
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM STATIC TO DYNAMIC: LEVERAGING IMPLICIT
BEHAVIORAL MODELS TO FACILITATE TRANSITION IN
OFFLINE-TO-ONLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transitioning reinforcement learning (RL) models from offline training environ-
ments to dynamic online settings faces critical challenges because of the distri-
butional shift and the model inability in effectively adapting to new, unseen sce-
narios. This work proposes the Behavior Adaption Q-Learning (BAQ), a novel
framework facilitating smoother transitions in offline-to-online RL. BAQ strate-
gically leverages the implicit behavioral model to imitate and adapt behaviors of
offline datasets, enabling the model to handle out-of-distribution state-action pairs
more effectively during its online deployment. The key to our approach is the in-
tegration of a composite loss function that not only mimics the offline data-driven
policy but also dynamically adjusts to new experiences encountered online. This
dual-focus mechanism enhances the model’s adaptability and robustness, reducing
Q-value estimation errors and improving the overall learning efficiency. Extensive
empirical evaluations demonstrate that BAQ significantly outperforms existing
methods, achieving enhanced adaptability and reduced performance degradation
in diverse RL settings. Our framework sets a new standard for offline-to-online
RL, offering a robust solution for applications requiring reliable transitions from
theoretical training to practical, real-world execution.

1 INTRODUCTION

Offline reinforcement learning (RL) has attracted impressive attention for its ability to learn poli-
cies from the offline static datasets without requiring direct interaction with the environment (Xie
et al., 2021; Zhang & Zanette, 2024). This is particularly valuable in critical domains such as
robotics Rafailov et al. (2023), navigation Zhao et al. (2023), and manipulations Rajeswaran et al.
(2017), where collecting real-time data is either unsafe, impractical, or prohibitively expensive.
However, deploying the models that are trained from the offline dataset in dynamic real-world en-
vironments poses severe challenges. Since the static datasets are generated by unknown behavior
policies, they often lack crucial information on rare or unexplored states and actions (Fu et al.,
2020). When the trained model is deployed in a real-world environment, it encounters the out-of-
distribution (OOD) data (Yang et al., 2022), i.e., unseen state-action pairs, which have a different
distribution from the offline dataset. This distributional mismatch between the OOD data and the
offline dataset results in inaccurate Q-value estimates, which in turn misguide the agent’s policy and
result in learning performance degradation, a problem referred to as bootstrap error (An et al., 2021).

A variety of solutions have been proposed to rectify the Q- estimation caused by the bootstrap er-
ror (Bai et al., 2022). Among these, some methods impose conservative constraints during offline
training to penalize the overestimation of Q-values for OOD actions. For instance, conservative
Q-learning (CQL) (Kumar et al., 2020) trains pessimistic value functions (Wu et al., 2021; Blanchet
et al., 2024) that inherently bias the agent towards more conservative actions, thereby reducing the
risk of overestimation. However, these conservative methods impede the learning process caused by
excessively restricting the policy, which limits the agent’s ability to explore and refine the initial of-
fline policy. Other methods prioritize the inclusion of online samples during fine-tuning, thereby al-
lowing the agent to adjust its Q-value estimates based on more current and relevant experiences (Wu
et al., 2019; Lee et al., 2021). Aiming to balance replay buffers, these methods help the agent move
beyond the constraints of the offline dataset. In addition, behavior regularization methods constrain

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the policy to remain close to the behavior policy used during offline training in order to mitigate
the impact of OOD data (Ran et al., 2023). However, many of these approaches are sensitive to hy-
perparameter tuning, which require careful tuning to achieve the right balance between leveraging
offline data and adapting to online samples. Additionally, the methods relying on estimating density
ratios or measuring distributional divergences between offline and online data are resource-intensive
and difficult to implement (Peng et al., 2023; Li et al., 2022). These challenges highlight the need
for more robust, scalable, and computationally efficient approaches to managing distribution shift
in offline-to-online RL, which would acheive accurate Q-value estimation and stable policy updates
during the transition to online fine-tuning(Prudencio et al., 2023).

This work introduces a novel framework for enhancing online fine-tuning in offline-to-online RL
by leveraging a behavior cloning model trained on offline datasets. Our approach is specifically
designed to facilitate the transition from offline-trained models to dynamic environments, enabling
agents to quickly adapt to new conditions without performance degradation. Below we outline the
significant contributions of our work:

1. Behavior Cloning Integration: We deploy a behavior cloning model that serves as a foun-
dational reference for adapting to the new data encountered in online fine-tuning. This
model is instrumental in predicting and adjusting to discrepancies between behaviors of of-
fline dataset and actual online interactions, thus smoothing the offline-to-online transition.

