparing Figures 2a and b, we see
that that the sensitivity to data loss in more generalized models
will only become worse. Since the amount of data loss happens
in larger granularities, the current robustness methods in DNNs
(e.g., bit-level tolerance [36]) are insufficient to recover the loss. In
contrast, our proposed robustness method is designed specifically
for such a high amount of data loss and can recover from it with
close-to-zero latency.

3 DNN COMPUTATIONS

Since for implementing the CDC-based robustness, we need to
know how the underlying matrix-matrix multiplications are de-
rived, this section provides a summary overview of computations
within DNNs. Area experts may skip forward to the next section.
In details, first, we discuss the fully-connected layer that is preva-
lent in types of DNNs (MLP, RNN, LSTM, and CNNs). Second, we
overview the convolution layer, used in CNNs. These layers are
the most compute- and data-intensive layers in the mentioned
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DNNs5s [37]. We also describe how these computations are done in
underlying matrix-matrix multiplication libraries (GEMM).
Fully-Connected Layer: A fully-connected layer has several out-
puts, each of which could be written as

I _ 1 1-1 1
a; —O'(Z Wik Ak +bj), (1)
k

in which ai. is the jtM activation or input of the ith layer, wﬁ.k is the
weight from k'™ input in the (I — 1) layer to the j™ output in the
ith layer, bé is the bias of the jh output in the Ith layer, and o is the
activation function such as ReLU (max (0, x)). Since the notation of
wl.k is from k to j, we can write the computations of the jth layer

as the below matrix operation:

,
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in which m is the number of output elements, k is the number of
input elements, and a’ represents previous layer activations. Or, we
can write the computations in the ith layer as

al = o(Wlal™! + ). (3)

In training, the learning is done by adjusting W and b. Furthermore,
note that the computations of Equation 3, in its current format, can
easily utilize GEMM libraries [38, 39]. Thus, no transformation is
needed to execute fully-connected layers.

Convolution Layer: CNN models predominantly process visual
data with convolution layers (conv). A convolution layer applies
the same set of weights or filters similar to fc, but to subsets or
patches of input. Figure 3 depicts the convolution of an input with
size HixW;xC; with K square filters of size FxFxC;. Each filter
creates a channel of the output. Thus, the depth of the output, Cy, is
equal to the number of filters, K, C, = K. The height and width of
the output are determined by how a filter is swept across the input
by parameters such as stride (s), filter size (f), and padding (p). In
short, the output size in any dimension is derived from | i-f+2p/s], in
which i is the input size in that dimension. For the sake of simplicity,
in this paper, we assume the same padding condition.

To perform conv, almost all machine learning frameworks per-
form a transformation to harness the power of extensively opti-
mized parallel GEMM libraries [38, 39]. Our robustness method is
also implemented in this level to minimize changes to the user’s
program. The essence of the transformation is to unroll the input
patches (a 3D matrix) and filters (a 4D matrix) in 2D in a way that
a single matrix-matrix multiplication produces the unrolled ver-
sion of the output in 2D. To do so, the weight matrix of the filters,
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Figure 3: Visualization of a convolution layer; each filter creates a
depth channel in the output.
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Figure 4: Underlying transformation of a convolution operation to
use GEMM libraries [38, 39].

FxFxCxK, is converted to a KxF2C matrix. Similarly, the input ma-
trix of size WxHxC is converted to a F2CxW H matrix by unrolling
each patch and repeating the overlapping elements (if necessary).
Figure 4a illustrates the unrolling operation we discussed, besides
another possible way in Figure 4b, which transforms convolution
as matrix-matrix multiplications as below:

OxxwH = Wiypze X lpcewn- @
Other Layers: Other layers such as max-pooling (maxpool) or
average-pooling (avgpool) layers have relatively lower computa-

tion demand compared to fully-connected and convolution layers.
Hence, we group them with their parent layers.

4 DNN DISTRIBUTION IN IOT SYSTEMS

A variant of model-parallelism methods [40, 41], specifically tar-
geting single-batch inferences can be exploited [12] to distribute
the DNN computations. This is because the new constraints intro-
duced by the edge devices change the assumptions of the current
cloud-based systems. In short, these new constraints are (i) a lim-
ited number of local requests and real-time requirements, which
enforces single-batch inferences instead of batching for performing
data-level parallelism, and (ii) the limited compute power of IoT
devices coupled with real-time system constraints, which renders
workstation-based parallelism/distribution methods for processing
DNNs less efficient in IoT devices. Thus, distributions based on
model-parallelism are ideal for IoT devices that suffer from limited
resources but need to satisfy real-time constraints. In the follow-
ing, we introduce distribution methods for fully-connected and
convolution layers.

