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ABSTRACT

Simple and expressive in representing multi-relational events, temporal knowl-
edge graphs (TKGs) have attracted increasing research interest. While tempo-
ral associations (TAs) reveal cause-effect relationships between event pairs across
time, to the best of our knowledge, no previous work has paid attention to ex-
ploring such basic but meaningful regularities on TKGs. Despite the importance,
temporal association mining (TAM) is prohibitively challenging due to its enor-
mous time complexity. Inspired by Noether’s theorem in theoretical physics, we
develop Noether Embeddings (NE), an embedding model of structured events that
naturally encodes the time translation symmetry of TAs, and can efficiently de-
code conserved quantities to query TAs. Using NE, a three-stage TAM framework
is developed, respectively of the encoding, decoding, and selecting stages. The
major time complexity of TAM is therefore rearranged into the encoding stage,
where the training time of NE can be ignored as long as it is shorter than the
update period of the event stream. We successfully mined TAs both with seman-
tic interpretability and statistical reliability. Experiments show that our method
achieves an 11.0 times speedup over an optimized search algorithm for TAM on
ICEWS14 dataset.

1 INTRODUCTION

Temporal knowledge graph (TKG), introducing the dimension of time into traditional knowledge
graphs (KGs), is an emerging and promising field that has received much attention in recent
years (Garcı́a-Durán et al., 2018). Composed of (s, p, o, t) quadruples (Leblay & Chekol, 2018)
, where s, p, o, t indicates subject, predicate, object, and time, respectively, (Bob, visit, KFC, 2019-
10-10), TKGs naturally contain scales of information over multi-relational events such as global
political events (Trivedi et al., 2017), financial incidents (Yang et al., 2019), and user-item behav-
iors (Xiao et al., 2020), which are well represented in the form of KGs that incorporate abundant
semantic information into sparse graph representations.

Efforts have been made to discover a variety of patterns over TKGs for different purposes. In
particular, horn rules with temporal constraints and subgraphs connecting entities constitute the two
main structures of the explored patterns for interpreting link forecasts (Liu et al., 2022), reasoning
over events (Omran et al., 2019), etc. However, none of them found regularities invariant to time
shifts. Patterns have been captured in embedding models constructed for TKGs in recent years
(Cai et al., 2022). Specifically, inference patterns such as symmetry, inversion, and composition
are implicitly represented in models of TeRo (Xu et al., 2020a), 3DRTE (Wang et al., 2020), TBox
(Messner et al., 2022), etc. However, to the best of our knowledge, none of these embedding models
can explicitly decode the patterns they encode.

Noticing the temporally associated nature of major events that repeatedly occur (Zhao, 2021), and
awaring that cause-effect pairs are common in social incidents (Radinsky et al., 2012; Lei et al.,
2019), we propose a new problem of temporal association mining (TAM) on TKGs. For instance,
State A may reduce diplomatic relations with State B in two days whenever State B declares war
on State A. Information on entities, predicates, and relative time jointly determines the underlying
causal relationship between the event pairs in the above example, implying the existence of massive
similar but unknown temporal associations (TAs) in TKGs. TAM on TKGs can greatly expand
human understanding of regularities in critical social events (Enthusiasts & Cartledge). In addition,
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TAM also has great potential to aid downstream applications such as TKG completion (Garcı́a-
Durán et al., 2018) and event prediction (Ramakrishnan et al., 2014).

The fact that events in TKGs are dynamically-evolving (Jin et al., 2019; Trivedi et al., 2017) leads
to a strong demand for efficient TAMs. Continuously generating events in TKGs, the social system
behind is in general chaotic (Cherichi & Larodec, 2016), where event regularities emerge and break
(Abul-Magd & Simbel, 2004). Therefore, TAs change occasionally. In addition, new types of events
may emerge at any time, and the distribution of event occurrences is also highly heterogeneous
(Mirtaheri et al., 2020). Such properties of TKGs jointly call for an efficient TAM towards its
practical use in potential stream processing scenarios (Wrench et al., 2016). A prerequisite for
TAM, is a more efficient implementation of temporal association querying (TAQ).

Despite the importance, performing efficient TAM on TKGs is prohibitively challenging. Primarily,
the O(N) time complexity and the large data volume of TKGs jointly result in computing difficul-
ties. Taking GDELT as an example, a Google-made social sensor monitors the whole world and
updates thousands of global events every 15 minutes (Leetaru & Schrodt, 2013). Larger TKGs are
being constructed in our fast-growing big data era. It is far from satisfactory if we have to compute
by a time complexity linear to the number of relevant events of a potential TA for efficient TAQ on
such TKGs. Besides, the heterogeneous characteristics of semantic space and time in (s, p, o, t)
quadruples demand a unified processing framework.

Inspired by Noether’s theorem, we develop a highly effective and computing-efficient mining frame-
work based on a decodable embedding model to overcome these problems. Symmetry governs reg-
ularities in nature (Tanaka & Kunin, 2021), long before Noether proved the equivalence between
symmetries and conservation laws in a physical system (Noether, 1918). By constructing Noether
Embeddings (NE) whose decoding functions correspond to TAs, local symmetries are discovered
by searching conserved quantities. Our embedding space allows the encoding process to convert the
query time complexity into the storage space complexity of complex vectors. We thus reduce the
time complexity in TAQ of O(N) to a minor constant of O(TrD), where N refers to the number
of relevant events of each queried TA, Tr refers to the queried range of relative time points and D
refers to the dimension of vectors, and therefore significantly accelerate TAM.

