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ABSTRACT

A fair classifier should ensure the benefit of people from different groups, while
the group information is often sensitive and unsuitable for model training. There-
fore, learning a fair classifier but excluding sensitive attributes in the training
dataset is important. In this paper, we study learning fair classifiers without im-
plementing fair training algorithms to avoid possible leakage of sensitive infor-
mation. Our theoretical analyses validate the possibility of this approach, that
traditional training on a dataset with an appropriate distribution shift can reduce
both the upper bound for fairness disparity and model generalization error, in-
dicating that fairness and accuracy can be improved simultaneously with simply
traditional training. We then propose a tractable solution to progressively shift the
original training data during training by sampling influential data, where the sensi-
tive attribute of new data is not accessed in sampling or used in training. Extensive
experiments on real-world data demonstrate the effectiveness of our proposed al-
gorithm.

1 INTRODUCTION

Machine Learning (ML) has dramatically impacted numerous sectors nowadays, optimizing pro-
cesses and decision-making across various domains, including credit scoring (Siddiqi, 2005), de-
mand forecasting (Carbonneau et al., 2008), and healthcare (Zicari et al., 2021). Algorithmic fairness
entails the principle that models should not exhibit biases toward specific protected groups, distin-
guished by characteristics such as race, gender, or disability. Fairness-aware learning has gained
prominence to mitigate prediction disparities in classification tasks. In essence, the core idea of
in-processing mitigation is to impose some fairness constraints during the training process (Donini
et al., 2018; Hardt et al., 2016; Agarwal et al., 2018; Zafar et al., 2017; Wang et al., 2022), leading to
a widely embraced paradigm in practice. However, there are two notable concerns. First, designing
fairness constraints in most existing works heavily relies on the visibility of sensitive attributes in the
training dataset, which are not always available due to privacy concerns. Second, enforcing fairness
constraints or regularizers into machine learning models often leads to a tradeoff between fairness
and accuracy (Kleinberg et al., 2016), underscoring a prevalent challenge: as we place greater em-
phasis on ensuring fairness, the predictive model performance might be weakened. With these two
concerns in mind, our core inquiry rests upon the following question:

When sensitive attributes of training data are unknown and fair training algorithms are not
employed, how can we develop a fair classifier without compromising the model accuracy?

The core proposal of this paper is an influence-guided sampling strategy that actively samples new
data to supplement the training set. Our solution is motivated by a set of theoretical findings pre-
sented in Section 3. Our analysis of the impact of data disparity on model fairness informs us that
collecting new data to induce an appropriate distribution shift can effectively reduce fairness dispar-
ity without the need to implement any fair training algorithms on the updated training data.

This paper considers the following scenario: we are given a set of unlabeled candidate data (without
sensitive attributes nor training labels) that we can solicit labels to supplement the training data
(e.g., a candidate set of unlabeled images to solicit annotations to improve the fairness of an image
classifier built on it). We desire a smart process that only samples and labels a small subset of the
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most relevant data in a cost-efficient way such that applying a naive training process on this newly
constructed dataset without imposing any fairness mitigation strategies would suffice to improve the
model fairness substantially.

The core challenge in developing the sampling strategies is that we would have to predict the influ-
ence of a candidate sample on to model’s fairness without accessing the sensitive attributes nor the
training labels before the actual sampling happened. Limited by the absence of sensitive attributes,
we identify influential examples that enhance fairness from an unlabeled dataset by leveraging an
auxiliary validation set drawn from the test distribution. Specifically, we assess the impact of each
example on fairness by comparing the gradient originating from a single data example with the
gradient derived from the entire validation set. This comparison helps in quantifying the potential
advantage of including this specific example with a proxy label in improving fairness. Intuitively, if
the gradient obtained from a single data example has a similar direction to the gradient from the vali-
dation set, it indicates that incorporating this example contributes to enhancing the model’s fairness.
We name our solution Fair Influential Sampling (FIS).

The main contributions of our work are summarized as follows.
• Our theoretical analysis indicates that training on datasets with a strategically implemented dis-

tribution shift can effectively reduce both the upper bound for fairness disparity and model gener-
alization error (Lemma 3.1, Theorem 3.2). This gives us a key insight that fairness and accuracy
can be improved simultaneously even with simply traditional training. [Section 3]

• We introduce a tractable solution (Algorithm 1) that progressively shifts the original training
data, wherein we sample influential examples from an unlabeled dataset based on the combined
influences of prediction and fairness without ever accessing their sensitive attributes during the
training process. [Section 4]

• Empirical experiments on real-world datasets (CelebA, COMPAS, Adult, and Jigsaw) substanti-
ate our claims, indicating the effectiveness and potential of our proposed algorithm in achieving
fairness for ML classifiers. [Section 5]

2 RELATED WORK

Fair classification. The fairness-aware learning methods, in general, can be categorized into pre-
processing, in-processing, and post-processing methods. Pre-processing methods typically reweigh
or distort the data examples to mitigate the identified biases (Asudeh et al., 2019; Azzalini et al.,
2021; Tae & Whang, 2021; Sharma et al., 2020; Celis et al., 2020; Chawla et al., 2002; Zemel
et al., 2013; Chen et al., 2018). More relevant to us is the importance reweighting, which assigns
different weights to different training examples to ensure fairness across groups (Kamiran & Calders,
2012; Jiang & Nachum, 2020; Diesendruck et al., 2020; Choi et al., 2020; Qraitem et al., 2023; Li
& Vasconcelos, 2019). Our proposed algorithm bears similarity to a specific case of importance
reweighting, particularly the 0-1 reweighting applied to newly added data. The main advantage of
our work, however, lies in its ability to operate without needing access to the sensitive attributes of
either the new or training data. Other parallel studies utilize importance weighting to learn a complex
fair generative model in the weakly supervised setting (Diesendruck et al., 2020; Choi et al., 2020),
or to mitigate representation bias in training datasets (Li & Vasconcelos, 2019).

Post-processing methods typically enforce fairness on a learned model through calibration (Feld-
man, 2015; Feldman et al., 2015; Hardt et al., 2016). Although this approach is likely to decrease
the disparity of the classifier, by decoupling the training from the fairness enforcement, this pro-
cedure may not lead to the best trade-off between fairness and accuracy (Woodworth et al., 2017;
Pleiss et al., 2017). In contrast, our work can achieve a great tradeoff between fairness and accuracy
because we reduce the fairness disparity by mitigating the adverse effects of distribution shifts on
generalization error. Additionally, these post-processing techniques necessitate access to the sensi-
tive attribute during the inference phase, which is often not available in many real-world scenarios.

Accuracy-fairness tradeoff. It has been demonstrated that there is an implicit trade-off between
fairness and accuracy in the literature. Compared to the prior works (Menon & Williamson, 2018;
Prost et al., 2019), our work does not require additional assumptions about the classifier and the
characteristics of the training/testing datasets (for example, distribution shifts).

(Li & Liu, 2022) is a similar work that utilizes the influence function to reweight the data examples
but requires re-training. Our method focuses on soliciting additional samples from an external unla-
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beled dataset while (Li & Liu, 2022) reweights the existing and fixed training dataset. Our approach
is more closely with a fair active learning approach (Anahideh et al., 2022). However, this fair active
learning framework relies on sensitive attribute information while our algorithm does not.

Distribution shifts. Common research concerning distribution shifts necessitates extra assumptions
to build theoretical connections between features and attributes, like causal graphs (Singh et al.,
2021), correlation shifts (Roh et al., 2023), and demographic shifts (Giguere et al., 2022). In contrast,
our approach refrains from making further assumptions about the properties of distribution shifts.

