
A Few Expert Queries Suffices for Sample-Efficient RL
with Resets and Linear Value Approximation

Philip Amortilaα∗ Nan Jiangα Dhruv Madekaβ Dean P. Fosterβ
αUniversity of Illinois, Urbana-Champaign βAmazon, NYC

Abstract

The current paper studies sample-efficient Reinforcement Learning (RL) in settings
where only the optimal value function is assumed to be linearly-realizable. It has
recently been understood that, even under this seemingly strong assumption and
access to a generative model, worst-case sample complexities can be prohibitively
(i.e., exponentially) large. We investigate the setting where the learner additionally
has access to interactive demonstrations from an expert policy, and we present
a statistically and computationally efficient algorithm (DELPHI) for blending ex-
ploration with expert queries. In particular, DELPHI requires Õ(d) expert queries
and a poly(d,H, |A|, 1/ε) amount of exploratory samples to provably recover an
ε-suboptimal policy. Compared to pure RL approaches, this corresponds to an
exponential improvement in sample complexity with surprisingly-little expert input.
Compared to prior imitation learning (IL) approaches, our required number of ex-
pert demonstrations is independent of H and logarithmic in 1/ε, whereas all prior
work required at least linear factors of both in addition to the same dependence on d.
Towards establishing the minimal amount of expert queries needed, we show that,
in the same setting, any learner whose exploration budget is polynomially-bounded
(in terms of d,H, and |A|) will require at least Ω̃(

√
d) oracle calls to recover a

policy competing with the expert’s value function. Under the weaker assumption
that the expert’s policy is linear (rather than their value function), we show that the
lower bound increases to Ω(d).

1 Introduction

Many potential applications of reinforcement learning (RL) have intractably-large state spaces.
Thus, we seek provably-correct methods which have statistical and computational requirements that
are independent of the size of the state space. This requires some modelling assumptions. One
dominating approach has been to introduce function approximation, and to posit that the MDP or
its value functions are well-represented by the function approximation scheme which is employed.
A basic starting point which still lacks comprehensive understanding is the case of linear value
function approximation, which models value functions as lying in the span of a known d-dimensional
feature mapping and asks for methods which have sample complexities that are polynomial only
in d,H, and possibly |A| (H and A are the horizon and action sets of the MDP, respectively).
This desideratum was recently understood to be impossible for the “minimal” case where only
the optimal value function (or optimal action-value function) is assumed to be linear – i.e. there
exist MDPs satisfying this assumption where the statistical complexity of any algorithm will be
exponentially large, either in d or in H [WAS21; WSG21; WWK21; FKQR21]. Furthermore, this
also holds in the case where the learner is equipped with a generative model (or simulator), allowing
them to sample transitions from any state-action pair of the MDP. In recent years much has been
said about linear value approximation under stronger assumptions, for example under determinism

∗philipa4@illinois.edu

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

[WR13], linear/low-rank MDPs [JYWJ20; AJSWY20], Bellman-closedness [LSW20; ZLKB20], or
the existence of a “core set” [SS20; ZLKB19]. These stronger assumptions can recover polynomial
statistical complexities (thought not always computational ones), but are restrictive and oftentimes
unrealistic.

In this work, we consider an alternative possibility for recovering polynomial complexities which
does not further restrict the class of MDPs under consideration. We do this by assisting the learner
with some additional side information about the problem. Specifically, we assume that there is a
deterministic expert policy (which need not be the optimal policy) that the learner can query at any
state, whereupon they will be informed of the expert’s action at that state. Indeed, such information
can often be made readily available if we have some form of prior knowledge (or human input) about
the problem. Leveraging such expert demonstrations has been studied in interactive imitation learning
(IL), with common applications in simulated domains [RGB11; Ros13; RB14; SVGBB17]. As we
will see, however, the amount of expert queries required by a pure IL approach is significantly higher
than what we need. Since interaction with a (human) expert might be costly, we wish to minimize the
burden of the expert by having the learner explore mostly on their own, and only query the expert in a
judicious manner. The question asked by this work, then, is:

Under linearity of the optimal value function, what is the minimal amount of expert
data required for sample/computationally-efficient learning?

Our main result is the DELPHI algorithm for exploring with an interactive expert. DELPHI assumes
that the expert’s value function is linear, and that the agent has access to a RESET function which lets
them return to the state most recently seen. Under these conditions, our method uses surprisingly-few
expert queries combined with some modest (polynomial) amount of exploration to recover the expert
policy. Formally, DELPHI recovers a policy that is ε−optimal (with respect to the expert policy)
with O(d log(B/ε)) oracle calls and Õ(d

2H5|A|B4

ε4) exploratory samples, where B is a bound on the
ℓ2-norm of the unknown linear parameter.2 Thus, our results show that merely Õ(d) expert queries
enable an exponential improvement in sample complexity when compared to RL without expert
advice. Furthermore, the number of oracle calls is completely independent of the horizon of the
problem and is logarithmic in 1/ε, whereas prior work in IL leveraging expert advice requires (at best)
linear factors of both in addition to scaling with d. We also show that DELPHI is computationally
efficient, that it is robust to optimization and misspecification errors, and that it can be extended
to the case where the action-value function of the expert is linear when the MDP dynamics are
deterministic.

Towards establishing the optimality of our algorithm, we study the capabilities of expert-augmented
learners which have fixed exploration budgets. More specifically, we ask: what is the minimal
number of expert queries required by any algorithm which is constrained to a polynomially-bounded
exploration budget? We show that any polynomially-bounded learner (in terms of d,H, and |A|) will
require at least Ω̃(

√
d) oracle calls to recover a policy competing with the expert’s value function. In

the weaker setting where only the expert’s policy is linear, we show that this lower bound increases to
Ω(d), matching our upper bound up to logarithmic factors.