2. Dynamic Q-value Adjustment: Our methodology introduces a modification to the loss
function that uses insights from the behavior cloning model to dynamically adjust Q-value
estimations. By computing a weighting factor that diminishes the impact of novel state-
action pairs, we mitigate the risk of significant Q-estimation errors with OOD data.

3. Priority-Based Sample Rebalancing: We refine the replay buffer strategy through a pri-
ority sampling strategy, where sample priorities are dynamically adjusted based on their
deviation from the behavior cloning model’s predictions. This strategy effectively biases
training towards transitions more aligned with the current policy.

4. Empirical Validation and Performance Gains: Extensive empirical analyses demon-
strate that our framework significantly outperforms existing methods in offline-to-online
RL. These results highlight the practical benefits of our contributions from simulated or
theoretical training environments to real-world conditions.

These contributions systematically address the limitations inherent in traditional offline-to-online
learning transitions and set a new benchmark for the field, offering methodologies that can be di-
rectly applied or adapted for a wide range of practical reinforcement learning applications.

2 RELATED WORK

Offline-to-online reinforcement learning (RL) has gained increasing attention as it allows models
trained on static datasets to be fine-tuned through dynamic, real-time interactions. The transition
from offline to online presents several challenges, including Q-value estimation errors (Ghasemipour
et al., 2021), distributional shift (Qi et al., 2022), and efficient sampling strategies (Guo et al., 2023).
Below, we provide a structured overview of the existing methods seeking to address these issues.

Reducing Q-Value Estimation. A major challenge in offline-to-online RL is the accurate Q-
value estimation, especially when agents encounter OOD data during online fine-tuning. Q-value
estimation errors can lead to suboptimal policy updates, limiting the agent’s performance. Both
SO2 (Zhang et al., 2024) and SUF (Feng et al., 2024) address this issue via reducing bias in Q-
value estimation during the online training phase. SO2 introduces a perturbed value update method
to smooth out biased Q-values and prevent premature exploitation of suboptimal actions. Simi-
larly, SUF manages Q-value estimation by adjusting the Update-to-Data (UTD) ratio, which helps
prevent overfitting to the offline dataset and allows the agent to explore more effectively during fine-
tuning. Meanwhile, Cal-QL (Nakamoto et al., 2024) and FamO2O (Wang et al., 2024) adopt a more
adaptive approach to Q-value estimation by calibrating the Q-values during the offline phase and
progressively updating them as the agent encounters new data online.

Managing Distributional Shift. Managing distributional shift is crucial in offline-to-online RL,
as offline-trained policies can struggle to generalize when faced with novel online data. Methods

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

like GCQL (Zheng et al., 2023) and Off2On (Lee et al., 2022) balance conservative offline training
with more exploratory updates during online fine-tuning. GCQL adopts greedy update strategy to
adapt to new data, while Off2On uses a balanced replay buffer to prioritize near-on-policy sam-
ples. The method in Ball et al. (2023) deploys the Layer Normalization (LayerNorm) to prevent the
over-extrapolation during online interactions. Along with symmetric sampling, it improves policy
stability and performance. Additionally, PEX (Yu & Zhang, 2023) mitigates distributional shifts by
retaining the offline policy while adapting a new policy to the online environment. These methods
emphasize balancing conservatism and exploration to manage distribution shifts effectively.

Issues in Existing Works. Existing offline-to-online RL methods fail to directly address the key
challenges during the transition phase. Rather than using the behavior of the offline data to directly
guide the online policy, they often rely on indirect mechanisms such as imposing constraints, con-
servative updates, or introducing additional measurements like bias correction or pessimistic value
estimates. These methods slow down learning and lead to instability during fine-tuning as well.
A more direct approach, free from such adjustments, would allow smoother transitions and faster
learning.

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING

RL is a framework in which an agent learns to maximize cumulative rewards by interacting with
an environment (Ernst & Louette, 2024; Mahadevan, 1996). The problem is often modeled as a
Markov Decision Process (MDP), defined by a tuple (S,A, P,R, γ), where S is the state space,
A is the action space, P (s′|s, a) is the transition probability, R(s, a) is the reward function, and
γ ∈ [0, 1) is the discount factor. At each timestep t, the agent observes a state st, takes an action
at ∈ A, receives a reward rt = R(st, at), and then transitions to a new state st+1 according to
P (st+1|st, at). The goal in RL is to find a policy π(a|s) that maximizes the expected cumulative
return:

π∗ = argmax
π

Eπ

[∞∑
t=0

γtR(st, at)

]
. (1)

As for offline RL, the agent learns exclusively from a static dataset D = {(s, a, r, s′)} that is col-
lected by a behavior policy µ, without further interaction with the environment. The primary chal-
lenge in offline RL is that the dataset D typically has limited coverage of the state-action space,
leading to Q-function overestimation for OOD actions. This overestimation can result in suboptimal
policies when deployed online. After offline training process, offline-to-online RL extends offline
learning by allowing the agent to fine-tune its policy through limited online interaction. During the
fine-tuning phase, the agent is expected to balance the knowledge learned from the offline dataset
with new experiences from the online phase, adapting the policy without overfitting to OOD ac-
tions or destabilizing the learning process. Ensuring stability during this transition is crucial for the
success of offline-to-online RL.