In this literature, many works have utilized distributionally robust optimization (DRO) to reduce
fairness disparity without sensitive attribute information (Hashimoto et al., 2018; Kirichenko et al.,
2022; Liu et al., 2021; Lahoti et al., 2020; Veldanda et al., 2023; Sohoni et al., 2020). Although
these works also evaluate the worst-group performance in the context of fairness, their approach
differs as they do not strive to equalize the loss across all groups. Besides, in these studies, accuracy
and worst-case accuracy are used to showcase the efficacy of DRO. Essentially, they equate fairness
with uniform accuracy across groups, implying a model is considered fair if it demonstrates equal
accuracies for all groups. However, this specific definition of fairness is somewhat restrictive and
does not align with more conventional fairness definitions like DP or EOD.

3 DECOUPLING FAIRNESS WITH DATA DISPARITY

In this section, we give a brief introduction to the problem settings and present a formal definition of
fairness. Subsequently, we present the main theoretical results to understand the fairness-accuracy
tradeoff, demonstrating data disparity’s impact on fairness.

3.1 PRELIMINARIES

We consider two distributions, P (source or train) and Q (target or test), each defined as a probabil-
ity distribution for certain examples, where each example defines values for three random variables:
feature x; label y; and sensitive attribute a. Commonly, sensitive attributes a are utilized for group-
ing purposes. Let P (Q) denote the train (test) dataset sampled from the distribution P (Q), where
P := {(xn, yn, an)}n∈NP

. Without loss of generality, we discrete the whole distribution space
and suppose that the train/test distributions are both drawn from a series of component distributions
{π1, · · · , πI} (Feldman, 2020).

Consider a typical optimization model, which can be defined as the following empirical riskRP (w)
over the train set P by splitting samples based on the component distributions, shown as follows.

RP (w) := E(x,y)∈P [ℓ(f(x,w), y)] =

I∑
i=1

p(P )(π = i) · E(x,y)∼πi
[ℓ(f(x,w), y)]. (1)

where w represents the model parameters to be optimized, example ζ = (x, y) uniformly sampled
from dataset Dk, p(P )(π = i) represents the frequencies that example in P drawn from component
distribution πi, and f(·) indicate the classifier. Noting l(·, ·) represents the loss function, which can
be an indicate function I(·) to demonstrate 0-1 loss. Typically, it will apply T epochs of SGD to
obtain a converged model. We then introduce the definition of fairness disparity:
Definition 3.1. (Fairness disparity (Hashimoto et al., 2018; Zafar et al., 2019)). Let Qk denote the
partition of the dataset Q for group k. Given the model parameters wP trained on the dataset P ,
the fairness disparity between Q and Qk is defined as: RQk

(wP ) − RQ(w
P ), where RQ(w) :=

E(x,y)∼Q[ℓ(f(x,w), y)] denotes the expected risk induced on the target distribution Q.

In fact, this definition has recently been highlighted in (Hashimoto et al., 2018; Zafar et al., 2019),
which naturally quantifies the discrepancy in a trained model’s performance between a specific sub-
set and the entire test set. That is, a model can be deemed fair if it exhibits consistent performance
for an individual group Qk as compared to the entire test set Q. For completeness, we also include
additional well-known definitions of fairness:
Definition 3.2. (Demographic Parity (DP)). A classifier f adheres to demographic parity concern-
ing the sensitive attribute a if: E[f(x,w)] = E[f(x,w)|a].
Definition 3.3. (Equalized Odds (EOd) (Hardt et al., 2016)). A classifier f meets the equalized odds
with respect to the sensitive attribute a if: E[f(x,w)|y] = E[f(x,w)|y, a].
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Even though there may be a general incompatibility between fairness disparity and popular fairness
metrics such as DP or EOd, under the criteria of this fairness disparity definition, these metrics could
be encouraged (Shui et al., 2022; Hashimoto et al., 2018).

Remark 3.1 (Connections to other fairness definitions.) Definition 3.1 targets group-level fairness,
which has similar granularity to the classical attribute-level fairness such as accuracy parity (Zafar
et al., 2017), device-level parity (Li et al., 2019), or small prediction loss for groups (Zafar et al.,
2019; Balashankar et al., 2019; Martinez et al., 2019; Hashimoto et al., 2018).

To reflect the unfairness problem implicitly hidden in models, we introduce two generalized basic
assumptions in convergence analysis (Li et al., 2019).
Assumption 3.1. (L-Lipschitz Continuous). There exists a constant L > 0, for any v,w ∈ Rd,
RP (v) ≤ RP (w) + ⟨∇RP (w),v −w⟩+ L

2 ∥v −w∥22.
Assumption 3.2. (Bounded Gradient on Random Sample). The stochastic gradients on any sample
are uniformly bounded, i.e., E[||∇RP (w;ζ)||2] ≤ G2, and epoch t ∈ [1, · · · , T ].

3.2 UNDERSTANDING FAIRNESS-ACCURACY TRADEOFF

Developing a fair classifier while maintaining model accuracy requires a comprehensive analysis
of the intrinsic fairness-accuracy tradeoff. In general, this tradeoff is understood theoretically by
analyzing the upper bound of generalization error and predefined fairness metrics (Shui et al., 2022;
Huang & Vishnoi, 2019; Dutta et al., 2020; Wang et al., 2021). Therefore, as motivated, we initiate
our discussion with a theoretical evaluation of the bounds of both generalization error and fairness
disparity. We present the theoretical findings below.

For ease of presentation, we begin by establishing the measure of probability distance between two
datasets or distributions, denoted as dist(A,B) :=

∑I
i=1 |p(A)(π = i) − p(B)(π = i)|. Analo-

gous to Assumption 3.2, we further make a mild assumption to bound the loss over the component
distributions πi according corresponding model, that is, E(x,y)∼πi

[ℓ(f(x,wP ), y)] ≤ GP ,∀i ∈ I .
Lemma 3.1. (Generalization error bound). Let dist(P,Q), GP be defined therein. With probability
at least 1− δ with δ ∈ (0, 1), the generalization error bound of the model trained on dataset P is

RQ(wP ) ≤ GP · dist(P,Q)︸ ︷︷ ︸
distribution shift

+

√
log(4/δ)

2NP
+RP (w

P ). (2)

Note that the generalization error bound is predominantly influenced by the shift in distribution when
we think of an overfitting model, i.e., the empirical riskRP (w

P )→ 0.
Theorem 3.2. (Upper bound of fairness disparity). Suppose RQ(·) follows Assumption 3.1. Let
dist(P,Q), GP , dist(Pk,Qk) and dist(Pk, P ) be defined therein. Given model wP and wk trained
exclusively on group k’s data Pk, with probability at least 1 − δ with δ ∈ (0, 1), then the upper
bound of the fairness disparity is

RQk (w
P )−RQ(wP ) ≤ GP · dist(P,Q)︸ ︷︷ ︸

distribution shift

+Gk · dist(Pk,Qk) + Φ · dist(Pk, P )2︸ ︷︷ ︸
group gap

+Υ.
(3)

where Φ = 4L2G2
∑T−1

t=0 (η2t (1 + 2η2tL
2))t,Υ =

√
log(4/δ)
2NP

+
√

log(4/δ)
2NPk

+ϖ +ϖk.

Note that E(x,y)∼πi
[ℓ(f(x,wk), y)] ≤ Gk, ϖ = RP (w

P ) − R∗
Q(w

Q) and ϖk = RPk
(wk) −

R∗
Qk

(wQk). Specifically, ϖ and ϖk can be regarded as constants becauseRP (w
P ) andRPk

(wk)

correspond to the empirical risks, R∗
Q(w

Q) and R∗
Qk

(wQk) represent the ideal minimal empirical
risk of model wQ trained on distribution Q and Qk, respectively.