The rest of the paper is structured as follows: in Section 2 we review background and present the
problem setting. Section 3 describes our algorithm, its guarantee, a sketch of the proof, and discusses
some extensions. Section 4 gives the lower bound on the number of expert queries needed. We
conclude with an overview of related work and some discussion in Sections 5 and 6.

2 Background & Problem Setting

Notation We write Dists(X) for the set of probability measures on some set X . We write [N] :=
{1, . . . , N}. The direct product ⊕ corresponds to “concatenating” two vectors, i.e. for any two
vectors u ∈ Rn and v ∈ Rm, we have u⊕ v = (u1, . . . , un, v1, . . . , vm)⊤ ∈ Rn+m. We write ⊗ for
the tensor (or outer) product of two vectors, defined by u⊗ v = uv⊤ ∈ Rn×m, and ♭(u⊗ v) ∈ Rn·m

for the flattening (or vectorization) of said tensor product.

2The Õ notation ignores logarithmic factors.

2

MDPs, Policies, and Value Functions The typical environment in RL is modelled as an MDP
[Put14; Sze10; SB18]. We consider here finite-horizon MDPs, which are specified by a tupleM =
(S,A,R,P, H, µ0), where S is a state space,A = [A] is a finite action set,R : S×A → Dists([0, 1])
is a (bounded) reward distribution function with expectation r(s, a), P : S ×A → Dists(S) is the
transition distribution function with probability vectors P (s, a) = [P(s′|s, a)]s′∈S ∈ R|S|, H ∈ N
is the horizon, and µ0 ∈ Dists(S) is the starting distribution. Note that we have assumed that the
action space is finite, although the state space may be infinite. Without loss of generality we assume
that S is a disjoint union of per-horizon state spaces, i.e. S = ∪h∈[H]Sh.

A (non-stationary) policy π = (π1, · · · , πH) prescribes a sequence of actions πh : Sh → Dists(A),
and its value function is vπ(s) = E[

∑H
h′=h r(sh′ , ah′) | sh = s, ah′ ∼ πh′(sh′)], where s ∈ Sh.

The action-value function qπ(s, a) is defined similarly, save that the first action taken is a and the
proceeding actions follow π. Value functions satisfy the recursive relationship:

vπ(s) = r(s, π) + ⟨P (s, π), vπ(·)⟩ := T πvπ(s) (1)

where we have the shorthands r(s, π) = Ea∼π(s)[r(s, a)], P (s, π) = Ea∼π(s)[P (s, a)], and the
Bellman operator T π(·) := r(s, π) + ⟨P (s, π), (·)⟩. The Bellman operator has vπ as its unique fixed
point. The optimal policy is written as π⋆, and its value function is denoted as v⋆ := vπ

⋆

. The
objective is to find a π maximizing vπ(µ0) := Es0∼µ0 [v

π(s0)].

Function Approximation With an Interactive Expert In the RL setting, the MDP is unknown and
must be explored. As stated in the introduction, we seek sample complexities which are independent
of the number of states. This is evidently not possible without further assumptions. To assist the
learner, we assume that the agent has further access to an oracle, which, upon being queried, returns
the action of an expert policy π◦ for the state. The expert policy need not be the optimal policy. We
will assume that π◦ is deterministic, which is satisfied for example when π◦ = π⋆ or when π◦ is the
greedy policy of some value function.
Assumption 2.1 (Interactive expert). There is an oracle which can be queried at the current state s,
which returns the action π◦(s). Syntactically, the oracle is queried via the ORACLE(s) function.

We note that the oracle can only be queried at the state the learner is currently visiting. The objective
of the learner is to recover a policy which competes with the expert policy, namely a π̂ such that:

vπ̂(µ0) ≥ v◦(µ0)− ε with probability ≥ 1− δ, (2)

where v◦ := vπ
◦

is the value function of the expert. In the sequel we refer to a policy satisfying
Equation 2 as ε-optimal.

Our next assumption concerns the interplay of the expert policy with linear value approximation.
Namely, we assume that the expert policy has a value function which is linear in a set of known
features.
Assumption 2.2 (v◦-linearity, with bounded features). The value function v◦ of the expert is linear
with known features φ ∈ Rd, i.e.

v◦(s) = ⟨φ(s), θ◦⟩, ∀s ∈ S, (3)

for some unknown θ◦ ∈ Rd. We further assume that ∥φ(s)∥2 ≤ 1 ∀s and that ∥θ◦∥2 ≤ B for some
known B ∈ Rd.

This assumption can be extended to the case of (slight) misspecification, as will be shown in
Subsection 3.2. Our last assumption is that the agent has the ability to “reset” to the state most
recently seen.
Assumption 2.3 (Resets). After experiencing a transition (s, a, r, s′) in the MDP, the agent can
return to the state s. Syntactically, this is done via the RESET() function.

Our RESET assumption is weaker than the full generative model access [KMN02] or the “local”
simulator setting [WAJAYJS21; LCCGW21; HLYAYS22] which has appeared in prior works. As
noted in the introduction, existing exponential lower bounds entail that Assumptions 2.2 and 2.3
together are not enough to enable sample-efficient learning. Thus, any efficient learner which is
provided with the above assumptions (2.1, 2.2, and 2.3) must necessarily make use of the expert.

