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Abstract001

Understanding the behavior of multilingual lan-002
guage models across different languages re-003
mains a significant challenge. Recent research004
has demonstrated that the Average Neuron-Wise005
Correlation (ANC) offers a comprehensive anal-006
ysis of activation similarities in multilingual007
models. This study proposes the use of Average008
Wasserstein Distance (AWD) between activa-009
tion value distributions and compares it to ANC010
across three datasets: XNLI, ReadMe++, and011
Vikidia. By applying these metrics, we aim to012
elucidate the underlying processes within large013
language models, thereby enhancing our under-014
standing of cross-linguistic transfer and model015
accuracy.016

1 Introduction017

This paper explores methods to investigate cross-018

linguistic transfer, focusing on differences in ac-019

tivation patterns of Pre-trained Language Mod-020

els (PLMs) like BERT (Devlin et al., 2019a) and021

RoBERTa (Conneau et al., 2019) when classifiers022

are transferred to a new target language. Specifi-023

cally, we address the issue of language complexity,024

aiming to assess whether a text is complex.025

Better understanding of the cross-lingual trans-026

fer capabilities of PLMs is essential for improving027

multilingual NLP, particularly in tasks requiring lan-028

guage adaptation, such as readability assessment029

and complexity classification. A key challenge lies030

in determining how well PLMs generalize linguis-031

tic structures across diverse languages, especially032

when dealing with underrepresented or typolog-033

ically distant languages. Investigating activation034

patterns through ANC and AWD provides insights035

into how PLMs encode and transfer linguistic com-036

plexity, allowing us to identify factors that facilitate037

or hinder successful cross-lingual adaptation.038

Previous research has primarily focused on the039

advantages of studying the transfer gap using the040

Average Neuron-Wise Correlation (ANC) metric041

over other methods, such as Centered Kernel Align- 042

ment (Del and Fishel, 2022), as well as by using 043

layer ablation (Muller et al., 2021). 044

Our main contributions are: 045

1. Application of the Average Wasserstein Dis- 046

tance (AWD) to study latent spaces of multi- 047

lingual PLMs; 048

2. Examination of the behavior of ANC on lan- 049

guage complexity tasks; 050

3. Combining ANC and AWD for a more detailed 051

explanation of hidden processes in PLM acti- 052

vations. 053

The code and data will be available in the ac- 054

cepted version of the paper. 055

2 Related Work 056

2.1 Analysis of Pretrained Language Models 057

Recent research has explored the internal mechanics 058

of PLMs, particularly the behavior of hidden lay- 059

ers. Muller et al. (2021) introduced the ”first align, 060

then predict” approach, where activation vectors 061

are aligned before predictions are made. To analyze 062

these hidden spaces, methods like Centered Ker- 063

nel Alignment (CKA, (Kornblith et al., 2019)) and 064

Canonical Correlation Analysis (CCA, (Hotelling, 065

1936)) have been used. 066

Del and Fishel (2022) analysed limitations of 067

such methods as CCA and CKA and introduced 068

Average Neuron-Wise Correlation (ANC), which 069

has been shown to offer significant advantages over 070

CKA and CCA, providing a more interpretable 071

framework for analyzing the alignment of activation 072

vectors across layers, particularly in the context of 073

the XNLI task. 074

The idea of measuring cross-lingual transfer 075

across the layers is also important for decoding- 076

only language models such as Llama (Liu et al., 077
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2025). However, as our concern here is with clas-078

sification tasks, we keep investigating smaller and079

more efficient encoder-only PLMs.080

2.2 Wasserstein Distance081

The Wasserstein distance, or Earth Mover’s Dis-082

tance, measures the cost of transporting mass be-083

tween two probability distributions, offering a com-084

prehensive view of their similarity (Khamis et al.,085

2024). It is particularly useful for detecting shifts086

in word embedding distributions at the coordinate087

level (Ramírez et al., 2020). By using Wasserstein088

distance alongside ANC, we aim to gain a fuller089

understanding of neural network activation distri-090

butions.091

3 Methodology092

To investigate the process of language transfer, we093

compare the use of ANC and AWD over the values094

of activations in the PLM layers comparing predic-095

tions made for the original language (L1) and for096

the target language (L2) for semantically equivalent097

text segments:098

X = L1 − mean(L1)099

Y = L2 − mean(L2)100

3.1 ANC definition101

ANC calculates the correlation between activation102

vectors averaged by neurons:103

ANC(X,Y ) =

n∑
i=1

abs(corr(X[i], Y [i]))