Interpretations. The upper bound in Eq. (3) illustrates several intuitive aspects that induced unfair-
ness. (1) Group biased data. For group-level fairness, the more balanced the data is, the smaller
the fairness disparity would be; (2) distribution shift. For source/target distribution, the closer the
distribution is, the smaller the gap would be; (3) Data size. For training data size, the larger the size
is (potentially eliminating data bias across groups), the smaller the gap would be.

Main observation. Note that Theorem 3.2 implies that the fairness disparity is essentially influenced
by both the potential distribution shift and the inherent group disparity. In addition, Lemma 3.1
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underscores how the generalization error is impacted by distribution shifts. Therefore, by integrating
insights from Lemma 3.1, Theorem 3.2 clearly articulates a tradeoff between the fairness disparity
and the generalization error. However, in practice, finding the optimal tradeoff between accuracy
and fairness to reduce the fairness disparity directly is challenging due to the limited knowledge of
the training and testing data distributions.

Therefore, the conventional methods that focus on mitigating the group gap may be not effective
due to the adverse impact of the distribution shift. To elaborate, training on a shifted distribution
P may help alleviate the data disparity, but it can also introduce additional disparities, as indicated
in the first term on the RHS of Theorem 3.2, leading to a performance drop. Our results provide
guidance to reduce the fairness disparity by controlling the impact of the distribution shift through
the generalization error, which corresponds to the practical model accuracy. That is, an appropriate
distribution shift can reduce both the upper bound for fairness disparity and model generalization
error. In an ideal scenario, the group gap in P is smaller than the previous one in Q, and dist(P,Q)
is also small. Therefore, in general, our goal is to find an appropriate distribution shift that enhances
fairness without compromising on accuracy.

4 IMPROVING FAIRNESS WITH DATA INFLUENTIAL SAMPLING

Our theoretical results indicate a tradeoff between fairness disparity and the generalization error.
The key observation is that the distribution shift typically with negative impacts on fairness can
effectively be utilized to reduce the fairness disparity without sacrificing accuracy. As motivated,
in this section, we propose an influence-guided sampling strategy that actively samples new data to
supplement the training set such as mitigating fairness disparity.

4.1 FINDING INFLUENTIAL EXAMPLES

In this subsection, we introduce our basic scenario and then present key techniques used for sam-
pling, which calculates the influence of prediction and fairness components.

4.1.1 BASIC SCENARIO

Recall that our theoretical findings illustrate that collecting new data to induce an appropriate dis-
tribution shift can effectively reduce fairness disparity without the need to implement any fair
training algorithms on the updated training data. To implement this, we consider the follow-
ing basic scenario, involving a K-class classification task with a small training set denoted by
P := {(xn, yn, an)|n ∈ [NP ]}, where [NP ] := {1, 2, · · · , NP }, xn denotes the feature vector,
yn ∈ [K] denotes the label, and an ∈ [M ] denotes the sensitive attribute, respectively. We are
given a large unlabeled dataset U := {(xn+NP

, ·, ·)|n ∈ [NU ]} that be used for training, where the
labels and sensitive attributes are unknown but can be probed with a certain cost. In this context,
the ultimate goal is to develop a model on both P and a small set of U while keeping the prob-
ing cost low and ensuring fairness constraints are met when evaluating its performance on the test
dataset Q := {(x◦

n, y
◦
n, a

◦
n)|n ∈ [NQ]}, drawing from data distribution Q. Here, to tackle the ab-

sence of sensitive attributes for dataset P and U , we utilize an auxiliary hold-out validation dataset
Qv := {(x◦

n, y
◦
n, a

◦
n)|n ∈ [Nv]}, which originates fromQ. Note that our access is limited to the sen-

sitive attributes of the validation dataset; we do not even require a proxy for the sensitive attribute.

To explicitly measure fairness loss, similar to the prediction loss ℓ(f(x;w), y), we define the fairness
constraint as ϕ({f(x◦

n;w), y◦n, a
◦
n|n ∈ [N ]}). When there is no confusion, the empirical risk for a

specific loss function shall be Rℓ =
∑NP

n=1 ℓ(f(xn;w), yn). More specifically, the loss with one
probed data can be formulated as follows.

NP∑
n=1

ℓ(f(xn;w), yn) + ℓ(f(x′;w), y′)︸ ︷︷ ︸
loss for the unlabeled example

. (4)

where label y′ is unknown before probing. It should be noted that before we solicit the true labels
of samples from U for training, y′ is used as the proxy label. In the following subsection 4.2, we
will present two strategies for annotating the label y′.
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4.1.2 CALCULATING INFLUENCE OF PREDICTION/FAIRNESS COMPONENT

Without any further information about train/test data distributions, a significant challenge arises in
collecting a small number of data examples from the unlabeled set U to mitigate fairness disparity
without sacrificing accuracy. This becomes particularly intricate when there’s no prior knowledge
of the labels and attributes before probing.

Inspired by recent work (Diesendruck et al., 2020; Choi et al., 2020; Li & Vasconcelos, 2019), to
address the lack of sensitive attributes, the high-level idea is that we can evaluate the impact of
each example on fairness by comparing the gradient originating from a single data example with the
gradient derived from the entire validation set. This comparison helps in quantifying the potential
advantage of including this specific example in improving fairness. Intuitively, if the gradient ob-
tained from a single data example has a similar direction to the gradient from the validation set, it
indicates that incorporating this example contributes to enhancing the model’s fairness. Similarly,
the negative impact of a single data example on prediction can also be avoided by using its gradient.

In this regard, an ideal new example can help reduce the fairness disparity while keeping the accu-
racy non-decreasing. Here, we consider the loss for the prediction component and fairness compo-
nent, i.e., ℓ(f(x;w), y) and ϕ(f(x;w), y, a), which can be differentiable. Supposed that the model
is updated following gradient decent, the change of model parameters by counterfactually optimized
on a new instance (x′, y′) is

wt+1 = wt − η
∂ℓ(f(x′;w), y′)

∂w

∣∣∣∣
w=wt

(5)

Following this, we compute the influence of the prediction and fairness components, respectively.

Influence of Prediction Component. The influence for the prediction component on the validation
data (x◦

n, y
◦
n), when model parameters is updated from wt to wt+1 by adding a new example (x′, y′),

is given by

Inflacc((x
◦
n, y

◦
n), (x

′, y′);wt,wt+1) := ℓ(f(x◦
n;wt+1), y

◦
n)− ℓ(f(x◦

n;wt), y
◦
n).

For the ease of notation, we use Inflacc(n, x
′, y′) to represent Inflacc((x

◦
n, y

◦
n), (x

′, y′);wt,wt+1).
By applying first-order Taylor expansion, we obtain the following closed-form statement:
Lemma 4.1. The influence of predictions on the validation dataset Qv can be denoted by

Inflacc(x
′, y′) :=

∑
n∈[Nv ]

Inflacc(n, x
′, y′) ≈ − η

〈
∂ℓ(f(x′;w), y′)

∂w
,

Nv∑
n=1

[
∂ℓ(f(x◦

n;w), y◦
n)

∂w

]〉∣∣∣∣∣
w=wt

.

