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Abstract

Globally, 30% of the produced foods gets wasted annually
across the supply chain. To control this huge wastage and cor-
responding economic losses, real time prediction of shelf life
of foods is essential. This process of reporting shelf life of
fruits is often carried out manually using invasive techniques
by domain experts, which becomes infeasible when the fruits
are getting transported over long distances across the supply
chain. To automate this process, we use non-invasive vision-
based technique to predict the current age of the fruit from
which the shelf-life can be computed. To achieve this we
train a model to capture the visual degradation features of
fruits. However, such models require large amounts of anno-
tated images for training with fine-granular ‘days-old’ labels.
Curating such dataset either by expert annotations or labora-
tory experiments is expensive. Also, the annotated datasets
available for this task are scarce. To address this challenge,
in this paper, we avail the accessibility of online time-lapse
videos of fruits to auto-synthesise a dataset for the task of
pairwise comparison of video frames, whose labels are gen-
erated based on their sequence in the video. We transfer-learn
the knowledge gained by a model, trained with this data on
the comparison task, to improve the performance of the fine-
granular classification task where labels are depicting the age
of a fruit image. We empirically showcase that with this ap-
proach, the performance for the classification task improves
by a margin of 16% to 23% percentage in terms of fine-
granular classification accuracy for distinct fruits.

Introduction
In an average about 30% of the total produced foods goes
waste annually, across the globe 1. This wastage of perish-
ables such as fruits and vegetables is seen at every node of
the food supply chain in between the farm and the fork or
even at the consumer end (Grandhi and Appaiah Singh 2016;
Grosso and Falasconi 2018) and has a significant negative
impact on the world economy as well as on the global en-
vironment (Marangon et al. 2014; Koivupuro et al. 2012).
To control this huge waste and mitigate the corresponding
negative impacts, it is essential that the stake holders of the
food supply chain such as farmers, retailers, distributors,
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consumers etc. can monitor the quality of perishables un-
der any supply chain scenarios and estimate the remaining
shelf-life. This would allow them to take decisions dynami-
cally for food repurpose, recycle, reprice or reroute.

Quality of perishables is generally expressed in terms of
freshness index or ripeness level (Mitcham, Cantwell, and
Kader 1996; Dutta, Deshpande, and Rai 2021). Having a
food expert to manually estimate the quality at every step
of supply chain is infeasible. In general, quality assessment
of perishables is performed by using invasive techniques by
measuring variations in chemical composition in terms of
starch, sugar, vitamins and minerals (Li et al. 2018; Cadet
2014; Al-Mhanna, Huebner, and Buchholz 2018). However,
such testings become infeasible when the produce is getting
transported over long distances across supply chain. In such
scenarios, quality predictions by non-invasive techniques
such as monitoring the emitted gases (Huang et al. 2014;
Deisingh, Stone, and Thompson 2004; Simon et al. 1996;
Zhang et al. 2012; Hong and Wang 2015) or observing visual
degradation in terms of wrinkle formation on skin or growth
of black spots, moulds and fungus (Sareen, Chug, and Singh
2022; Surya Prabha and Satheesh Kumar 2015; Pajuelo et al.
2003; Abraham et al. 2011) are preferred. These existing pa-
pers have mostly reported coarse grained classification for
prediction of good bad quality of foods. However, in real-
life scenarios, more fine-granular classification is essential
with ’days old’ label to take better dynamic decisions.

To predict the remaining shelf life of perishables, its es-
sential to know their current age in terms of ‘number of days
old’ starting from the day they are harvested and their ex-
pected shelf life under the given supply chain conditions. If
these two parameters are known, then remaining shelf life
can be calculated by subtracting the current age of the fruit
from the expected shelf life. Domain experts have reported
the expected shelf life of perishables under distinct environ-
mental conditions (Hassan et al. 2004; Murmu and Mishra
2018; Corradini et al. 2018; Dotto, Vieira, and Pinto 2015;
Falah, Nadine, and Suryandono 2015; Parven et al. 2020;
Man and Jones 1994; Matar et al. 2018; Chowhan et al.
2016; Li et al. 2019). However, keeping track of the cur-
rent age of a perishable is extremely challenging when they
are getting transported over long distances across the supply
chain and in such scenarios prediction of remaining shelf life
becomes almost impossible.