n
, (1)104

where corr is Pearson’s correlation.105

3.2 Average Wasserstein definition106

Given that ANC focuses only on the angle between107

vectors (as it is equivalent to the cosine distance),108

this does not fully capture the variation of the co-109

ordinates. This is the rationale for our proposal of110

the Average Wasserstein Distance (AWD), which111

is defined by mirroring ANC:112

AWD(X,Y ) =
1

n

n∑
i=1

[W (X[i], Y [i])] , (2)113

where W(X[i], Y[i]) is the Wasserstein Distance114

between i-th neuron of centered layer of L1 and i-th115

neuron of centered layer of L2:116

W (a, b) =

k∑
j=0

|Fa(tj)− Fb(tj)|∆t (3) 117

with ∆t and Fa defined as: 118

∆t = [max(a ∪ b)− min(a ∪ b)] /k (4) 119

tj = min(a ∪ b) + j∆t (5) 120

Fa(t) =
∑
u∈a

I(u < t)/
∑
u∈a

1 (6) 121

3.3 Complexity datasets 122

In addition to the XMLI task as used in (Del and 123

Fishel, 2022), we examined two scenarios of com- 124

plexity prediction: one with six classes and an- 125

other one with two. For the six classes, we used 126

ReadMe++ (Naous et al., 2023), which contains 127

texts in five languages (English, French, Russian, 128

Arabic, and Hindi), categorized into six complex- 129

ity levels according to CEFR Council of Europe 130

(2001). For the second classification task, we col- 131

lected data from Vikidia1, a website which main- 132

tains Wikipedia-style content aimed at “children 133

and anyone seeking easy-to-read content”, and the 134

corresponding entries from Wikipedia, aiming to 135

predict whether a test text is suitable for Vikidia or 136

not. 137

Initially, neither dataset included segments of 138

the same meaning across languages. For the XNLI 139

task, such texts were prepared using machine trans- 140

lation and human quality control (Conneau et al., 141

2018). To create the necessary parallel corpus 142

for the complexity task, we translated the avail- 143

able English texts into Russian (ru), French (fr), 144

Hindi (hi), Arabic (ar), Romanian (ro), Greek (el), 145

Spanish (es), Hebrew (he), Turkish (tr), Belarusian 146

(be), Ukrainian (uk), Bulgarian (bg), Chinese (zh), 147

Japanese (ja), Irish (ga), German (de), Italian (it) 148

and Welsh (cy) using Google Translate. 149

To ensure that the language complexity does not 150

change through machine translation, we verified a 151

small sample of translated texts by human annota- 152

tion with no detectable changes in complexity. On 153

the full dataset, we compared transfer learning on 154

the original texts and on the translations. Table 1 155

shows that complexity predictions are preserved, 156

with MAE scores even improving on the translated 157

texts. This improvement may result from reduced 158

annotation noise, as different annotators originally 159

1https://www.vikidia.org/
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Original
ReadMe++

Translated
ReadMe++

en 0.418 0.418
ar 0.669 0.716
fr 0.535 0.619
hi 0.552 0.643
ru 0.533 0.668

Table 1: Comparing mean absolute error (MAE) of pre-
dictions on the original ReadMe++ and on the translated
English (hold out) part. To improve the stability of the
results, the value in the table is obtained as an average
over 10 batches of 100 elements selected randomly.