3.2 BEHAVIORAL CLONING

Behavioral Cloning (BC) (Torabi et al., 2018) is a supervised learning method used to train an agent
to imitate the actions demonstrated by an expert or recorded in a dataset. The goal of BC is to
directly learn a policy πθ(a|s) that predicts actions a given states s by minimizing the error between
the predicted actions and the expert actions. The loss function for BC is typically defined as the
negative log-likelihood of the expert actions under the learned policy:

LBC = E(s,a)∼D [− log π(a|s)] , (2)

where (s, a) ∼ D denotes the state-action pairs (s, a) sampled from the dataset D, and π(a|s)
represents the probability that the policy π takes action a in state s. The objective is to maximize
the likelihood of taking the expert’s actions in the given states.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.3 CONSERVATIVE Q-LEARNING

Conservative Q-Learning (CQL) (Kumar et al., 2020) is an offline RL algorithm designed to address
the overestimation problem caused by OOD actions in the dataset. CQL modifies the Q-value up-
dates by regularizing the policy towards actions seen inside the dataset and penalizing Q-values for
actions outside the dataset.

CQL minimizes the following loss function, which penalizes large Q-values for unseen actions:

LCQL(Q) = α · Es∼D [log
∑

a′ exp(Q(s, a′))−Q(s, a)] + 1
2 · E(s,a,s′)∼D

[(
Q(s, a)− B̂πQ̂target(s, a)

)2]
. (3)

Here, α is a hyperparameter controlling the degree of conservatism. The loss function has two main
terms. The first term encourages the Q-values of actions a from the dataset D to be higher than those
for other actions a′ (potentially sampled from a broader action space), thus penalizing the Q-values
for OOD actions and reducing overestimation. The second term is a standard temporal difference
(TD) loss, which aligns the Q-values with the target Q-values, promoting accurate estimation of
actions in the dataset. Minimizing this loss enables CQL to obtain conservative Q-value estimates
for actions that are insufficiently represented in the offline dataset, for which the overestimation risks
are effectively mitigated.

3.4 IMPLICIT Q-LEARNING

Implicit Q-Learning (IQL) (Kostrikov et al., 2021) is an offline RL algorithm designed to address
the challenge of overestimating Q-values for OOD actions without explicitly querying these un-
seen actions. IQL achieves this by leveraging expectile regression, which enabling the algorithm to
prioritize actions that are well-supported by the offline dataset.

The τ -expectile provides a flexible way to balance between mean-based estimation (τ = 0.5) and
maximizing Q-values (τ → 1). The value function is learned by minimizing the following expectile
regression loss:

LIQL(V) = E(s,a)∼D
[
L2
τ (Q(s, a)− V (s))

]
, (4)

where L2
τ (u) = |τ − 1(u < 0)|u2. Once the value function is learned, the Q-function is updated by

minimizing the mean squared error loss between the Q-values and the expected returns, incorporat-
ing the learned value function to handle stochastic transitions in the environment. The Q-function
update is expressed as:

LIQL(Q) = E(s,a,s′)∼D

[
(r(s, a) + γV (s′)−Q(s, a))

2
]
. (5)

IQL extracts the policy through advantage-weighted behavioral cloning, where the learned Q-
function is deployed to prioritize actions with higher advantages. The final policy maximizes Q-
values while maintaining proximity to the behavior policy from the offline dataset. It prevents di-
vergence from the data for stable performance in offline settings. By alternating between expectile
regression and Q-function updates, IQL efficiently performs multi-step dynamic programming, re-
sulting in robust policy performance.