Distribution for Fully-Connected Layers:

- Output Splitting: In this method, creating output is divided
among devices, shown in Figure 5a. For each activation, its
whole computation is performed on one device. To do this,
we need all the input elements. Finally, when every device is
done, a merge operation concatenates the output elements.
Input Splitting: In this method, each device computes a
part of the entire output, shown in Figure 5b. To do so, a
part of the input is transmitted and each device computes
all parts of the output that are dependent on the received
input. Finally, when every device is done, a merge operation
executes the summation part.

Distribution Methods for Convolution Layers:

- Channel Splitting: In this method, each device only handles
a set of filters and creates a part of the depth dimension
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Figure 5: Fully-connected layer model parallelism methods.

in the output. Thus, each device only needs the weights
of its dedicated filters but requires all the input data. The
final merging operation consists of simply concatenating the
individual outputs (either before or after activation function).
Spatial Splitting: In this method, the input is divided spa-
tially, including the overlap element between input patches,
and each device processes only some part of the input for all
the filters. Thus, each device needs all the filter weights. Fi-
nally, the merge operation is a concatenation on both height
and width dimensions.

Filter Splitting: In this method, both the filters and input
are divided among devices in the depth dimension. Each
device only processes the corresponding sets of input and
filters. Thus, each device computes a partial sum of all out-
put elements. Finally, the merging operation consists of a
summation and application of the activation function.

5 ROBUSTNESS WITH CDC

This section first describes how distribution methods change the
computation of each device from the view of underlying matrix-
matrix computation. Such analysis helps us to easily generalize our
method and apply it at the library level. Next, we provide a simple
example of our robustness method that handles only one output
per device. Then, we generalize our method to multiple outputs per
device. Finally, we study the suitability of the distribution methods.

5.1 Distribution and Matrix Operations

Fully-Connected Layer: A fully-connected layer performs Equa-
tion 3 with GEMM. First we consider the matrix-matrix multiplica-
tion part, or Wlal~1. Figure 6 illustrates how output splitting affects
weight and output matrices for an example with four devices. Since
each device calculates a set of separate outputs, the output ma-
trix is created separately by each device (and concatenated later).
Such separation in output generation also divides the weight ma-
trix along the y-axis, which has a one-by-one relationship with
the output matrix division. Each device needs a copy of the input
matrix, and the input matrix is not divided.

In the input-splitting method, as Figure 7 depicts for the same
four-devices example, the input matrix is divided between the de-
vices. Similarly, the weights corresponding to those inputs are also
divided along the x-axis among devices. Each device calculates par-
tial sums for the entire output elements. Finally, all partial sums
are aggregated to create the final output. Regarding bias and the
activation function, we can extend the above reasoning. For output
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Figure 6: Distribution of output splitting for fully-connected layers.
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Figure 7: Distribution of input splitting for fully-connected layers.

splitting, biases and the activation function can also be divided
among the devices. But, for input splitting, both need to be applied
after the aggregation. Since the majority of the computation time of
DNN s is spent on matrix-matrix multiplications, such a difference
does not have a big impact on computation time.

Convolution Layer: By utilizing Figure 4 for convolution layer,
the channel-splitting method divides the filter weight matrix along
the y-axis, as Figure 8 shows for two devices. Likewise, since the out-
put is unrolled, such division translates to a similar along-the-y-axis
division of the output matrix. Hence, channel splitting in convo-
lution layers is the same as output splitting into fully-connected
layers and any robustness analysis is applicable on both, but with a
different set of weights and inputs (i.e., unrolled version of filters
and patches in convolution layers).

Figure 8: Distribution of channel splitting for convolution layers.

In the spatial-splitting method, since each input patch is unrolled
column-wise in the input matrix when we spatially divide the input,
this division translates to an along-the-x-axis division of the input
matrix. However, unlike input splitting in fully-connected layers,
filter weights cannot be divided. Therefore, spatial splitting, as
conceptually shown in Figure 9 for two devices, divides the input
matrix of Equation 4 along the x-axis.