(6)

Influence of Fairness Component. Recall ϕ denotes the fairness loss and [Nv] is the index set
of validation data. The fairness influence on validation dataset Qv when model parameters change
from wt to wt+1 by adding (x′, y′) is denoted by

Inflfair(V, (x
′, y′);wt,wt+1) := ϕ({f(x◦

n;wt+1), y
◦
n, a

◦
n|n ∈ [Nv]})−ϕ({f(x◦

n;wt), y
◦
n, a

◦
n|n ∈ [Nv]}).

(7)

For simplicity, we write Inflfair(V, (x
′, y′);wt,wt+1) as Inflfair(x

′, y′). Then, similarly, we have
Lemma 4.2. The influence of fairness on the validation dataset Qv can be denoted by

Inflfair(x
′, y′) ≈ − η

∑
n∈[Nv ]

〈
∂ℓ(f(x′;w), y′)

∂w
,
∂ϕ({f(x◦

n;w), y◦n, a
◦
n|n ∈ [Nv]})

∂w

〉∣∣∣∣∣∣
w=wt

. (8)

Note that it is straightforward to verify that neither the influence of prediction nor fairness compo-
nents require the sensitive attributes of the sample (x′, y′), which are unavailable in dataset U .

4.2 ALGORITHM: FAIR INFLUENTIAL SAMPLING (FIS)

Label Annotation. Drawing on Lemma 4.1 and 4.2, we can efficiently pinpoint those examples
with the most negative fairness influence and negative prediction influence. This sampling method
aids in reducing fairness disparity while sidestepping adverse impacts on accuracy. Before diving
into presenting our algorithm, it is necessary to address the problem of not having access to true label
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y. In practice, one can always recruit human annotators to get the ground-truth labels. However, we
assume that it is still cost-ineffective and we can leverage the model trained on the set P to generate
the proxy labels. Nevertheless, we still need to acquire the true labels for the selected data examples.
To tackle this problem, we propose to annotate the proxy labels with the model trained on the labeled
set P . Specifically, we present two strategies for annotating the label y′ given x′.

Strategy I Use low-influence labels. That is, ŷ = argmink∈[K] |Inflacc(x
′, k)|, which corre-

sponds to using the most uncertain point.
Strategy II Rely on model prediction. That is, ŷ = argmaxk∈[K] f(x;w)[k], where

f(x;w)[y] indicates the model’s prediction probability on label y.

Proposed algorithm. Incorporating sampling and annotation techniques, we develop a Fair Influ-
ential Sampling (FIS) method to select a limited number of impactful examples from the extensive
unlabeled set U . The full training algorithm for fair influential sampling is summarized in Algorithm
1. Note that the tolerance ϵ is applied to monitor the performance drop in validation accuracy. In
Line 2, we initiate the process by training a classifier f solely on dataset P , that is, performing a
warm start. Subsequently, T-round sampling iterations of sampling are applied to amend the dataset
P , aiming to reduce fairness disparity. Following the iterative fashion, FIS guesses labels using
the proposed strategy I or II in Line 4. In particular, in Lines 5-6, we calculate prediction’s and
fairness’s influences for examples using Lemma 4.1 and Lemma 4.2, respectively. Then, the true
labels of top-r samples with the most negative impact on fairness will be further inquired for further
training. Note that although we propose two specific strategies for guessing labels, our algorithm is
a flexible framework that is compatible with any other labeling method.

Remark 1. Suppose that the model is trained with cross-entropy loss. The labels obtained through
Strategy II are sufficient to minimize the influence of the prediction component, i.e., Inflacc(x

′, k).
That said, the Strategy II will produce similar labels as Strategy I.

Algorithm 1 Fair influential sampling (FIS)

1: Input: train dataset P , unlabeled dataset U , validation dataset Qv , t = 0, number of new
examples in each round r, number of rounds T , tolerance ϵ
### Training phrase: warm start ###

2: Train classifier f solely on P by minimizing the empirical risk Rℓ. Obtain model parameters
w1 and validation accuracy (on Qv) VAL0.
### Iterative sampling phrase ###

3: for t in {1, 2, · · · , T} do
4: Guess label ŷ according to strategy I or II.
5: Calculate the influence of prediction component by Eq. (6) and the influence of fairness

component by Eq. (8).
6: Get the scores of fair examples:

So = {Inflfair(x, ŷ) | Inflacc(x, ŷ) ≤ 0, Inflfair(x, ŷ) ≤ 0}

7: St = {}
8: while |St| < r do
9: Find top-(r − |St|) samples (lowest fairness influence) and get the annotated samples:

{(x′
n, y

′
n)} ← Top-r(So)

10: St ← St ∪ {(x′
n, y

′
n) | Inflacc(x

′
n, y

′
n) ≤ 0, Inflfair(x

′
n, y

′
n) ≤ 0}

11: end while
### Training phrase: incorporate new data for training ###

12: Train model f on P ∪ S1 · · · ∪ St with true inquired labels by minimizing Rℓ. Obtain model
parameters wt+1 and validation accuracy (on Qv) VALt − ϵ.

13: end for
Output: models {wt | VALt > VAL0}
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5 EMPIRICAL RESULTS

In this section, we empirically show the disparate impact of groups and present the effectiveness of
our proposed influential sampling method to mitigate fairness disparity.

5.1 EXPERIMENTAL SETUP

We evaluate the performance of our algorithm on four real-world datasets across different modalities:
CelebA (Liu et al., 2015), Adult (Asuncion & Newman, 2007), COMPAS (Angwin et al., 2016), and
Jigsaw (Jigsaw, 2018). We report results on three group fairness metrics: difference of demographic
parity (DP), difference of equal odds (EOd), and difference of equality of opportunity (EOp).

We compare with three baselines: 1) Base: directly train the model solely on the labeled dataset
P ; 2) Random: train the model on the dataset P and a subset of Q by random sampling; 3) BALD
(Branchaud-Charron et al., 2021): active sampling according to the mutual information; JTT-20 (Liu
et al., 2021): reweighting those misclassified examples for retraining. Here, we examine a weight
of 20 for misclassified examples in JTT. We present the results of FIS with two proposed labeling
strategies: 1) FIS-Infl: train with low-influence labels and 2) FIS-Pred: train with model prediction.
Note that we present the average result of the classifier wt output from Algorithm 1.

5.2 PERFORMANCE RESULTS

Results on image datasets. First, we train a vision transformer with patch size (8, 8) on the CelebA
face attribute dataset (Liu et al., 2015). We select four binary classification targets including Smile,
Attractive, Young, and Big Nose. Note that we initially allocate 2% of the data for training
purposes and the remaining 98% for sampling. Then, we randomly select 10% of the test data for
validation. For ease of computation, we only utilize the last two layers of the model to compute
the influence of prediction and fairness. Table 1 and Table 2 both report the obtained accuracy and
the corresponding values of fairness metrics. One main observation is that our proposed method
FIS outperforms baselines with a significant margin on three fairness metrics while maintaining the
same accuracy level. As mentioned by our observation in Theorem 3.2, this is because FIS scores
examples priority based on the influence of fairness preferentially, and preventing potential accuracy
reduction by checking the corresponding influence of prediction.
Table 1: We examine the performance of our methods on the CelebA dataset. The binary classification targets
are Smiling and Attractive. We select gender as the sensitive attribute. We present the values of
accuracy and three fairness metrics in the format: (test accuracy, fairness metric). In particular,
we highlight the best values achieved for accuracy and fairness metrics in green and the worst in red.

