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Abstract

Understanding the behavior of multilingual lan-
guage models across different languages re-
mains a significant challenge. Recent research
has demonstrated that the Average Neuron-Wise
Correlation (ANC) offers a comprehensive anal-
ysis of activation similarities in multilingual
models. This study proposes the use of Average
Wasserstein Distance (AWD) between activa-
tion value distributions and compares it to ANC
across three datasets: XNLI, ReadMe++, and
Vikidia. By applying these metrics, we aim to
elucidate the underlying processes within large
language models, thereby enhancing our under-
standing of cross-linguistic transfer and model
accuracy.

1 Introduction

This paper explores methods to investigate cross-
linguistic transfer, focusing on differences in ac-
tivation patterns of Pre-trained Language Mod-
els (PLMs) like BERT (Devlin et al., 2019a) and
RoBERTa (Conneau et al., 2019) when classifiers
are transferred to a new target language. Specifi-
cally, we address the issue of language complexity,
aiming to assess whether a text is complex.

Better understanding of the cross-lingual trans-
fer capabilities of PLMs is essential for improving
multilingual NLP, particularly in tasks requiring lan-
guage adaptation, such as readability assessment
and complexity classification. A key challenge lies
in determining how well PLMs generalize linguis-
tic structures across diverse languages, especially
when dealing with underrepresented or typolog-
ically distant languages. Investigating activation
patterns through ANC and AWD provides insights
into how PLMs encode and transfer linguistic com-
plexity, allowing us to identify factors that facilitate
or hinder successful cross-lingual adaptation.

Previous research has primarily focused on the
advantages of studying the transfer gap using the
Average Neuron-Wise Correlation (ANC) metric

over other methods, such as Centered Kernel Align-
ment (Del and Fishel, 2022), as well as by using
layer ablation (Muller et al., 2021).

Our main contributions are:

1. Application of the Average Wasserstein Dis-
tance (AWD) to study latent spaces of multi-
lingual PLMs;

2. Examination of the behavior of ANC on lan-
guage complexity tasks;

3. Combining ANC and AWD for a more detailed
explanation of hidden processes in PLM acti-
vations.

The code and data will be available in the ac-
cepted version of the paper.

2 Related Work

2.1 Analysis of Pretrained Language Models

Recent research has explored the internal mechanics
of PLMs, particularly the behavior of hidden lay-
ers. Muller et al. (2021) introduced the first align,
then predict” approach, where activation vectors
are aligned before predictions are made. To analyze
these hidden spaces, methods like Centered Ker-
nel Alignment (CKA, (Kornblith et al., 2019)) and
Canonical Correlation Analysis (CCA, (Hotelling,
1936)) have been used.

Del and Fishel (2022) analysed limitations of
such methods as CCA and CKA and introduced
Average Neuron-Wise Correlation (ANC), which
has been shown to offer significant advantages over
CKA and CCA, providing a more interpretable
framework for analyzing the alignment of activation
vectors across layers, particularly in the context of
the XNLI task.

The idea of measuring cross-lingual transfer
across the layers is also important for decoding-
only language models such as Llama (Liu et al.,



2025). However, as our concern here is with clas-
sification tasks, we keep investigating smaller and
more efficient encoder-only PLMs.

2.2 Wasserstein Distance

The Wasserstein distance, or Earth Mover’s Dis-
tance, measures the cost of transporting mass be-
tween two probability distributions, offering a com-
prehensive view of their similarity (Khamis et al.,
2024). It is particularly useful for detecting shifts
in word embedding distributions at the coordinate
level (Ramirez et al., 2020). By using Wasserstein
distance alongside ANC, we aim to gain a fuller
understanding of neural network activation distri-
butions.

3 Methodology

To investigate the process of language transfer, we
compare the use of ANC and AWD over the values
of activations in the PLM layers comparing predic-
tions made for the original language (L) and for
the target language (L) for semantically equivalent
text segments:

X =L; —mean(L)
Y = Ly — mean(Ly)

3.1 ANC definition

ANC calculates the correlation between activation
vectors averaged by neurons:
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where corr is Pearson’s correlation.