Our main contributions are listed as follows:

1. (Methodological) (1) We develop an embedding model NE of structured events that naturally
encodes the time translation symmetry of TAs, and can efficiently decode conserved quantities to
query TAs. (2) We develop a TAM framework that supports efficient query of an approximate
probability distribution of the relative time points within an arbitrary queried range of a potential
TA. It rearranges the major time complexity of TAM into the encoding stage, where the training
time of NE can be ignored as long as it is shorter than the update period of the event stream. (3)
We develop a heuristic construction procedure, where axiomatized physical systems that satisfy
Noether’s theorem can aid the discovery of regularities with general symmetries.

2. (Empirical) (1) We formally propose the problem of TAQ and TAM on TKGs and formulate
related evaluation metrics. (2) Experiments reveal a significant speed advantage of our TAQ and
TAM approach on both synthesized and real-world TKG data, compared to an optimized search
algorithm. (3) We demonstrate the practical potential and advantage of our approach in stream
processing scenarios. (4) We mine TAs both with semantic interpretability and statistical reliability.

3. (Theoretical) (1) We theoretically prove that our embedding model enforces convergence to
a conserved quantity of decoding results implying time translation symmetries within associated
event pairs. (2) We demonstrate that TKGs in our representation space are isomorphic to a physical
system with action, which enables us to apply Noether’s theorem in theoretical physics.

2 PROBLEM FORMULATION

Here we formally present the problem of TAQ and TAM on TKGs after clarifying some key concepts
and formulating relevant evaluation metrics.
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2.1 CONCEPTS

Event Type For a TKG composed of (s, p, o, t) quadruples, we regard events with the same (s, p, o)
triples as belonging to the same event type ev : s, p, o. For example, (Bob, visit, KFC, 2019-10-10)
and (Bob, visit, KFC, 2020-11-12) both pertain to the event type of (Bob, visit, KFC).

TA TAs refer to associations invariant to time shifts. We define forward and reverse TAs as below:

(s, pc, o, t) → (s, pe, o, t+△) ∀t ∈ Ta (1)

(s, pc, o, t) → (o, pe, s, t+△) ∀t ∈ Ta (2)

In both formulas, pc, pe, s, o, t, t+△ refer to the predicate of cause, the predicate of effect, subject,
object, the time when the cause occurs, and the time when the effect occurs. Ta refers to the complete
collection of absolute time points and △ = △(η) = [τ(1− η), τ(1 + η)] denotes any time interval
whose width is proportional to its mean τ with ratio η .

For example, a TA could be: Whenever State A declares war against State B, State B will reduce
diplomatic relations with State A in three to five days, where τ = 4, η = 0.25,△ = [3, 5].

Evaluation Metrics We consider only TAs whose △ has the same η . For a TA ta, if a quadruple
q : (s, p, o, t) satisfies the body (indicating cause) of it, we denote it as b(q; ta); if a quadruple
satisfies the head (indicating effect) of it, we denotes it as h(q; ta) . We define its support as:

sp(ta; η) = n(b(q; ta) ∧ h(q′; ta) ∧ (t′ − t) ∈ △(η)) (3)

Support denotes the number of quadruple pairs respectively satisfying body and head of the TA.

We respectively define the standard confidence, head coverage, and general confidence of a TA as:

sc(ta; η) =
sp(ta; η)

n(b(ta))
, hc(ta; η) =

sp(ta; η)

n(h(ta))
, gc(ta; η) =

2
1

sc(ta;η) +
1

hc(ta;η)

(4)

where n(b(ta)) and n(h(ta)) respectively represent the number of events whose event type corre-
sponds to the body and head of the TA.

Note that when calculating sp(ta; η) , we can only count one quadruple once and in one pair to avoid
overcounting in the case of events occurring in consecutive periods.

TAs could then be evaluated not only by 0/1 judgement, but also continuously with gc from 0 to 1.

2.2 TASKS

Definition of TAQ We define TAQ as the problem of determining whether a TA holds given
(s, o, pc, pe) and η, and giving the correct center point τ of △(η) so that the TA holds if possi-
ble. For a query (s, o, pc, pe) given the setting parameter η: if the query is not a TA then an answer
of −1 is expected; else, a correct τ needs to be selected, that falls into the ground truth △(η). We
calculate the total accuracy over all queries as an overall metric in the TAQ task.

Definition of TAM We define TAM as the problem of discovering TAs as fast and as many as
possible given a lower bound gcl of the gc and support spl of each discovered TA.

3 INSPIRATIONS FROM NOETHER’S THEOREM

In 1915, mathematician Emmy Noether proved one of the most fundamental theorems in theoretical
physics: every differentiable symmetry of the action of a physical system with conservative forces
has a corresponding conservation law. Meanwhile, any meaningful information in an axiomatized
physical system can be deductively derived once we construct its action. Here we demonstrate the
derivation process of Noether’s theorem from the action.
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Formal statement A physical system can be fully described by its action S.

S =

∫ t2

t1

L(q(t), q̇(t), t)dt (5)

In the above equation, q and q̇(t) represent generalized coordinates and velocities. L represents
the Lagrangian, generally referring to the difference between kinetic and potential energy (L =
T −V ). The stationary points of action functional determine the evolution of the whole system. For
a physical system with conservative forces, Euler-Lagrange Equation describes such evolution:

d

dt

∂L

∂q̇i
=

∂L

∂qi
, i = 1, 2, ..., n (6)

Symmetry denotes that S remains the same under certain infinitesimal transformation with ϵ → 0:

t → t′ = t+ δt = t+ ϵX(q, t), q(t) → q′(t) = q(t) + δq(t) = q(t) + ϵΨ(q, t) (7)

Here ϵX(q, t) and ϵΨ(q, t) respectively denote a first-order approximation of δt and δq(t). By
calculating S[q′(t′)] = S[q(t)] and Euler-Lagrange Equation, we derive the conserved quantity Λ:

Λ =
∂L

∂q̇
·Ψ(q, t) + (L− ∂L

∂q̇
· q̇)X(q, t) (8)

Motivation If we regard the cause and effect event types over the relative time of a TA as a
mapping across time: (s, pc, o) → (s, pe, o), t → t + τ : ∀t ∈ Ta, then TAs indicate invariance
of such mappings under the transformation of time translation, which implies local symmetries.