In the filter-splitting method, a close representation of input
splitting for fully-connected layers, both filter weights and input
are divided depth-wise. Since both filter weights and input are
unrolled, we need to divide the weight and input matrices along
the x- and y-axes, respectively. This distribution is similar to the
outer product approach in matrix multiplication, versus the most
commonly known algorithm of the inner product approach. Fig-
ure 10 shows this approach with two devices. Each device produces
a partial sum for the entire elements. To create the final output,
the final device needs to aggregate all the elements and apply the
activation function.
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Figure 9: Distribution of spatial splitting for convolution layers.
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Figure 10: Distribution of filter splitting for convolution layers.

5.2 Robustness: A Simple Example

We present a simple example of our CDC-based robustness to fa-
cilitate understanding. Consider a fully-connected layer with two
input and output elements, written as:

_|#

-|2] ©

[Wll le] [a’l

X a
wor Wy a;
Assume that we perform output splitting. Now, by adding a row to
the weight matrix with the value of [wi1 + wo1 w12 + w22], we can

create the summation of two outputs, or a; + az. Therefore, with
such addition, the above equation becomes:

w11 w12 a ai
w1 w2 | X a,l =| a | (6)
Wit + wor w2 + wap 2 ap +az

Since the summation of the weights can be done offline and is not
dependent on inputs, we can rewrite about equation as:

w11 w12 ’ a
wa o own X M= az ™
Wﬁdc Wédc 2 acdc

The newly added weights to the weight matrix are the column sums
of the weight matrix that is done offline before loading the weights.
Now, with the addition of another device, we can guarantee to
recover from one missing output with only a local subtraction in
the final device. This method has three main benefits:

o First, this level of guarantee on all devices is just with an
addition of one device, compared to a double modular redun-
dancy method that duplicates all devices.

e Second, this method is faster than redoing all operations
since the subtraction of two local values that we already
have received is almost immediate than restarting all opera-
tions. This is because, the vanilla recovery method consists
of loading a set of new weights (corresponding to the miss-
ing values) in the final device, asking for the input from
previous devices, and performing multiplications with all of
its associated overhead of communication.

e Third, although we introduced the computations correspond-
ing to a®¥, these computations are similar in nature to the
computations of a; and az. Hence, the distribution of these
newly added computations follows the same rules and would
not create an imbalance in the modified distribution.

5.3 Generalization of Robustness

In this section, we extend our simple scenario, in which each device
computes only one output element, to a more realistic scenario, in
which each device computes hundreds of elements. Similarly, we
showcase the output-splitting method as our example. Assume a
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fully-connected layer performing the below equation:
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By distributing the computations among two devices, each of the
devices perform the computations for m/2 of output elements. The
computations per each device are
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in which input matrices are the same, but the weight matrix is
divided along the y-axis. Each device creates separate parts of the
output matrix. To introduce robustness, the new weight matrix
would be as follows:

W11+W(%+1)1 W12+W(%+1)2 Wlk+W(%+1)k

W21+W(%+2)1 W22+W(%+2)2 W2k+W(%+2)k

(11)
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2 xk
By multiplying this new weight matrix with inputs, the below
output matrix is created:

a + a(%ﬂ)
as + a(%“)

am +a
2 modmy

which is is the summation of two output matrices in Equations 9 and
10. Therefore, by introducing such a weight matrix as Equation 11,
we can introduce robustness. Similar to our simple example, the
computation of this new weight is done offline, recovery has a
close-to-zero latency, the robustness covers all devices, and the new
computation does create an imbalanced distribution.

In contrast, splitting methods that work based on dividing the
input matrix among the devices does not yield similar benefits.
To illustrate why, we study input splitting among two devices for
the computation of the same fully-connected layer presented in
Equation 8. Input splitting for fully-connected layers divides the
input and the weight matrix along the x-axis. Accordingly, the
computations per device are:
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Table 1: Distribution Techniques Suitable for Robustness.

L Model-Parallelism || Divides | Divides | Divides | Suitable for
ayer Method Input Weight | Output | Robustness
fo | Output | x |1 v | v | Yes
[ Input v v ] X | No
Channel X v v Yes
conv Spatial v X v No
Filter 4 "4 v No

Each of the above equations calculates a partial sum. However, as
seen, no share factor exists between the two computations. There-
fore, if a third device wants to perform coded distribution, it needs
to perform the entire calculations of Equations 13 and 14. Such
an approach creates unbalanced work between the devices, and
has no advantage over just replicating the entire work as modular
redundancy methods do.