ϵ = 0.05
Smiling Attractive

dp eop eod dp eop eod

Base (0.847, 0.131) (0.847, 0.061) (0.847, 0.040) (0.694, 0.395) (0.707, 0.259) (0.694, 0.280)
Random (0.853, 0.132) (0.863, 0.053) (0.861, 0.031) (0.696, 0.367) (0.708, 0.253) (0.696, 0.243)
BALD (0.886, 0.150) (0.886, 0.058) (0.886, 0.030) (0.734, 0.459) (0.734, 0.299) (0.734, 0.314)
JTT-20 (0.883, 0.135) (0.881, 0.054) (0.881, 0.030) (0.726, 0.418) (0.726, 0.230) (0.726, 0.269)

FIS-Infl (0.877, 0.122) (0.886, 0.040) (0.882, 0.023) (0.680, 0.285) (0.695, 0.148) (0.692, 0.148)
FIS-Pred (0.880, 0.121) (0.881, 0.046) (0.880, 0.028) (0.683, 0.290) (0.696, 0.125) (0.692, 0.131)

Results on tabular datasets. Next, we work with multi-layer perceptron (MLP) trained on the
Adult dataset (Asuncion & Newman, 2007) and Compas dataset (Angwin et al., 2016), respectively.
The below detailed settings are the same for both two datasets. Note that we resample the datasets to
balance the class and group membership (Chawla et al., 2002). The MLP model is a two-layer ReLU
network with a hidden size of 64. Note that the dataset is randomly split into a training and a test set
in a ratio of 80 to 20. Then, we randomly re-select 20% of the training set for initial training and the
remaining 80% for sampling. Also, 20% examples of the test set are selected to form a validation
set. We utilize the whole model to compute the prediction influence and fairness for examples.

Table 3 and Table 4 summarize the key results of the Adult and Compas datasets, respectively.
Again, our algorithm outperforms baselines significantly on all fairness definitions. Observe that
the results from FIS-Infl and FIS-Pred are identical. This is due to the labels in FIS-Infl ultimately
becoming their corresponding model predictions in the pursuit of the lowest influence.
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Table 2: We examine the performance of our methods on the CelebA dataset. The binary classification
targets are Young and Big Nose. We select gender as the sensitive attribute. We present the values of
accuracy and three fairness metrics in the format: (test accuracy, fairness metric). In particular,
we highlight the best values achieved for accuracy and fairness metrics in green and the worst in red.

ϵ = 0.05
Young Big Nose

dp eop eod dp eop eod

Base (0.753, 0.209) (0.765, 0.097) (0.753, 0.202) (0.735, 0.221) (0.744, 0.227) (0.744, 0.209)
Random (0.772, 0.152) (0.762, 0.052) (0.779, 0.173) (0.770, 0.190) (0.757, 0.218) (0.765, 0.196)
BALD (0.799, 0.187) (0.797, 0.069) (0.799, 0.186) (0.790, 0.200) (0.757, 0.225) (0.769, 0.187)
JTT-20 (0.803, 0.184) (0.800, 0.075) (0.796, 0.191) (0.786, 0.232) (0.787, 0.241) (0.786, 0.209)

FIS-Infl (0.766, 0.139) (0.775, 0.043) (0.769, 0.168) (0.771, 0.156) (0.765, 0.129) (0.758, 0.155)
FIS-Pred (0.769, 0.145) (0.775, 0.043) (0.769, 0.168) (0.776, 0.120) (0.764, 0.190) (0.758, 0.155)

Table 3: The performance of experiments conducted on the Adult dataset. The sensitive attributes are sex
and race. We present the values of accuracy and the associated three fairness metrics in the format: (test
accuracy, fairness metric). In particular, we highlight the best values achieved for accuracy and
fairness metrics in green and the worst in red.

ϵ = 0.05
income (sex) income (age)

dp eop eod dp eop eod

Base (0.668, 0.090) (0.668, 0.058) (0.668, 0.052) (0.726, 0.283) (0.726, 0.211) (0.726, 0.204)
Random (0.782, 0.071) (0.773, 0.101) (0.769, 0.069) (0.797, 0.130) (0.764, 0.161) (0.791, 0.112)
BALD (0.779, 0.075) (0.771, 0.073) (0.780, 0.040) (0.797, 0.099) (0.790, 0.126) (0.790, 0.080)
JTT-20 (0.695, 0.038) (0.627, 0.043) (0.695, 0.033) (0.627, 0.051) (0.695, 0.061) (0.695, 0.054)

FIS-Infl (0.779, 0.070) (0.778, 0.055) (0.776, 0.037) (0.797, 0.106) (0.794, 0.120) (0.791, 0.080)
FIS-Pred (0.779, 0.070) (0.778, 0.055) (0.776, 0.037) (0.797, 0.106) (0.794, 0.120) (0.791, 0.080)

Table 4: The performance of experiments conducted on the COMPAS dataset (left) and Jigsaw dataset
(right). The selected sensitive attribute is race for both two datasets. We present the values of accuracy and
three fairness metrics in the format: (test accuracy, fairness metric). In particular, we highlight
the best values achieved for accuracy and fairness metrics in green and the worst in red.

ϵ = 0.05
recidivism

dp eop eod

Base (0.669, 0.326) (0.669, 0.254) (0.669, 0.277)
Random (0.686, 0.305) (0.688, 0.261) (0.686, 0.257)
BALD (0.692, 0.329) (0.687, 0.264) (0.692, 0.264)
JTT-20 (0.641, 0.231) (0.641, 0.187) (0.641, 0.194)

FIS-Infl (0.678, 0.302) (0.691, 0.251) (0.692, 0.253)
FIS-Pred (0.678, 0.302) (0.691, 0.251) (0.692, 0.253)

ϵ = 0.05
toxicity

dp eop eod

Base (0.612, 0.067) (0.612, 0.015) (0.612, 0.040)
Random (0.684, 0.044) (0.691, 0.025) (0.678, 0.022)
BALD (0.782, 0.037) (0.698, 0.037) (0.713, 0.033)
JTT-20 (0.722, 0.047) (0.722, 0.024) (0.719, 0.022)

FIS-Infl (0.786, 0.030) (0.719, 0.014) (0.722, 0.022)
FIS-Pred (0.786, 0.030) (0.719, 0.014) (0.722, 0.022)

Results on text datasets. Lastly, we consider Jigsaw Comment Toxicity Classification (Jigsaw,
2018) with text data. We first encode each raw comment text into a 768-dimensional textual repre-
sentation vector by using a pre-trained BERT (Devlin et al., 2018), and train an MLP with hidden
size 256 to perform classification. Then, we randomly select 5% of the training set for initial training
and the remaining 95% for sampling. Similarly, 20% examples of the test set are selected to form
a validation set. The influences of prediction and fairness for examples are computed on the whole
MLP model. Table 4 reports the key results of the Jigsaw dataset, illustrating the superiority of our
algorithm, aligning with the observation of Theorem 3.2.

6 CONCLUSIONS

In this work, we explore the training of fair classifiers without using fairness-aware learning, aiming
to prevent the potential exposure of sensitive attributes. Our theoretical findings confirm that by
using traditional training on suitably shifted dataset distributions, we can decrease the bound of
fairness disparity and model generalization error simultaneously. Motivated by the insights from
our results, we propose a fair influential sampling method FIS to inquiry examples from a large
unlabelled dataset to progressively shift the original training data during training, where the sensitive
attribute of new examples is not accessed in sampling or used in training. Empirical experiments on
real-world data validate the efficacy of our proposed method.
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APPENDIX

A MORE DETAILS OF RELATED WORK

Accuracy-fairness tradeoff. It has been demonstrated that there is an implicit trade-off between fairness and
accuracy in the literature. Compared to the prior works, our work does not require additional assumptions
about the classifier and the characteristics of the training/testing datasets (for example, distribution shifts).
For example, Menon & Williamson (2018) is confined to binary classification scenarios, specifically Bayesian
optimal classifiers. Additionally, those in-processing techniques (Menon & Williamson, 2018; Prost et al.,
2019) attain this tradeoff through the use of fairness regularization, which necessarily requires the information
of sensitive attributes. The primary benefit of our method is that it does not inquire about sensitive attribute
information of training data, offering a more general framework for achieving an optimal accuracy-fairness
tradeoff.

