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Abstract

One defining characteristic of Mixture-of-Expert (MoE) models is their capac-
ity for conducting sparse computation via expert routing, leading to remarkable
scalability. However, backpropagation, the cornerstone of deep learning, requires
dense computation, thereby posting challenges in MoE gradient computations.
Here, we introduce SparseMixer, a scalable gradient estimator that bridges the gap
between backpropagation and sparse expert routing. Unlike typical MoE training
which strategically neglects certain gradient terms for the sake of sparse com-
putation and scalability, SparseMixer provides scalable gradient approximations
for these terms, enabling reliable gradient estimation in MoE training. Grounded
in a numerical ODE framework, SparseMixer harnesses the mid-point method, a
second-order ODE solver, to deliver precise gradient approximations with negli-
gible computational overhead. Applying SparseMixer to Switch Transformer on
both pre-training and machine translation tasks, SparseMixer showcases consid-
erable performance gain, accelerating training convergence by up to 2 times.

1 Introduction

The significant success of large-scale pre-training across various applications has underscored the
imperative need for scalable models that are economically feasible (Chowdhery et al., 2022; Ope-
nAI, 2023; Touvron et al., 2023). Recent advances in sparsely activated networks, prominently
known as Mixture-of-Experts (MoE), have attracted widespread interest (Shazeer et al., 2017; Lep-
ikhin et al., 2020; Fedus et al., 2021; Riquelme et al., 2021; Mustafa et al., 2022). Unlike traditional
networks that densely activate all modules for all input, MoE selectively activates parts of modules to
specific inputs through a process called expert routing, leading to notable efficiency enhancements.

However, such efficiency gain comes at a cost: gradient estimation in MoE becomes challenging
due to expert routing. Specifically, the routing function, being discrete in nature, produces non-
differentiable outputs. Meanwhile, backpropagation, the cornerstone of deep learning, relies on the
Chain rule, making it exclusively compatible with differentiable functions (Rosenblatt, 1957; Bengio
et al., 2013), and cannot be directly applied for gradient computation of expert routing.

Numerous methods have emerged to bridge discrete and back-propagation, and most of them are
based on Straight-Through (ST) (Rosenblatt, 1957; Bengio et al., 2013; Jang et al., 2017; Liu et al.,
2023). Unfortunately, all existing ST estimators are incompatible with MoE, since they require
activating all experts for gradient computing, thereby eliminating all the efficiency improvements
of MoE. Consequently, typical MoE training strategically neglects the gradient computation for
routing, trading certain training signals for sparse computation. Despite the scalability brought by
sparse computation, this trade-off may result in slow convergence and improperly trained models.

Our solution to this quandary is SparseMixer—a novel approach designed to reconcile the divide
between sparse MoE routing and backpropagation. Drawing inspiration from numerical methods
for ordinary differential equations (ODE), SparseMixer provides reliable gradient approximation
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for expert routing, even when only a subset of experts are activated. Moreover, to furnish accurate
gradient approximations with negligible computation overheads, we integrate the mid-point method,
a second-order numerical ODE solver, which matches the Taylor expansion of the gradient to the
second order without requiring the Hessian matrix or other second-order derivatives.

We apply SparseMixer to Switch Transformer on both pretraining and neural machine translation.
SparseMixer not only accelerates training convergence by up to two times but also facilitates MoE
with properly trained expert routing. Remarkably, while Switch Transformer underperforms the
dense model in all three pretraining settings, incorporating SparseMixer as the gradient estimator
allows the resulting MoE models to consistently outperform the dense model.

2 Related Work and Preliminary

Mixture-of-Expert for Transformer. MoE originate from Jacobs et al. (1991) and Jordan
& Jacobs (1994), which integrates separate networks together and uses each to handle a separate
subset of training cases. Recently, many attempts have been made to leverage MoE for scaling large
language models (Shazeer et al., 2017; Lepikhin et al., 2020; Lewis et al., 2021; Fedus et al., 2021).

To keep things straightforward, we will focus on a simplified setting of the switch Transformer
layer (Fedus et al., 2021), and the resulting algorithm can be easily extended to other MoE designs.
Considering a set of N experts, {fi(x)}Ni=1, the gate value of expert i is computed with the softmax
function as πi = softmax(θ)i = exp(θi)∑n

j=1 exp(θj)
, where θ = Wr · x. For i ∈ [1, · · · , N ], we mark

its one-hot representation as Ii ∈ RN×1, whose element equals 1 if it is the i-th element or equals
0 otherwise. Let D be a discrete random variable and D ∈ {I1, · · · , IN}. Then, the final output
of this MoE layer is y = πDfD(x). Note that D is sampled as D ∼ π during training, and is
computed as D ← argmaxIi πIi during inference. Marking other parts of the neural network as a
differentiable function g : Rn → R, we aim to minimize:

min
Wr

L(Wr), where L(Wr) = ED∼softmax(Wrx)
[g(πDfD(x))] =

∑
D

πD · g(πDfD(x)). (1)

First, we focus our discussions on this simplified MoE model. In Section 3.3, we will discuss its
difference with the Switch Transformer and necessary adaptations.