4 METHODOLOGY

4.1 THE OOD NATURE

Offline-to-online RL offers significant advantages by allowing agents to be pre-trained on static
datasets, reducing the amount of costly and time-consuming online interactions required. How-
ever, a major challenge arises when transitioning from offline training to online fine-tuning: the
state-action pairs encountered during the online phase often differ substantially from those in the
offline dataset. This results in a significant distribution shift, introducing a large amount of OOD
data into the agent’s experience buffer. The presence of OOD data can lead to inaccurate Q-value
estimations, which in turn destabilizes the learning process. As the agent attempts to adapt to the
new environment, these errors in Q-value estimation can misguide policy updates, leading to perfor-
mance degradation and slower learning progress. Addressing this challenge is critical for efficient
and stable fine-tuning in offline-to-online RL.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3
MSE

0

200

400

600

800

1000

Fr
eq

ue
nc

y

a hopper-medium
Offline model

0.0 0.1 0.2 0.3
MSE

0

200

400

600

800

1000

Fr
eq

ue
nc

y

b walker2d-medium-expert
Offline model

0.0 0.1 0.2 0.3
MSE

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

c hopper-medium
BC model

0.0 0.1 0.2 0.3
MSE

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

d walker2d-medium-expert
BC model

Figure 1: Comparison between the actions generated
by the model and those in the offline dataset. (a, b)
show the results by the offline-trained model. (c, d)
show the results by the BC model trained on the offline
dataset.

To demonstrate this, we re-sample ac-
tions using the well-trained offline model,
based on states from the offline dataset.
As shown in Fig. 1a and 1b, even when
the model is exposed to states identical
to those in the offline dataset, the actions
it produces often deviate from the corre-
sponding actions in the dataset. This de-
viation highlights the OOD nature of the
model’s behavior, which arises when the
model begins interacting with the environ-
ment and generating actions on its own.
To tackle this challenge, accurately repre-
senting the offline data distribution is es-
sential, as it provides a stable reference for
the agent during its transition to online in-
teractions. This motivates our exploration
of behavior cloning (BC) as a potential so-
lution. By replicating the policy that gen-
erated the offline dataset, BC helps keep
the agent’s actions aligned with expert be-
havior. As depicted in Fig. 1c and 1d, BC
significantly reduces the mean squared er-
ror (MSE) between the model’s predicted
actions and the offline dataset, demonstrating its effectiveness in stabilizing the learning process
during the offline-to-online transition and thus mitigating the OOD issue.

4.2 REDUCING Q-VALUE ESTIMATION BIAS WITH WEIGHTED Q-LEARNING

We begin by training a behavior cloning (BC) model, πBC , on an offline dataset, which serves as
the reference policy. During online fine-tuning, a second policy, πon started from offline training
process, interacts with the environment and collects new state-action pairs. These interactions, along
with the offline data, are stored in a replay buffer. Since πon encounters the OOD data that are not
well-covered by the offline dataset, this could lead to inaccurate Q-value estimates. To address
this, we introduce a weighting mechanism that adjusts the Q-value updates based on the alignment
between πBC and πon.

To ensure stable learning, we define a distance measure that quantifies the divergence between the
actions predicted by the offline policy πBC and the actions stored in the replay buffer, which consists
of data from both offline and online interactions. both offline and online interactions. The weight
w(s, a) for each state-action pair (s, a) is given by:

w(s, a) = exp

(
−

mean
(
(πBC(s)− a)2

)
kq

)
. (6)

Here, the parameter kq is a scalar that controls the sensitivity of the weight to the action differences.
This weight penalizes large discrepancies between the actions of πBC and the observed actions,
guaranteeing that the fine-tuning process gives more importance to regions of the state space where
the policies are more aligned. We incorporate the distance measure w(s, a) into the Q-loss functions
of both CQL and IQL to stabilize Q-value updates during fine-tuning.

with CQL: To incorporate the weighting mechanism, we modify the conservative penalty term of
CQL in Eq. 3 as follows:

1

2
· E(s,a,s′)∼D

[
w(s, a) ·

(
Q(s, a)− B̂πQ̂target(s, a)

)2]
. (7)

Eq. 7 addresses Q-value bias during online fine-tuning by weighting updates based on the similarity
between actions from the offline-trained policy πBC and the replay buffer, which contains both
offline and online data. The weight w(s, a) reduces the impact of OOD data, enabling the updates

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

to concentrate state-action pairs aligned with πBC . This helps mitigate Q-value overestimation and
stabilizes learning.

with IQL: IQL first learns a value function, and then updates the Q-function using the learned
value function to handle stochastic transitions in the environment. On the basis of Eq. 4, the value
function is learned by minimizing the following weighted loss:

LIQL(V) = E(s,a)∼D
[
w(s, a) · L2

τ (Q(s, a)− V (s))
]
. (8)

The weight w(s, a) adjusts the importance of each state-action pair, which concentrates more on
state-action pairs where the online policy aligns with the policy πBC . Once the value function is
learned, the Q-function is updated by minimizing the following weighted loss:

LIQL(Q) = E(s,a,s′)∼D

[
w(s, a) · (r(s, a) + γV (s′)−Q(s, a))

2
]
. (9)

By incorporating the weight w(s, a) into both the value and Q-function updates, the learning process
emphasizes regions of the state-action space where the online policy is more closely aligned with
the behavior of the offline data.