We aim to construct an embedding model that naturally encodes the time translation symmetry of
TAs, and a corresponding decoding function g(τ) that only requires traversing through a fixed range
of relative time points τ ∈ Tr to query each TA.

However, such construction is without a guide, and therefore hard. Here we demonstrate how this
can be aided by repeating the derivation process of Noether’s theorem shown above.

Heuristic Construction Five stages are needed as below. Note that such a procedure is not limited
to aid discovering TAs, but can be extended to aid in exploring regularities of general symmetries.

(1) Construction of action S. Denote q(t; s, p, o) as the event embeddings of a TKG quadruple.
Noticing the symmetry conveyed by a TA with relative time τ , we can analogize the embeddings
of a potential cause and effect event pair in a TA to a zero-mass two-particle system connected by
a spring. It is a physical system with conservative forces that satisfies the constraints of applying
Noether’s theorem. Therefore, the Lagrangian of them is L = −||qc(t) − qe(t + τ)||2, where the
generalized coordinates q(t) = (qc(t), qe(t + τ)), and generalized velocities q̇(t) = 0. The action
of event samples of a TA is therefore S =

∑
t∈Ta

L, where Ta is the set of absolute time points.

(2) Applying Euler-Lagrange Equation. Since q̇(t) = 0, then ∂L
∂q̇i

= 0, i = 1, 2, ..., n. Therefore,
we can derive ∂L

∂qi
= d

dt
∂L
∂q̇i

= 0, i = 1, 2, ..., n.

(3) Applying transformation of symmetry. Since the action remains the same under the transforma-
tion of time translation, we can derive ∂L

∂t = 0.

(4) Combining conclusions from (2) and (3). Considering ∂L
∂qi

= 0, i = 1, 2, ..., n, ∂L
∂t = 0, and that

L = −||qc(t)− qe(t+ τ)||2 is a quadratic function, we can derive that qc(t) = qe(t+ τ), and that
the conserved quantity is L, which is a constant of zero.

(5) Getting inspirations. First, we can map the event embeddings q(t; s, p, o) of positive and negative
samples to two different constants. In this way, qc(t) = qe(t + τ) is satisfied because all sample
pairs of the same relative time τ , be them both positive or both negative samples, are mapped to the
same constant. qc(t) ̸= qe(t+ (κ)) is also satisfied because the positive and the negative sample in
pairs of relative time κ ̸= τ are mapped to two different constants. Second, we can set the decoding
function as g(τ) = ||qc(t)−qe(t+ τ)|| to separate τs within a queried range of relative time points,
which maps τs implying symmetries to a conserved quantity of g(τ) = 0.
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Figure 1: Illustration of our three-stage TAM framework. Solid lines and purple graphs in the middle
jointly represent the data flow of the mining framework. In contrast, the two blue graphs above solid
lines and the two red ones below demonstrate cases respectively of a TA with significant temporal
associations and a TA with not.

4 NOETHER EMBEDDINGS

General Framework As illustrated in Figure 1, structured events are converted to NE of dis-
tributed complex vectors for storage at the encoding stage, either in batches or streams. At the
decoding stage, TAQ is conducted by directly calculating the relevant vectors of each TA to derive
the decoding results of each TA query. At the selecting stage, the extreme value of each decoding
result is compared with a global threshold to select TAs with high approximate gcs.

4.1 DETAILED DESCRIPTIONS

Two technical concerns are central to constructing NE.

(1) The decoding function g(τ) = ||qc(t)− qe(t+ τ)|| needs to be irrelevant to t (∀t ∈ Ta). Only
in this way can each TAQ be conducted in a time complexity of a minor constant. Only in this way
can NE naturally embeds the time translation symmetry within potential TAs.

(2) The event embeddings q(t; s, p, o) of an event type is required to fit various functions of absolute
time: with fixed s,p,o and changing t, embeddings of positive and negative samples are mapped to
different constants, and an event type may occur at arbitrary and multiple time points.

Encoding We then construct the event embeddings of NE as below:
q(t; ev) = u(ev) ◦ r(t) where u(ev : s, p, o) = s ◦ p ◦ o (9)

◦ denotes the Hadmard (or element-wise) product; s,p,o, r(t) are complex vectors where
s,p,o, r(t) ∈ Cd , r(t) = eiωt, ω ∈ Rd, and d is the dimension of vectors; both subjects and
objects share the same set of entity embeddings e ∈ Cd, while s = e and o = e. u(ev) is listed
individually to show that we can extend NE to structured events of general forms. For example,
u(ev : s, p) = s ◦ p for (s,p,t) triples. The score and loss functions of NE are defined as follows:

f(t; ev, C) = |
d∑

i=1

Re(q(t; ev))− C| (10)

L(ξ;Cp, Cn) = f(ξ;Cp)
2 +

1

N

∑
f(ξ′;Cn)

2 (11)

ξ denotes a positive sample, while ξ′ denotes its corresponding negative samples, whose number is
N . For a positive sample (s, p, o, t) , its negative samples are the whole set of {(s, p, o, t′ ̸= t)}. We
set C = Cp and C = Cn respectively for positive and negative samples, where Cp ̸= Cn are two
different constants.
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Decoding Since r(t+ τ) = r(t) ◦ r(τ), r(t) ◦ r(t) = 1, we derive the decoding function as:

g(τ) = ||uc − ue ◦ r(τ)|| where g(τ) = ∥ (pc − pe ◦ r(τ)) ◦ s ◦ o ∥ for TAs (12)

We can see from above that g(τ) can be extended to query general forms of one-to-one temporal
associations other than the defined TAs, with the same trained embedding model of NE.