marked the languages, potentially leading to vary-160

ing interpretations of CEFR criteria. The same la-161

bels were applied to both the original and translated162

texts.163

The use of the MAE metric allows us to quanti-164

tatively evaluate the limits of the model errors (in165

particular, to say that the model is critically wrong166

or wrong within the neighboring complexity levels),167

in contrast to the F1 metric, which only allows us to168

detect the presence of an error, but not to evaluate169

its criticality.170

3.4 Transfer experiments171

To investigate the transfer process, we trained our172

model on English texts using multilingual BERT173

and XLM-Roberta on different datasets and then174

made predictions on unrelated test texts in other175

languages (300 samples).176

To understand the multilingual limits of this trans-177

fer, we have also conducted similar experiments178

to show transfer from other languages using the179

ReadMe dataset. For all experiments with XNLI180

and Viki use F1 also for Readme, but Readme —181

only experiments always use MAE. This is due to182

the fact that in the ReadMe dataset, an error of ±1183

class is not as significant as an error of ±2 or more.184

This feature is not taken into account by the F1185

metric, unlike MAE.186

We measured ANC and AWD across the layers187

on these test texts and reported the interquartile188

range of their values as a robust measure of their189

variation.190

For the sake of brevity, we only present the re-191

sults for BERT, with the XLM-Roberta results in-192

cluded in the Appendix. These experiments were193

conducted in parallel for the XNLI task and for two194

text complexity prediction tasks, the primary focus195

of this study.196

XNLI ReadMe++
Vikidia vs
Wikipedia

en 0.536 0.602 0.851
ar 0.517 0.507 0.748
fr 0.532 0.542 0.785
hi 0.522 0.343 0.622
ru 0.531 0.544 0.707

Table 2: Average F1 weighted measure for BERT trained
on English (averaging over 10 batches containing 100
texts each. All sampled from the hold out dataset).

4 Experimental results 197

Table 2 presents the validation metrics for the 198

trained model. On the task of classification of texts 199

in ReadMe, it is clear how much the quality of trans- 200

fer from English differs. Considering that BERT 201

was trained on Wikipedia, and the task of HNLI is 202

similar to the one on which BERT was trained, we 203

can conclude that fine-tuning plays a greater role 204

on the ReadMe task, rather than pre-training. 205

The first row of Figure 1 shows that ANC follows 206

the pattern observed by Del and Fishel (2022) for 207

XNLI, extending it to two additional tasks: ANC 208

increases until the middle layers, then it plateaus. 209

The phenomenon of “first align, then predict” 210

was first observed by Muller et al. (2021) using a 211

layer ablation technique. Del and Fishel hypothe- 212

sized that at layers where ANC increases, activa- 213

tion vectors “level out”, while prediction occurs 214

at subsequent layers. Unlike ANC (a similarity 215

measure), AWD is a distance. So it follows a re- 216

verse pattern, see the second row of Fig. 1: from 217

layer 1 to 7, where the directions of activation vec- 218

tors change significantly, the distribution of their 219

coordinate values is close to the source language. 220

However, instead of “leveling out”, as detected by 221

ANC, a change occurs in the distribution of values. 222

In complexity classification problems, the effect is 223

more pronounced than in XNLI. Thus, the align- 224

ment phase consists of bringing the direction of the 225

activation vectors closer to what was in the source 226

language (thus, the model brings the unknown to 227

the known). Later, the prediction stage consists of 228

changing the distributions of activation values (the 229

model highlights the differences). We hypothesize 230

that the plateau observed through ANC is associ- 231

ated with its limited ”horizon” (as it only looks at 232

the angles between the vectors), rather than with 233

the absence of processes that change activations. 234

Pictures with aggregated data do not fully re- 235
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Figure 1: ANC and AWD for BERT. Activations were counted on 300 samples. The dot is the average value on the
sample, the pale colored area shows interquartile range on activations in each layer.