Therefore, we develop a non-invasive computer vision
based technique to predict the age of the fruits from a given
fruit image by modelling it as a fine-granular classification
task. We have started with fruits class of perishables as they
have a much shorter shelf life and a faster degradation rate,
which demands more fine-granular quality annotations than
just ‘good’ and ‘bad’. Also, fruits showcase significant vis-
ible degradation patterns such as change in color, increased
wrinkles on the fruit skin, growing black spots, moulds and
fungus, which allows the model to capture these features to
facilitate the classification task. However, to achieve good
performance on such fine-granular task, this vision-based
model require large amounts of annotated images. Curat-
ing such dataset either by expert annotations or laboratory
experiments is expensive and labor-intensive. Also, the an-
notated datasets available for this task are scarce.

To address this challenge, in this paper we avail the ac-
cessibility of online time-lapse videos of fruits to auto-
synthesize a dataset for the task of pairwise comparison of
video frames, whose labels are generated based on their se-
quence in a video. We train a model with a shared weight
encoder, with this data for the image comparison task. The
knowledge gained by this encoder is transfer learned and
further fine-tuned to improve the performance of the fine-
granular classification task to predict the age of a fruit image
in terms of ‘number of days old’ class label.

We use the VGG16 base network (Gulli and Pal 2017;
Antonio, Rael, and Buenavides 2021) as our base model
which is pre-trained on imagenet and further fine-tune it
with ‘Fruits-360’(Oltean 2021; Chung and Van Tai 2019)
and fruit classification (‘good’ and ‘bad’ classes) dataset
to incorporate domain knowledge. In the first experiment,
we fine-tune the base model with scarcely available train-
ing data with ‘age’ labels. Whereas, in the second exper-
iment we first fine-tune the base model as an encoder in
siamese setting (He et al. 2018) for pairwise-comparison
task using above mentioned data and further fine-tune for
the fine-granular classification task. Experiment 2 performs
significantly better on the unseen test dataset for the fine-
granular classification task, thus indicating that the pairwise
comparison task facilitates the fine-granular fruit age classi-
fication task. The fruits used for our experiments are banana,
papaya, strawberry and green colored grapes. We observe
distinct improvements in the performance of distinct fruits
and find it to be a function of the amount of synthetically
generated pair-wise comparison data as well as the amount
of pre-labelled fine-granular classification data.

Dataset Collection and Preparation
We have utilized datasets from three broad sources. For do-
main adaptation of the base model we use two datasets: (i)
’Fruits 360’ (Antonio, Rael, and Buenavides 2021) down-
loaded from Kaggle 2, which consists of images of 131
classes of fruits with 67692 images for training and 22688
images for validation and (ii) A dataset of images labeled as
‘good’ and ‘bad’ collected for two climacteric fruits (Payasi
and Sanwal 2010; Chen et al. 2018) (banana and papaya) and

2https://www.kaggle.com/datasets/moltean/fruits

Figure 1: Frames of the time-lapse videos with ’age’ labels
capturing the visual degradation patterns of fruits

two non-climacteric fruits (Goldschmidt 1997; Paul, Pandey,
and Srivastava 2012) (strawberry and green colored grapes).
We use web-scraping using similar technique as was re-
ported in (Harini et al. 2021) for collecting ’good’ and ’bad’
fruits dataset. The keywords used for web-scraping are‘good
quality banana’, ‘good banana image’, ‘bad banana image’,
‘bad quality banana’ or ‘banana which has gone bad’, etc.
The statistics and label distribution for collected data is de-
picted in Table 1. We use 80:20 train, validation split of this
data for ‘good’ and ‘bad’ classification of fruit.

