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ABSTRACT

Pretrained large language models (LLMs) are highly capable but still require adap-
tation for various domains. Existing fine-tuning strategies typically assume either
access to all target task data simultaneously (e.g., multi-task learning), or a se-
quential data stream, as in continual learning, where the former tackles the simul-
taneous task interference issue while the latter focuses on addressing the catas-
trophic forgetting problem. In this work, we propose a unified approach to ad-
dress both scenarios. We present DynMem, a unified framework that tackles both
settings with a lightweight dynamic memory module built on top of frozen pre-
trained LLMs. DynMem encodes past examples into a fixed-sized memory bank.
We design a novel dynamic update mechanism where new examples and exist-
ing memory entries are ranked based on their accumulated attention scores, and
the lowest-ranked examples are thus pruned to maintain size. To further reduce
recency bias, we adopt a new bi-level memory design: L1 Memory is actively
used by the backbone LLM, while L2 Memory stores more diverse examples for
improved effectiveness at minimal cost. The design also supports more flexible
test-time scaling by allowing larger memory banks. We evaluate DynMem un-
der both simultaneous and continual learning settings. Our method consistently
outperforms state-of-the-art baselines tailored for each scenario, demonstrating its
great potential in mitigating task inference for both simultaneous and sequential
learning. In particular, DynMem outperforms a suite of specialized baselines in
simultaneous adaptation across different models, yet achieves this with approxi-
mately 50% fewer trainable parameters.

1 INTRODUCTION

The paradigm of pre-trained large language models (LLMs) has established a powerful foundation
for artificial intelligence (Achiam et al., 2023; Bai et al., 2023; Dubey et al., 2024), yet their ability
of dynamic adaptation remains a critical frontier. Thus, many researchers have attempted to design
more efficient fine-tuning strategies. Recent parameter-efficient fine-tuning (PEFT) methods, e.g.,
LoRA (Hu et al., 2022) and prompt tuning Lester et al. (2021), typically focus on updating a small
amount of extra model parameters to learn a single or multiple tasks jointly. However, they are
limited by assuming access to all data simultaneously, i.e., simultaneous adaptation.

To address the more realistic sequential data stream scenario, various parameter-efficient continual
learning methods (Zhu et al., 2022; Chen et al., 2023; Zhao et al., 2024) are developed for resolving
the catastrophic forgetting issue. These methods prevent catastrophic forgetting by allocating sepa-
rate, architecturally disjoint parameters (e.g., soft prompts or adapters (Poth et al., 2023)) for each
task. However, this isolationist approach introduces critical limitations. It creates a task-agnostic
inference problem, as it requires an oracle to select the correct parameters at test time, and inherently
restricts forward transfer by siloing knowledge within each module (Zheng et al., 2024). More crit-
ically, their effectiveness in simultaneous adaptation (e.g., multi-task learning) is largely unknown.
In this paper, we aim to bridge this gap and design a unified method for both scenarios.

Inspired by recent memory-augmented methods (Yang et al., 2024; Wu et al., 2022a; Zhai et al.,
2025; Mitchell et al., 2022), we propose DynMem, a lightweight memory module operating on a
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fixed-size memory bank that enables efficient LLM adaptation across both sequential and simul-
taneous learning settings. Following recent work, DynMem encodes past training examples into
vectors that are stored in a dynamic memory bank. To support more efficient reading and forget-
ting mechanisms, we introduce a bi-level memory system that utilizes the attention scores from the
frozen backbone LLM. First, a compact L1 Memory maintains a compact set of recently retrieved,
highly relevant samples, which are integrated into LLM via a gated fusion module. However, this
can introduce recency bias, potentially degrading long-term knowledge retention. To mitigate this,
we incorporate a larger L2 Memory, which caches more historically high-ranking samples. Since L2

Memory does not directly interact with the LLM, it significantly enhances the method’s effectiveness
at minimal cost. All samples in both memory stores are periodically ranked based on an attention-
based ranking mechanism, where those lowest-ranked samples are dequeued to leave space for new
samples. In other words, both memory reading and pruning operations are based on the attention
module, which is jointly trained in an end-to-end fashion. During inference, DynMem employs a
cross-stage retrieval process, integrating the selected memories with the current input via a gated
fusion mechanism, allowing the model to dynamically leverage past knowledge for the task at hand.

We conduct a comprehensive empirical evaluation of DynMem across two primary adaptation sce-
narios: Continual Adaptation, which assesses the model’s resilience to forgetting and its capacity for
forward transfer, and Simultaneous Adaptation, which includes two distinct sub-settings, Single-task
Tuning and Multi-task Integration. Across this diverse suite of benchmarks, DynMem demonstrates
significant gains in knowledge retention, adaptation, and generalization, establishing a new state-of-
the-art in versatile model adaptation. To summarize, our contributions include:

• We propose DynMem, a lightweight dynamic memory module for efficient adaptation with
pretrained LLMs. As far as we know, we are the first to unify simultaneous and continual
learning paradigms within a single, cohesive architecture.