4.3 BC-DIVERGENCE PRIORITY SAMPLING FOR FINE-TUNING

The new data collected through interactions with the environment offer valuable insights that are
absent from the offline dataset, which captures previously unseen states and actions. This fresh
information is essential for fine-tuning the online policy, as it helps the agent adapt to novel situations
more effectively. Given this insight, we design a priority sampling mechanism for the replay buffer
that optimally balances learning from both the most informative new data and the critical offline data,
ensuring efficient adaptation and policy improvement. The priority of a new transition (s, a, s′, r) is
calculated as:

ρ =

(
∥πBC(s)− a∥

kρ
+ 1

)α

, (10)

where kρ is a normalization constant that controls the scale of the divergence, and α is a hyperparam-
eter that controls the sensitivity of the priority to the action differences. The sampling probability of
each transition (s, a, s′, r)i in the replay buffer is then determined as: P(s,a,s′,r)i =

ρi∑
j ρj

.

Our proposed mechanism prioritizes transitions where the online policy deviates significantly from
the behavior cloning policy. By focusing on these transitions, the model can better learn from the
new state-action pairs it encounters during online interactions.

4.4 PRACTICAL ALGORITHM

The Algorithm 1 outlines the steps for our proposed Behavior Adaption Q-Learning (BAQ). BAQ
starts by training a BC model πBC on an offline dataset, followed by the priority sampling and
weighted Q-learning during the online fine-tuning phase. The priority sampling guarantees that the
replay buffer emphasizes transitions most beneficial for policy improvement, while the weighted
Q-learning updates refine Q-value estimates based on the alignment between πBC and the online
policy πon.

5 EXPERIMENTS

5.1 ENVIRONMENTS SETUP

Evaluation. We evaluate BAQ on MuJoCo (Todorov et al., 2012) tasks from the D4RL-v2 dataset1,
which includes three environments: HalfCheetah, Walker2d, and Hopper. Each environment con-
tains datasets collected by policies of varying quality, categorized as Medium, Medium-Replay, and
Medium-Expert. We report the performance on the standard normalized scores in D4RL, averaged
over 4 seeds.

1https://github.com/Farama-Foundation/D4RL

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Behavior Adaption Q-Learning (BAQ)

1: Initialize: Behavior cloning policy πBC from offline dataset
2: Initialize: Offline policy πoff as πon and associated Q networks from offline training process
3: Initialize: Replay buffer D with offline data, set priority ρ = 1 for all offline transitions
4: for each iteration do
5: Interact with environment using πon and collect new transitions
6: Store new interactions in D with priority ρ in Eq. 10
7: Sample batch {(s, a, r, s′, ρ)} from D using priority sampling
8: Compute weight w(s, a) for transitions in batch using Eq. 6.
9: Update the Q-functions using LCQL in Eq. 7 or LIQL in Eq. 8 and Eq. 9

10: Update policy πon

11: end for

Setup. We train the BC policy πBC for 1 million steps with a learning rate of 3×10−4.Our algorithm
is built upon the FamO2O framework, with both offline agents, CQL and IQL, implemented in the
JAX version2. All models are pre-trained for 1 million steps using a learning rate of 3 × 10−4,
maintaining consistency throughout the training process. For the hyperparameters used in BAQ, we
set (kq = 1, kρ = 2) for larger datasets (Medium-Expert) and (kq = 2, kρ = 1) for smaller datasets
(Medium-Replay) in both IQL and CQL. For the Medium dataset, we use (kq = 2, kρ = 0.5) in CQL
and (kq = 0.5, kρ = 0.5) in IQL. More implementation details, including specific hyperparameter
settings, can be found in the Appendix.

Comparison. We evaluate the following baselines, starting with offline-trained models and applying
specific techniques during the online fine-tuning phase:

• IQL Kostrikov et al. (2021): A value-based RL method that learns from offline data with-
out explicitly estimating the behavior policy, utilizing expectile loss to strike a balance
between over- and underestimation.

• CQL Kumar et al. (2020): A pessimistic offline RL method that penalizes overestimation
of OOD actions, promoting stability during offline-to-online transitions.

• SO2 Zhang et al. (2024): A method that smooths biased Q-value estimates, preventing
the exploitation of suboptimal actions during fine-tuning. SO2 is applied to both IQL and
CQL. Further details are provided in the Appendix.

• SUF Feng et al. (2024): A method that stabilizes fine-tuning by adjusting update ratios,
thereby preventing policy collapse. SUF is applied to both IQL and CQL. Additional details
are available in the Appendix.