3.2 Average Wasserstein definition

Given that ANC focuses only on the angle between
vectors (as it is equivalent to the cosine distance),
this does not fully capture the variation of the co-
ordinates. This is the rationale for our proposal of
the Average Wasserstein Distance (AWD), which
is defined by mirroring ANC:
1 n
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where W(X[i], Y[i]) is the Wasserstein Distance
between i-th neuron of centered layer of L; and i-th
neuron of centered layer of Lo:
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3.3 Complexity datasets

In addition to the XMLI task as used in (Del and
Fishel, 2022), we examined two scenarios of com-
plexity prediction: one with six classes and an-
other one with two. For the six classes, we used
ReadMe++ (Naous et al., 2023), which contains
texts in five languages (English, French, Russian,
Arabic, and Hindi), categorized into six complex-
ity levels according to CEFR Council of Europe
(2001). For the second classification task, we col-
lected data from Vikidia', a website which main-
tains Wikipedia-style content aimed at “children
and anyone seeking easy-to-read content”, and the
corresponding entries from Wikipedia, aiming to
predict whether a test text is suitable for Vikidia or
not.

Initially, neither dataset included segments of
the same meaning across languages. For the XNLI
task, such texts were prepared using machine trans-
lation and human quality control (Conneau et al.,
2018). To create the necessary parallel corpus
for the complexity task, we translated the avail-
able English texts into Russian (ru), French (fr),
Hindi (hi), Arabic (ar), Romanian (ro), Greek (el),
Spanish (es), Hebrew (he), Turkish (tr), Belarusian
(be), Ukrainian (uk), Bulgarian (bg), Chinese (zh),
Japanese (ja), Irish (ga), German (de), Italian (it)
and Welsh (cy) using Google Translate.

To ensure that the language complexity does not
change through machine translation, we verified a
small sample of translated texts by human annota-
tion with no detectable changes in complexity. On
the full dataset, we compared transfer learning on
the original texts and on the translations. Table 1
shows that complexity predictions are preserved,
with MAE scores even improving on the translated
texts. This improvement may result from reduced
annotation noise, as different annotators originally

"https://www.vikidia.org/


https://www.vikidia.org/

Original Translated
ReadMe++ ReadMe++
en 0.418 0.418
ar 0.669 0.716
fr 0.535 0.619
hi 0.552 0.643
ru 0.533 0.668

Table 1: Comparing mean absolute error (MAE) of pre-
dictions on the original ReadMe++ and on the translated
English (hold out) part. To improve the stability of the
results, the value in the table is obtained as an average
over 10 batches of 100 elements selected randomly.

marked the languages, potentially leading to vary-
ing interpretations of CEFR criteria. The same la-
bels were applied to both the original and translated
texts.

The use of the MAE metric allows us to quanti-
tatively evaluate the limits of the model errors (in
particular, to say that the model is critically wrong
or wrong within the neighboring complexity levels),
in contrast to the F1 metric, which only allows us to
detect the presence of an error, but not to evaluate
its criticality.

3.4 Transfer experiments

To investigate the transfer process, we trained our
model on English texts using multilingual BERT
and XLM-Roberta on different datasets and then
made predictions on unrelated test texts in other
languages (300 samples).

To understand the multilingual limits of this trans-
fer, we have also conducted similar experiments
to show transfer from other languages using the
ReadMe dataset. For all experiments with XNLI
and Viki use F1 also for Readme, but Readme —
only experiments always use MAE. This is due to
the fact that in the ReadMe dataset, an error of 1
class is not as significant as an error of +2 or more.
This feature is not taken into account by the F1
metric, unlike MAE.

We measured ANC and AWD across the layers
on these test texts and reported the interquartile
range of their values as a robust measure of their
variation.