• We introduce a unique bi-level memory system, featuring a working and reserved memory
managed by an attention-based filtering mechanism, which enables efficient, example-level
knowledge retention and retrieval with a compact memory size.

• We conduct a comprehensive empirical evaluation across a diverse suite of benchmarks
spanning continual, single-task, and multi-task adaptation. Our results demonstrate that
DynMem achieves state-of-the-art results across the board, significantly outperforming spe-
cialized methods in their respective domains.

2 PRELIMINARIES

Our work aims to develop a single, unified framework that excels in two distinct paradigms of model
adaptation. To establish the context for this approach, we first formalize these paradigms below.

Continual Adaptation. Commonly known as Continual Learning, continual adaptation addresses
the more dynamic scenario where tasks arrive sequentially, T1, T2, . . . , TN . When training on the
current task Tk, the model has only access to its corresponding dataset Dk, and data from past
tasks {D1, . . . ,Dk−1} is unavailable. The main challenge in this setting is catastrophic forgetting,
defined as the severe degradation of performance on previously learned tasks after the model updates
for new ones. Formally, let A(θj ;Di) denote the accuracy of the model with parameters θj (having
learned up to task j) on the dataset for task i. Forgetting is measured by the performance drop from
A(θi;Di) to A(θk;Di) for any i < k. The objective here is twofold: learn the new task effectively
while simultaneously preserving knowledge from all previously seen tasks.

Simulteneous Adaptation. In this paradigm, a model fθ is assumed to have full access to the com-
plete datasets for a set of N tasks, {D1, . . . ,DN}. The primary goal is to learn a single set of pa-
rameters θ that performs well across these tasks by leveraging their shared structure. This paradigm
encompasses several key evaluation settings: a) Single-task Tuning The model is specialized for a
single task Ti by fine-tuning exclusively on its dataset Di. b) Multi-task Integration: A single model
is jointly trained on the union of all task datasets, Dall =

⋃N
i=1 Di, to encourage knowledge sharing.
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3 THE DYNMEM FRAMEWORK

Here, we introduce DynMem, a framework designed to unify simultaneous and continual adaptation.
At a high level, DynMem augments a pre-trained LLM, denoted as a parametric function fθ, with a
dynamic, bi-level memory system as shown in Figure 1. Unless otherwise specified, the backbone
LLM remains frozen throughout the paper.
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Figure 1: The overall architecture of DynMem. During the training phase, as new tasks arrive, the
model is continuously fine-tuned and example representations are generated based on the final layer
hidden states of the backbone LLM. Note that the model only interacts with the L1 Memory via
cross-attention and a gated fusion layer to produce predictions (§3.1). The attention scores from this
interaction also guide the periodic pruning of L1 and L2 to maintain a compact memory size.

Similar to recent memory-augmented methods, we derive memory entries using the backbone LLM
as the encoder. The novelty of DynMem lies in its bi-level memory system, designed to balance
immediate task relevance with long-term knowledge diversity. This memory module is strategically
inserted at the final decoder layer of the LLM, intercepting the layer’s output hidden states to perform
memory interaction before the final prediction. The system consists of a L1 Memory (ML1

) for
high-relevance, active samples and a larger (L2) Memory (ML2

) that serves as a long-term reservoir.
Both memory caches hold a predefined capacity, with |ML2 | > |ML1 |.
The basic entry in both memories is a vector me representing a single training example (xe, ye) ∈
Di, where xe is the task prompt input and ye is the corresponding gold output. Consistent with
the module’s placement, this vector is generated by extracting the semantically rich hidden states of
the final token from the last decoder layer, i.e., me = Decoderlast(fθ(Concat(xe, ye)))[−1] ∈ Rd,
where d is the hidden dimensionality. This representation effectively summarizes the input-output
mapping for a given example and forms the candidate pool for our memory bank.

3.1 MEMORY INTERACTION AND INTEGRATION

The flexible reading and forgetting interactions on memory are achieved by three key modules: a
cross-attention module for retrieving knowledge, an update strategy for maintaining the memory
bank, and a gated layer for integrating retrieved information.

Attention-based Knowledge Retrieval. To retrieve and integrate relevant memory knowledge, we
design a cross-attention module Across. Denote the hidden state representation of the current input
from the final decoder layer as Hcur ∈ RL×d. During the model’s forward pass, this representation
interacts exclusively with the contents of the L1 Memory, whose vectors {m1, · · · ,m|ML1

|} are
concatenated into a matrix ML1 . To leverage the LLM’s pre-trained weights and ensure parameter
efficiency, we initialize this cross-attention module from the self-attention block of the same de-
coder layer. Specifically, the input hidden states Hcur form the query, while the memory vectors
in ML1

form the key and value pairs: Q = HcurW
Q,K = ML1

WK ,V = ML1
WV , where

WQ,WK ,WV ∈ Rd×d are learnable projection matrices. The module concurrently computes two
outputs: the memory-enhanced representation Hmem and the raw cross-attention scores αcur:

Hmem, αcur = Across(Hcur,ML1). (1)

3
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The representation Hmem is thereby enriched with context from historical examples stored in the
active L1 memory, while the attention scores αcur ∈ RNh×L×|ML1

|, where Nh is the number of
attention heads, are used as a relevance signal for the subsequent memory update process.