(Li & Liu, 2022) is a similar work that utilizes the influence function to reweight the data examples but requires
re-training. Our approach focuses on incorporating additional samples from an external unlabeled dataset to
mitigate disparity, aligning more closely with a fair active learning approach (Anahideh et al., 2022). However,
the fair active learning framework relies on sensitive attribute information while our algorithm does not.

Distribution shifts. Common research concerning distribution shifts necessitates extra assumptions to build
theoretical connections between features and attributes, like causal graphs (Singh et al., 2021), correlation
shifts (Roh et al., 2023), and demographic shifts (Giguere et al., 2022). In contrast, our approach refrains from
making further assumptions about the characteristics of distribution shifts. Instead, we directly utilize sampling
methods to construct an appropriate distribution shift, aiming to achieve a balanced tradeoff between accuracy
and fairness.

In this literature, many works have utilized distributionally robust optimization (DRO) to optimize the uncer-
tainty. (Hashimoto et al., 2018) proposes an approach based on DRO to minimize the worst-case risk over all
distributions close to the empirical distribution. The work (Kirichenko et al., 2022) mainly focuses on improv-
ing the worst-group accuracy of neural networks in the presence of spurious features. Liu et al. (2021) primarily
focuses on the use of DRO to upweight the training set to improve group robustness. Similarly, (Lahoti et al.,
2020) proposes an optimization approach, Adversarially Reweighted Learning, to improve worst-case perfor-
mance over unobserved protected groups. In reality, (Veldanda et al., 2023) is an extension that specifically
addresses the sensitivity of various hyper-parameters, such as the size of the validation set. (Sohoni et al.,
2020) exploits these estimated subclasses by training a new model to optimize worst-case performance over
all estimated subclasses using group distributionally robust optimization (GDRO). Although these works also
evaluate the worst-group performance in the context of fairness, their approach differs as they do not strive to
equalize the loss across all groups. Besides, in these studies, accuracy and worst-case accuracy are used to
showcase the efficacy of DRO. Essentially, they equate fairness with uniform accuracy across groups, implying
a model is considered fair if it demonstrates equal accuracies for all groups. However, this specific definition of
fairness is somewhat restrictive and does not align with more conventional fairness definitions like DP or EOD.

B OMITTED PROOFS

In this section, we present detailed proofs for the lemmas and theorems in Sections 3 and 4, respectively.

B.1 PROOF OF LEMMA 3.1

Lemma 3.1. (Generalization error bound). Let dist(P,Q), GP be defined therein. With probability at least
1− δ with δ ∈ (0, 1), the generalization error bound of the model trained on dataset P is

RQ(wP ) ≤ GP · dist(P,Q)︸ ︷︷ ︸
distribution shift

+

√
log(4/δ)

2NP
+RP (w

P ).

Proof. The generalization error bound is

RQ(wP ) =

(
RQ(wP )−RP(w

P )

)
︸ ︷︷ ︸

distribution shift

+

(
RP(w

P )−RP (w
P )

)
︸ ︷︷ ︸

Hoeffding’s inequality

+RP (w
P ))︸ ︷︷ ︸

empirical risk

≤ GP · dist(P,Q) +

√
log(4/δ)

2NP
+RP (w

P )
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For the first term (distribution shift), we have

RQ(wP )−RP(w
P )

= E(x,y)∼Q[ℓ(f(x,wP ), y)]− E(x,y)∼P [ℓ(f(x,w
P ), y)]

=

I∑
i=1

p(Q)(π = i)E(x,y)∼πi
[ℓ(f(x,wP ), y)]−

I∑
i=1

p(P)(π = i)E(x,y)∼πi
[ℓ(f(x,wP ), y)]

=

I∑
i=1

|p(P)(π = i)− p(Q)(π = i)|E(x,y)∼πi
[ℓ(f(x,wP ), y)]

≤ GP · dist(P,Q).

where we define dist(P,Q) =
∑I

i=1 |p
(P)(π = i) − p(Q)(π = i)| and E(x,y)∼πi

[ℓ(f(x,wP ), y)] ≤
GP , ∀i ∈ I because of Assumption 3.2. To avoid misunderstanding, we use a subscript P of the constant
G to clarify the corresponding model wP . Then, for the second term (Hoeffding inequality), with probability

at least 1− δ, we have |RP(w
P )−RP (w

P )| ≤
√

log(4/δ)
2NP

.

B.2 PROOF OF THEOREM 3.2

Theorem 3.2. (Upper bound of fairness disparity). Suppose RQ(·) follows Assumption 3.1. Let dist(P,Q),
GP , dist(Pk,Qk) and dist(Pk, P ) be defined therein. Given model wP and wk trained exclusively on group
k’s data Pk, with probability at least 1− δ with δ ∈ (0, 1), then the upper bound of the fairness disparity is

RQk (w
P )−RQ(wP ) ≤ GP · dist(P,Q)︸ ︷︷ ︸

distribution shift

+Gk · dist(Pk,Qk) + Φ · dist(Pk, P )2︸ ︷︷ ︸
group gap

+Υ.

where

Φ = 4L2G2
T−1∑
t=0

(η2
t (1 + 2η2

tL
2))t, Υ =

√
log(4/δ)

2NP
+

√
log(4/δ)

2NPk

+ϖ +ϖk

Note that E(x,y)∼πi
[ℓ(f(x,wk), y)] ≤ Gk, ϖ = RP (w

P )−R∗
Q(wQ) and ϖk = RPk (w

k)−R∗
Qk

(wQk ).
Specifically, ϖ and ϖk can be regarded as constants because RP (w

P ) and RPk (w
k) correspond to the em-

pirical risks, R∗
Q(wQ) and R∗

Qk
(wQk) represent the ideal minimal empirical risk of model wQ trained on

distribution Q and Qk, respectively.

Proof. First of all, we have

RQk (w
P )−RQ(wP ) = (RQ(wPk )−RQ(wP )) + (RQk (w

P )−RQ(wPk ))

= (RQ(wPk )−RQ(wP )) + (RQk (w
P )−RQk (w

Pk )) + (RQk (w
Pk )−RQ(wPk ))

≤ (RQ(wPk )−RQ(wP )) + (RQk (w
P )−RQk (w

Pk ))

where wPk represents the model trained exclusively on group k’s data. For simplicity, when there is no confu-
sion, we use wk to substitute wPk . The inequality RQk (w

k) − RQ(wk) ≤ 0 holds due to the fact that the
model tailored for a single group k can not generalize well to the entirety of the test set Q.

Then, for the first term, we have

RQ(wk)−RQ(wP )
(a)

≤ ⟨∇RQ(wP ),wk −wP ⟩+ L

2
∥wk −wP ∥2

(b)

≤ L∥wk −wP ∥2 + 1

2L
∥∇RQ(wP )∥2

(c)

≤ L∥wk −wP ∥2︸ ︷︷ ︸
group gap

+(RQ(wP )−R∗
Q(wQ))︸ ︷︷ ︸

train-test model gap

where inequality (a) holds because of the L-smoothness of expected loss RQ(·), i.e., Assumption 3.1. Specifi-
cally, inequality (b) holds because, by Cauchy-Schwarz inequality and AM-GM inequality, we have

⟨∇RQ(wP ),wk −wP ⟩ ≤ L

2
∥wk −wP ∥2 + 1

2L
∥∇RQ(wP )∥2.
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Then, inequality (c) holds due to the L-smoothness of RQ(·) (Assumption 3.1), we can get a variant of Polak-
Łojasiewicz inequality, which follows

∥∇RQ(wP )∥2 ≤ 2L(RQ(wP )−R∗
Q(wQ)).