Gradient Computation for Expert Routing. For simplicity, we mark ∂L(Wr)
∂Wr

as ∇0 +∇1:

∂L
∂Wr

:= ∇0 +∇1,where∇0 =
∑
Ii

g(πIifIi(x))
∂ πIi

∂ Wr
and ∇1 =

∑
Ii

πIi

∂g(πIifIi(x))

∂ Wr
. (2)

5.3

5.4

5.5

5.6

5.7

5.8

Tr
ai

ni
ng

 P
PL

MoE with 2 experts | WMT'14 En-DE

4.9

5.0

5.1

5.2

5.3

5.4

5.5

5.6

5.7
MoE with 4 experts | WMT'14 En-DE

0 50 100 150 200 250 300 350
Epoch

4.7

4.8

4.9

5.0

5.1

5.2

5.3

5.4

5.5
MoE with 6 experts | WMT'14 En-DE

0 50 100 150 200 250 300 350
Epoch

4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

Tr
ai

ni
ng

 P
PL

MoE with 8 experts | WMT'14 En-DE

0 50 100 150 200 250 300 350
Epoch

3.8

4.0

4.2

4.4

4.6

MoE with 16 experts | WMT'14 En-DE

Switch

Switch + SparseMixer

Switch + SparseMixer-ablation-1

Switch + SparseMixer-ablation-2

Figure 1: Training curves of Switch Transformer on WMT’14 En-De.
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It is easy to notice that ∇1 can be computed reliably via backpropagation. ∇0, however, is hard to
reliably estimate in typical MoE training practice. In this study, we focus our discussions on∇0.

REINFORCE (Williams, 1992) is unbiased (i.e., E[∇REINFORCE] = ∇0) and only requires the dis-
tribution of the discrete variable to be differentiable (i.e., no backpropagation through g):

∇REINFORCE := g(πDfD(x))
∂ logπD

∂ Wr
. (3)

Despite the∇REINFORCE estimator being unbiased, it tends to have prohibitively high variance, espe-
cially for networks that have other sources of randomness (i.e., dropout or other independent random
variables). Recently, attempts have been made to reduce the variance of REINFORCE (Gu et al.,
2016; Tucker et al., 2017; Grathwohl et al., 2018; Shi et al., 2022). Still, it has been found that the
REINFORCE-style estimators fail to work well in MoE training (Kool et al., 2021).

Straight-Through. Despite ∇REINFORCE being unbiased, it treats the remaining network (g)
as a black-box and only leverages the zero-order information of g. In practice, a popular family
of estimators, Straight-Through (ST), leveraging the first-order information of g (note that g is a
scalar and g′ is a vector), has been shown to achieve a better performance in more complicated
settings (Liu et al., 2023). ST computes the backpropagation “through” a surrogate that treats the
non-differentiable function (e.g., the sampling of D) as an identity function (Rosenblatt, 1957; Ben-
gio et al., 2013; Jang et al., 2017; Liu et al., 2023). In our MoE setting, ST treats the sampling of D
as an identity function and estimates the gradient as:

∇̂ST :=
∂g(πDfD(x))

∂ πDfD(x)

∂
∑

i DiπIifIi(x)

∂D

∂πD

∂Wr
. (4)

An alternative strategy is to conduct the concrete random variable relaxation (Maddison et al., 2014;
Jang et al., 2017). It is observed that the sampling of D can be reparameterized using Gumbel
random variables at the zero-temperature limit of the tempered softmax (Gumbel, 1954):

D = lim
τ→0

Sτ , where Sτ = softmaxτ (θ +G),Gi are i.i.d., and Gi ∼ Gumbel(0, 1).

Straight-Through Gumbel-Softmax (STGS) treats the zero-temperature limit as identity function
during the backpropagation:

∇̂STGS :=
∂g(πDfD(x))

∂ πDfD(x)

∂
∑

i Sτ,iπIifIi(x)

∂Sτ

∂Sτ

∂Wr
. (5)

Although E[∇̂ST] has been formally established as a first-order approximation of ∇0 (Liu et al.,
2023), applying ST estimators necessitates the need for computing fi(x) for all i ∈ {I1, · · · , IN},
i.e., the outputs from all experts. For example, in Equation 4, we have ∂

∑
i DiπIi

fIi (x)

∂D =
diag(

∑
i DiπIifIi(x)), which involves the computation of {fI1(x), · · · , fIN (x)}. Essentially,

computing all fIi turns MoE into a densely activated network. Thus, using ST-style estimators
undermines the sparse computation, fundamentally obstructing the scaling of MoE models.