For synthesizing data for fine-granular classification and
pairwise comparison tasks we collect the time-lapse videos
from Youtube 3 and other internet sources 4 showcasing se-
quential and visual fruit patterns under regular environmen-
tal conditions.

Out of the available time-lapse videos, very few have
’age’ (number of days old) labels embedded to the video
frames (Statistics in Table 2). To collect data for fine-
granular fruit classification task we use these videos. As
depicted in Figure 1, the embedded labels are not clearly
visible and OCR method (such as Tesseract 5) for label ex-
traction does not yield good results. Hence, the labels are
manually extracted. As different fruits have different perish-
able timeline and degradation rate, the maximum ‘number
of days old’ from the day of harvest label is different for
different fruits (depicted in Table 2). Though we use each
‘number of days old’ label as a distinct class for the classi-
fication task, for the ease of illustration purpose, in Table 1,
we create bins of 5 days to depict the label distribution. We

3https://www.youtube.com/{ watch?v=mdl3Qi1vE8Q,
/watch?v=NSpZ76Fql4s, watch?v=giosqoKwsxI,
/watch?v=1Z4 hWVOA1Q, /watch?v=3BdisW 4mTs,
/watch?v=Mik6yEMIjxI, /watch?v=vjsGYIMQreE,
/watch?v=dTZiBzJvKZs } https://youtu.be/ {QWqMTK56N I,
/Vz-YYt2eJFY ,/JXOp9o5BT18, /OmcXo9XC6Uc,
/watch?v=ERgCeui5bp4,/4Gw9DYsizsw, /M8scWymSp2Y}

4https://www.time-lapse-footage.com/ {video-clip-
1297/timelapse-clip-rotting-strawberry-4k-video-footage ,
/video-clip-123/timelapse-clip-strawberry-timelapse, video-clip-
148/timelapse-clip-bananas, video-clip-197/timelapse-clip-banana
, video-clip-399/timelapse-clip-grapes}

5https://github.com/tesseract-ocr/tesseract



Fruits ’Good’ ’Bad’ ’0-5’ ’5-10’ ’10-15’ ’15-20’ ’20-25’ ’25-30’ Pairs Hard Easy Testset
Banana 95 95 193 246 292 254 142 149 7469 1364 6105 2700
Papaya 82 82 210 287 215 – – – 4430 864 3566 1350

Strawberry 86 86 141 209 81 136 – – 3428 524 2904 1800
G. Grapes 55 55 45 53 56 37 32 40 2176 316 1860 2700

Table 1: Label Distribution of data. For fine granular classification each label ranging from 0 to 30 ‘number of days old’ serves
as a distinct class, however for illustration purpose the train set statistics are presented in the bins of 5 days. Pairs: Total number
of pairs for pairwise comparison including ’Hard’ and ’Easy’ pairs. Testset: images in test set.

Fruits LV LF LDays VWL UF
Banana 4 1276 30 6 4860
Papaya 2 243 15 4 2867

Strawberry 4 567 20 6 2064
G. Grapes 2 263 30 3 1167

Table 2: Training Dataset Statistics.LV: Labelled Videos,
LF: Labeled Frames, LDays: number of days labels, VWL:
Videos without labels, UF: Unlabelled Frames

use 80:20 train, validation split for the fine-granular classifi-
cation, ensuring same label distribution across the splits.

The unlabelled time-laps videos are used to synthesize
pairs for pair-wise comparison task (statistics in Table 2).
We generate easy and hard pairs. Hard pairs are those pair
of fruit frames which do not show significant visual changes
as they are picked up from a short time span in the video,
whereas the easy pairs are frames with bigger time inter-
val and thus significant visual changes that can be easily
be observed. For example, frames with a window size of 1
day does not show significant visual changes and these are
referred as hard pairs. These serve as the borderline cases
of the decision boundary of our fine-granular classification
problem. We use both easy and hard pairs for training for
pair-wise comparison task (Table 1). Distinct frame window
sizes are used for hard and easy frames for distinct fruits.
The average window size for for banana, papaya, strawberry
and grapes for easy frames are 100, 20, 15 and 12 and for
hard frames are 10, 5, 4 and 4, respectively.