flect how the quality metric depends on the dis-236

tance measures. Figure 6 shows the relationship237

between weighted F1 and ANC (or AWD) on the238

last layer. The arrangement of the distributions rel-239

ative to each other is different in XNLI vs our com-240

plexity tasks. Despite that, in all tasks the pattern241

is maintained: languages more similar to English242

have higher values on the ANC scale. For AWD the243

order is reversed, as it is a distance measure. For ex-244

ample, either ANC or AWD can be used to predict245

the transfer of complexity predictions to Hindi is246

likely to be less successful than transfer to French,247

see Table 1.248

We can also use these measures to detect devi-249

ations from this pattern for individual examples.250

For example, the following French sentence from251

Readme++ Aujourd’hui, la situation n’a fait qu’em-252

pirer. “Today, the situation has only worsened.”253

differs in syntax from English, while its transla-254

tions into other languages in the Readme++ set are255

similar to English. We quantified translation sim-256

ilarity using the metric (v − b)/b where b is the257

mean AWD across layers 1-7 (baseline) and v is258

the mean AWD across layers 7-13 (value). The re-259

sults for this sentence span from 0.65 for Arabic260

and 1.17 for Russian to 4.05 for French and 5.98261

for Hindi. In contrast, the average values across the262

entire sample range from 1.41 for French and 1.82263

for Arabic to 1.89 for Russian and 3.42 for Hindi. In264

all cases, class 1 was predicted (which corresponds 265

to the correct one). The abnormally high value for 266

Hindi is likely to be due to worse representation 267

quality from BERT’s initial training sample. 268

5 Differences between ANC and AWD 269

To better understand how the linguistic proper- 270

ties of information representation are captured by 271

these metrics, we calculated the syntactic distances 272

(Belov et al., 2020) between the original sentences 273

of the dataset and their translations. The edit dis- 274

tance metric was calculated on syntactic trees of 275

sentences, where each node is a part of speech of 276

a word from the sentence, and an edge is a type 277

of connection between words2. The edit distance 278

metric is directly proportional to the number of in- 279

sertions/replacements/removals of a node or edge in 280

one tree to obtain the original. Therefore, languages 281

with syntactic constructions less similar to those 282

found in English sentences have a higher value. 283

Figure 2 shows that in the last layer the AWD 284

metric shows better correlation with syntactic edit 285

distance in comparison to f1 and ANC. 286

2Using pretrainted models from Stanza https://stan-
fordnlp.github.io/stanza/depparse.html
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Figure 2: Dependence of syntactic edit distance on ANC and AWD at the last layer of the BERT model (trained on
the English dataset) and the accuracy of prediction on the translated dataset.

6 Extended experiment287

Experiments in which the model is trained in En-288

glish and then makes predictions in other languages289

have shown significant correlations between F1 and290

ANC/AWD.291

Figure 3 shows the performance of the model292

trained on the English dataset in all languages un-293

der consideration. It is noticeable that in all cases294

the correlation coefficients are high and there is an295

obvious dependence in the data. This behavior was296

observed in the original ReadMe datasets (5) and297

then generalized by translating its English part.298

However, this effect is observed only for models299

trained on the English sample. For models trained300

on other languages (fig 4), the transfer effect suffers301

significantly. Moreover, in languages with a large302

resource base (those that were represented in large303

quantities in the BERT training sample), the disor-304

der is noticeable, but not as strong as in Arabic and305

Hindi, where the dots represent a random cloud.306

However, the model trained on other languages307

shows significantly more chaotic results 4.308

7 Conclusions309

In this study, we explored the cross-linguistic trans-310

fer of language complexity using PLMs, with a311

particular emphasis on the ANC metric and the312

introduction of the Wasserstein distance as a com-313

plementary measure. Our experiments, conducted314

with both BERT and xlm-roBERTa models, yielded315

several insights:316

• Metric Comparison: the ANC metric alone317

may not fully capture the subtleties of activa-318

tion similarities across languages. By incor-319

porating the Wasserstein distance, we offered320

a more comprehensive perspective on these321

similarities, particularly in capturing distribu- 322

tional shifts that the ANC metric might over- 323

look. 324

• Language Complexity Transfer: Our results 325

indicate that language complexity, as mea- 326

sured by F1 scores, is largely preserved dur- 327

ing machine translation, validating the use of 328

translated texts in cross-linguistic studies. 329

In conclusion, combining ANC with AWD pro- 330

vides a more nuanced understanding of activa- 331

tion similarities in multilingual models. These in- 332

sights not only enhance our understanding of cross- 333

linguistic transfer but also have practical implica- 334

tions for developing more effective and accurate 335

multilingual NLP systems. 336

Future Research Directions: 337

• Our combined approach highlighted a corre- 338

lation between these metrics and model per- 339

formance, suggesting that higher ANC and 340

lower AWD are associated with better model 341

accuracy, so AWD can can be used to estimate 342

accuracy for new languages even without test 343

data. This initial finding needs to be explored 344

with more language pairs. 345

• Our analysis has shown that AWD is linked 346

to syntactic differences between languages. 347

However, the specific linguistic or computa- 348

tional properties that determine ANC remain 349

to be systematically identified. Future research 350

should aim to establish a precise link between 351

ANC and relevant linguistic factors, which will 352

contribute to a more refined understanding of 353

multilingual model adaptation. 354
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Figure 3: ANC and AWD at the last layer of the BERT model vs F1 on extended translated dataset.