3 Scalable Gradient Approximation

As discussed in Section 2, although ST estimators bridged discrete variables and backpropagation,
they require the network to be densely activated. Here, we first discuss the intrinsic limitation
of ST estimators. Then, we go beyond ST and bridge sparse expert routing and backpropagation.
Finally, we revisit the current practice of MoE training and discuss the difference between the Switch
Transformer and the simplified setting (as presented in Section 2).

3.1 Why Existing ST Estimators Are Not Scalable?

We formally establishes that E[∇̂ST] is a first-order approximation of ∇0 in Liu et al. (2023) (note
that ∇0 is defined in Equation 2). Since Di = 1 ⇐⇒ D = Ii , we can reparameterizing πDfD
as h(D) =

∑
i DiπIifIi . Then, we have1:

∇0 =
∑
Ii

(h(Ii)− E[h])
∂ πIi

∂ Wr
=

∑
Ii

∑
Ij

πIj (h(Ii)− h(Ij))
∂ πIi

∂ Wr
. (6)

1Commonly referred to as baseline subtraction. Note
∑

i E[g]
∂ πIi
∂ Wr

= E[g]
∂

∑
Ii

πIi

∂ Wr
= E[g] ∂ 1

∂ Wr
= 0.
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Specifically, approximating g(πIifIi)− g(πIjfIj ) as g′(πIjfIj ) · (πIifIi −πIjfIj ), the resulting
gradient approximation will have the same form as E[∇̂ST] (Liu et al., 2023). In numerical analyses,
this approximation is known as the forward Euler method (briefly introduced in Appendix A), which
has first-order accuracy. Liu et al. (2023) also explored higher-order ODE solvers to better approxi-
mate g(πIifIi)− g(πIjfIj ). However, all these approximations involve both activated experts (i.e.,
fIj ) and unactivated experts (i.e., fIj ), thus contradicting scalability. In order words, although those
ST estimators bridge discrete and backpropagation, their computations are dense instead of sparse.

3.2 Expert Routing Gradient Approximation: Backpropagation Made Sparse

To bridge the gap between sparse MoE routing and back-propagation, we need to approximate ∇0

without requiring outputs from all experts. In our study, we move beyond ST and present a novel
framework to bridge backpropagation and sparse expert routing.

Here, we start by introducing the most simple gradient estimator, i.e., ∇̂SparseMixer -1st, where

∇̂SparseMixer -1st :=
∂g(πDfD(x))

∂ Wr
.

Similar to E[∇̂ST], E[∇̂SparseMixer -1st] is a first-order approximation of ∇0. To demonstrate this, we
take an alternative approach to rewrite∇0:

∇0 =
∑
Ii

(g(πIifIi)− g(0))
∂ πIi

∂ Wr
. (7)

Note that g(0) is only used as a vehicle for derivations. It is worth mentioning that, unlike the
baseline used in Equation 4 (i.e., E[h], which has been shown to be the optimal control variate in
Weaver & Tao, 2001), it is not a suitable to use g(0) as the control variate for policy gradient.

Adopting the Euler method to Equation 7, we estimate g(πIifIi)−g(0) as g′(πIifIi)·πIifIi . Com-
paring to the first-order approximation of Equation 6, this first-order approximation only requires
the output of one expert. Then, it is easy to note:

∇0
forwardEuler
≈

∑
Ii

g′(πIifIi) · πIifIi ·
∂ πIi

∂ Wr
= ED∼π[

∂g(πDfD(x))

∂ Wr
] = E[∇̂SparseMixer -1st].

Note that, same with ∇̂ST, ∇̂SparseMixer -1st adopts the forward Euler method and achieves first-order
accuracy. Meanwhile, ∇̂SparseMixer -1st only requires the output of one expert thus not sacrificing
scalability, while ∇̂ST, as in Equation 4, requires the output of all experts.

3.3 Understand Current MoE Training Practice in Simplified Setting

Besides providing sound gradient approximation with negligible computation overheads, our study
also sheds insights into the underlying mechanism of the current MoE training practice. In this sec-
tion, we introduce the current MoE training practice with our simplied setting. Then, in Section 3.4,
we further discuss MoE training in the realistic Switch Transformer setting.

Current MoE Training Practice. Due to all the challenge discussed in Section 3.1, the current
MoE training practice trades certain training signals for scalability. Specifically, ∇0 is strategically
neglected in gradient computation (the value of ∇0 is set to 0), and only ∇1 is used for model
training (Fedus et al., 2021). Despite the success of such practice, it remains unclear on the impact
of neglecting ∇0, how to conduct training with only part of the gradient, and whether gradient
descent is still effective after neglecting∇0.

Underlying Mechanism of Current MoE Training Practice. Comparing Equation 7 and Equa-
tion 2, we can observe that ∇̂SparseMixer -1st has the same form with∇1, which implies:

∇
forwardEuler
≈ 2 · ∇1.