Memory Update. To ensure the memory bank remains constant-sized and evolves over time, we
employ a dynamic update mechanism that operates periodically every I training steps. The process
is driven by the attention scores αcur from Across as defined above. For each training input, these
scores are aggregated and normalized across attention heads and the input length L to compute a
single relevance score for every (entry) vector m ∈ ML1 : s(m) = 1

NhL

∑Nh

h=1

∑L
i=1 α

(h,i,j)
cur . This

score is accumulated over the I-step interval to produce a long-term utility estimate, S(m) = 1
I , for

each L1 vector. Note that the scores for vectors in the L2 Memory remain static during this period,
retaining their last known utility value. At the end of the interval, a global update is triggered. First,
all vectors in both memory pools, ML1

∪ML2
, are ranked based on their utility scores S so far. A

fraction η ∈ (0, 1) of the lowest-scored vectors are permanently pruned. The resulting empty slots
are then replenished with an equal number of new candidate vectors generated from the most recent
training phase. Finally, this updated and replenished pool of |ML1

| + |ML2
| vectors is going to

be re-ranked based on utility. The top-|ML1
| vectors are designated as the new L1 memory for the

next training interval, ensuring it always contains the most salient examples for active interaction.
The remaining vectors constitute the new L2 memory. This strategy maintains a clear hierarchy
where the L2 memory serves as a robust long-term reservoir, while the L1 memory functions as the
dynamic and compact working set.

Adaptive Fusion via Learned Gating. After obtaining the original Hcur and memory-enhanced
(Hmem) representations, a learnable gating mechanism is used to fuse them. This allows the model
to control the intensity of information injection or reading from the memory. Based on the input, we
compute an input-aware gating coefficient γ = σ(HcurWg + bg), where Wg and bg are the learn-
able parameters of the gating layer and σ(·) is the sigmoid function. The final fused representation
is then passed to the final prediction layer as

Hfuse = (1− γ)⊙Hcur + γ ⊙Hmem. (2)

The learnable nature of this gate allows DynMem to adaptively balance its reliance on model internal
knowledge versus accumulated external knowledge.

3.2 DYNAMIC MEMORY RETRIEVAL AT INFERENCE

In addition to the dynamic interaction as described above for training, we can adopt another
inference-time procedure by using more extensive dynamic query-specific knowledge retrieval. In
other words, unlike the training process, which interacts with a fixed L1 memory to learn general
patterns of example relevance, the inference process performs a global search over L1&L2 to find
the most pertinent context for each individual test example. For each incoming test example, we
first generate a query vector Qtest, using the same feature extraction process as for the memory
entries themselves. We then perform an efficient similarity search (e.g., maximum inner-product
search) to approximate the attention used in training against all vectors in the unified memory pool,
ML1

∪ML2
. This step dynamically assesses the relevance of every stored memory candidate with

respect to the current input. The top-|ML1 | highest-scoring memory vectors are selected to form
a sample-specific memory set, denoted as Mretrieved. This retrieved set is then used as context for
Across, and subsequently integrated via the gated fusion mechanism to produce the final predic-
tion. This two-stage design is critical for both efficiency and scalability 4.3. It allows DynMem to
maintain a much larger long-term knowledge reservoir in its L2 memory without incurring a propor-
tional computational cost at inference time. The model’s forward pass only ever processes a small,
fixed-size set of K relevant exemplars, decoupling the size of the knowledge base from the cost of
prediction. Hence, the retrieval process at inference does not involve pruning of the memory bank.

4 EXPERIMENTS

We conduct a comprehensive empirical evaluation to substantiate DynMem’s capability as a uni-
fied framework excelling in both Continual and Simultaneous Adaptation. Our central hypothesis is
that our bi-level memory architecture naturally addresses the principal challenges of each paradigm.

4
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For Continual Adaptation, the memory acts as an explicit knowledge reservoir to preserve past ex-
periences, thereby mitigating catastrophic forgetting. For Simultaneous Adaptation, it serves as a
powerful channel for instance-based knowledge sharing, enhancing transfer across tasks. Accord-
ingly, our evaluation is structured around these two core settings, assessing performance in continual
learning streams as well as in standard Single-task Tuning and Multi-task Integration. Across this
diverse suite of benchmarks, we demonstrate that DynMem consistently surpasses specialized base-
lines, validating its efficacy as a truly versatile adaptation solution.