• Off2On Lee et al. (2022): A method that employs balanced replay and a pessimistic Q-
ensemble to stabilize fine-tuning, mitigating distribution shift.

For fair comparison, none of the baselines use an ensemble strategy. Advanced methods such as
FamO2O are excluded because they require access to the offline training phase for constructing
policy families or calibrating Q-values. Since our setup begins with pre-trained offline models,
these methods are not applicable during the fine-tuning phase.

5.2 MAIN RESULTS

As shown in Tab. 1, we evaluate IQL and CQL, along with their various extensions, across several lo-
comotion tasks. The results highlight the effectiveness of our proposed method in both IQL and CQL
settings. For the IQL experiments, although IQL+SO2 perform best on Hopper-Medium-Expert
(94.6), our method demonstrates competitive results across most tasks, particularly in HalfCheetah-
Medium-Expert, where it achieves 78.5, outperforming other IQL variants. In the CQL comparisons,
our method shows significant improvements again, achieving much higher scores than the base CQL
algorithm. Overall, our approach not only surpasses all baseline methods in total scores for both IQL
and CQL but also demonstrates strong stability and generalization across diverse tasks. This under-

2https://github.com/LeapLabTHU/FamO2O

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

IQL IQL + SO2 IQL + SUF IQL + Ours CQL CQL + SO2 CQL + SUF CQL + Ours
halfcheetah-me 85.1 ±6.3 81.2 ±7.8 75.2 ±13.1 78.5 ±11.2 57.0 ±19.0 39.5 ±7.7 40.2 ±8.8 75.3 ±11.4
hopper-me 61.9 ±45.0 94.6 ±23.0 92.9 ±19.3 88.7 ±28.3 93.3 ±23.0 59.8 ±28.2 43.4 ±23.0 102.3 ±14.7
walker2d-me 109.6 ±1.4 107.9 ±3.2 108.7 ±1.0 109.9 ±1.8 110.1 ±0.6 101.6 ±11.2 89.6 ±19.1 109.3 ±0.99

halfcheetah-mr 44.8 ±1.3 44.7 ±0.6 43.4 ±2.5 44.7 ±0.7 47.8 ±0.4 46.5 ±0.9 45.9 ±1.2 46.0 ±0.95
hopper-mr 83.4 ±15.3 52.7 ±15.9 47.0 ±6.43 86.1 ±19.0 95.3 ±2.5 84.8 ±15.8 79.1 ±22.4 92.8 ±9.5
walker2d-mr 66.2 ±14.8 60.9 ±8.2 63.6 ±13.9 76.3 ±10.5 82.3 ±4.4 69.4 ±9.5 54.3 ±15.8 76.2 ±6.0

halfcheetah-m 47.7 ±0.5 46.1 ±0.4 45.9 ±0.4 47.7 ±0.3 48.6 ±0.5 46.8 ±0.6 45.6 ±0.8 48.4 ±0.46
hopper-m 64.5 ±9.7 55.8 ±5.9 51.5 ±4.5 70.6 ±8.4 70.8 ±4.2 57.1 ±10.1 58.2 ±11.6 68.9 ±8.48
walker2d-m 80.4 ±6.0 74.3 ±8.7 71.6 ±7.7 83.9 ±3.1 82.7 ±0.7 59.0 ±13.7 69.6 ±9.0 82.4 ±1.63

Total 643.44 618.27 599.71 686.26 687.92 564.61 525.95 702.32

Table 1: Performance comparison of IQL and CQL variants during the initial 30,000 steps of online
fine-tuning across different datasets. me = medium-expert, mr = medium-replay, and m = medium.

scores the robustness and efficiency of our method in handling the challenges of offline-to-online
RL.

In addition, both SO2 and SUF struggle significantly during the initial stages of online training.
Although these methods show some advantages over the original CQL or IQL algorithms in later
stages, they perform poorly without the cooperation of advanced techniques like the Q-ensemble,
which helps mitigate issues such as overestimation and instability. This highlights a limitation of
these approaches when used independently. In contrast, our method has a robust performance from
the beginning without relying on such additional mechanisms. We emphasize that our compar-
isons are made fairly against the original algorithms. Our concentration on the core idea without
incorporating extra optimizations guarantees a more direct and valid evaluation of performance im-
provements.

5.3 BC-DIVERGENCE PRIORITY SAMPLING

Dataset CQL OFF2ON Our-S
halfcheetah-me 56.95 59.95 65.02
hopper-me 93.29 94.84 97.61
walker2d-me 110.10 109.65 109.52
halfcheetah-mr 47.83 47.20 46.56
hopper-mr 95.32 96.54 97.64
walker2d-mr 82.29 82.33 76.06
halfcheetah-m 48.63 48.47 48.24
hopper-m 70.83 68.14 68.48
walker2d-m 82.69 81.72 81.61
Total 687.92 688.83 690.74

Table 2: Performance comparison of CQL,
OFF2ON, and Our-S across different tasks.