Therefore, in our simplified setting, directly dropping the ∇0 can be viewed as down-scaling ∇ by
0.5. Since typical training practice employs adaptive optimizers for model training, whose update
rule is invariant to constant gradient scaling, our observation here provides a natural explanation on
the effectiveness of current MoE training.
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3.4 From Simplified Setting to Switch Transformer: Expert Sampling

As mentioned in Section 2, our modeling of MoE is a simplified Switch Transformer. Here, we
first discuss the difference between our simplified setting and Switch Transformer, and then move to
necessary modifications to apply SparseMixer to Switch Transformer.

Difference between Simplified Setting and Switch Transformer. The difference between our
simplified setting and switch Transformer is the sampling of D. Specifically, in our simplified
setting, we assume D is sampled from π; in Switch Transformer, D is sampled as Equation 8
instead.

D = argmax
Ii

(θIi · uIi), where uIi
iid∼ Uniform(1− r, 1 + r). (8)

With this sampling strategy, ∇1 is no longer a first-order approximation to ∇0 (it can be viewed as
conducting importance sampling without applying the likelihood ratio).

An Important Property of Expert Sampling in Switch Transformer. To obtain sound gradient
estimation with a strong performance, it is necessary to adapt the sampling process of expert net-
works. As observed in Fedus et al. (2021), directly sampling D from π leads to notable performance
degradation (also discussed in Section 5.3). In our study, we observe an important property of the
sampling process used in the Switch Transformer setting and suggest it to be the major issue with
the original softmax sampling.

Marking θ∗ := maxIi θIi , in Switch Transformer, Ii will never be sampled if:

θ∗ − θIi > r · (|θ∗|+ |θIi |).
In other words, the distribution of D in switch Transformer is masked: small probabilities would
directly drop to zero once the corresponding logits hit a threshold. In our experiments, we observe
that such sparse distribution plays a crucial role in the success of MoE and conduct more empirical
discussions in the experiment section (Section 5.3).

Adapting Expert Sampling for MoE Training. Guided by our analyses, we deploy a sampling
process that is differentiable as sampling from π, while sharing some important properties with
Switch Transformer. Specifically, we changed the computation of π from πi = softmax(θ)i =

exp(θi)∑n
j=1 exp(θj)

to

πi =
exp(θi) ·∆i∑n

j=1 exp(θj) ·∆j
, where ∆j = δ(θ∗ − θIi ≤ r · (|θ∗|+ |θIi |)). (9)

In other words, we apply a mask to the softmax function, in order to sample only from experts
that are not masked by the Switch Transformer. This adaptation allows MoE to be trained with
both sparse expert sampling and sound gradient approxiamtion, we observe it leads to a significant
performance boost.

Empirical Benefits on Expert Sampling Adaptation. As elaborated in Section 5.3, we conduct
comparisons with Switch and SparseMixer-ablation-2. Both are based on the first-order approxima-
tion as discussed in Section 3.3. The difference between these two are:

• SparseMixer-ablation-2 conducts expert sampling as in Equation 9 and uses a first-order approxi-
mation of∇0 for parameter updates.

• Switch conducts expert sampling as in Equation 8, downscales the routing gradient by 0.5 (as in
Section 3.3), thus adding additional bias to the first-order approximation.

As in Figure 1, the SparseMixer-ablation-2 method achieves consistent performance gain to Switch
Transformer. applies the abovementioned sampling process to Switch Transformer, and.(see Sec-
tion 5.3 for more details).

4 Towards Second-Order Accuracy with Negligible Overheads

The literature on numerical methods for differential equations shows that it is possible to achieve
higher-order accuracy without computing higher-order derivatives. Correspondingly, we aim to
provide better gradient approximation with negligible computation overheads.
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4.1 Achieving Second-Order Accuracy with the Mid-point Method

To furnish accurate gradient approximations, we employ a second-order ODE method, the mid-
point method (briefly introduced in Appendix A). Specifically, ∇̂SparseMixer-2rd is a second-order
approximation of ∇, where

∇̂SparseMixer-2rd := 2 ·
∂g(πDfD(x)

2 )

∂ Wr
.

To demonstrate the connection between ∇̂SparseMixer-2rd and the mid-point method, we employ the
mid-point method to approximate g(πIifIi)− g(0) as g′(πIi

fIi
2 ) · πIifIi , which also requires only

the output of one expert. Similarly, it is easy to note:

∇0

mid−point
≈

∑
Ii

g′(
πIifIi

2
) · πIifIi ·

∂ πIi

∂ Wr
= ED∼π[2 ·

∂g(πDfD(x)
2 )

∂ Wr
] = E[∇̂SparseMixer-2rd ].