For testing purpose, dataset is generated in our labora-
tory. 10 samples of each of the above fruits are allowed to
perish under normal environmental conditions. The images
captured manually with an Android smart phone at three an-
gles (top, left and right), n-times a day (retaining the label
distributions of the train-set), over different duration (banana
-30, papaya -15, strawberry -20 and green grapes -30 days)
in accordance with the ’number of days old’ timelines of
the training dataset. All the videos and images have varying
backgrounds, aspects, and lighting conditions, which simu-
late real-life conditions and thus eliminate the need for fur-
ther augmentations. We plan to make this curated dataset
available for further research purposes.

Approach
The goal is to predict the age of a fruit in terms of ’number
of days old’ from the time of harvesting, provided an image

of the fruit as an input. We perform two experiments.

Figure 2: Architectures of the two Experiments. ’VG-
GFruit’: VGG fine-tuned to incorporate domain knowledge,
’DNNc’: Dense Neural Network for classification, ’DNNp’:
Dense Neural Network for pairwise comparison

In the first experiment (Figure2 (a)), VGG16 network
pretrained on ‘imagenet’ dataset is first fine-tuned with the
‘Fruits-360’ dataset and is further fine-tuned on ‘good’ and
‘bad’ fruit classification task, for domain adaptation. We
call this trained model ‘VGGFruit’. We add a dense layer
(DNNc) on top of ‘VGGFruit’ and further fine-tune the
model for the fine-granular classification task using cross
entropy loss. This final network is tested on the unseen lab
curated test-set to calculate the prediction accuracy.

In the second experiment (Figure 2 (b)), we use ‘VG-
GFruit’ as a shared weight encoder in Siamese setting.
We add a shared weight dense layer (DNNp) and perform
Pairwise-Comparison task with the linear comparison layer
which considers the order between the compared fruit im-
ages in terms of their ‘age’.We use the Bradley Terry as the
comparison model with the negative log-likelihood loss as
depicted in the equation (Yıldız et al. 2019):

L(y(i, j), ŷ(i, j)) = log(1 + e−y(i,j)ŷ(i,j)) (1)

For pairwise comparison, the tuples are of the form
(i, j, y(i, j)), where y(i, j) = +1 represents that video
frame ‘i’ is older (appears later in the video) than frame
‘j’ and y(i, j) = 0 represents video frame ‘j’ is older than
frame ‘i’ in terms of ‘age’ of the fruit. The model gener-
ates comparison label y(i, j) = DNNp(V GGfruit(i)) −
DNNp(V GGfruit(j)) for a pair of fruit images.



Fruits Without Domain Adaptation (Base Model: VGG16) With Domain Adaptation (Base Model: VGGFruit)
Experiment 1 Experiment 2 % Increase Experiment 1 Experiment 2 % Increase

Banana 46.00 50.67 10.15 71.00 82.30 15.92
Papaya 43.24 47.62 10.12 66.13 76.38 15.50

Strawberry 45.12 49.18 9.00 57.00 68.34 19.89
Green Grapes 40.94 46.76 13.92 54.31 66.39 22.24

Average 43.83 48.56 10.80 62.11 73.35 18.38

Table 3: Test-set Accuracy for Experiment 1 and 2, with and without domain adapted base model

Result and Discussion
For pre-training on ‘Fruits-360’ and the fruit classification
(‘good’ and ‘bad’) datasets, 80:20 train, validation split is
used. We identify the best model using early stopping cri-
teria with patience value of 5. For domain adaptation, the
VGG16 model pretrained on Imagenet dataset is fine-tuned
with categorical cross-entropy loss using Stochastic Gradi-
ent Descent (SGD) optimizer, 0.9 momentum and 0.0001
learning rate. For Experiment 1, the model is fine-tuned for
fine-granular classification task using cross entropy loss. In
Experiment 2, the model is trained for pairwise comparison
task with Bradley-Terry loss. For both Experiments, SGD
optimizer, 0.9 momentum and 0.0001 learning rate are used
to train the model.