3

3 The DELPHI algorithm

We are ready to describe our approach and give the main result. We begin by supposing that the
starting distribution is deterministic (we will see later that this comes at no loss of generality).
Theorem 3.1. Suppose Assumptions 2.1, 2.3, and 2.2 hold. Then the DELPHI algorithm will recover
a policy π̂ such that vπ̂(s0) ≥ v◦(s0)− ε with probability ≥ 1− δ, using O(d ln(B/ε)) oracle calls
and Õ(d

2H5AB4

ε4) interactions with the MDP. Furthermore this algorithm is computationally efficient.

The pseudo-code for DELPHI is given in Algorithm 1, which uses Algorithm 2 (measureTD) as a
sub-routine to measure expectations. DELPHI will solve for a parameter θ̂ such that an induced policy
πθ̂ (defined via Eq. (4)) will compete with the expert’s value function. We note that deploying the
policy πθ̂ also requires the RESET functionality, since expectations must be estimated from a small
number of samples at each state encountered. This is a consequence of our assumption that v◦ is
linear (rather than, e.g., q◦ or the MDP itself), since selecting actions based on state-value functions
will always require one-step look-aheads.

Intuition for DELPHI Recall that the expert policy π◦ satisfies v◦ = T π◦
v◦, and that this fixed

point is unique. We say that a candidate value function is consistent at a state s if v(s) = T π◦
v(s).

Note that we need consistency to hold globally (i.e. at all states) in order to ensure that v = vπ
◦
.

Our methodology is based on ensuring that consistency on a small number of well-chosen states will
guarantee global consistency.

DELPHI is inspired by a recent algorithm of [WAJAYJS21] called TensorPlan. As in TensorPlan,
DELPHI proceeds via a “guess and check” procedure: at every iteration, we pick the optimistic linear
parameter which is consistent on the past expert data that we have seen. We then check whether this
choice of parameter is globally consistent, by playing nrollout rollouts of length H with a policy
derived from the parameter. More specifically, for any θ the policy πθ takes the form

πθ(s) = argmina

∣∣∣(r̂(s, a) + Ês,a[vθ(s
′)]
)
− vθ(s)

∣∣∣ , (4)

where vθ(·) := ⟨φ(·), θ⟩, and r̂(s, a) and Ês′∼P (s,a) are estimated via the RESET function.

After a certain number of rollouts, one of two things happen: either this policy encounters a state
where there is no consistent action (i.e. the above minimum has a strictly positive value), or we only
encounter states that are consistent.3 In the first case, we query the oracle for its expert action and use
the transition for that action to update the parameter set. In the second case, we derive (cf. Lemma
3.7) that if no inconsistencies are observed for several rollouts, then our “virtual value” vθ is close to
the true value under πθ (i.e., vπθ). Using that θ was optimistic (i.e. vθ(s0) ≥ vθ◦(s0)), this implies
that we are optimal.

The only thing left to argue is that the number of iterations (i.e. the number of times that we can
continue finding new parameters which are not globally consistent) is small. Using linearity of v◦, it
turns out roughly d inconsistencies are sufficient for this. To see this, note that we can re-write the
Bellman equation for any vθ(·) = ⟨φ(·), θ⟩ as:

vθ(s) = T π◦
vθ(s) ⇐⇒ 0 = r(s, π◦(s)) + ⟨Es′∼P (s,π◦)[φ(s

′)]− φ(s), θ⟩
⇐⇒ 0 = ⟨∆s,π◦(s), 1⊕ θ⟩, (5)

where we have introduced the notation ∆s,a := r(s, a) ⊕ (E[φ(s′)]− φ(s)) and used linearity of
expectation, linearity of inner products, the definition of vθ, and the definition of the direct product.
We call the vector ∆s,a the temporal difference (TD) vector for (s, a). Equation (5) is precisely an
orthogonality constraint in d+ 1 dimensions. Since the parameter θt which is chosen at time t was
consistent on past data, it is orthogonal to the previous t− 1 TD vectors which have been generated
from interactions with the oracle. If we happen to find a state which has no consistent action, then
the TD vector corresponding to the expert action at that state must not be in the span of the previous
expert TD vectors (otherwise it would be consistent). It follows that the iteration complexity is at
most d+ 1, since there are at most d+ 1 linearly independent vectors in Rd+1. We use the Eluder
dimension [RVR13] to generalize this argument to the case where the expectations are estimated.

The next section solidifies the above intuition and sketches the proof more formally.
3In reality, due to sampling errors, we tolerate some error during the consistency checks.

4

Algorithm 1 DELPHI

1: Inputs: s0, φ, sub-optimality εtarget, confidence δ, parameter bound B
2: Θ0 ← Ballℓ2(B) ▷ Θt : current consistent parameters
3: Initialize Ed, neval,nrollout, and εtol via Equations (9), (12), (10), (15)
4: for t = 1 to Ed + 1 do
5: Pick θt ∈ argmaxθ∈Θt−1

(
vθ(s0) := θ⊤φ(s0)

)
▷ Optimistic choice over Θt−1

6: consistent← true
7: for m = 1 to nrollout do ▷ nrollout number of rollouts with θt-induced policy
8: St,m,h = s0 ▷ Initialize rollout
9: for h = 1 to H do

10: for a ∈ [A] do ▷ For each action
11: ∆̂St,m,h,a ← measureTD(St,m,h, a, neval) ▷ Measure TD vector at (s, a)
12: end for
13: if mina

∣∣∣⟨∆̂St,m,h,a, 1⊕ θt⟩
∣∣∣ > εtol then ▷ No consistent action

14: consistent← false
15: a◦t ← ORACLE(St,m,h) ▷ Query oracle for π◦(St,m,h)

16: ∆̃St,m,h,a◦
t
← measureTD(St,m,h, a

◦
t , 4Edneval) ▷ Refined data

17: Θt ← Θt−1 ∩ {θ | |⟨∆̃St,m,h,a◦
t
, 1⊕ θ⟩| ≤ εtol} ▷ New admissible parameters