For the sake of brevity, we only present the re-
sults for BERT, with the XLM-Roberta results in-
cluded in the Appendix. These experiments were
conducted in parallel for the XNLI task and for two
text complexity prediction tasks, the primary focus
of this study.

Vikidia vs

XNLI ReadMe++ Wikipedia
en 0.536 0.602 0.851
ar 0.517 0.507 0.748
fr 0.532 0.542 0.785
hi 0.522 0.343 0.622
ru 0.531 0.544 0.707

Table 2: Average F1 weighted measure for BERT trained
on English (averaging over 10 batches containing 100
texts each. All sampled from the hold out dataset).

4 Experimental results

Table 2 presents the validation metrics for the
trained model. On the task of classification of texts
in ReadMe, it is clear how much the quality of trans-
fer from English differs. Considering that BERT
was trained on Wikipedia, and the task of HNLI is
similar to the one on which BERT was trained, we
can conclude that fine-tuning plays a greater role
on the ReadMe task, rather than pre-training.

The first row of Figure 1 shows that ANC follows
the pattern observed by Del and Fishel (2022) for
XNLI, extending it to two additional tasks: ANC
increases until the middle layers, then it plateaus.

The phenomenon of “first align, then predict”
was first observed by Muller et al. (2021) using a
layer ablation technique. Del and Fishel hypothe-
sized that at layers where ANC increases, activa-
tion vectors “level out”, while prediction occurs
at subsequent layers. Unlike ANC (a similarity
measure), AWD is a distance. So it follows a re-
verse pattern, see the second row of Fig. 1: from
layer 1 to 7, where the directions of activation vec-
tors change significantly, the distribution of their
coordinate values is close to the source language.
However, instead of “leveling out”, as detected by
ANC, a change occurs in the distribution of values.
In complexity classification problems, the effect is
more pronounced than in XNLI. Thus, the align-
ment phase consists of bringing the direction of the
activation vectors closer to what was in the source
language (thus, the model brings the unknown to
the known). Later, the prediction stage consists of
changing the distributions of activation values (the
model highlights the differences). We hypothesize
that the plateau observed through ANC is associ-
ated with its limited “horizon” (as it only looks at
the angles between the vectors), rather than with
the absence of processes that change activations.

Pictures with aggregated data do not fully re-
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Figure 1: ANC and AWD for BERT. Activations were counted on 300 samples. The dot is the average value on the
sample, the pale colored area shows interquartile range on activations in each layer.

flect how the quality metric depends on the dis-
tance measures. Figure 6 shows the relationship
between weighted F1 and ANC (or AWD) on the
last layer. The arrangement of the distributions rel-
ative to each other is different in XNLI vs our com-
plexity tasks. Despite that, in all tasks the pattern
is maintained: languages more similar to English
have higher values on the ANC scale. For AWD the
order is reversed, as it is a distance measure. For ex-
ample, either ANC or AWD can be used to predict
the transfer of complexity predictions to Hindi is
likely to be less successful than transfer to French,
see Table 1.

We can also use these measures to detect devi-
ations from this pattern for individual examples.
For example, the following French sentence from
Readme++ Aujourd’hui, la situation n’a fait qu’em-
pirer. “Today, the situation has only worsened.”
differs in syntax from English, while its transla-
tions into other languages in the Readme++ set are
similar to English. We quantified translation sim-
ilarity using the metric (v — b)/b where b is the
mean AWD across layers 1-7 (baseline) and v is
the mean AWD across layers 7-13 (value). The re-
sults for this sentence span from 0.65 for Arabic
and 1.17 for Russian to 4.05 for French and 5.98
for Hindi. In contrast, the average values across the
entire sample range from 1.41 for French and 1.82
for Arabic to 1.89 for Russian and 3.42 for Hindi. In

all cases, class 1 was predicted (which corresponds
to the correct one). The abnormally high value for
Hindi is likely to be due to worse representation
quality from BERT’s initial training sample.