Notably, it is feasible to employ more advanced ODE solvers like RKF4 and approximate ∇0 with
even higher-order accuracy (Fehlberg, 1969). In our experiments, we observe that the mid-point
method is accurate enough and decide to stick to the mid-point method for simplicity.

4.2 Balancing Router Training and Expert Training

Trade-off Behind Applying the Mid-Point Method. Comparing to ∇̂SparseMixer -1st,
∇̂SparseMixer-2rd provides better gradient estimation for router training. However, ∇̂SparseMixer-2rd
causes additional difficulties for expert training.

Specifically, ∇̂SparseMixer-2rd requires to change the MoE output from y ← πDfD(x) to y ←
πDfD(x)

2 . Intuitively, this change leads to two gaps:

1. A gap between the training (y ← πDfD(x)
2 ) and the inference (y ← πDfD(x)).

2. A gap between estimating∇0 (y ← πDfD(x)
2 ) and ∇1 (y ← πDfD(x)).

In other words, applying mid-point method would lead to a better approximation of∇0, at the cost of
additional bias in computing∇1. Similarly, as discussed in Section 5.4, such gap creates significant
obstacles for MoE training.

Hybrid Gradient Estimation: SparseMixer. We notice that D is assigned as D ←
argmaxIi πIi during the inference, instead of being sampled from π. Thus, it would be suffi-
cient to close the gap by only applying ∇̂SparseMixer-2rd when D ̸= argmaxIi πIi . Accordingly, we
propose SparseMixer to balance router training and expert training:

∇̂SparseMixer := (1− δD)∇̂SparseMixer-2rd + δD∇̂SparseMixer-1st ,where δD =

{
1, if D = argmax

Ii

πIi

0, otherwise
.

Additional Sampling Adaptation. Since the value of π will be different after applying the mask
(which impacts the gradient magnitude of other components), we further changed the output of the
MoE layer from πD ·fD(x) to ω ·πD ·fD(x), where ω is trainable and is initialized as the 1 vector.
Intuitively, ω can be viewed as an adaptation on the learning rate for training expert networks. Note
that, ω can be re-parameterized into the feedforward layer after training.

Computational Efficiency of SparseMixer . ∇̂SparseMixer does not require Hessian or other
second-order derivatives, thus having negligible computation overheads. Also, it is worth mention-
ing that ∇̂SparseMixer has the same order of computation complexity and memory complexity with
only estimating∇1 (i.e., the current practice of MoE training neglects∇0 directly). Empirical veri-
fication is discussed in Section 5.5, which matches our analyses here.

At the same time, similar to ∇̂ST, our proposed algorithm can be easily integrated with popular
library like PyTorch, making it easy to be integrated with existing algorithms.
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5 Experiments

5.1 Experiment Setting

Here, we conduct experiments on pretraining and neural machine translation. We closely follow the
experiment setting of the existing study. Due to the constraint of computation resources, we left
MoE related hyper-parameters untuned in all settings, i.e., jitter (r) is set to 0.1 and load balance
loss ratio is set to 0.01 (Fedus et al., 2021). Detailed configurations are elaborated in Appendix B.

5.2 Applying SparseMixer on Switch Transformer

NMT on WMT’14 En-De. We visualized the training curve in Figure 1 and sum-
marized the BLEU score in Table 1. Regarding both convergence speed and the final per-
formance, Switch+SparseMixer consistently outperforms Switch in all five settings. Notably,
Switch+SparseMixer matches the training performance of Switch with about 50% less training up-
dates when N ∈ {4, 6, 8} and about 40% less training updates when N ∈ {2, 16}.
We can observe that, with more experts, MoE models achieve lower training loss with a worse BLEU
score. Specifically, although Switch Transformer achieves better training performance, its final
performance (BLEU score) never outperforms the Dense model, regardless of how many experts
it has. We believe it requires more data to fully unleash the potential of MoE and suggest this
phenomenon indicates that MoE models are prone to overfitting (Zuo et al., 2022).

Meanwhile, without changing hyper-parameters or model architectures, the downstream perfor-
mance of Switch + SparseMixer outperforms both Dense and Switch, when N ∈ {2, 4}. Specif-
ically, SparseMixer improves the performance of Switch from 28.17 to 28.72 (when N = 2) and
from 28.05 to 28.61 (when N = 4). This phenomenon implies that, with the help of SparseMixer, a
sound gradient estimator, MoE learns an expert routing that generalizes better.

Pretraining. Following previous work (Dong et al., 2023), we visualized the training curve
in Figure 6 and summarized the fine-tuning results in Table 2. Regarding both convergence speed
and downstream performance, Switch+SparseMixer consistently outperforms Switch in all settings.
Also, similar to the experiments on machine translation, we observe that MoE models are easier to
overfit and both settings achieve the best downstream performance with two experts.