18: Exit current iteration, t← t+ 1, Goto Line 5.
19: end if
20: At,m,h ← argmina∈[A]

∣∣∣⟨∆̂St,m,h,a, 1⊕ θt⟩
∣∣∣ ▷ Else consistent, keep playing

21: Play At,m,h, get Rt,m,h, St,m,h+1 ∼ MDP ▷ Roll forward
22: end for
23: end for
24: if consistent == true then
25: return θt ▷ No inconsistency for m rollouts =⇒ success
26: end if
27: end for
28: return θEd+1

Algorithm 2 measureTD
1: Inputs: s, a, φ(·), n, RESET()
2: for i = 1 to n do
3: Play action a at s, receive sample Rl and S′

l from MDP
4: ∆i ← Rl ⊕ (φ(S′

l)− φ(s))
5: RESET()
6: end for
7: return ∆̂s,a := 1

n

∑
i∈[n] ∆i

3.1 Proof sketch

The full proof comes in 4 parts. The proofs for all Lemmas and the precise values of all hyperparame-
ters are given in Appendix A.

1. Lemmas 3.2 and 3.3 gives concentration bounds which establish that, with high probability, the
measurements ∆̂ (Line 11) and ∆̃ (Line 16) concentrate to the average ∆s,a = ER(s,a)r ⊕(
EP (s,a)φ(s

′)− φ(s)
)
.

2. Lemma 3.4 establishes that, with high probability, the true optimal parameter θ◦ is not eliminated
from Θt for any parameter set that is encountered. It follows (Lemma 3.5) by optimism that
vθt(s0) ≥ v◦(s0) with high probability, where θt is the parameter chosen at time t.

3. Lemma 3.6 establishes an iteration bound: the algorithm will terminate after at most t = Ed

iterations of the outermost loop (and thus after at most Ed oracle queries). The quantity Ed

happens to be the Eluder dimension of our linear function class.

5

4. Lastly, Lemma 3.7 establishes that if nrollout number of rollouts occur without observing a
consistency break, then the virtual value (vθ(s0)) must be roughly equal to the true value under
the executed policy (vπθ (s0)). Theorem 3.1 combines all the ingredients to conclude the proof.

Part 1: Concentration bounds Recall that ∆s,a := r(s, a) ⊕ (E[φ(s′)]− φ(s)) is the true TD
vector, ∆̂ is the estimated TD vectors obtained with neval samples (in Line 11), and ∆̃ is the “refined
data” obtained with 4Edneval samples (in Line 16). The following lemmas establish concentration of
∆̂ and ∆̃ to the true TD vector.
Lemma 3.2 (Concentration of ∆̂s,a (Line 11)). For any s, a ∈ S ×A that is observed throughout
the execution DELPHI , with neval samples in Line 11, we have that with probability ≥ 1 − δ,∥∥∥∆̂s,a −∆s,a

∥∥∥
∞
≤ εeval and thus that ⟨1⊕ θ, ∆̂s,a −∆s,a⟩ ≤ ε̄eval.

Lemma 3.3 (∆̃s,a concentrates even more (Line 16)). Similarly, for all s, a where we call the oracle,

with probability 1 − δ, we have
∥∥∥∆̃s,a −∆s,a

∥∥∥
∞
≤ εeval/(2

√
Ed), and thus, ∀θ ∈ Ballℓ2(B),

|⟨1⊕ θ, ∆̃s,a −∆s,a⟩| ≤ ε̄eval/(2
√
Ed).

Part 2: Optimism This part shows that (with high probability) the true optimal parameter is not
eliminated from the version space, and thus by optimism that the predicted value vt upper bounds v◦.
Lemma 3.4 (θ◦ not eliminated). With probability ≥ 1− δ, θ◦ ∈ Θt for all iterations t ∈ [Ed + 1].

Lemma 3.5 (Optimism). Under the event of Lemma 3.4, we have vt(s0) ≥ v◦(s0), ∀t ∈ [Ed].

Part 3: Iteration bound To bound the iteration complexity of our algorithm, we use the notion of
Eluder dimension [RVR13]. Loosely, the Eluder dimension with respect to some target function is
the longest sequence of points (xi) such that there exists functions differing from the target function
on xi but which correctly fit it on x1, . . . , xi−1. A formal definition is provided in Appendix A. We
will use the result that the Eluder dimension of linear functions is O(d ln(B/ε)) [RVR13; LKFS21].
Lemma 3.6 (Iteration Complexity). With probability ≥ 1 − 2δ, the iteration complexity of the
algorithm is at most the Eluder dimension at scale ε̄eval, i.e. Ed = O(d ln(B/ε̄eval)).

Part 4: Consistency, and putting everything together The last thing to show is that if we are
consistent at all states for several rollouts then the virtual value vθ will be close to the value of the
vπθ .
Lemma 3.7 (Consistency =⇒ accurate prediction). If m rollouts have occured without any
inconsistencies (i.e., the if statement of Line 13 never gets triggered), then vπθ (s0) > vθ(s0) −
5Hε̄eval − εroll with probability ≥ 1− 3δ.

We are now ready to put everything together.