5 Differences between ANC and AWD

To better understand how the linguistic proper-
ties of information representation are captured by
these metrics, we calculated the syntactic distances
(Belov et al., 2020) between the original sentences
of the dataset and their translations. The edit dis-
tance metric was calculated on syntactic trees of
sentences, where each node is a part of speech of
a word from the sentence, and an edge is a type
of connection between words?. The edit distance
metric is directly proportional to the number of in-
sertions/replacements/removals of a node or edge in
one tree to obtain the original. Therefore, languages
with syntactic constructions less similar to those
found in English sentences have a higher value.

Figure 2 shows that in the last layer the AWD
metric shows better correlation with syntactic edit
distance in comparison to f1 and ANC.

2Using pretrainted models from Stanza https://stan-
fordnlp.github.io/stanza/depparse.html
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Figure 2: Dependence of syntactic edit distance on ANC and AWD at the last layer of the BERT model (trained on
the English dataset) and the accuracy of prediction on the translated dataset.

6 Extended experiment

Experiments in which the model is trained in En-
glish and then makes predictions in other languages
have shown significant correlations between F1 and
ANC/AWD.

Figure 3 shows the performance of the model
trained on the English dataset in all languages un-
der consideration. It is noticeable that in all cases
the correlation coeflicients are high and there is an
obvious dependence in the data. This behavior was
observed in the original ReadMe datasets (5) and
then generalized by translating its English part.

However, this effect is observed only for models
trained on the English sample. For models trained
on other languages (fig 4), the transfer effect suffers
significantly. Moreover, in languages with a large
resource base (those that were represented in large
quantities in the BERT training sample), the disor-
der is noticeable, but not as strong as in Arabic and
Hindi, where the dots represent a random cloud.

However, the model trained on other languages
shows significantly more chaotic results 4.

7 Conclusions

In this study, we explored the cross-linguistic trans-
fer of language complexity using PLMs, with a
particular emphasis on the ANC metric and the
introduction of the Wasserstein distance as a com-
plementary measure. Our experiments, conducted
with both BERT and xIm-roBERTa models, yielded
several insights:

* Metric Comparison: the ANC metric alone
may not fully capture the subtleties of activa-
tion similarities across languages. By incor-
porating the Wasserstein distance, we offered
a more comprehensive perspective on these

similarities, particularly in capturing distribu-
tional shifts that the ANC metric might over-
look.

* Language Complexity Transfer: Our results
indicate that language complexity, as mea-
sured by F1 scores, is largely preserved dur-
ing machine translation, validating the use of
translated texts in cross-linguistic studies.

In conclusion, combining ANC with AWD pro-
vides a more nuanced understanding of activa-
tion similarities in multilingual models. These in-
sights not only enhance our understanding of cross-
linguistic transfer but also have practical implica-
tions for developing more effective and accurate
multilingual NLP systems.

Future Research Directions:

* Our combined approach highlighted a corre-
lation between these metrics and model per-
formance, suggesting that higher ANC and
lower AWD are associated with better model
accuracy, so AWD can can be used to estimate
accuracy for new languages even without test
data. This initial finding needs to be explored
with more language pairs.

Our analysis has shown that AWD is linked
to syntactic differences between languages.
However, the specific linguistic or computa-
tional properties that determine ANC remain
to be systematically identified. Future research
should aim to establish a precise link between
ANC and relevant linguistic factors, which will
contribute to a more refined understanding of
multilingual model adaptation.
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Figure 3: ANC and AWD at the last layer of the BERT model vs F1 on extended translated dataset.
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Figure 4: ANC and AWD at the last layer of the BERT model vs MAE on extended translated dataset. The columns
show the results of inference of models that were trained on the original ReadMe++ dataset in English, French and

Hindi, respectively.

8 Limitations

The obtained regularities are applicable only when
transferring training from English to other lan-

guages.