4.1 CONTINUAL ADAPTATION

4.1.1 EXPERIMENTAL SETUP

Task Streams. We construct two challenging task streams to evaluate performance under different
conditions of semantic shift: a) STRUCTURED STREAM. This stream contains 4 structured knowl-
edge reasoning datasets: Spider (Yu et al., 2018) for text-to-SQL, ComplexWebQuestions (Talmor
& Berant, 2018) for text-to-SPARQL, GrailQA (Gu et al., 2021) for S-expression generation, and
MTOP (Li et al., 2021) for semantic parsing in dialogue systems. These tasks focus on structured
language generation, testing the model’s capability to retain reasoning skills on structured data. b)
MIXED STREAM. To simulate more significant domain shifts, we augment the Structured Stream
with four diverse commonsense reasoning datasets: BoolQ (Clark et al., 2019), PIQA (Bisk et al.,
2020), Arc-Easy (Clark et al., 2018), WinoGrande (Sakaguchi et al., 2021). This stream tests the
model’s robustness to maintain distinct knowledge bases. For each task in both streams, we create a
standardized split by randomly sampling 1,000 examples for training and 300 examples for testing.

Evaluation Metrics. We adopt standard metrics from continual learning literature (Chen et al.,
2023). Let Ak,i be the accuracy on the test set of task Ti after the model has finished training on
task Tk. a) Average Accuracy: Acc = 1

k

∑k
i=1 Ak,i reflects the average accuracy on all tasks seen

so far after training on task Tk; b) Backward Tranfer: BWT = 1
k−1

∑k−1
i=1 (Ai,k − Ai,i) measures

the degree of model forgetting; c) Forward Transfer: FWT = 1
k−1

∑k
i=2(Ai,i − Ai, 0) evaluates

model’s ability to transfer previously-learned knowledge to new tasks.

Compared Methods. We compare DynMem against a comprehensive set of baselines: a) Fine-
tuning: A vanilla fine-tuning approach where the model is updated on each task sequentially, which
usually exhibits severe forgetting. b) PEFT Methods: This family of methods leverages parameter-
efficient tuning techniques by allocating a separate, small set of trainable parameters for each task.
We include Continual Prompt Tuning (CPT)(Zhu et al., 2022) and C3 (Chen et al., 2023) as repre-
sentatives. c) Rehearsal-based Methods: We compare against EMAR (Han et al., 2020), a baseline
that stores a buffer of raw examples from past tasks and rehearses them when learning a new task.

Backbone Models. We conduct experiments on two powerful open-source large language models:
Llama-3-8B (Dubey et al., 2024) and Qwen-3-8B (Yang et al., 2025).

Implementation Details. For DynMem, we set the L1 memory size to |ML1
| = 100 and the L2 to

|ML2
| = 1000. The memory is updated periodically with an interval of I = 500 training steps.

4.1.2 EXPERIEMNTAL RESULTS

Overall Results. The results in Table 1 confirm that DynMem establishes a new state-of-the-art in
continual learning. On MIXED STREAM using Llama-3-8B, DynMem achieves an average accuracy
of 57.2, substantially outperforming the strongest baseline, C3, by 5.6 points. This superior perfor-
mance is a direct result of our memory-centric design, which excels at both mitigating forgetting
and accumulating new knowledge. DynMem achieves the highest Backward Transfer, demonstrat-
ing that the bi-level memory acts as a robust knowledge reservoir where inference-time retrieval
successfully compensates for parametric drift. DynMem also achieves the highest Forward Trans-
fer, nearly doubling that of the next best method, showing the memory does not merely preserve old
knowledge but actively facilitates the learning of new tasks by providing relevant, instance-based
context to accelerate adaptation. Unlike PEFT methods that prevent forgetting at the cost of limited
knowledge sharing (lower FWT), DynMem’s unified architecture enables both strong knowledge
preservation and positive transfer, offering a more effective and holistic solution to the continual
learning problem.
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Table 1: Continual Adaptation on the Structured and Mixed streams. ORACLE serves as an upper-
bound performance, representing a model trained jointly on the union of all task datasets; EMAR
utilizes a buffer of 10 examples per past task. Each cell shows meanstd.

Backbone Method Structured Mixed
Acc BWT FWT Acc BWT FWT

Llama-3-8B

FINE-TUNING 22.33.4 −26.33.4 2.31.2 40.35.4 −19.13.8 3.41.3
EMAR 35.32.3 −14.21.3 2.30.4 49.52.0 −15.32.3 2.90.7
CPT 10.34.5 - 0.70.3 23.63.1 - 2.30.4
C3 37.23.1 - 3.71.4 51.63.9 - 4.11.6
DYNMEM 41.24.0 −12.32.1 5.61.5 57.23.6 −13.41.2 7.61.8
ORACLE 56.20.9 6.51.9 6.72.4 61.41.5 8.72.3 8.10.6

Qwen-3-8B

FINE-TUNING 25.43.2 −19.84.3 2.40.6 45.26.7 −18.22.5 4.10.6
EMAR 37.13.4 −13.14.2 3.10.8 52.03.1 −18.70.9 3.00.9
CPT 13.41.7 - 1.30.5 24.22.8 - 3.10.7
C3 38.23.7 - 3.20.7 54.63.8 - 3.50.8
DYNMEM 43.92.3 −10.31.7 7.13.6 60.10.8 −11.92.8 8.01.2
ORACLE 59.13.4 10.13.5 8.21.2 62.72.0 9.10.7 7.91.3

1 2 3 4

20

40

60

80
A

cc
 (%

)
Structured

Qwen-Fine-tuning
Llama-Fine-tuning
Qwen-EMAR
Llama-EMAR
Qwen-CPT
Llama-CPT
Qwen-C3
Llama-C3
Qwen-DynMem
Llama-DynMem

1 2 3 4 5 6 7 8
Task ID

20

40

60

80

100

A
cc

 (%
)

Mixed

Figure 2: Acc on all seen tasks as the model
trains sequentially on two streams.