Proof (of Theorem 3.1). Assume all events introduced so far (i.e. the events in Lemma 3.2, Lemma
3.3, and Lemma 3.7). Together these happen with probability ≥ 1− 3δ, so we can re-define δ 7→ δ/3
such that the events happen together with probability ≥ 1 − δ (this only increases factors inside
logarithms by 3). By Lemma 3.7, we have:

vπθ (s0) ≥ vθ(s0)− 5Hε̄eval − εroll
≥ vθ(s0)− εtarget

≥ vπ
◦
(s0)− εtarget, (6)

where the second step follows from plugging in the definitions of neval (Eq. (12)), nrollout (Eq.
(10)), ε̄eval, (Eq. (13)) and εroll (Eq. (16)), and the final step follows by optimism (Lemma
3.5). The total sample complexity of our algorithm is: Ed = Õ(d) oracle calls, and Nneval =

(Ed + 1)HnrolloutAneval = Õ(d
2H5AB4

ε4target
) exploration cost. The last claim to verify is that of

computational efficiency. We note that the only computationally intensive step from iteration is
Line 5, i.e. the optimization problem corresponding to the optimistic choice over the parameter set
maxθ∈Θt−1

θ⊤φ(s0). This is readily seen to be a convex program, since the objective is a linear

6

function and the constraint set is a convex set in Rd (it is initialized at Θ0 = Ballℓ2(B) and every
update intersects it with half-spaces (Line 17)). Besides the ℓ2-norm constraint, all other constraints
can be represented with a linear program, since each absolute value constraint can be split into two
inequalities. By Lemma 3.6 the number of constraints will be at most 2Ed = Õ(d) (and these can
easily be converted to standard form). Thus, there are a plethora of polynomial-time methods for
solving this convex program [BBV04; Bub+15].4

3.2 Extensions

In this section, we show that DELPHI can be extended to work with optimization errors, under
stochastic starting distributions, with misspecification, and with linear q◦ whenever dynamics are
deterministic.

Optimization errors and stochastic start state If the optimistic program can only be solved
upto accuracy εopt ≤ cεtarget (for c ∈ [0, 1)) at each iteration, then Lemma 3.5 becomes vt(s0) ≥
v◦(s0)−εopt and this only appears in Eq. (6). We then need 5Hε̄eval+εroll ≤ (1−c)εtarget, which is
achieved by increasing nrollout and neval by a factor of 1/(1−c)2. This increases the final exploration
cost by 1/(1−c)4. For stochastic starting states, we simply work with vθ(µ0) = Es0∼µ0

[vθ(s0)] (resp.
v◦(µ0)) wherever vθ(s0) (resp. v◦(s0)) previously appeared. The “starting feature” Es0∼µ0

[φ(s0)]
must be estimated from samples, which is then used for the optimistic program in Line 5 with φ(s0)
replaced by this expectation. The error is easily bounded as before by Hoeffding’s inequality, and
will simply propagate additively through the proof.

Misspecified value functions and innacurate simulators DELPHI inherits some robustness prop-
erties from TensorPlan. Namely, with a constant increase in exploration cost, DELPHI continues to
work under errors in the modelling assumptions. The first case is where the expert value function
is not linear but rather is approximately linear up to some uniform error. Formally, we say that the
MDP is η-misspecified for the expert policy π◦ and the feature map φ if there exists θ◦ such that
sups |v◦(s) − ⟨φ(s), θ◦⟩| ≤ η. The second case is where the simulator itself is flawed. Formally,
we say that the simulator is λ-innacurate if a transition (r, s′) from any state-action pair (s, a) of
the MDP is instead observed as (Π(r + λs,a), s

′), where Π is the projection onto [0, 1] and λs,a is a
constant uniformly bounded by λ. The following result (proved in Appendix A.5) states that DELPHI
can tolerate misspecification or simulator inaccuracies of order roughly ε̄eval√

Ed
= O(1

H
√
d
).

Theorem 3.8 (DELPHI with misspecification). Redefine n′
eval = 4neval (Eq. 12) and all subsequent

hyperparameters which depend on n′
eval. Then we have that, for all MDPs that are at most ε̄eval

8
√
Ed

-
misspecified or for all simulators that are at most ε̄eval

4
√
Ed

-innaccurate, the conclusions of Theorem 3.1
continue to hold when running DELPHI with the new hyperparameters.

q◦-linearity, in deterministic dynamics Rather than working with the Bellman equation vθ(s) =

T π◦
vθ(s) we work with qθ(s, a) = T π◦

qθ(s, a), which can be linearized similarly to Eq. (5).
Namely:

qθ(s, a) = T π◦
qθ(s, a) ⇐⇒ 0 = ⟨r(s, a)⊕ (E[φ(s′, π◦(s))]− φ(s, a)) , 1⊕ θ⟩ (7)

This derivation holds generally, although to be able to speak of consistency at (s, a) with respect to a
next action a′, we now assume deterministic dynamics, so that the above becomes

0 = ⟨r(s, a)⊕ (φ(s′, a′)− φ(s, a)) , 1⊕ θ⟩,

where s′ is the unique successor of (s, a) and a′ is the action that we are checking consistency for.
The algorithm proceeds as before, except rather than checking all actions at a given state (Line 13),
we check all proceeding actions a′ against the current (s, a), and play the one with the smallest TD
error (analogously to Line 20 of Algorithm 1).

4In fact, replacing Θ0 with an ℓ∞ constraint will only incur a d2 factor to the exploration cost and log factors
to the oracle cost (since we can think of B 7→

√
dB), but Line 5 will then be a fully linear program.

7

4 How many oracle calls are necessary?

Is DELPHI optimal in terms of its number of oracle calls? To answer this question, we must argue
that no algorithm can find an ε−optimal solution with less than Ω(d) expert queries. As stated, we
are competing with agents which can (for example) exhaustively search the state-space and do not
refer to the expert at all. Thus, an exploration budget must be imposed (formally, a maximal amount
of allowed interaction with the MDP, excluding oracle calls). To make matters more interesting, we
set this cap to be any polynomial amount, resulting in the following question:

Under Assumptions 2.1, 2.2, and 2.3, what is the minimal amount of expert queries
needed for any algorithm with a poly(d,H,A, 1

ε) exploration budget to find an
ε−optimal solution?