τ is traversed through set Tr : {0, 1, 2, ..., τmax} to plot the original decoding results. The time
complexity of each TAQ is then O(TrD) by calculating g(τ) for each TA query. We additionally
calculate a converting function p(τ) = exp[−g(τ)]∑

Tr exp[−g(τ ′)] to form an approximate probability distribu-

tion of relative time points for actual decoding use and compute max
τ∈Tr

p(τ).

Selecting After obtaining max
τ∈Tr

p(τ), we compare it with a global threshold pth to decide whether

a (s, o, pe, pc) query corresponds to a TA. If max
τ∈Tr

p(τ) > pth, then a TA is justified as exists and τ

is selected that maximizes p(τ). All potential TAs are queried one by one in this process, which can
be regarded as an approximate gc based filtering, but without the need to search through the whole
event set to find relevant event pairs and calculate the exact gc.

Data
Active : (s, pactive, o, t) ⇐⇒ Passive : (o, ppassive, s, t) (13)

Since a predicate can be illustrated in either active or passive voice as above, with doubled training
quadruples, the decoding function can be calculated to discover both forward and reverse TAs.

4.2 WHY NE WORKS

Notations Within all event embeddings trained for a potential TA, suppose that m event pairs
share the same relative time of τ , where m1 pairs are both positive or negative samples. In each
remaining m2 = m − m1 pair, one is a positive sample while the other is a negative one. De-
note that M = {1, 2, ...,m},M1 = {i1, i2, ..., im1

},M2 = {j1, j2, ..., jm2
}. There exists such

least upper bound η that f(t; ev) < η for the score function of all 2m samples. Denote that
ai = (cos(ω1ti), cos(ω2ti), ..., cos(ωdti), sin(ω1ti), sin(ω2ti), ..., sin(ωdti))

T , i ∈ M, where
d is the dimension of NE vectors, ti is time of the ith cause event in m sample pairs. Denote
that in the decoding function, uc − ue ◦ r(τ) = α − iβ where α,β are both real vectors, and
x = (α1,α2, ...,αd,β1,β2, ...,βd)

T . Denote that c1 = max
i∈M1

|cos(ai,x)|, c2 = min
i∈M2

|cos(ai,x)|.

Theorem 1 Within the m1 sample pairs, if c1 > 0, then g(τ) < 2η√
dc1

.

Theorem 2 Within the m2 sample pairs, if c2 > 0 and |Cp −Cn| > 2η, then g(τ) >
|Cp−Cn|−2η√

dc2
.

For quantities above, we can directly control η in the training process; Cp and Cn are artificially set
constants. c2 > 0 is strictly ensured and c1 > 0 is ensured in most situations, which are shown in
Appendix A

Implications Two conclusions are drawn from the theorems. (1) Convergence. We can see from
theorem 1 that g(τ) → 0 as η → 0. (2) Competition. Comparing these two theorems also tells us
about the competing effect of well-trained sample pairs for the value of g(τ), generally affected by
the ratio m1

m2
.

Since g(τ) = ||uc − ue ◦ r(τ)|| = ||uc ◦ r(t) − ue ◦ r(t + τ)|| = ||qc(t) − qe(t + τ)|| for any t,
we can see that relevant sample pairs across time (‘for any t’) are therefore automatically ‘gathered’
and ‘averaged’ when learning each event embeddings to form the same g(τ). This is due to the
time translation symmetry introduced by r(t). These effects separate g(τ), τ ∈ Tr to form a cross-
correlation-like function. We show the formal proof and further descriptions in Appendix A.
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5 EXPERIMENT

We evaluate NE on two formulated tasks: TAQ and TAM. Baselines in TAQ are: Random Guess,
an optimized search algorithm (Algorithm 1) and four classic embedding methods including DE-
SimplE (Goel et al., 2020), TeRo (Xu et al., 2020a), ATiSE (Xu et al., 2020b) and TNTCom-
plex (Lacroix et al., 2020). Note that baseline embedding models are modified explicitly for ex-
perimental adaptations (details in Appendix B.3). Since baseline embedding models are found in-
capable in TAQ, we compare NE with only Search in TAM evaluation. Notably, the speedup ratio
is calculated based on running time without regard to training. We demonstrate that the potential
application of NE in practice use is TAQ and TAM in stream processing scenarios where the training
time of NE can be ignored as long as it is shorter than the update period of the event stream. Detailed
information on datasets, task settings and method implementation is presented in Appendix B.

5.1 RESULTS ON TAQ

Query accuracy Figure 2 shows the query accuracy of NE and other baselines on two real-world
datasets added with synthesized samples for TA queries. Within all the TAs queried, 50% has the
ground truth of 1 (the other 50% 0), where the η in △(η) is set as 0.1. NE achieves query accuracy of
0.812, 0.845, 0.837, 0.806, 0.786 and 0.788 with a different number of event pairs relevant to queried
TAs on ICEWS18, and obtains the highest accuracy on ICEWS14, close to 1.0 by Search. On the
contrary, other embedding models only achieve query accuracy of around 0.5, similar to Random
Guess. These results imply that NE conducts accurate TAQs with high resolution of relative time,
while traditional embedding models do not.