Also, it is worth mentioning that, while Switch Transformer only outperforms the dense model when
the number of experts is set to 2, Switch + SparseMixer consistently outperforms the Dense model
in all four settings. This phenomenon further verifies our intuition that SparseMixer facilitates MoE
models with better expert router training, thus having the resulting model to generalize better.

5.3 Discussions

Here, we conduct experiments to discuss our modeling of the MoE layer as in Section 2.

Importance of Scaling Expert Outputs with Gating Networks. One important design detail of
MoE is to scale the output of the expert network with the gating network, i.e., the output of the MoE
layer is computed as y ← πDfD(x), instead of y ← fD(x). This scaling design greatly facilitates
the derivation of SparseMixer in Section 3, and inspires the introduction of ω (further discussed in
Section 5.4). Here, we empirically examine the importance of this scaling design.

Specifically, we conduct experiments with a variant of Switch Transformer, i.e., Switch w.o. Scal-
ing, which sets the output of the MoE layer as y ← fD(x). We apply this Switch variant on

Table 1: BLEU score on WMT’14 En-De (N refers to the number of experts).

Dense Mixture-of-Expert
N = 2 N = 4 N = 6 N = 8 N = 16

Transformer-base 28.33 / / / / /
Switch / 28.17 28.05 27.96 27.99 27.81
Switch+SparseMixer / 28.72 28.61 28.32 28.12 28.08
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Table 2: Results on the GLUE development set. S refers to Switch and S+S refers to
Switch+SparseMixer. AVG is the average score across eight tasks.

N Model AVG MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC STS-B
(Acc.) (Acc.) (Acc.) (Acc.) (Mat. Corr.) (Acc.) (Acc.) (Spear. Corr.)

1 Dense 87.37 88.72/88.40 91.90 93.36 93.35 68.71 82.31 89.95 90.83

2 S 87.62 88.55/88.34 91.86 93.52 94.27 67.90 83.76 90.69 90.52
S+S 88.31 89.06/88.78 91.98 93.54 94.38 69.96 85.20 91.67 90.81

4 S 87.02 88.12/88.40 91.73 93.21 93.92 70.89 77.26 90.44 90.49
S+S 87.63 88.97/88.41 91.92 93.54 94.04 71.00 80.87 90.69 90.72

8 S 87.27 88.43/88.22 91.78 93.23 94.84 68.06 80.87 90.44 90.62
S+S 87.71 88.69/88.47 92.03 93.41 94.15 69.00 83.76 89.95 90.81
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Figure 2: Comparison between Switch Transformer and Switch Transformer without Scaling.

WMT’14 En-De and visualize the training curve in Figure 2. Switch (y ← πDfD(x)) significantly
outperforms this variant (y ← fD(x)). Also, we can observe that, when the number of experts is
set to 6, using this variant would lead to additional training instability, which further demonstrates
the importance of the scaling design.

Importance of Applying Mask to Softmax. In Section 3.3, we identify that the sampling in
Switch Transformer plays an important role in the success of Switch Transformer. As discussed in
Fedus et al. (2021), directly using softmax sampling would lead to an inferior performance.

Here, we demonstrate that this masked softmax sampling also plays an important role in Switch +
SparseMixer. Specifically, we conduct experiments with a variant of SparseMixer, i.e., SparseMixer
w.o. Mask, which computes πi ← softmax(θ)i. We apply SparseMixer w.o. Mask on WMT’14 En-
De and visualize the training curve in Figure 3. SparseMixer (πi ← exp(θi)·∆i∑n

j=1 exp(θj)·∆j
) significantly

outperforms this variant (y ← softmax(θ)i). Also, we can observe that, when the number of experts
is set to 6, using this variant would lead to additional training instability, which further demonstrates
the importance of applying mask to softmax.

5.4 Ablation

Importance of Balancing Expert Learning and Routing Learning. While SparseMixer-2rd
provides better gradient approximation for expert routing, it creates a gap between training and
inference. To demonstrate the importance of balancing router training and expert training, we con-
duct experiments on applying SparseMixer-2rd on WMT’14 En-De. As visualized in Figure 4,
SparseMixer consistently outperforms SparseMixer-2rd in all cases. Also, SparseMixer-2rd exhibits
training instability when setting the number of experts to 2.

Mid-point Method and ω Scaling. To better understand the benefit introducing ω (as in Sec-
tion 3.3) and make comparisons with SparseMixer-1st, we conduct additional ablation studies on
WMT’14 En-De. Specifically, we consider two SparseMixer variants:

• ablation-1 removes ω from SparseMixer (i.e., changes the output of Switch + SparseMixer from
ω · πD · fD(x) to πD · fD(x)).
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Figure 3: Comparison between SparseMixer and SparseMixer without applying mask to sampling.
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Figure 4: Comparison between SparseMixer and SparseMixer-2rd .