We firsly note that, measured in the worst-case, this minimal amount of expert queries is strictly
positive since there exists MDPs satisfying v⋆-linearity for which no algorithm can return a sound
solution with poly(d,H,A, 1

ε) queries [WAS21; WSG21]. Secondly, while it was possible to restrict
ourselves simply to learners which have the same exploration requirements as DELPHI , we opted
to study algorithms with arbitrary polynomial exploration budgets, since it is a more fundamental
question about the limits of exploration and the benefits of expert advice.

Note that any solution to this question must, a priori, have an exponential sample complexity for
pure RL (otherwise the agent does not need to resort to the expert). Interestingly, most constructions
which exhibit exponential lower bounds for linearly-realizable RL can be solved with a single query
from the oracle (e.g., [WAS21; WWK21]). These constructions rely on having an exponentially large
action set with a single correct action that effectively solves the MDP. Our main lower bound comes
from extending the recent lower bound of [WSG21], which is also the only known construction for
an exponential lower bound which has a polynomial action set (rather than exponential). Our result is
that at least Ω̃(

√
d) oracle calls are necessary:

Theorem 4.1. There exists a family of MDPs satisfying 2.1, 2.2, and 2.3, such that any algorithm
with poly(d,H,A) exploration budget will need at least Ω̃(

√
d) oracle calls to recover a policy such

that vπ̂(s0) ≥ v◦(s0)− 0.01.

Our second lower bound considers an alternative assumption, which instead posits that the expert
policy is linear. Formally, this assumption says:
Assumption 4.2 (π◦-linearity, with bounded features). The policy π◦ of the expert is linear with
known features φ : S ×A → Rd, i.e.

π◦(s) ∈ argmaxa⟨φ(s, a), θ◦⟩, ∀s ∈ S, (8)

for some unknown θ◦ ∈ Rd \ {0}.5 We further assume that ∥φ(s)∥2 ≤ 1 ∀s and that ∥θ◦∥2 ≤ B for
some known B ∈ Rd.

When π◦ = π⋆, it is easy to see that this assumption is implied by the assumption that q⋆ is linearly-
realizable. In general however, q◦-linearity does not imply that π◦ is linear (see Appendix C for an
example), although it does imply that the greedy policy derived from q◦ is linear. We give a lower
bound for this case which matches the upper bound of DELPHI up to logarithmic factors.
Theorem 4.3. There exists a family of MDPs satisfying assumptions 2.1, 4.2, and 2.3 such that any
algorithm with poly(d,H,A) exploration budget will need at least Ω(d) oracle calls to recover a
policy such that vπ̂(s0) ≥ v◦(s0)− 0.01.

Intuition for the lower bound Theorems 4.1 and 4.3 use the same MDP construction but with
different features. We give some intuition for the MDP construction which is used, but due to its
intricacy a full description (and the information-theoretic proof) are deferred to Appendix B. Loosely,
the learner has to find a hidden hypercube vector s⋆ ∈ {±1}p. The action space is A = [p], and
each action corresponds to flipping one of the bits of the current vector. The MDP has K “phases”
which each correspond to p bit flips (thus H ≈ Kp). A linear reward is given only if a sufficiently
small neighborhood of s⋆ is reached, and the reward (thus the value) will decay geometrically in
each subsequent phase that the neighborhood is not reached. Intuitively, the oracle needs to be used

5We exclude 0 since otherwise this would simply be the class of all policies.

8

≈ p times, since each oracle calls only reveals one action, and thus one bit of the optimal vector
s⋆. The reason that this results in a Ω̃(

√
d) lower bound (rather than Ω̃(d)) is that the value function

will experience a scale transition when going from states where s⋆ is reachable given the remaining
steps in the current phase to states where s⋆ is no longer reachable. As just described, the value (and
thus the features) will be one order of magnitude smaller in this latter portion of the state space. As
this would betray the location of the secret parameter, the value function is instead augmented to
be quadratic in p (roughly, the product of the distance achieved at the end of this phase and that of
the next phase), which requires that p ≈

√
d in order to observe linearity. On the other hand, the

lower bound for π◦-linearity (Theorem 4.3) can remain linear in d, since the definition (Eq. 8) is
scale-insensitive.

Closing the gap between our upper bound of Õ(d) and our lower bound of Ω̃(
√
d) remains a

challenging but interesting question. In finite horizons, with access to a generative model or a RESET
method, we suspect that the only mechanism for creating a hard MDP is by geometrically decaying
the maximum possible value for each stage, such that at the final stage of the MDP the (random)
reward becomes exponentially small in H (that is the approach taken here and in [WAS21; WSG21]).6
If the geometric decaying happens in “phases” then this implies that Ω(1) of the value is located in
the first “phase”. The tension, then, is to have such a construction while hiding this large value, and
forcing the learner to rely on several oracle calls to find it. Prior constructions [WAS21; WWK21]
have hid the large initial value by choosing an exponentially large action set, although as discussed
above these examples are solved with a single query of the expert oracle. Extending the “needle
in a haystack” to occur over multiple decisions (cf. the “phases” used above) leads to increased
oracle requirements, although due to the scale transition phenomenon observed above it is far from
clear how to do this with phases of length ≈ d. The question thus boils down to: is geometric value
reduction necessary for exponential lower bounds in this setting, and if so can we avoid the scale
transition problem? The situation is likely to be different in the online RL setting. For example, the
construction of [WWK21] extends [WAS21] to the online setting, and does not need to decay rewards
but instead adds an Ω(1) probability of death at every transition. This mechanism evidently does not
work when the agent has resets, and since it is not known whether DELPHI can be extended to the
online setting we opted to keep the settings consistent between our upper bound and our lower bound.