The Tab. 2 presents a comparison between
CQL, OFF2ON, and our method’s Our-S vari-
ant, one of the two key components in our ap-
proach. While Our-S demonstrates improve-
ments in certain tasks, such as HalfCheetah-
Medium-Expert (65.02) and Hopper-Medium-
Expert (97.61), the performance gains are
not overwhelming. In tasks like Walker2d-
Medium-Replay and HalfCheetah-Medium-
Replay, Our-S performs slightly below CQL
and OFF2ON. Despite these mixed results,
Our-S still achieves the highest total score of
690.74, slightly outperforming CQL (687.92)
and OFF2ON (688.83). This suggests that:
while our sampling strategy has advantages in
certain scenarios, its improvements are incre-
mental rather than dramatic, contributing to a balanced enhancement across various tasks rather
than a dominant performance.

5.4 DETAILS IN TRAINING PROCESS

Fig. 2 shows a comparison between IQL, SO2, SUF, and BAQ, revealing a nuanced performance
across various tasks. Our BAQ consistently leads in most tasks with higher normalized scores early
in the fine-tuning process. Notably, BAQ demonstrates a strong response right from the beginning,
consistently outperforming other methods in the initial stages. In contrast, SO2 and SUF exhibit
more of a struggle during the early training phase. In summary, our BAQ method proves to be
highly effective, particularly in the early stages of fine-tuning.

5.5 ABLATION STUDY

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1 2 3
Steps (×1e4)

44

46

48

N
or

m
al

iz
ed

 S
co

re

halfcheetah-medium-replay
IQL SO2 SUF BAQ

0 1 2 3
Steps (×1e4)

50

72

94

N
or

m
al

iz
ed

 S
co

re

hopper-medium-replay
IQL SO2 SUF BAQ

0 1 2 3
Steps (×1e4)

57

68

79

N
or

m
al

iz
ed

 S
co

re

walker2d-medium-replay
IQL SO2 SUF BAQ

0 1 2 3
Steps (×1e4)

46

48

50

N
or

m
al

iz
ed

 S
co

re

halfcheetah-medium
IQL SO2 SUF BAQ

0 1 2 3
Steps (×1e4)

52

63

74

N
or

m
al

iz
ed

 S
co

re

hopper-medium
IQL SO2 SUF BAQ

0 1 2 3
Steps (×1e4)

72

78

84

N
or

m
al

iz
ed

 S
co

re

walker2d-medium
IQL SO2 SUF BAQ

Figure 2: Training processes comparison of IQL, SO2, SUF, and our BAQ across various tasks.

me mr m Total
-35

-30

-25

-20

-15

-10

-5

0

5

D
iff

er
en

ce
 fr

om
 O

ur
s

Ablation Study in CQL

w/o Our-S w/o Our-Q

me mr m Total
-35

-30

-25

-20

-15

-10

-5

0

5

D
iff

er
en

ce
 fr

om
 O

ur
s

Ablation Study in IQL

w/o Our-S w/o Our-Q

Figure 3: Ablation results for showing the performance
drop when removing key components.

The ablation study in Fig. 3 illustrates
the impact of removing key components,
Our-Q and Our-S, from both CQL and
IQL. The results show noticeable per-
formance degradation across all datasets,
particularly in the Medium-Expert (me)
and Medium-Replay (mr) settings, with
the difference from our full method rang-
ing from -5 to -30 normalized score
points. Additionally, as the weighting term
w(s, a) in the Q loss function slows down
the update progress, the performance of
Our-Q tends to be lower than that of Our-
S. This is reflected in the results where
removing Our-Q causes a more signifi-
cant performance drop compared to Our-
S. Overall, the results highlight the critical
role both components play in maintaining
the strong performance of our full method,
particularly in enhancing the stability and
efficiency of the fine-tuning process in offline-to-online RL.

6 CONCLUSION

In this paper, we innovate Behavior Adaption Q-Learning (BAQ), a framework designed to facilitate
smooth transitions from offline to online RL by integrating behavioral cloning and dynamic Q-value
adjustment. Our prososed weighted loss functions and priority sampling address the issues of Q-
value overestimation and distribution shift, respectively. Extensive experiments demonstrate that
BAQ outperforms baseline methods such as IQL, CQL, SO2, and SUF. While BAQ shows robust
performance and potential for broader applications, its effectiveness is limited by the size of the of-
fline dataset, which can impact its ability to generalize during online fine-tuning. Future work could
investigate strategies to reduce this dependency on large datasets, potentially through data-efficient
learning techniques. Additionally, extending BAQ to more complex real-world environments could
further validate its applicability and scalability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR,
2023.