Distribution Techniques Suitable for Robustness: For the dis-
tribution methods we introduced in Section 4, based on the afore-
mentioned discussion, only some methods are suitable for our CDC-
based robustness. Such suitable methods do not split the input ele-
ments but split the weights. Table 1 provides a summary of all the
presented methods and whether they are suitable for robustness.
For fully-connected layers, the output-splitting method is suitable
for robustness. For convolution layers, the channel-splitting method
has similar characteristics. Unfortunately, the rest of the distribu-
tion methods are not suitable for robustness. This is because to
introduce robustness, these methods need to actually perform the
entire computation again, which including the communication over-
head. For instance, in spatial splitting, although every device has
all the weights, they only own some part of the input. Therefore,
with our technique, we need another device performing the com-
putation based on the summation of the input parts. Since input
elements change, computing such a summation has an overhead
during the runtime (2x compute). The filter-splitting method also
suffers from the fact that no element from the input or weights is
shared between computing devices.

6 EXPERIMENTS

This section first presents our system setup and necessary infor-
mation. Then, we provide two case studies for fault recovery. Our
experiments show how our method helps systems to achieve higher
performance because of the straggler problem mitigation. Finally,
we also compare the coverage to failures of the whole systems with
CDC and double modular redundancy.

Experiments Setup: We evaluate our method on a distributed
system with RPi [33] with 1.2 GHz Quad Core ARM Cortex-A53
CPU and a 900 MHz 1 GB RAM LPDDR2 memory. We choose RPi
because they represent the de facto choice for several IoT and edge
use cases, they are readily available, and they allow common soft-
ware packages. Our implementation is created with a software stack
based on Docker containers. We use Keras 2.1 [42] with the Ten-
sorFlow backend (version 1.5) [43]. For RPC calls and serialization,
we use Apache Avro [44]. A local WiFi network with the measured
bandwidth of 94.1 Mbps and a measured client-to-client latency of
0.3 ms for 64 B is used.

Task Creation & Assignment: The policy of task creation in IoT-
based distributed DNN systems is done with either profiling or
heuristics that use common monitoring/managing tools such as
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Figure 11: Case study I: AlexNet on a five-device system.

Kubernetes. The policies create tasks per device for a given DNN
architecture by studying its memory footprint, computation require-
ment, and communication overhead. Regardless of the policy that
finds the optimal distribution (out of scope of this paper, see [12]),
all the pre-trained weights are loaded to each device storage so
that a device can switch its assigned task easily if needed. For each
number of available devices, a single task allocation file is loaded
to all devices and each device performs its allocated tasks based
on the file. In our implementation, we use an IP table file to assign
tasks to each RPi. CDC weights are also created offline and loaded
to the storage. In the case of a failure, the system uses another
pre-defined distribution file with fewer devices that has a lower
performance. In such a case, since the detection of a missing device
takes time, the system mishandles many requests. Our proposes
solution that has tolerance to such failures, so the system never
loses a request. Additionally, with a close-to-zero recovery latency,
the system proactively is more tolerant to straggler nodes.

Weight Storage: Each Pi has an SD card storage, for storing the
weights, which is relatively inexpensive compared to the main
memory. All trained weights are loaded to each Pi’s storage (16 GB
storage in our system), so each Pi can be assigned to execute any
part of a layer. If local storage is limited, the assigned weight can
also be shared on the network from a network-storage filesystem.
This approach makes a tradeoff between how fast the switching
time between different models can be and per-device storage usage.
Additionally, note that the distribution method does not replace
other methods, such as offloading to servers. The decision is the
per-case basis and depends on several system-level decisions. The
distribution offers the additional option of processing data locally.

6.1 System Recovery Case Studies

Case Study I: To depict the impact of how failures affect a system,
we deploy AlexNet [40] on two IoT systems. The first system, shown
in Figure 11a, contains five devices. The first fully-connected layer
is split with the output-splitting method between two devices with
no robustness method. The black bars in Figure 12 show the latency
of the system when performing single-batch inferences. Now, if
device C experiences failure, as shown in Figure 11b, other devices
need to perform the task assigned to the failed device. Since the task
of device C is the computation of half of the first fully-connected
layer, device D needs to perform this extra task in addition to its
task. After the failure is detected, which takes tens of seconds, the
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Figure 12: Case study I: Recovery latency with & without CDC.