Following a similar idea, for the second term, we also have

RQk (w
P )−RQk (w

k) ≤ L∥wP −wk∥2 + (RQk (w
k)−R∗

Qk
(wQk ))

Combined with two terms, we have

RQk (w
P )−RQ(wP ) ≤ (RQ(wP )−R∗

Q(wQ))︸ ︷︷ ︸
train-test model gap

+2L∥wk −wP ∥2︸ ︷︷ ︸
group gap

+(RQk (w
k)−R∗

Qk
(wQk ))

Lastly, integrating with Lemma B.1, B.2 and B.3, we can finish the proof.

Lemma B.1. (Train-test model gap) With probability at least 1 − δ, given the model wP trained on train set
P , we have

RQ(wP )−R∗
Q(wQ) ≤ GP · dist(P,Q) +

√
log(4/δ)

2NP
+ϖ.

where dist(P,Q) =
∑I

i=1 |p
(P)(π = i) − p(Q)(π = i)| and E(x,y)∼πi

[ℓ(f(x,wP ), y)] ≤ GP , ∀i ∈ I , and
a constant ϖ := RP (w

P )−R∗
Q(wQ).

Proof. First of all, we have,

RQ(wP )−R∗
Q(wQ) =

(
RQ(wP )−RP(w

P )

)
+RP(w

P )−R∗
Q(wQ)

≤ G · dist(P,Q) +RP(w
P )−R∗

Q(wQ)

≤ G · dist(P,Q)︸ ︷︷ ︸
distribution shift

+

(
RP(w

P )−RP (w
P )

)
︸ ︷︷ ︸

Hoeffding’s inequality

+

(
RP (w

P )−R∗
Q(wQ)

)
︸ ︷︷ ︸

overfitting & ideal case

For the first term (distribution shift), we have

RQ(wP )−RP(w
P )

= E(x,y)∼Q[ℓ(f(x,wP ), y)]− E(x,y)∼P [ℓ(f(x,w
P ), y)]

=

I∑
i=1

p(Q)(π = i)E(x,y)∼πi
[ℓ(f(x,wP ), y)]−

I∑
i=1

p(P)(π = i)E(x,y)∼πi
[ℓ(f(x,wP ), y)]

≤
I∑

i=1

|p(P)(π = i)− p(Q)(π = i)|E(x,y)∼πi
[ℓ(f(x,wP ), y)]

≤ GP · dist(P,Q).

where we define dist(P,Q) =
∑I

i=1 |p
(P)(π = i) − p(Q)(π = i)| and E(x,y)∼πi

[ℓ(f(x,wP ), y)] ≤
GP , ∀i ∈ I because of Assumption 3.2. For the second term, with probability at least 1 − δ, we have

|RP(w
P ) − RP (w

P )| ≤
√

log(4/δ)
2NP

. Note that the third term RP (w
P ) − R∗

Q(w
Q) can be regarded as

a constant ϖ.because RP (w
P ) is the empirical risk and R∗

Q(wQ) is the ideal minimal empirical risk of model
wQ trained on distribution Q.

Therefore, with probability at least 1− δ, given model wP ,

RQ(wP )−R∗
Q(wQ) ≤ GP · dist(P,Q) +

√
log(4/δ)

2NP
+ϖ.

Lemma B.2. (Group gap) Suppose Assumptions 3.1 and 3.2 hold for empirical risk RP (·), then we have

∥wk −wP ∥2 ≤ 2LG2
T∑

t=0

(η2
t (1 + 2η2

tL
2))t

( I∑
i=1

∣∣∣∣p(k)(π = i)− p(P )(π = i)

∣∣∣∣)2

.

where ηt is epoch t’s learning rate and T is the number of epochs.
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Proof. According to the above definition, we similarly define the following empirical risk RPk (w) over group
k’s data Pk by splitting samples according to their marginal distributions, shown as follows.

RPk (w) :=

I∑
i=1

p(k)(π = i)E(x,y)∼πi
[ℓ(f(x,w), y)].

Let ηt indicate the learning rate of epoch t. Then, for each epoch t, group k’s optimizer performs SGD as the
following:

wk
t = wk

t−1 − ηt

I∑
i=1

p(k)(π = i)∇wE(x,y)∼πi
[ℓ(f(x,wk

t−1), y)].

For any epoch t+ 1, we have

∥wk
t+1 −wP

t+1∥2

= ∥wk
t − ηt

I∑
i=1

p(k)(π = i)∇wE(x,y)∼πi
[ℓ(f(x,wk

t ), y)]−wP
t + ηt

I∑
i=1

p(P )(π = i)∇wE(x,y)∼πi
[ℓ(f(x,wP

t ), y)]∥2

≤ ∥wk
t −wP

t ∥2 + η2
t ∥

I∑
i=1

p(k)(π = i)∇wE(x,y)∼πi
[ℓ(f(x,wk

t ), y)]−
I∑

i=1

p(P )(π = i)∇wE(x,y)∼πi
[ℓ(f(x,wP

t ), y)]∥2

≤ ∥wk
t −wP

t ∥2 + 2η2
t ∥

I∑
i=1

p(P )(π = i)Lπi

[
∇wE(x,y)∼πi

[ℓ(f(x,wk
t ), y)]−∇wE(x,y)∼πi

[ℓ(f(x,wP
t ), y)]

]
∥2

+ 2η2
t ∥

I∑
i=1

(
p(k)(π = i)− p(P )(π = i)

)
∇wE(x,y)∼πi

[ℓ(f(x,wP
t ), y)]∥2

≤ ∥wk
t −wP

t ∥2 + 2η2
t

( I∑
i=1

p(k)(π = i)Lπi

)2

∥wk
t −wP

t ∥2

+ 2Lη2
t g

2
max(w

Q
t )

( I∑
i=1

|p(k)(π = i)− p(P )(π = i)|
)2

≤
(
1 + 2η2

t

( I∑
i=1

p(k)(π = i)Lπi

)2)
∥wk

t −wP
t ∥2

+ 2Lη2
t g

2
max(w

Q
t )

( I∑
i=1

|p(k)(π = i)− p(P )(π = i)|
)2

≤ (1 + 2η2
tL

2)∥wk
t −wP

t ∥2 + 2Lη2
tG

2

( I∑
i=1

|p(k)(π = i)− p(P )(π = i)|
)2

.

where the third inequality holds since we assume that ∇wE(x,y)∼πi
[ℓ(f(x,w), y)] is Lπi -Lipschitz contin-

uous, i.e., ||∇wE(x,y)∼πi
[ℓ(f(x,wk

t ), y)] − ∇wE(x,y)∼πi
[ℓ(f(x,wP

t ), y)]|| ≤ Lπi ||wk
t − wP

t ||, and de-
note gmax(w

P
t ) = maxI

i=1 ||∇wE(x,y)∼πi
[ℓ(f(x,wP

t ), y)]||. The last inequality holds because the above-
mentioned assumption that L = Lπi = Lπ,∀i ∈ I , i.e., Lipschitz-continuity will not be affected by the
samples’ classes. Then, gmax(w

P
t ) ≤ G because of Assumption 3.2.