(a) Results on ICEWS14 (b) Results on ICEWS18

Figure 2: Comparisons of query accuracy over two datasets

Query speedup NE shows significant speed superiority over Search as presented in Table 1. NE
(running on a CPU) is 14.1 times faster than Search in querying a synthesized TA of 50 event pairs on
the mixed ICEWS18 dataset. We additionally conducted experiments because vectors compose our
decoding functions, and vector computation is naturally implemented on a gpu. Since the running
time of Search grows linearly with the scale of related event pair numbers, while that of NE remains
a constant, our method holds potential for even larger datasets.

Table 1: NE’s query speedup to Search

Speedup Ratio on ICEWS14 Speedup Ratio on ICEWS18
Number of Event Pairs 5 10 20 30 50 5 10 20 30 50

NE (CPU) / Search (CPU) 3.47 4.78 6.37 8.69 13.3 5.99 7.71 9.17 11.2 14.1
NE (GPU) / Search (CPU) 182 237 301 445 590 277 327 423 523 678

Decoding results In Figure 3, we illustrate g(τ) (defined by Equation 12) and p(τ) (defined in
Section 2.1) calculated by NE, from two cases indicating queries with high and low gc respectively.
The results indicate that NE can enforce strict convergence and also tell apart TAs with high and low
gcs (defined by Equation 4) via comparing maximums of probability curves.
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(a) Decoding results by NE (b) Probability curve by NE

Figure 3: Decoding comparisons of TAs with high and low gc respectively

5.2 RESULTS ON TAM

Statistics Table 4 respectively presents the performance of NE for TAM on ICEWS14, ICEWS18,
and GDELT datasets. It is shown that NE can mine an appreciable number of TAs with high confi-
dence (gc ≥ 0.7) and moderate reliability (sp ≥ 2) on real-world data. Furthermore, NE achieves
high speedup ratios of 11.0, 7.50, and 9.75 over the optimized search algorithm with the same num-
ber of TAs mined on ICEWS14, ICEWS18, and GDELT datasets. Note that we implement Search
on a cpu; the encoding and decoding stage of NE is implemented on a gpu; the selecting stage is
on a cpu, the same as Search. At the selecting stage of NE, we additionally add a time-costly filter
of gc after the filter of pth, because the convergence of NE is not guaranteed due to imbalanced
reduction of training loss (averaged around L = 40) on large real-world datasets. This implies that
the speedup has the potential to be further increased.

Table 2: NE’s speedup ratio over Search when reporting the same number of mined TAs.

ICEWS14 ICEWS18 GDELT
Number Speedup Number Speedup Number Speedup

NE / Search 479 11.0 1203 7.50 24316 9.75

Results in online settings In Table 3, we show the training time of NE and the number of mined
TAs. The update period is 24h which is essentially larger than the training time of 2.2, 2.9, 5.4,
and 6.8 seconds over one batch. Moreover, cases of mined TAs with τ > wbatch are shown in
Appendix B.2.3. Therefore, we demonstrate that NE has significant potential for speed and the
temporal scope of results in online TAM.

Table 3: TAM results on ICEWS14 under online settings

Temporal Width of One Batch wbatch 10 20 50 100
Number of TAs mined 153 171 205 278

Training Time of One Batch(s) 2.2 2.9 5.4 6.8

Case study The examples of mined TAs in ICEWS18 are demonstrated. (1) Whenever Donald
Trump discusses by telephone with China (day 16 and 86 in 2018), then in around 24 days, he will
consider policy options to China (day 43 and 109 in 2018). (2) Syria will provide military protection
or peacekeeping to Turkey (day 26 and 33 in 2018) back in around two days whenever Syria fights
with artillery and tanks against Turkey (day 23, 30 and 31 in 2018). It is shown that the mined TAs
accord with commonsense and is reliable statistically. More examples (including generalized TAs
mined by NE) are listed in Appendix C.
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6 RELATED WORK

Embedding models Complex vectors have shown great potential in embedding models. Ro-
tatE (Sun et al., 2019) represents each entity and relationship as a complex vector, and defines
the score function as f(s, p, o) = ||s ◦ p − o|| . It is designed to model and infer various re-
lation patterns, including symmetry, antisymmetry, inversion, composition on static knowledge
graphs. TeRo (Xu et al., 2020a) represents time as rotation of entities in the complex vector space:
st = s ◦ eiωt,ot = o ◦ eiωt , and defines the score function as f(s, p, o, t) = ||st + p − ot|| .
It can learn and infer various time relationship patterns on temporal knowledge graphs. However,
both methods do not encode the time translation symmetry of TAs, and can not query TAs without
traversing the absolute time set. In addition to directly for link prediction tasks, embedding models
are also used to decode rules. IterE (Zhang et al., 2019) , for instance, was proposed based on the
observation that embeddings learned with linear map assumption can fully support rule learning in
static knowledge graphs. It represents each entity as a real vector, each relationship as a real matrix,
and the score function as f(s, p, o) = ||sP − o|| . It can learn rules like p1(s, o) → p2(o, s),∀s, o
in static knowledge graphs. However, this model can only decode commonsense rules in static
knowledge graphs. In contrast, ours can decode unknown TAs, and can be extended for decoding
generalized temporal associations of various structured events.