Table 3: Average Training Time Cost (s/update). N refers to the number of experts.
WMT’14 En-De LM Pre-training

N = 2 N = 4 N = 6 N = 8 N = 16 N = 2 N = 4 N = 8

Switch 0.32 0.33 0.34 0.36 0.40 1.87 1.90 1.98

Switch + SparseMixer 0.32 0.33 0.34 0.36 0.40 1.87 1.90 1.98

• ablation-2 further replaces the mid-point method with the forward Euler method in SparseMixer-
ablation-1, i.e., ∇̂SparseMixer-1st is employed as the gradient estimator and ω is removed.

We apply these two variants to WMT’14 En-De. As in Figure 1, both variants outperform the
baseline. The results further verified our intuition that ω facilitates MoE training by alleviating
the impact of applying masks. Also, it shows that integrating the mid-point method helps to better
approximate expert routing gradient.

5.5 Efficiency
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Figure 5: The ratio of Switch Training FLOPS
and Switch+SparseMixer Training FLOPS. The
FLOPS are computed for ELECTRA-base train-
ing with one 512-token sequence.

We summarized the average time cost per up-
date in Table 3. Switch+SparseMixer achieves
an identical average time cost with Switch in all
eight settings. This shows that the computation
overheads of SparseMixer are negligible.

To better understand the computation over-
head brought by SparseMixer, we compute the
floating point operations (FLOPS) for one for-
ward propagation and one backward propaga-
tion. We visualized the FLOPS ratio of Switch
and Switch+SparseMixer of various number of
experts in Figure 5. It shows the computation
overhead brought by SparseMixer only com-
poses up to 0.1% of the total training FLOPS,
for MoE models with up to 16384 experts.

6 Conclusion

In this study, we present SparseMixer to move beyond ST and bridge the gap between sparse MoE
routing and backpropagation. Rooted in a numerical ODE framework, SparseMixer harnesses the
mid-point method, a second-order ODE solver, to deliver precise gradient approximations with neg-
ligible computational overhead. In our experiments on both neural machine translation and pre-
training tasks, SparseMixer not only accelerates training convergence by up to two times but also
facilitates MoE with properly trained expert routing. Remarkably, while Switch Transformer under-
performs the dense model in all three pretraining settings, incorporating SparseMixer as the gradient
estimator allows the resulting MoE models to consistently outperform the dense model.
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A Forward Euler Method and Heun’s Method

For simplicity, we consider a simple function g(x) : R → R that is three times differentiable on
[t0, t1]. Now, we proceed to a simple introduction to approximate

∫ t1
t0

g′(x)dx with the Forward
Euler Method and the Heun’s Method. For a detailed introduction to numerical ODE methods,
please refer to Ascher & Petzold (1998).

Forward Euler Method. Here, we approximate g(t1) with the first-order Taylor expansion, i.e.,
g(t1) = g(t0) + g′(t0) · (t1 − t0) + O((t1 − t0)

2), then we have
∫ t1
t0

g′(x)dx ≈ g′(t0)(t1 − t0).
Since we used the first-order Taylor expansion, this approximation has first-order accuracy.

Heun’s Method. First, we approximate g(t1) with the second-order Taylor expansion:

g(t1) = g(t0) + g′(t0) · (t1 − t0) +
g′′(t0)

2
· (t1 − t0)

2 +O((t1 − t0)
3). (10)

Then, we show that we can match this approximation by combining the first-order derivatives of two
samples. Taylor expanding g′( t1+t0

2 ) to the first-order, we have:

g′(
t1 + t0

2
) = g′(t0) + g′′(t0) ·

t1 − t0
2

+O((t1 − t0)
2)

Therefore, we have:

g(t0) + g′(
t1 + t0

2
)(t1 − t0) = g(t0) + g′(t0) · (t1 − t0) +

g′′(t0)

2
· (t1 − t0)

2 +O((t1 − t0)
3).
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It is easy to notice that the right-hand side of the above equation matches the second-order Taylor
expansion of g(t1) as in Equation 10. Therefore, the above approximation (i.e., approximating
g(t1)− g(t0) as g′( t1+t0

2 )(t1 − t0)) has second-order accuracy.

Connection to f(Ii)− f(0). By setting g(x) = f(x · Ii), we have g(1)− g(0) = f(Ii)− f(0).
Then, it is easy to notice that the forward Euler Method approximates f(Ii)− f(0) as ∂f(Ii)

∂Ii
Ii and

has first-order accuracy. Also, the mid-point method approximates f(Ii) − f(0) as ∂f(Ii/2)
∂Ii/2

Ii and
has second-order accuracy.

Table 4: GLUE task descriptions and statistics. The second and fourth column denotes the number
of training examples and the number of classes. Note that STS-B is a regression task.