For T training epochs, we have

∥wk
T −wP

T ∥2

≤ (1 + 2η2
tL

2)∥wk
T−1 −wP

T−1∥2 + 2Lη2
tG

2

( I∑
i=1

|p(k)(π = i)− p(P )(π = i)|
)2

≤
T∏

t=0

(1 + 2η2
tL

2)t∥wk
0 −wP

0 ∥2 + 2LG2
T∑

t=0

(η2
t (1 + 2η2

tL
2))t

( I∑
i=1

|p(k)(π = i)− p(P )(π = i)|
)2

≤ 2LG2
T∑

t=0

(η2
t (1 + 2η2

tL
2))t

( I∑
i=1

|p(k)(π = i)− p(P )(π = i)|
)2

.

where the last inequality holds because the initial models are the same, i.e., w0 = wk
0 = wP

0 , ∀k.
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Lemma B.3. With probability at least 1− δ, given the model wk trained on group k’s dataset Pk, we have

RQk (w
k)−R∗

Qk
(wQk ) ≤ Gk · dist(Pk,Qk) +

√
log(4/δ)

2NPk

+ϖk.

where dist(Pk,Qk) =
∑I

i=1 |p
(Pk)(π = i) − p(Qk)(π = i)| and E(x,y)∼πi

[ℓ(f(x,wk), y)] ≤ Gk, ∀i ∈ I ,
and ϖk := RPk (w

k)−R∗
Qk

(wQk ).

Proof. Building upon the proof idea presented in Lemma B.1, for completeness, we provide a full proof here.
Firstly, we have,

RQk (w
k)−R∗

Qk
(wQk )

= (RQk (w
k)−RPk (w

k))︸ ︷︷ ︸
distribution shift

+(RPk (w
k)−RPk (w

k))︸ ︷︷ ︸
Hoeffding’s inequality

+(RPk (w
k)−R∗

Qk
(wQk ))︸ ︷︷ ︸

overfitting & ideal case

For the first term, we have

RQk (w
k)−RPk (w

k)

=

I∑
i=1

p(Qk)(π = i)E(x,y)∼πi
[ℓ(f(x,wk), y)]−

I∑
i=1

p(Pk)(π = i)E(x,y)∼πi
[ℓ(f(x,wk), y)]

≤
I∑

i=1

|p(Pk)(π = i)− p(Qk)(π = i)|E(x,y)∼πi
[ℓ(f(x,wk), y)]

≤ Gk · dist(Pk,Qk).

where dist(Pk,Qk) :=
∑I

i=1 |p
(Pk)(π = i) − p(Qk)(π = i)| and E(x,y)∼πi

[ℓ(f(x,wk), y)] ≤ Gk, ∀i ∈ I

due to Assumption 3.2. Recall that the constant Gk clarifies the bound of loss on the corresponding model wk.
For the second term, with probability at least 1 − δ, we have |RPk (w

k) −RPk (w
k)| ≤

√
log(4/δ)
2NPk

. For the

third term, we define ϖk := RPk (w
k) − R∗

Qk
(wQk ), which can be regarded as a constant. This is because

RPk (w
k) represents empirical risk and R∗

Qk
(wQk) is the ideal minimal empirical risk of model wQk trained

on sub-distribution Qk.

Therefore, with probability at least 1− δ, given model wk,

RQk (w
k)−R∗

Qk
(wQk ) ≤ Gk · dist(Pk,Qk) +

√
log(4/δ)

2NPk

+ϖk.

B.3 PROOF OF LEMMA 4.1

Proof. Taking the first-order Taylor expansion, we will have

ℓ(f(x◦
n;wt+1), y

◦
n) ≈ ℓ(f(x◦

n;wt), y
◦
n) +

〈
∂ℓ(f(x◦

n;w), y◦
n)

∂f(x◦
n;w)

∣∣∣∣
w=wt

, f(x◦
n;wt+1)− f(x◦

n;wt)

〉
.

Similarly, we have

f(x◦
n;wt+1)− f(x◦

n;wt) ≈ −η

〈
∂f(x◦

n;w)

∂w
,
∂ℓ(f(x′;w), y′)

∂w

〉∣∣∣∣
w=wt

.

Therefore,

ℓ(f(x◦
n;wt+1), y

◦
n)− ℓ(f(x◦

n;wt), y
◦
n) ≈ − η

〈
∂ℓ(f(x′;w), y′)

∂w
,
∂ℓ(f(x◦

n;w), y◦
n)

∂w

〉∣∣∣∣
w=wt

.

Then the accuracy influence on the validation dataset V can be denoted by

Inflacc(x
′, y′) :=

∑
n∈[NV ]

Inflacc(n, x
′, y′) ≈ − η

〈
∂ℓ(f(x′;w), y′)

∂w
,

NV∑
n=1

[
∂ℓ(f(x◦

n;w), y◦
n)

∂w

]〉∣∣∣∣∣
w=wt

.
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B.4 PROOF OF LEMMA 4.2

Proof. By first-order approximation, we have

ϕ({f(x◦
n;wt+1), y

◦
n, a

◦
n|n ∈ [NV ]}) ≈ ϕ({f(x◦

n;wt), y
◦
n, a

◦
n|n ∈ [NV ]})

+
∑

n∈[NV ]

〈
∂ϕ({f(x◦

n;w), y◦
n, a

◦
n|n ∈ [NV ]})

∂f(x◦
n;w)

∣∣∣∣
w=wt

, f(x◦
n;wt+1)− f(x◦

n;wt)

〉
.

Recall by first-order approximation, we have

f(x◦
n;wt+1)− f(x◦

n;wt) ≈ −η

〈
∂f(x◦

n;w)

∂w
,
∂ℓ(f(x′;w), y′)

∂w

〉∣∣∣∣
w=wt

.

Note the loss function in the above equation should be ℓ since the model is updated with ℓ-loss. Therefore,

Inflfair(x
′, y′) ≈ − η

∑
n∈[NV ]

〈
∂ℓ(f(x′;w), y′)

∂w
,
∂ϕ({f(x◦

n;w), y◦
n, a

◦
n|n ∈ [NV ]})

∂w

〉∣∣∣∣∣∣
w=wt

.

C ADDITIONAL EXPERIMENTAL RESULT

Exploring the impact of Label Budgets. In our study, we examine how varying label budgets r influ-
ence the balance between accuracy and fairness. We present the results of test accuracy and fairness disparity
across different label budgets on the CelebA, Compas, and Jigsaw datasets. In these experiments, we use the
demographics parity (DP) as our fairness metric. For convenience, we maintain a fixed label budget per round,
using rounds of label budget allocation to demonstrate its impact. The designated label budgets per round for
the CelebA, Compas, and Jigsaw are 256, 128, and 512, respectively. In the following figures, the x-axis is both
the number of label budget rounds. The y-axis for the left and right sub-figures are test accuracy and DP gap,
respectively. As observed in Figures 1-3, compared to the BALD baseline, our approach substantially reduces
the DP gap without sacrificing test accuracy.
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Figure 1: The impact of label budgets on the test accuracy & DP gap.
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Figure 2: The impact of label budgets on the test accuracy & DP gap.
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Figure 3: The impact of label budgets on the test accuracy & DP gap.
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Figure 4: We validate how accurate the first-order estimation of the influence is in comparison to the
real influence. The x-axis represents the actual influence per sample, and the y-axis represents the
estimated influence. We observe that while some of the examples are away from the diagonal line
(which indicates the estimation is inaccurate), the estimated influence for most of the data samples
are very close to their actual influence values.
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