9 Ethical statement

We are not aware of potential ethical risks in the

In conducting the study we have been careful
with the environmental impact of NLP research.
Large Language Models are more computationally
expensive, while they have been shown to be not
better than PLMs in several text classification tasks.
For each of the methods we provide estimates the
computational costs of running the models (table

3).

study discussed in the paper. If anything it helps
with understanding the process of cross-lingual
transfer, thus potentially helping lesser-resourced

languages.




Ti
imeper o ber Number of Total
one computer
) of loops models .
oop time
Train 0.5 11 5 27.5
Inference 0.1 30 5 15

Table 3: Computational costs of running the models on
Google Colab’s L4 GPU (in hours).
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A Transferring language complexity with
BERT

The figure 5 shows the aggregated values for the ac-
curacy and proximity metrics of multilingual learn-
ing transfer.
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Figure 5: Mean value of ANC and AWD in the last layer
of BERT. As the error bars, the first and third quartiles
as minimum and maximum respectively.
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Figure 6: Distributions of proximity and accuracy ma-
trices for BERT. The top row: distribution of ANC x
weighted F1 (Cartesian product), the bottom row: AWD
x weighted F1. Both ANC and AWD were taken from
the last layer.

The difference in the behavior of the model in
XNLI and complexity tasks is clearly visible. In the
XNLI there is practically no correlation between

F1 in ANC (AWD). While in both complexity prob-
lems, values are well described by a linear depen-
dence. It follows that it is possible to use proximity
metrics to predict the quality of a model in a lan-
guage in which it has not been fine-tuned.

B Transferring language complexity with
xIm-roBERTa

The same experiment was conducted with xIm-
roBERTa. Since BERT and roBERTa were trained
on different language domains (Conneau et al.,
2019) they have different starting packs of lan-
guage knowledge. On validation after fine-tuning,
roBERTa showed similar results with BERT.

Vikidia vs

XNLI ReadMe++ Wikipedia
ar 0.692 0.472 0.870
en 0.790 0.573 0.904
fr 0.746 0.518 0.871
hi 0.601 0.509 0.845
ru 0.716 0.465 0.858

Table 4: Average f1 weighted measure for xlm-roBERTa
(averaging over 10 batches containing 100 texts each).

The expectation was that both models would
show close results in the meaning of ANC and AWD
metrics. However, the experiment showed the fol-
lowing pictures.
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Figure 7: ANC and AWD for xIm-roBERTa obtained by
sampling on parallel texts of the datasets. Activations
were counted on 300 samples. The dot is the average
value on the sample, the pale colored area shows in-
terquartile range on all subsamples for one layer.

The behavior of the metrics in the languages stud-
ied is almost indistinguishable. This is probably due
to the fact that the xlm-roBERTa saw a more bal-
anced dataset across languages t the main training
stage.
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Figure 8: Mean value of ANC and AWD in the last layer
of xIm-roBERTa. As the error bars, the first and third
quartiles as minimum and maximum respectively.
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Figure 9: Distributions of proximity and accuracy ma-
trices for xlm-roBERTa. The top row: distribution of
ANC x f1 weighted (Cartesian product), the bottom row:
AWD x f1 weighted. Both ANC and AWD were taken
from the last layer.

C Appendix statistics of used datasets

Dataset Type Size Me- Inter-
dian quartal
length  dis-
in tance
words in

words
trainen 2526 17 14
testen 296 17 16
testar 296 15 13
ReadMe — fr 296 19 19
test hi 296 19 18
testru 296 14 14
trainen 2000 40 7
testen 640 40 7
I testar 640 32 9
Vikidia i 640 41 11
test hi 640 41 10
testru 640 32 8
trainen 2000 40 0
testen 640 40 0
.. .. testar 640 35 6
Wikipedia i fr 640 44 6
testhi 640 43 6
testru 640 34 5

Table 5: Statistics by words in datasets, used for training
and analysis.
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