5 Related works

The closest body of work to our setting is the field of interactive IL. As in our setting, interactive IL
considers the case where the learner has access to an expert oracle that can be queried adaptively.
It differs from our setting, however, since traditionally in IL the learner does not observe reward
information. We further differ from the IL setting since we consider value function approximation
rather than general policy classes, and since we assume access to a RESET function. Despite that
many demonstrations of interactive IL occur in simulated domains [RGB11; Ros13; RB14], the
benefits of this feature have not previously been studied. Our assumption of v◦ linearity entails
that many IL methods are not directly applicable. Indeed, the policy π◦ itself does not need to be
linear (despite that v◦ is), so it is unclear which policy class to use for those algorithms. Assuming
for the sake of comparison that linear policies can be used, IL methods would still obtain worse
oracle rates. Indeed, using results from [AJKS19], Behaviour Cloning (for the passive case) or

AggreVaTe [RB14; SVGBB17] (for the interactive case) have worst-case errorsO(1
(1−γ)2

√
d ln(1/δ)

N)

for discounted MDPs, which roughly translates to an oracle complexity of N = O(dH4/ε2) when
using the standard reduction H 7→ (1−γ)−1. This is in sharp contrast to our Õ(d) oracle calls, which
in independent of H and logarithmic in 1/ε, and demonstrates the improvement due to exploration
with the help of value-function approximation. Beyond these approaches, another intuitive method
would be to perform regression by doing a Monte Carlo estimation for the value of v◦(s) for each s
along a certain “good” set of features. This would require collecting rollouts from those states, which
will again introduce a factor of H in the number of oracle queries. Our algorithm instead finds a
set of state-action pairs where the Temporal difference (TD) errors (which we represent as vectors)
span orthogonal directions. These can be estimated with a single transition, and this "local fitting"
approach is novel to the IL literature and avoids the factors of H and 1/ε from previous works.

6In particular, an exponentially small gap is necessary, since backwards induction-type methods are possible
when q⋆ is linearly-realizable and have sample complexities scaling with the inverse gap [DKWY19; DLMW20].

9

In terms of other linear structure in IL, the works of [AN04; SS07] assume a known transition function
and unknown linear rewards, and derive expert complexities of O

(
dH2 log(dH/ε)

ε2

)
and O(H

2 log(d)
ε2)

respectively, but the algorithms involve (tabular) planning in MDPs and thus are not computationally
efficient. Most relevant is the recent work of [RHYLJR21], which, in the reward-free case, assumes
that the expert policy is linear (i.e., our Assumption 4.2). A sample complexity of Õ(dH/ε) is shown
for Behaviour Cloning in this case, though no lower bound is given.

On the technical side, the DELPHI algorithm is inspired by a recent algorithm called TensorPlan
[WAJAYJS21]. TensorPlan works for pure RL under Assumptions 2.2 and 2.3 but has a sample
complexity scaling as poly(

(
dH
ε

)A
, B) and is computationally intractable. Our extension of Tensor-

Plan naturally incorporates the expert demonstrations, while simultaneously (1) having low oracle
requirements, (2) addressing the exponential sample complexity of TensorPlan, and (3) rendering
the algorithm computationally efficient. Our approach is based only on finding value functions
which satisfy the Bellman equation. Bellman error minimization approaches have appeared in other
works (e.g. [JLM21; ZLKB20; CJ19]), but have always required a restrictive “Bellman closedness”
assumption. As discussed, our lower bound construction is an extension of the recent remarkable
lower bound of [WSG21], although several aspects of the construction have been modified to ob-
tain better rates. In particular, we modified the reward/value functions, the feature mappings, and
introduced an expert policy which differs from the optimal policy. For the proof, our setting is more
complex as the learner has adaptive access to a second information source (the oracle), and a more
sophisticated information-theoretic argument was needed to show that the oracle does not leak too
much information.

6 Conclusion

We presented the DELPHI algorithm for RL with an interactive expert. We saw that, with Õ(d) oracle
calls, exponential improvements in sample complexity are possible for RL with linearly-realizable
optimal value functions. Compared to prior works on learning with an interactive expert, we also saw
that DELPHI ’s oracle requirements were smaller, and in fact are independent of the horizon of the
MDP. It would be interesting and fruitful to resolve the gap between the oracle complexity required
by DELPHI and the one obtained from our lower bound (either answer would be surprising to the
authors). It would also be fruitful to study the case of linearly-realizable action-value functions in
stochastic MDPs, which would potentially enable our method to be extended to the online setting.

Acknowledgments and Disclosure of Funding

PA gratefully acknowledges funding from the Natural Sciences and Engineering Research Council of
Canada (NSERC). Work done in part while PA was an intern at Amazon.

References
[AJKS19] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. “Reinforcement learn-

ing: Theory and algorithms”. In: CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep
(2019).

[AJSWY20] Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. “Model-
based reinforcement learning with value-targeted regression”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 463–474.

[AN04] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse reinforcement
learning”. In: Proceedings of the twenty-first international conference on Machine
learning. 2004, p. 1.

[BBV04] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[Bub+15] Sébastien Bubeck et al. “Convex optimization: Algorithms and complexity”. In:
Foundations and Trends® in Machine Learning 8.3-4 (2015), pp. 231–357.

[CJ19] Jinglin Chen and Nan Jiang. “Information-theoretic considerations in batch rein-
forcement learning”. In: International Conference on Machine Learning. PMLR.
2019, pp. 1042–1051.