Jose Blanchet, Miao Lu, Tong Zhang, and Han Zhong. Double pessimism is provably efficient
for distributionally robust offline reinforcement learning: Generic algorithm and robust partial
coverage. Advances in Neural Information Processing Systems, 36, 2024.

Damien Ernst and Arthur Louette. Introduction to reinforcement learning. Feuerriegel, S., Hart-
mann, J., Janiesch, C., and Zschech, P, pp. 111–126, 2024.

Jiaheng Feng, Mingxiao Feng, Haolin Song, Wengang Zhou, and Houqiang Li. Suf: Stabilized
unconstrained fine-tuning for offline-to-online reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 11961–11969, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max q-learning operator for simple yet effective offline and online rl. In International Conference
on Machine Learning, pp. 3682–3691. PMLR, 2021.

Siyuan Guo, Lixin Zou, Hechang Chen, Bohao Qu, Haotian Chi, S Yu Philip, and Yi Chang. Sample
efficient offline-to-online reinforcement learning. IEEE Transactions on Knowledge and Data
Engineering, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-based
reinforcement learning. In International Conference on Learning Representations, 2021.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Jixiang Li, Ji Liu, Ce Zhang, and Bin Cui. Hyper-
tune: Towards efficient hyper-parameter tuning at scale. arXiv preprint arXiv:2201.06834, 2022.

Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algorithms, and empiri-
cal results. Machine learning, 22(1):159–195, 1996.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Zhiyong Peng, Changlin Han, Yadong Liu, and Zongtan Zhou. Weighted policy constraints for
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 9435–9443, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Han Qi, Yi Su, Aviral Kumar, and Sergey Levine. Data-driven offline decision-making via invariant
representation learning. Advances in Neural Information Processing Systems, 35:13226–13237,
2022.

Rafael Rafailov, Kyle Beltran Hatch, Victor Kolev, John D Martin, Mariano Phielipp, and Chelsea
Finn. Moto: Offline pre-training to online fine-tuning for model-based robot learning. In Confer-
ence on Robot Learning, pp. 3654–3671. PMLR, 2023.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Yuhang Ran, Yi-Chen Li, Fuxiang Zhang, Zongzhang Zhang, and Yang Yu. Policy regularization
with dataset constraint for offline reinforcement learning. In International Conference on Machine
Learning, pp. 28701–28717. PMLR, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

Shenzhi Wang, Qisen Yang, Jiawei Gao, Matthieu Lin, Hao Chen, Liwei Wu, Ning Jia, Shiji Song,
and Gao Huang. Train once, get a family: State-adaptive balances for offline-to-online reinforce-
ment learning. Advances in Neural Information Processing Systems, 36, 2024.

Runzhe Wu, Yufeng Zhang, Zhuoran Yang, and Zhaoran Wang. Offline constrained multi-objective
reinforcement learning via pessimistic dual value iteration. Advances in Neural Information Pro-
cessing Systems, 34:25439–25451, 2021.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in neural information
processing systems, 34:27395–27407, 2021.

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl: Ro-
bust offline reinforcement learning via conservative smoothing. Advances in neural information
processing systems, 35:23851–23866, 2022.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning.
In International Conference on Machine Learning, pp. 40452–40474. PMLR, 2023.

Ruiqi Zhang and Andrea Zanette. Policy finetuning in reinforcement learning via design of experi-
ments using offline data. Advances in Neural Information Processing Systems, 36, 2024.

Yinmin Zhang, Jie Liu, Chuming Li, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli Ouyang. A
perspective of q-value estimation on offline-to-online reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 16908–16916, 2024.

Kai Zhao, Yi Ma, Jinyi Liu, HAO Jianye, Yan Zheng, and Zhaopeng Meng. Improving offline-
to-online reinforcement learning with q-ensembles. In ICML Workshop on New Frontiers in
Learning, Control, and Dynamical Systems, 2023.

Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang. Adaptive policy
learning for offline-to-online reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 11372–11380, 2023.

11

	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning
	Behavioral Cloning
	Conservative Q-Learning
	Implicit Q-Learning

	methodology
	The OOD Nature
	Reducing Q-Value Estimation Bias with Weighted Q-Learning
	BC-Divergence Priority Sampling for Fine-Tuning
	Practical Algorithm

	Experiments
	Environments Setup
	Main Results
	BC-Divergence Priority Sampling
	Details in Training Process
	Ablation Study

	Conclusion