Creating Robust Deep Neural Networks With Coded Distributed Computing for loT Systems

Nodes C, D, & E: Nodes C, D, & E:

Node A: Fe L Bna) Node A: £c_1(3parts)
Output Splitting Node F: Output ph((mg Node F:
© (&)
A fc_ 2 A fc 2
NodeB: (B 0%0 fc_3 Nodes: (@ 9%0 3
® ®

(b) Six-Device system with
failure of node C

Figure 13: Case Study II: AlexNet on a six-device system.

(a) Six-Device system

red bars in Figure 12 depict the new shifted latency histogram of
the system. Based on our measurements, on average, the system
experiences 2.4x slowdown after recovery. The system is not per-
forming beneficial work during failure detection, and experiences
significant slowdown afterward. However, with our method, the
system does not experience any slowdown or service interruption.
Case Study II: As a remedy to failures, we deploy AlexNet on a
six-device system. Figure 13a shows this system, in which an extra
device is added for robustness using CDC. Note that our goal is to
create robustness only for the first fully-connected layer and the
extra device provides robustness to all the computations done on
device D and E. If we experience failure, as Figure 13b shows, the
performance of the system does not change. Additionally, during
the operation without failure, we use the extra device to mitigate
the straggler problem. Figures 14 and 15 show the system latency
with and without this mitigation, respectively. As shown, the range
and the distribution of latencies are improved towards a better
performance. Thus, in addition to robustness, we can exploit the
extra device to increase the performance.

6.2 Straggler Mitigation

We study straggler mitigation benefits by extending the previous
system. To initiate recovery, a device waits for a particular amount
of time. By adjusting this waiting threshold in a device, we can treat
our method as a solution for the straggler problem after receiving
the necessary amount of data. A lower threshold reduces latency
and thus increases performance. Straggler problem is more promi-
nent with more devices, so we set up an experiment as Figure 16a
shows for a system with four devices, each of which performs a split
in a fully-connected layer. Figure 16b shows performance improve-
ment of straggler mitigation with a diffident number of devices in a
system. The performance improvement is compared with the same
system, with the same number of devices, with no straggler miti-
gation. As seen, for more devices, straggler mitigation has better
performance (up to 35%) compared with a no-straggler-mitigation
system with the same number of devices.
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Figure 14: AlexNet latency histogram without straggler mitigation.
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Figure 15: AlexNet latency histogram with straggler mitigation.
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6.3 Full Model Coverage

In the system shown in Figure 13, devices with model parallelism
are robust with CDC. For other devices, by the replication of the
device’s task (N-modular redundancy with N = 2, or 2MR), we can
tolerate one failure in the entire system. Such a hybrid approach
(CDC+2MR) could cover the entire system for failures. In a nutshell,
our method covers any number of devices in one layer with just one
additional device (this is for robustness to one failure). But, 2MR
needs an additional device for each device. Therefore, our method
has a constant cost with an additional number of devices; whereas
2MR requires a linear number of additional devices. In Figure 17, we
study several DNNs [28, 45-47] with distributed implementations
with tolerance to one failure with 2MR-only and CDC+2MR. Since
CDC requires fewer devices than 2MR to cover the devices with
model parallelism, the number of additional devices for full coverage
for CDC+2MR is smaller than that of 2MR. The amount of difference
depends on how many layers are distributed with model parallelism
and how many devices are used per layer. For instance, Figure 17¢c
and d depict two C3D distributions with different numbers of the
devices for the layers that use model parallelism (two vs. three
devices). We see that in Figures 17c¢ and d, with two additional
devices, CDC+2MR, compared with 2MR with 44% and 36%, reaches
the coverage of 67% and 73%. This is because C3D distribution has
two layers with model parallelism. Therefore, compared with 2MR,
CDC+2MR achieves better coverage. In summary, if we use model-
parallelism for a layer with N number of devices, with (1 + %)
times hardware cost, we can hide a single node’s failure as opposed
to 2x hardware cost in 2MR.

7 DISCUSSIONS

The Introduced Computation: The introduced new computa-
tions for our CDC-based method are similar to that of underlying
GEMM computations. This is because we add new wights to the
weight matrix (or a variant of it). These new weights can be calcu-
lated without the user’s input and at a library level. Therefore, there
are no additional costs for reprogramming the applications. More-
over, since the nature of the computations for these new weights is
similar to that of DNNs, there is no need to design new kernels or
distribution methods.