Figure 4: ANC and AWD at the last layer of the BERT model vs MAE on extended translated dataset. The columns
show the results of inference of models that were trained on the original ReadMe++ dataset in English, French and
Hindi, respectively.

8 Limitations355

The obtained regularities are applicable only when356

transferring training from English to other lan-357

guages.358

9 Ethical statement359

We are not aware of potential ethical risks in the360

study discussed in the paper. If anything it helps361

with understanding the process of cross-lingual362

transfer, thus potentially helping lesser-resourced363

languages.364

In conducting the study we have been careful 365

with the environmental impact of NLP research. 366

Large Language Models are more computationally 367

expensive, while they have been shown to be not 368

better than PLMs in several text classification tasks. 369

For each of the methods we provide estimates the 370

computational costs of running the models (table 371

3). 372
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Time per
one
loop

Number
of loops

Number of
models

Total
computer

time
Train 0.5 11 5 27.5

Inference 0.1 30 5 15

Table 3: Computational costs of running the models on
Google Colab’s L4 GPU (in hours).
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A Transferring language complexity with485

BERT486

The figure 5 shows the aggregated values for the ac-487

curacy and proximity metrics of multilingual learn-488

ing transfer.489

Figure 5: Mean value of ANC and AWD in the last layer
of BERT. As the error bars, the first and third quartiles
as minimum and maximum respectively.

Figure 6: Distributions of proximity and accuracy ma-
trices for BERT. The top row: distribution of ANC ×
weighted F1 (Cartesian product), the bottom row: AWD
× weighted F1. Both ANC and AWD were taken from
the last layer.

The difference in the behavior of the model in490

XNLI and complexity tasks is clearly visible. In the491

XNLI there is practically no correlation between492

F1 in ANC (AWD). While in both complexity prob- 493

lems, values are well described by a linear depen- 494

dence. It follows that it is possible to use proximity 495

metrics to predict the quality of a model in a lan- 496

guage in which it has not been fine-tuned. 497

B Transferring language complexity with 498

xlm-roBERTa 499

The same experiment was conducted with xlm- 500

roBERTa. Since BERT and roBERTa were trained 501

on different language domains (Conneau et al., 502

2019) they have different starting packs of lan- 503

guage knowledge. On validation after fine-tuning, 504

roBERTa showed similar results with BERT. 505

XNLI ReadMe++
Vikidia vs
Wikipedia

ar 0.692 0.472 0.870
en 0.790 0.573 0.904
fr 0.746 0.518 0.871
hi 0.601 0.509 0.845
ru 0.716 0.465 0.858

Table 4: Average f1 weighted measure for xlm-roBERTa
(averaging over 10 batches containing 100 texts each).

The expectation was that both models would 506

show close results in the meaning of ANC and AWD 507

metrics. However, the experiment showed the fol- 508

lowing pictures. 509

Figure 7: ANC and AWD for xlm-roBERTa obtained by
sampling on parallel texts of the datasets. Activations
were counted on 300 samples. The dot is the average
value on the sample, the pale colored area shows in-
terquartile range on all subsamples for one layer.

The behavior of the metrics in the languages stud- 510

ied is almost indistinguishable. This is probably due 511

to the fact that the xlm-roBERTa saw a more bal- 512

anced dataset across languages t the main training 513

stage. 514
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Figure 8: Mean value of ANC and AWD in the last layer
of xlm-roBERTa. As the error bars, the first and third
quartiles as minimum and maximum respectively.

Figure 9: Distributions of proximity and accuracy ma-
trices for xlm-roBERTa. The top row: distribution of
ANC× f1 weighted (Cartesian product), the bottom row:
AWD × f1 weighted. Both ANC and AWD were taken
from the last layer.

C Appendix statistics of used datasets515

Dataset Type Size Me-
dian
length
in
words

Inter-
quartal
dis-
tance
in
words

ReadMe

train en 2526 17 14
test en 296 17 16
test ar 296 15 13
test fr 296 19 19
test hi 296 19 18
test ru 296 14 14

Vikidia

train en 2000 40 7
test en 640 40 7
test ar 640 32 9
test fr 640 41 11
test hi 640 41 10
test ru 640 32 8

Wikipedia

train en 2000 40 0
test en 640 40 0
test ar 640 35 6
test fr 640 44 6
test hi 640 43 6
test ru 640 34 5

Table 5: Statistics by words in datasets, used for training
and analysis.
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