Temporal association mining Various methods in different fields mine temporal associations.
Namaki et al. developed an effective search algorithm to discover graph temporal association rules
in real-world event networks (Namaki et al., 2017). Chen et al. developed a hierarchical temporal as-
sociation mining approach for video event detection in video databases(Chen et al., 2007). Yoo and
Shekhar developed a similarity-profiled algorithm to mine temporal associations in a time-stamped
transaction database (Yoo & Shekhar, 2008). West and Lee described and tested a model for tempo-
ral association learning over spam blacklist data (West & Lee, 2011). Guillame-Bert and Crowley
presented a novel algorithm for extracting temporal interval tree association rules from large datasets
expressed as symbolic time sequences (Guillame-Bert & Crowley, 2012). Li et al. developed an ap-
proach to discover calendar-based temporal association rules in transactional data (Li et al., 2003).
However, none of these works supports an efficient query of an approximate probability distribution
of the relative time points within the arbitrary queried range of a potential TA.

Noether’s theorem empowered AI Noether’theorem has inspired numerous works in artificial in-
telligence. Tanaka and Kunin established a theoretical foundation to discover geometric design prin-
ciples for the learning dynamics of neural networks by generalizing Noether’theorem to Noether’s
Learning Dynamics (Tanaka & Kunin, 2021). Alet et al. provided a general framework for discover-
ing inductive biases in sequential problems by Noether Networks that reduces finding inductive bi-
ases to meta-learning useful conserved quantities (Alet et al., 2021). Mototake proposed a Noether’s
theorem-inspired framework to achieve interpretable conservation law estimation by extracting the
symmetries of dynamics from trained DNNs (Mototake, 2021). Santini and Sanz presented a the-
ory of image matching based on elastic deformation, which allows a unified treatment of invariance
using Noether’s theorem (Santini & Sanz). Despite these efforts, none of these works utilizes the
axiomatized property of a physical system to empower AI.

7 CONCLUSIONS AND FUTURE WORK

We develop Noether Embeddings, an embedding model of structured events that naturally encodes
the time translation symmetry of TAs, and can efficiently decode conserved quantities to query TAs.
A three-stage TAM framework is developed with NE, which rearranges the major time complexity of
TAM into the encoding stage, and has strong potential for online TAM. We also develop a heuristic
embedding construction framework, which aids AI by Noether’s theorem by utilizing a physical
system’s axiomatized property.

Despite the effectiveness of NE, it only supports decoding a 1-1 TA. Since multiple reasons may
cause an event, embedding models are to be constructed that allow decoding of n-1 TAs for better
exploration of event regularities. In addition, since our mining framework has great potential in
stream processing scenarios, further improvements should be made to relieve NE’s training conver-
gence and forgetting problem.
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A THEORETICAL ANALYSIS

A.1 PROOF

Theorem 1 Denote that |cos(ak,x)| = c1 = max
i∈M1

|cos(ai,x)|, where k ∈ M1. Suppose that the

kth pair are both positive samples, we have

f(tk) = |
∑d

i=1 Re(uc ◦ r(tk))i − Cp| < η

f(tk + τ) = |
∑d

i=1 Re(ue ◦ r(tk + τ))i − Cp| < η

By the trigonometric inequality, we can derive

|
∑d

i=1 Re(((uc − ue ◦ r(τ)) ◦ r(tk))i| < 2η

Therefore, we get the result below, the same when the sample pair are both negative samples.

|aT
k x| < 2η

Noticing that |aT
k x| = ||ak||||x|||cos(ak,x)| = ||ak||||x||c1, and ||ai|| =

√
d, c1 > 0 we can

derive

g(τ) = ||x|| < 2η√
dc1

Theorem 2 Denote that |cos(al,x)| = c2 = min
i∈M2

|cos(ai,x)|, where l ∈ M2. Suppose that the

cause event of the lth pair is a positive sample, and the effect event is a negative sample, we have

f(tl) = |
∑d

i=1 Re(uc ◦ r(tl))i − Cp| < η

f(tl + τ) = |
∑d

i=1 Re(ue ◦ r(tl + τ))i − Cn| < η

By the trigonometric inequality, and noticing that |Cp − Cn| > 2η, we can derive

|
∑d

i=1 Re(((uc − ue ◦ r(τ)) ◦ r(tl))i| > |Cp − Cn| − 2η

Therefore, we get the result below, the same when the cause event is a negative sample, and the
effect event is a positive sample.

|aT
l x| > |Cp − Cn| − 2η

Noticing that |aT
l x| = ||al||||x|||cos(al,x)| = ||al||||x||c2, and ||al|| =

√
d,c2 > 0, we can derive

g(τ) = ||x|| > |Cp−Cn|−2η√
dc2
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A.2 CONDITIONS

Denote P (v) as the probability density function of the m values |cos(ai,v)|, i ∈ M for an arbitrary
vector v of dimension 2d. d = 400 as set for all experiments, m ∈ M = 0, 1, , , , , 364 and ω is also
set as a fixed distribution used in all experiments.

KL Divergence Randomly (by angle) sample h=1000 vs from the 2d space, we calculated an
average KL divergence

Dsample =
1
h2

∑
DKL(P (vi)||P (vj)) = 0.088

We can see from this result that P (v) is sparse towards a single distribution for all vs in space.

Max, Mean, Min, Var(standard variance) Randomly (by angle) sample h=1000000 vs from
the 2d space, we plot the distribution of cmin = min

i∈M
|cos(ai,v)|, cmean = mean

i∈M
|cos(ai,v)|,

cmax = max
i∈M

|cos(ai,v)|, cvar = var
i∈M

|cos(ai,v)| as below.