For both the experiments, the models are tested with the
unseen lab curated test-set (Section ’Dataset Collection and
Preperation’). The results are depicted in Table 3. As it can
be observed, Experiment 2 performs significantly better than
Experiment 1 implying the advantage of transfer learning.
The prediction accuracy obtained in case of fine-granular
classification task for Experiment 1 (3) is much less due to
scarcity of labelled training data. The knowledge embedded
in the weights of the ‘VGGfruit’ encoder fine-tuned with the
‘Pairwise-Comparison’ task as the part of Experiment 2 fa-
cilitates the fine-granular classification task and thus brings
in the improvement in the performance. The improvement
is depicted in Table 3 in terms of percentage increase in
prediction accuracy. The percentage increase in predicted
test accuracy is calculated as (((Experiment 2 accuracy -
Experiment 1 accuracy) / Experiment 1 accuracy) * 100).
The average percentage increase in the test accuracy for all
fruits combined is 18.38%. We perform an ablation where
we use VGG16 as the base model with and without domain
adaptation by fine-tuning with Fruits 360 and ‘good’,‘bad’
fruit classification data. It is observed that overall predic-
tion accuracy improves with the domain knowledge (Table
3). Also, the transfer learning form the pair-wise comparison
task helps more in case of the domain adapted model.

From the Tables 2 and 3, it is observed that the predic-
tion accuracy of Experiment 1 for distinct fruits is propor-
tional to the data available for the fine-granular classification
task. Also, the fruit-wise prediction accuracy improvement
in case of Experiment 2, is directly proportional to the avail-
ability of the pair-wise comparison data per fruit.

We perform error analysis to qualitatively analyze the
samples which are mis-classified. We observe that most of
the errors in predictions are due to the samples getting mis-
classified with the adjacent ‘number of days old’ class la-

bels. We also observe that the improvement in the prediction
accuracy in Experiment 2 as compared to the Experiment 1
is mostly due to correction in these mis-classifications. This
is specifically because of inclusion of the hard pairs for the
pairwise comparison task, facilitating the fine-granular clas-
sification to improve the prediction accuracy by reducing the
number of samples mis-classified with the adjacent ‘number
of days old’ class labels.

From the results reported in Table 3, we also observe
that the improvements in test accuracy from Experiment 1
to 2 are more in case of climacteric fruits (banana and pa-
paya) than in case of non-climacteric fruits (strawberry and
green grapes). The reason for this is that for the climacteric
fruits the degradation changes, which can be observed as
they ripen over time are more systematic. On the other hand,
the degradation pattern in case of non-climacteric fruits is
abrupt and also the visual changes while they degrade are
not significant. Thus, the models can better capture the vi-
sual degradation pattern shown by climacteric fruits as com-
pared to the non-climacteric fruits, leading to better results.

Conclusion & Future Work

Our work reports the use of a non-invasive vision-based
technique to predict the current age of the fruits in terms
of ‘number of days old’ label. We further conclude that
the transfer learning with the ’Pairwise Comparison’ task
facilitates the fine-granular ‘age’ classification task having
sparsely annotated data, leading to 18.38 % increase in the
test accuracy .

To showcase the efficacy of our approach we have started
with fruits class as they have a much shorter shelflife, a faster
degradation rate and significant visible degradation patterns.
However, in future, we plan to use the technique to predict
the ‘age’ of other perishable fruits, vegetables, dairy prod-
ucts and different kinds of meat which portrays significant
visual degradation pattern under varying temperature and
humidity conditions. We also plan to define this task as or-
dered regression and add other modality inputs such as emit-
ted gases to see if this type of modelling leads to better per-
formance.
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