Performance till Seen Tasks. To provide a more
granular view of the learning dynamics, we plot the
average accuracy on all previously seen tasks as the
model progresses through both the STRUCTURED
and MIXED streams in Figure 2. This visualization
vividly illustrates the models’ ability to accumulate
and retain knowledge over time. As expected, stan-
dard Fine-tuning suffers a precipitous decline in av-
erage accuracy, clearly demonstrating catastrophic
forgetting. While other methods like EMAR and C3
offer partial mitigation, they ultimately succumb to
a steady degradation of knowledge as more tasks are
introduced, with their performance curves showing
a clear downward trend.

DynMem exhibits remarkable stability and a strong
capacity for knowledge accumulation across both
streams and backbone models. Its performance tra-
jectory remains high and relatively flat, showing
only a minor initial drop before stabilizing. This provides compelling evidence that our dynamic bi-
level memory system successfully decouples knowledge preservation from parametric adaptation:
the LLM learns the new task, while the memory update and inference-time retrieval mechanisms
successfully preserve and leverage knowledge from the past, enabling robust and stable knowledge
accumulation over the entire task sequence.

4.2 SIMULTANEOUS ADAPTATION

4.2.1 EXPERIMENTAL SETUP

Datasets. We evaluate simultaneous adaptation performance on a comprehensive suite of widely-
used benchmarks covering commonsense reasoning. Specifically, we use eight commonsense rea-
soning datasets: BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SocialIQa (SIQA) (Sap et al.,
2019), HellaSwag (HellaS.) (Zellers et al., 2019), WinoGrande (WinoG.) (Sakaguchi et al., 2021),
ARC-Easy (ARC-e) (Clark et al., 2018), ARC-Challenge (ARC-c) (Clark et al., 2018), and Open-
BookQA (OBQA) (Mihaylov et al., 2018). We also include GSM8K (Cobbe et al., 2021) for math-
ematical reasoning.
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Evaluation Protocol. We evaluate all methods under two primary simultaneous settings: a) Single-
task Tuning. The model is fine-tuned and evaluated on each dataset separately to measure its per-
formance on corresponding tasks. b) Multi-task Tuning. A single model is jointly trained on the
combined training sets of all eight commonsense reasoning datasets and is subsequently evaluated
on the test set of each individual task to measure knowledge integration.

Compared Methods. We benchmark DynMem against a comprehensive set of state-of-the-art
PEFT methods to ensure a rigorous comparison: LoRA (Hu et al., 2022), NoRA (Lin et al., 2024),
LoKr (Yeh et al., 2024), DoRA (Liu et al., 2024), AdaLoRA (Zhang et al., 2023), MixLoRA (Li
et al., 2024), and DenseLoRA (Mu et al., 2025).

Backbone Models. To ensure our findings are robust and generalizable, we conduct all experiments
on two powerful open-source large language models: Llama-3-8B and Qwen-3-8B.

Table 2: Experiments on Single-task Tuning. See B for parameter calculation details.

Method Param (%)
Commonsense Reasoning Math

BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg. GSM8K

Llama-3-8B
LORA 0.35 72.3 86.7 79.3 93.5 84.8 87.7 75.7 82.8 82.9 57.2
DORA 0.36 73.3 89.1 79.9 95.9 84.7 89.8 79.5 86.9 84.9 58.1
ADALORA 0.35 75.2 88.2 79.2 76.2 85.2 89.9 78.2 85.0 82.1 52.1
MIXLORA 2.60 75.0 87.6 78.8 93.3 82.1 86.5 79.9 84.8 83.5 55.6
DYNMEM 0.18 76.5 90.3 81.9 96.6 86.0 93.3 80.7 89.3 86.8 59.6

Qwen-3-8B
LORA 0.35 75.6 91.0 81.5 92.7 88.6 95.6 89.7 92.8 88.4 64.5
DORA 0.36 76.1 89.9 82.1 93.7 87.9 96.8 89.3 93.1 88.6 63.1
DYNMEM 0.18 76.5 91.2 90.7 95.6 88.4 96.2 91.5 91.3 90.2 65.6

The results for Single-task Tuning, presented in Table 2, reveal the superiority of DynMem as a
fine-tuning framework. Across both backbone models, DynMem consistently establishes a new
state-of-the-art, outperforming all compared PEFT baselines.