We can see that cmin, cmean, cvar are respectively sharp towards around 0, 0.03, 0, while cmax is
distributed in [0.05, 0.2]. These results also imply that P (v) is sparse towards a single distribution
for all vs in space.

Reasons for c1 > 0, c2 > 0 Here we demonstrate a randomly selected sample of the cumulative
distribution function F (v) for the m values |cos(ai,v)|, i ∈ M, which is similar to F (x) for reasons
above.

Since m1

m > 0.1 in most situations, we can see that c1 = max
i∈M1

|cos(ai,x)| > 0 is therefore satisfied.

Meanwhile, since ||al||||x||c2 > |Cp − Cn| − 2η > 0 is satisfied during the training process (l as
denoted in the proof of theorem 2), and ||al||||x|| < +∞, c2 > 0 is therefore strictly ensured.

(a) Statistics (b) CDF curve

Figure 4: Statistics and CDF via Random sampling

B EXPERIMENTAL DETAILS

B.1 DATASETS

ICEWS (Boschee et al., 2015) and GDELT (Leetaru & Schrodt, 2013) are two popular data sources
in the TKG research community, which provide datasets containing political events with timestamps.
Our experiments use ICEWS from the following two subsets: ICEWS14 and ICEWS18, which
contain events in 2014 and 2018, respectively, the same as in (Han et al., 2020). We use the version
of GDELT released by Jin et al. (2019), which contains events from 2018/1/1 to 2018/1/31.
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B.2 TASK SETTINGS

B.2.1 TAQ

Evaluation Following the formulation stated in Section 2, we set η = 0.1 when performing eval-
uations. For convenience, we force the lengths of ∆(η) to be integers by setting its endpoints as
τ − ⌈τ × η⌉ and τ + ⌈τ × η⌉ (τ is the center point of ∆(η)).

We calculate the overall accuracy of a dataset by averaging the accuracy of all queries. We also
record the query time to examine the efficiency of methods. For Search, we measure the whole
running time since it requires no training procedure. For Noether Emebbedings, we record the time
of processing all queries regardless of the training time beforehand. For a fair comparison, we
report the speedup ratio of NE running on a GPU and a CPU to Search running on the same CPU,
respectively.

Data Generation We generate training data and queries from real-world datasets mixed with syn-
thesized ground truth data. For a selected dataset, all data from its training set is included in our
training set. Then we generate 1000 queries by randomly choosing (s, o, pc, pe) for each query. To
avoid interference between queries, we ensure that each query points to event types that have never
occurred in the real-world dataset. Queries do not overlap on event types to avoid false generations
of relevant events of TAs queried. We set the proportion of positive queries as r = 0.5, the same
as that of the random guess baseline. For queries with positive results, we randomly choose a t out
of all time intervals as the golden answer for the query. Afterwards, we produce n event pairs of n
samples as type of (s, pc, o) and another n samples of (s, pe, o) for each queries (during evaluation
n = 5, 10, 20, 30, 50). For queries (s, o, pc, pe) with positive results, we guarantee that for each
sample of (s, pc, o, t), there exists a sample (s, pe, o, t + τ). For queries with negative results, we
implement samples with no temporal associations through random sampling.

We generate datasets based on ICEWS14, ICEWS18, and GDELT, respectively.

B.2.2 TAM

Evaluation We use the formulation the same as in Section 2.2, in which η = 0.1. We conduct
experiments over ICEWS14, ICEWS18, and GDELT, respectively. We set gcl = 0.7, spl = 2 here.
Only TAs with gc ≥ gcl and sp ≥ spl are considered reliable here. We compare the running time
of NE and the search algorithm when they mine the same number of TAs (gc ≥ gcl, sp ≥ spl).

B.2.3 ONLINE SETTINGS

The difference between online TAM and normal TAM is that the training data is provided in stream-
ing form in online settings. Models only access a batch of data whose timestamps belong to
[t, t + wbatch], and t increases by linterval with every update. It is assumed that the interval time
between two adjacent updates equals linterval in real-world applications.

Evaluation Methods like NE that require training are trained on data whose timestamps belong to
[t, t+wbatch], with t increasing by linterval with every update. Mining is performed after the training
process of NE, while directly for Search. Algorithms can only access the final batch of data when
conducting online TAM in realistic situations. Since TAM with NE still requires an additional filter
by gc for TAM on real-world datasets, we allow the filter by gc to access data batches beforehand
for NE. Note that this relaxation does not change the conclusions demonstrated in the main text,
since the filter of gc can be removed if the imbalanced fitting problem is solved in the future. Other
settings are the same as in normal TAM.

B.3 METHOD IMPLEMENTATION

Search We construct an optimized search algorithm (Algorithm 1) as a baseline. To handle a
query, the algorithm first establishes the dictionary that enables fast indexing event occurrences
from event type (s, p, o). Then our algorithm answers TA queries via traversing all possible center
points of ∆(η) and finding the best gc ever calculated. We calculate gc as fastest as O(N) (N is the
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number of all events related to the query). Moreover, we optimize our algorithm to return results
early if a golden center point is found with gc = 1.

Algorithm 1: The Optimized Search Algorithm

Input: queries = [q(1), q(2), ...] as all queries, q(i) = (s(i), o(i), p
(i)
e , p

(i)
c , type(i))

Output: [res(1), res(2), ...] as results for all queries sequentially.
res(i) ∈ {−1} ∪ {all possible time intervals}. res(i) = −1 means no TA is found,
else means the center of found ∆(η)

Data: A directory triple occur that maps every triple of (s, p, o) to its event occurrence
[(s, p, o, t1), (s, p, o, t2), ...]