Corpus |Train| |Label| Task Metric(s) Domain

Single-Sentence Classification

CoLA 8.5k 2 acceptibility Matthews corr. misc.
SST-2 67k 2 sentiment accuracy movie reviews

Sentence Similarity/Paraphrase

MRPC 3.7k 2 paraphrase accuracy news
STS-B 5.7k - similarity Spearman corr. misc.
QQP 364k 2 similarity accuracy social QA questions

Natural Language Inference (NLI)

MNLI 393k 3 NLI (mis)matched acc. misc.
QNLI 108k 2 QA/NLI accuracy Wikipedia
RTE 2.5k 2 NLI accuracy misc.
WNLI 634 2 coreference/NLI accuracy fiction books

Table 5: Hyperparameter search space in fine-tuning.
Hyperparameters Base
Sequence Length 256
Optimizer Adam
Peak Learning Rate {5e-5,1e-4, 3e-4}
Max Epochs {2,3,5,10}
Batch size {16, 32}
Learning rate decay Linear
Weight Decay {0, 0.01}
Warm-up Proportion {6 %, 10 %}
Adam ϵ 1e-6
Adam (β1, β2) (0.9, 0.98)
Gradient Clipping 1.0
Dropout 0.1

B Experiment Setting

B.1 Neural Machine Translation

Problem Setting. Our experiments are based on the fairseq package (Ott et al., 2019). As to pre-
processing, we follow the public released script from previous work (Lu et al., 2020), and conduct
evaluations on the provided ‘newstest14‘ file. More details can be found in Bojar et al. (2014).
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Figure 6: Training curves of Switch Transformer on ELECTRA-base training.

Model Architecture. As to model specifics, we directly adopt the Transformer-base model on the
WMT’14 En-De datasets. Specifically, we use encoder-decoder Transformer models with 6 encoder
layers, 6 decoder layers, 512-dimension word embedding, 8-head attentions, and 2048-dimension
feed-forward layers. Following Fedus et al. (2021), we apply MoE layers at every other feed-forward
layers, set jitter to 0.1, and configure load balance ratio as 1 · 10−2. As the number of experts, we
consider 5 different settings, i.e., N ∈ {2, 4, 6, 8, 16}. Label smoothed cross-entropy is used as the
objective function with the uncertainty set as 0.1 (Szegedy et al., 2016).

Training Settings. We mostly followed (Liu et al., 2020a) for training settings. Specifically, we
use Adam as the optimizer set (β1, β2) as (0.9, 0.98), use inverse sqrt learning rate scheduler with a
warmup phrase (8000 steps). All dropout ratios (including activation dropout and attention dropout)
are set to 0.1. The maximum learning rate is set to 7 · 10−4 and the maximum token number per
batch is set to 217. We conduct training for 4 · 105 updates and report the performance of the last
checkpoint and the checkpoint with the lowest development loss.

B.2 Pre-training

Pre-training Setup. We follow the standard settings for training Base models (Clark et al., 2020;
Bajaj et al., 2022; Dong et al., 2023), Specifically, we employ Wikipedia and BookCorpus (Zhu
et al., 2015) for pre-training and set the sequence length to 512, which leads to 16 GB of texts and
256M samples. We use a cased sentence piece BPE vocabulary of 128K tokens following He et al.
(2020), and conduct pre-training for 125K updates with a batch size of 2048 sentences.

Model Architecture. Our main model (discriminator) setting follows the BERTbase architec-
ture (Devlin et al., 2019). Specifically, the model has 12 layers, 768-dimension embedding, and
12-head attention. As to the feed-forward networks, we set the number of hidden state dimensions
to 3076. Following Bajaj et al. (2022) and Dong et al. (2023), we further enhanced the model with
the T5 relative position encoding (Raffel et al., 2019) and use 32 bins. We set dropout as 0.1 and
employ Admin (Liu et al., 2020b) for model initialization to stabilize the training. Following Fedus
et al. (2021), we apply MoE layers at every other feed-forward layers, set jitter to 0.1, and config-
ure load balance ratio as 1 · 10−2. As the number of experts, we consider 3 different settings, i.e.,
N ∈ {2, 4, 8}. As to the auxiliary model, we follow previous works (Clark et al., 2020; Bajaj et al.,
2022) to set the size of the auxiliary model (generator) to be 4 layers.

Optimization. We configure the optimizer as Adam, (β1, β2) as (0.9, 0.98), weight decay as
0.01, the loss weight as 50, the peak learning rate as 5e− 4, and the warmup steps as 10K.

Downstream evaluation setup. We conduct evaluation on downstream tasks following the setup
in previous works (Bajaj et al., 2022). Specifically, we conduct single-task, single-model fine-tuning
on the GLUE (Wang et al., 2018) benchmark. As summarized in the Appendix (Table 4), GLUE
includes 9 subtasks. Following Liu et al. (2019), we conduct a grid-search on hyper-parameters and
report the best performance for both Switch and Swith + SparseMixer. The complete search space
is included in Appendix (Table 5).
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