Focusing on the Llama-3-8B results, DynMem achieves an average score of 86.8 on the common-
sense reasoning benchmarks, a salient improvement of 1.9 points over the strongest baseline, DoRA
(84.9). This trend also holds for mathematical reasoning, where DynMem achieves 59.6 on GSM8K,
again surpassing all baselines. Crucially, DynMem achieves these state-of-the-art results while be-
ing significantly more parameter-efficient. With only 0.18% trainable parameters with regard to the
backbone LLM, it uses approximately half the parameters of LoRA/DoRA and an order of magni-
tude fewer than methods like MixLoRA.

This pattern of superior performance and efficiency is not limited to a single model architecture. As
the results for the Qwen-3-8B backbone confirm, DynMem consistently outperforms the baseline
methods, demonstrating that its advantages are generalizable across different foundational models.

These results highlight a key advantage of our approach. Unlike purely parametric methods that
compress all task knowledge into a small set of adapter weights, DynMem leverages its memory to
store and retrieve the most salient examples from the training data. This instance-based conditioning
provides powerful, explicit context at inference time, leading to more robust intra-task generalization
and ultimately higher accuracy. Therefore, even in this fundamental adaptation setting, DynMem
proves to be a more effective and efficient fine-tuning solution.

4.2.2 MULTI-TASK INTEGRATION

The results for Multi-task Tuning (MT), presented in Table 3, highlight DynMem ’s exceptional
capability for knowledge integration and transfer across a diverse set of tasks.

On the Llama-3-8B backbone,DynMem achieves a new state-of-the-art with an average score of
86.4 across all eight commonsense reasoning datasets. This represents an improvement of 0.8 points
over the strongest PEFT baseline, MoSLoRA (85.6), and demonstrates superior performance on
nearly every individual task. Notably, this superior performance is achieved with significantly higher
parameter efficiency; DynMem uses only a smaller amount of trainable parameters.
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Table 3: Experiments on Multi-task Integration.

Method Param (%) Commonsense Reasoning
BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

Llama-3-8B
LORA 0.35 72.3 83.7 78.1 91.6 82.8 84.9 72.4 81.2 80.9
NORA 0.10 73.3 86.4 79.1 94.1 84.3 88.2 77.5 85.0 83.5
LOKR 0.01 65.1 81.6 78.7 92.0 82.1 89.2 76.7 80.9 80.8
DORA 0.35 71.8 86.1 79.4 94.0 85.1 88.0 77.4 87.2 83.6
ADALORA 0.35 75.1 86.4 76.7 75.4 83.3 90.4 79.1 85.0 81.4
MOSLORA 0.36 74.6 89.7 81.0 95.0 85.8 90.5 81.5 86.8 85.6
DENSELORA 0.06 74.1 88.9 80.3 95.0 87.0 90.0 79.2 85.6 85.0
DYNMEM 0.18 76.5 89.3 81.1 95.4 85.7 93.3 80.7 88.3 86.3

Qwen-3-8B
LORA 0.35 73.2 88.1 80.4 90.0 86.1 93.0 87.9 91.8 86.3
DORA 0.36 75.0 88.1 79.9 91.2 87.0 94.9 88.8 92.9 87.2
DYNMEM 0.18 74.5 90.0 90.7 94.3 87.9 96.0 90.3 90.3 89.3

This strong performance in a multi-task setting validates the core design of our framework. While
standard PEFT methods rely on implicit knowledge transfer through a shared set of parameters,
DynMem introduces a powerful channel for explicit, instance-based knowledge sharing. During
training, the memory update process populates L1 and L2 Memory with the most salient examples
from co-trained tasks. At inference, the retrieval mechanism can fetch a transferable relevant exam-
ple. This targeted, cross-task retrieval allows DynMem to leverage inter-task synergies effectively
than purely parametric approaches, leading to a more capable and integrated multi-task model.

4.3 ABLATION STUDY

To validate the contribution of each core component of our design, we conduct an ablation study,
the results of which are presented in Table 4. We evaluate several variants of DynMem by removing
one key mechanism at a time: a) w/o L2 Memory tests the necessity of the long-term reservoir by
using only a single L1 memory; b) w/o Inference Retrieval assesses the benefit of dynamic, query-
specific retrieval by using the static L1 memory for inference; c) w/o Gated Fusion replaces the
learned gate with a static value 0.5 to measure the importance of adaptive integration; and d)w/o
Attention Ranking replaces our utility-based update with a simple First In First Out strategy to test
the efficiency memory management strategy. The results confirm that all components are critical,
as removing any of them substantially degrades performance across all settings. The degradation is
most severe for w/o Gated Fusion, confirming the necessity of adaptively controlling information
flow from the memory. Disabling the L2 Memory, Inference Retrieval, and Attention Ranking also
significantly impairs performance, validating the respective benefits of a large knowledge reservoir,
query-specific context, and intelligent memory management.

Table 4: DynMem Component Ablation Study.

Method
Continual Simultaneous

Structured Mixed Single-task Multi-task

Acc BWT FWT Acc BWT FWT Com.S. Math Com.S.