Build triple occur while traversing through all events.
for q(i) in queries do

gcmax, res = 0,−1
for res′ in {all possible time intervals} do

occurencec = triple occur[(s(i), p
(i)
c , o(i))]

if type = ”forward” then
occurencee = triple occur[(s(i), p

(i)
e , o(i))]

else
occurencee = triple occur[(o(i), p

(i)
e , s(i))]

Sort occurencec and occurencee by event time
support, head, tail = 0, len(occurencec), len(occurencee)
while occurencec is not empty and occurencee is not empty do

(sc, pc, oc, tc) = occurencec[0]
(se, pe, oe, te) = occurencee[0]
if te − tc ∈ [res′ − η × res′, res′ + η × res′] then

Pop (sc, pc, oc, tc) from occurencec
Pop (se, pe, oe, te) from occurencee
support+ = 1

else if te − tc < res′ − η × res′ then
Pop (se, pe, oe, te) from occurencee

else if te − tc > res′ + η × res′ then
Pop (sc, pc, oc, tc) from occurencec

Calculate gc using support, head and tail.
If gc > gcmax gc = gcmax

res = res′

if gc = 1 then
Break; // Find best answer, break directly.

Store res as the i-th query’s answer
Return [res(1), res(2), ...]

Embedding Methods In contrast to NE that encodes every timestamp with one complex vector as
a basis for complex Fourier expansions and gives g(τ) with all τ ∈ Tr for each query (s, o, pc, pe),
baseline embedding models (TNTComplex, TeRo, DE-Simple, and ATiSE) embed timestamps with
independent parameters and provide score(s, p, o; t) (stands for the possibility that an event occurs
at time t) for each event type of (s, p, o). In order to answer the query (s, o, pc, pe), we thus develop
a decoding function g′(τ) and converting function p′(τ) in functionality similar to g(τ) and p(τ) of
NE, for these embedding models to calculate cross-correlation coefficients of score(s, pc, o; t) and
score(s, pe, o; t) with τ ∈ Tr. Note that since g′(τ) here directly represents correlations, unlike in
NE where g(τ) represents distances, we do not take the opposite number of g′(τ) in the equation of
p′(τ).

g′(τ) =
∑
t∈Ta

score(s, pc, o; t)× score(s, pc, o; t+ τ) (14)
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p′(s, o, pc, pe; τ) =
exp g′(s, o, pc, pe; τ)∑

τ∈Tr
exp g′(s, o, pc, pe; τ)

(15)

Extra processing on TAM When performing mining on TAM, we first filter all candidate TAs
(s, o, pc, pe). Then we consider the justification of each candidate TA as a query. Thus, the following
processing is the same as in TAQ. Note that the same process is implemented for both Search and
NE for a fair comparison.

B.4 HYPERPARAMETER SELECTION

All the embedding methods are trained for 100 epochs on TAQ and 200 epochs on TAM with
the learning rate of 0.1, opitimized with Adagrad (Paszke et al., 2019). We set the embedding
dimension of all embedding methods as d = 400. For the baseline methods, we adopt the set-
tings of other hyperparameters reported in the corresponding papers. The pth on TAQ for DE-
SimplE, TeRo, ATiSE, and TNTComplEx are 0.004, 0.0035, 0.004, and 0.3 tuned to separate the
maximum and minimum point, which turns out that p′(τ) produced by these models can hardly
distinguish the golden τ via comparing. For NE, we tune hyperparameters over grid search for
ωmax ∈ {200, 300, 400, 500, 600}, αp ∈ {0.5, 1, 1.5} and pth ∈ {0.5, 0.7, 0.9} on TAQ and
pth ∈ {0.05, 0.1, 0.15} on TAM. ωmax is a hyperparameter used to control the range of time em-
beddings where ωi = (2π × ωmax)

i
d − 1, 0 ≤ i < d. The performance hardly changes if we fix ωi

from the beginning, so it is not trained during training. αp is related to Cp: Cp = αp ×
√
d because

Cp is of the same magnitude as the length of a d-dimentional vector. Cn is set as 0 to distinguish
negative samples from positive ones.

B.5 EXPERIMENTAL ENVIRONMENTS

Experiments are conducted on a single GPU (GeForce RTX 3090) and a single CPU (Intel(R)
Xeon(R) Silver 4214R CPU @ 2.40GHz).

C GENERALIZED TAS

Table 4: Cases of generalized TAs mined by NE

Cause Event Effect Event Relative
Time

sc pc oc se pe oe τ

Barack
Obama

Engage in
diplomatic
cooperation

Iran Iran
Make

optimistic
comment

Iraq 4

United
Arab

Emirates
Host a visit John

Kerry
John
Kerry

Make
pessimistic
comment

Military
(Russia) 38

Pokot
Use

conventional
military force

Citizen
(Kenya)

Citizen
(Kenya)

Criticize or
denounce

Hassan
Joho 45

Combatant
(Mali)

Use uncon-
ventional
violence

Military
(Mali)

Military
(Mali)

Use
conventional
military force

Armed
Rebel
(Mali)

1
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D ABLATION STUDY

Here we present the analysis of hyperparameters in TAQ: ωmax, αp and pth in Figure 5. The ablation
study is conducted on ICEWS14 with each query relevant to 50 event pairs.

(a) Results on wmax (b) Results on αp (c) Results on pth

Figure 5: The accuracy with ωmax, αp and pth variant while other hyperparameters fixed.
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