Extending Robustness To More Failures: Our discussions were
focused on tolerating up to one failure. However, Extending to more
than one failure is possible by adding new devices that perform
computations based on the summation of some rows of weights
instead of all of them. Figure 18 illustrates three setups in order of
increasing tolerance to failures. The last setup tolerates two failures
because new devices perform partial sums on the weights.! Thus,

!Note that the coverage to two failures is almost complete (partial error correction).
We need Hamming-style coverage for full error correction.
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by utilizing idle devices with an overlapping set of weights, the
robustness of the system increases.

8 RELATED WORK

With ubiquitous wireless networks and the availability of embed-
ded processors, IoT devices are rapidly gaining ground [2-4]. The
widespread everyday-life usage of IoT now includes smart ther-
mostats, smart cameras, and personal assistants, and companies
have introduced several IoT-based products and services [5, 6]. With
the proliferation of IoT devices, a new computing paradigm using
these devices has emerged as edge computing [7-9], in which the
data processing is performed at the edge of the network. In the
meantime, with the successful advancement of deep learning [1],
many new and novel opportunities are created for IoT [7, 10-15, 28].
However, IoT devices have limited resources to execute heavy DNN
models [7], and with such fast-paced advancements, the demanded
computing power of DNN models is not expected to slow down.

To reduce the computing demand of DNNSs, several techniques
such as weight pruning [48], quantization and low-precision in-
ference [49], and binarizing weights [50] are introduced to reduce
the computations of DNNs. Several studies [10-12, 14, 15, 28, 51]
also examined the distributed execution of DNNs on edge devices.
Neurosurgeon [51] and Hauswald et al. [52] partition a DNN model
between a single IoT and cloud. MoDNN [10] creates a local dis-
tributed mobile computing system and accelerates DNN compu-
tations on Galaxy S5. DDNN [11] also aims to enhance learning
with multiple devices. In their work, the DNN model is retrained
continuously while most of the computations are offloaded to the
cloud. Hadidi et al. [12, 28] propose model parallelism methods, but
without discussing how to improve the robustness.

The authors of coded distributed computing [23, 24] studies in-
troduced coding for MapReduce-type workloads for large-scale
computing. By coding, which increases the computation load of
mapping functions, the amount of communication can be reduced
in the reduction phase. The authors theoretically study the limits
and tradeoffs of such distribution and illustrate an inverse rela-
tionship between the amount of computation and communication.

Usually, coding in CDC is applied over bit-level representation of
numbers. Instead of coding over floats/bits, our work applies coding
to the application level by introducing new weights. Furthermore, in
contrast, to reduce communication overhead in other studies, our goal
is to increase robustness and tolerating unstable latencies.

CDC helps to mitigate the straggler problem in computing clus-
ters [53, 54], besides other methods such as straggler detection
algorithms [55, 56] and replication-based approaches [57, 58]. Sev-
eral works also utilize CDC to mitigate the straggler problem in
distributed storage systems [59]. Distributed learning algorithms
have also used CDC opportunities [25]. Since these algorithms use
data parallelism for learning, CDC facilitates the mapping phase in
learning algorithms with data shuffling. Particularly, Lee et al. [25]
focused on two basic blocks of learning algorithms, matrix multi-
plication and data shuffling. None of the above works has studied
CDC in the context of robustness. In contrast with our work, dis-
tributed learning studies [25] examine large-scale learning algo-
rithms, which employ data parallelism, whereas our work focuses on
IoT-based inferencing, which utilizes model parallelism.

9 CONCLUSION

In this paper, by utilizing CDC, we proposed a method to intro-
duce tolerance for the single-batch inferencing of DNNs. Single-
batch inferencing is important in IoT and near-the-edge computing
domains because of the time-sensitivity of applications and the
limited number of the requests in these domains. Our method ex-
ploits model-parallelism methods in prevalent DNN layers to add
balanced computation for robustness. Model-Parallelism methods
help us in achieving efficient system distribution by splitting the
computation of single-batch inferencing among several IoT devices.
We studied model-parallelism methods and their underlying com-
putation when being distributed. To this end, we extended CDC
to provide a trade-off between computations and robustness on
distributed IoT-based systems.
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