Llama-3-8B
DynMem 41.2 -12.3 5.6 57.2 -13.4 7.6 86.8 59.6 86.4
w/o L2 Memory 36.1 -18.9 4.1 52.0 -18.5 6.2 84.5 57.1 84.1
w/o Inference Retrieval 37.8 -17.2 4.9 53.8 -16.9 6.8 85.0 57.9 84.9
w/o Gated Fusion 13.5 -45.4 1.0 24.6 -35.1 2.2 56.2 32.7 43.5
w/o Attention Curation 33.4 -21.5 3.5 48.5 -22.1 5.4 82.3 54.2 81.9

Qwen-3-8B
DynMem 43.9 -10.3 7.1 60.1 -11.9 8.0 90.2 65.6 89.3
w/o L2 Memory 38.2 -16.5 5.5 54.7 -17.3 6.5 87.9 62.8 86.8
w/o Inference Retrieval 40.1 -14.9 6.1 56.2 -15.6 7.2 88.5 63.5 87.7
w/o Gated Fusion 16.0 -41.8 2.0 19.1 -38.6 2.1 61.6 37.0 48.7
w/o Attention Curation 35.5 -19.8 4.6 50.8 -20.5 5.9 85.1 60.1 84.4

To assess DynMem’s scalability, we vary the L1 and L2 memory capacities and find that performance
monotonically increases with the memory budget across all Continual, Single-task, and Multi-task
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settings (Figure 3). This scalability is a direct result of our architecture: a larger L2 memory provides
a more comprehensive reservoir for inference-time retrieval, while a larger L1 memory offers a
richer context for training-time interaction and curation. This confirms that DynMem effectively
capitalizes on available resources, offering a clear and predictable trade-off between performance
and memory overhead, making it viable for a wide range of computational budgets.
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Figure 3: Performance analysis of DynMem on Llama-3-8B as a function of L1 and L2 memory
sizes. The plots show final accuracy for Continual (Structured Stream), Single-task Tuning (Com-
monsense Avg.), and Multi-task Tuning (Commonsense Avg.). Performance consistently increases
with larger memory capacities across all three paradigms, demonstrating excellent scalability.

5 RELATED WORK

Task Adaptation of Language Models. The dominant paradigm for adapting large language mod-
els is Parameter-Efficient Fine-Tuning (PEFT). The seminal LoRA method (Hu et al., 2022) and its
successors (Zhang et al., 2023; Liu et al., 2024) drastically reduce computational costs by fine-tuning
a small set of auxiliary parameters while keeping the backbone model frozen. While highly effec-
tive for single-task (Li et al., 2024) or static multi-task (Lin et al., 2024; Wu et al., 2024; Mu et al.,
2025) scenarios, these methods are not inherently suited for continual learning. The primary chal-
lenge is that they sequentially either overwrite the adapter weights, causing catastrophic forgetting,
or require storing an ever-growing set of per-task modules, which introduces significant parameter
overhead (Zhu et al., 2022; Chen et al., 2023). We design a new dynamic memory module that is not
only parameter-efficient but also effective in both continual and simultaneous adaptation scenarios.

Memory-augmented Models. Classified by Yang et al. (2024), popular memory-augmented model
architectures include: a) Retrieval-augmented methods (Wu et al., 2022b), which extend the effective
context length by caching and retrieving past hidden states, enabling models to handle sequences be-
yond their native context window; b) Memory-augmented transformers like Memformer (Wu et al.,
2022a; Kang et al., 2025) introduce structured memory slots directly into the self-attention mech-
anism, improving long-range sequence modeling; c) Parameter-as-memory approaches reinterpret
model weights as implicit knowledge storage, recent works (Mitchell et al., 2022; Wang et al., 2024)
manipulate or reorganize these knowledge neurons to update factual content at scale. Inspired by
these methods, we design a novel bi-level dynamic memory to effectively maintain long-term infor-
mation for positive knowledge sharing across tasks learned either simultaneously or sequentially.

6 CONCLUSION

In this work, we address a critical gap in the adaptivity of pre-trained LLMs by introducing Dyn-
Mem, a unified memory-augmented method that supports both continual and simultaneous learning.
The core part of our method is a bi-level dynamic memory system based on attention-based retrieval
and pruning. DynMem enables efficient, example-level knowledge retention and dynamic integra-
tion without modifying the backbone LLM. Our design not only mitigates catastrophic forgetting in
sequential adaptation but also enhances generalization in multi-task settings, all while maintaining a
compact memory footprint. Extensive experiments across various benchmarks show that DynMem
consistently outperforms baselines, establishing a new state-of-the-art for versatile LLM adaptation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Yongrui Chen, Shenyu Zhang, Guilin Qi, and Xinnan Guo. Parameterizing context: Unleashing
the power of parameter-efficient fine-tuning and in-context tuning for continual table semantic
parsing. Advances in neural information processing systems, 36:17795–17810, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su. Beyond iid:
three levels of generalization for question answering on knowledge bases. In Proceedings of the
web conference 2021, pp. 3477–3488, 2021.

Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
Continual relation learning via episodic memory activation and reconsolidation. In Proceedings
of the 58th annual meeting of the association for computational linguistics, pp. 6429–6440, 2020.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Jikun Kang, Wenqi Wu, Filippos Christianos, Alex J Chan, Fraser Greenlee, George Thomas, Mar-
vin Purtorab, and Andy Toulis. Lm2: Large memory models. arXiv preprint arXiv:2502.06049,
2025.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045–3059, 2021.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhengmao Ye, Zhiyuan Cheng, Yinghao Tang, Yan
Zhang, Lei Duan, Jie Zuo, Cal Yang, et al. Mixlora: Enhancing large language models fine-
tuning with lora-based mixture of experts. arXiv preprint arXiv:2404.15159, 2024.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit Gupta, Sonal Gupta, and Yashar Mehdad. Mtop:
A comprehensive multilingual task-oriented semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pp. 2950–2962, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Cheng Lin, Lujun Li, Dezhi Li, Jie Zou, Wei Xue, and Yike Guo. Nora: Nested low-rank adaptation
for efficient fine-tuning large models. arXiv preprint arXiv:2408.10280, 2024.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
based model editing at scale. In International Conference on Machine Learning, pp. 15817–
15831. PMLR, 2022.

Lin Mu, Xiaoyu Wang, Li Ni, Yang Li, Zhize Wu, Peiquan Jin, and Yiwen Zhang. Denselora: Dense
low-rank adaptation of large language models. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics, pp. 10198–10211, 2025.

Clifton Poth, Hannah Sterz, Indraneil Paul, Sukannya Purkayastha, Leon Engländer, Timo Imhof,
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A THE USE OF LARGE LANGUAGE MODELS

Large language models were used as writing assistants to aid or polish the text in this manuscript.
Their functions were limited to improving clarity, grammar, and professional tone. All scientific
contributions, including the core methodology, experimental design, and conclusions, are the origi-
nal work of the authors, who retain full responsibility for the paper’s content.

B PARAMETER CALCULATION DETAILS

This section provides a detailed breakdown of how the trainable parameter percentages reported
in our main results (e.g., Table 2) are calculated. The percentage reflects the ratio of trainable
parameters to the total number of parameters in the frozen backbone model.

Let Ptrainable be the number of parameters that are updated during fine-tuning, and let Ptotal be the
total number of parameters in the backbone model (e.g., Llama-3-8B). The reported percentage is
calculated as:

Param (%) =
(
Ptrainable

Ptotal

)
× 100 (3)

The composition of Ptrainable differs between the baseline methods and our proposed ARMA frame-
work.

PEFT Baselines (e.g., LoRA, DoRA). For methods such as LoRA and its variants, Ptrainable ex-
clusively comprises the parameters of the injected low-rank adaptation matrices and any other small,
method-specific modules (e.g., the magnitude vectors in DoRA). The vast majority of the original
model weights remain frozen. We set lora rank = 16, lora alpha = 32 for these baselines.

DynMem. For our ARMA framework, Ptrainable consists of the parameters from our lightweight,
newly introduced memory interaction modules, which are trained jointly with the backbone model.
Specifically, these include:

• The cross-attention projection matrices: WQ,WK ,WV ∈ Rd×d.

• The gated fusion layer parameters: Wg ∈ Rd×d and bg ∈ Rd.

In our implementation, both the backbone model fθ and these interaction modules are fine-tuned.
However, as the results demonstrate, the total number of trainable parameters in ARMA’s modules
is significantly smaller than that of many PEFT baselines, highlighting its parameter efficiency. For
DynMem, we use lora rank = 8, lora alpha = 16 to achieve a more efficient training.

C TASK ORDERS OF CONTINUAL ADAPTATION

To ensure the robustness of our findings in the asynchronous adaptation setting and to mitigate any
potential bias resulting from a single, arbitrary task sequence, we conducted all continual learning
experiments across three different permutations for both the STRUCTURED STREAM and the MIXED
STREAM. The final results reported in the main paper represent the mean and standard deviation
across these three runs. The specific task orders for each stream are detailed below.

C.1 STRUCTURED STREAM

This stream consists of four structured knowledge reasoning datasets. The three specific task orders
used in our experiments are as follows:

• Order 1: GrailQA → MTOP → Spider → ComplexWebQuestions

• Order 2: ComplexWebQuestions → Spider → MTOP → GrailQA

• Order 3: MTOP → GrailQA → ComplexWebQuestions → Spider
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C.2 MIXED STREAM

This stream interleaves the four structured datasets with four commonsense reasoning datasets to
introduce more significant domain shifts. The three specific task orders used are as follows:

• Order 1: GrailQA → BoolQ → MTOP → PIQA → Spider → ARC-e → ComplexWe-
bQuestions → WinoGrande

• Order 2: ComplexWebQuestions → WinoGrande → Spider → ARC-e → MTOP → PIQA
→ GrailQA → BoolQ

• Order 3: MTOP → PIQA → GrailQA → BoolQ → ComplexWebQuestions → Wino-
Grande → Spider → ARC-e
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