10

[DKWY19] Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. “Is a good repre-
sentation sufficient for sample efficient reinforcement learning?” In: arXiv preprint
arXiv:1910.03016 (2019).

[DLMW20] Simon S Du, Jason D Lee, Gaurav Mahajan, and Ruosong Wang. “Agnostic Q-
learning with function approximation in deterministic systems: Tight bounds on
approximation error and sample complexity”. In: arXiv preprint arXiv:2002.07125
(2020).

[FKQR21] Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. “The Statistical
Complexity of Interactive Decision Making”. In: arXiv preprint arXiv:2112.13487
(2021).

[HLYAYS22] Botao Hao, Nevena Lazic, Dong Yin, Yasin Abbasi-Yadkori, and Csaba Szepesvari.
“Confident Least Square Value Iteration with Local Access to a Simulator”. In:
International Conference on Artificial Intelligence and Statistics. PMLR. 2022,
pp. 2420–2435.

[JLM21] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. “Bellman eluder dimension: New
rich classes of rl problems, and sample-efficient algorithms”. In: Advances in Neural
Information Processing Systems 34 (2021).

[JYWJ20] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. “Provably efficient
reinforcement learning with linear function approximation”. In: Conference on
Learning Theory. 2020, pp. 2137–2143.

[KMN02] Michael Kearns, Yishay Mansour, and Andrew Y Ng. “A sparse sampling algorithm
for near-optimal planning in large Markov decision processes”. In: Machine learning
49.2 (2002), pp. 193–208.

[LCCGW21] Gen Li, Yuxin Chen, Yuejie Chi, Yuantao Gu, and Yuting Wei. “Sample-efficient re-
inforcement learning is feasible for linearly realizable MDPs with limited revisiting”.
In: Advances in Neural Information Processing Systems 34 (2021).

[LKFS21] Gene Li, Pritish Kamath, Dylan J Foster, and Nathan Srebro. “Eluder dimension
and generalized rank”. In: arXiv preprint arXiv:2104.06970 (2021).

[LSW20] Tor Lattimore, Csaba Szepesvári, and Gellért Weisz. “Learning with Good Feature
Representations in Bandits and in RL with a Generative Model”. In: ICML. 2020,
pp. 9464–9472.

[Put14] Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 2014.

[RB14] Stephane Ross and J Andrew Bagnell. “Reinforcement and imitation learning via
interactive no-regret learning”. In: arXiv preprint arXiv:1406.5979 (2014).

[RGB11] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation
learning and structured prediction to no-regret online learning”. In: Proceedings
of the fourteenth international conference on artificial intelligence and statistics.
JMLR Workshop and Conference Proceedings. 2011, pp. 627–635.

[RHYLJR21] Nived Rajaraman, Yanjun Han, Lin Yang, Jingbo Liu, Jiantao Jiao, and Kannan Ram-
chandran. “On the Value of Interaction and Function Approximation in Imitation
Learning”. In: Advances in Neural Information Processing Systems 34 (2021).

[Ros13] Stephane Ross. “Interactive learning for sequential decisions and predictions”. PhD
thesis. Carnegie Mellon University, 2013.

[RVR13] Daniel Russo and Benjamin Van Roy. “Eluder Dimension and the Sample Complex-
ity of Optimistic Exploration.” In: Citeseer. 2013.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
2018.

[SS07] Umar Syed and Robert E Schapire. “A game-theoretic approach to apprenticeship
learning”. In: Advances in neural information processing systems 20 (2007).

[SS20] Roshan Shariff and Csaba Szepesvári. “Efficient planning in large MDPs with weak
linear function approximation”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 19163–19174.

[SVGBB17] Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bag-
nell. “Deeply aggrevated: Differentiable imitation learning for sequential prediction”.
In: International Conference on Machine Learning. PMLR. 2017, pp. 3309–3318.

11

[Sze10] Csaba Szepesvári. “Algorithms for reinforcement learning”. In: Synthesis lectures
on artificial intelligence and machine learning 4.1 (2010), pp. 1–103.

[WAJAYJS21] Gellert Weisz, Philip Amortila, Barnabás Janzer, Yasin Abbasi-Yadkori, Nan Jiang,
and Csaba Szepesvári. “On Query-efficient Planning in MDPs under Linear Realiz-
ability of the Optimal State-value Function”. In: arXiv preprint arXiv:2102.02049
(2021).

[WAS21] Gellért Weisz, Philip Amortila, and Csaba Szepesvári. “Exponential lower bounds
for planning in mdps with linearly-realizable optimal action-value functions”. In:
Algorithmic Learning Theory. PMLR. 2021, pp. 1237–1264.

[WR13] Zheng Wen and Benjamin Van Roy. “Efficient Exploration and Value Function
Generalization in Deterministic Systems”. In: Advances in Neural Information
Processing Systems. 2013, pp. 3021–3029.

[WSG21] Gellért Weisz, Csaba Szepesvári, and András György. “TensorPlan and the Few
Actions Lower Bound for Planning in MDPs under Linear Realizability of Optimal
Value Functions”. In: arXiv preprint arXiv:2110.02195 (2021).

[WWK21] Yuanhao Wang, Ruosong Wang, and Sham Kakade. “An Exponential Lower Bound
for Linearly Realizable MDP with Constant Suboptimality Gap”. In: Advances in
Neural Information Processing Systems 34 (2021).

[ZLKB19] Andrea Zanette, Alessandro Lazaric, Mykel J Kochenderfer, and Emma Brunskill.
“Limiting extrapolation in linear approximate value iteration”. In: Advances in
Neural Information Processing Systems 32 (2019).

[ZLKB20] Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill.
“Learning near optimal policies with low inherent bellman error”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 10978–10989.

12

