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ABSTRACT

Dataset Distillation (DD) is a prominent technique that encapsulates knowledge
from a large-scale original dataset into a small synthetic dataset for efficient train-
ing. Meanwhile, Pre-trained Models (PTMs) function as knowledge reposito-
ries, containing extensive information from the original dataset. This naturally
raises a question: Can PTMs effectively transfer knowledge to synthetic datasets,
guiding DD accurately? To this end, we conduct preliminary experiments, con-
firming the contribution of PTMs to DD. Afterwards, we systematically study
different options in PTMs, including initialization parameters, model architec-
ture, training epoch and domain knowledge, revealing that: 1) Increasing model
diversity enhances the performance of synthetic datasets; 2) Sub-optimal mod-
els can also assist in DD and outperform well-trained ones in certain cases; 3)
Domain-specific PTMs are not mandatory for DD, but a reasonable domain match
is crucial. Finally, by selecting optimal options, we significantly improve the
cross-architecture generalization over baseline DD methods. We hope our work
will facilitate researchers to develop better DD techniques. Our code is available at
https://anonymous.4open.science/r/DDInterpreter-0DC5.

1 INTRODUCTION

Dataset Distillation (DD) condenses a large-scale, real-world dataset into a small, synthetic one
such that models trained on the latter yield comparable performance (Wang et al., 2018; Yu et al.,
2023). Thanks to its extremely high compression ratio and strong performance, DD has become a
mainstream approach for dataset compression (Lei & Tao, 2023). Numerous follow-ups have been
carried out in this research line, such as designing better optimization algorithms (Nguyen et al.,
2021; Cazenavette et al., 2022; Wang et al., 2022; Kim et al., 2022; Jin et al., 2022; Dong et al., 2022)
as well as extending the application of DD (Zhao & Bilen, 2021; Xiong et al., 2022; Song et al., 2022;
Zhou et al., 2022; Zhao & Bilen, 2023).

In current DD methods (Zhao et al., 2021; Zhao & Bilen, 2021; Wang et al., 2022; Cazenavette et al.,
2023), two key steps are involved: training models and calculating the matching loss between the
original dataset and synthetic dataset using these models. These two steps are performed alternately
in an iterative loop to optimize the synthetic dataset (Yu et al., 2023). Essentially, the step of training
models in DD can be viewed as extracting knowledge from the original dataset. Given that Pre-trained
Models1 (PTMs) are ready-made knowledge repositories that contain extensive information from the
original dataset, a natural question arises: Can pre-trained models assist in dataset distillation?

With this question in mind, we conduct a series of experiments. Firstly, we introduce a plug-and-play
loss term, i.e., CLoM (short for Classification Loss of pre-trained Model). By leveraging PTMs
as supervision signals, CLoM serves as stable guidance on the optimization direction of synthetic
datasets. Preliminary experiments demonstrate that PTMs indeed contribute to DD. Subsequently, we
systematically study for the first time the effects of different options in PTMs on DD when utilizing
PTMs as supervision signals. Specifically, we consider initialization parameters2, model architecture,
training epoch and domain knowledge. In experiments involving domain knowledge, we introduce a

1It is worth noting that "Pre-trained Models" refers to models trained on the original dataset.
2In this paper, "different initialization parameters" refers to the model’s parameters initialized with various

random seeds.
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novel loss term named CCLoM (Contrastive Classification Loss of pre-trained Model) to address the
issue of label mismatch in PTMs across different domains. We summarize several key findings here:

• Model diversification. The increased diversity of PTMs, including various initialization
parameters and diverse model architectures, leads to additional performance improvements
in DD to some extent.

• Training epoch. It’s not mandatory to employ well-trained models as supervision signals.
Surprisingly, using sub-optimal models instead can sometimes achieve better results.

• Domain knowledge. PTMs used as supervision signals do not have to be trained on the
original dataset; they can also come from other datasets. Among PTMs in various domains,
domain-related PTMs are preferred as accurate supervision signals.

We hope that these findings will facilitate the DD community to concentrate on PTMs and inspire the
development of future algorithms. Finally, by selecting optimal options, we significantly improve the
cross-architecture generalization over baseline methods. Specifically, the gains on Dataset Condensa-
tion (Zhao et al., 2021) (DC), Differentiable Siamese Augmentation (Zhao & Bilen, 2021) (DSA),
and Distribution Matching (Zhao & Bilen, 2023) (DM) are +4.5%/+10.7%/+5.2%, respectively.

2 RELATED WORK

Dataset Distillation. With the unlimited growth of data, DD, as a data reduction technique, has
attracted widespread attention. Previous studies have demonstrated the effectiveness and feasibil-
ity (Nguyen et al., 2021; Zhao et al., 2021; Zhao & Bilen, 2021; Cazenavette et al., 2022; Wang et al.,
2022; Kim et al., 2022) of this technique and apply it to various fields like continual learning (Zhao
et al., 2021; Zhou et al., 2022; Zhao & Bilen, 2023), federated learning (Xiong et al., 2022; Song
et al., 2022; Liu et al., 2022; Hu et al., 2022), neural architecture search (Such et al., 2020; Zhao
et al., 2021; Zhao & Bilen, 2021; 2023) and recommender system (Sachdeva et al., 2022), etc.

Pre-trained Models. PTMs have shown promising achievements in natural language processing,
computer vision, and cross-modal fields (Radford et al., 2018; 2019; Kenton & Toutanova, 2019;
Brown et al., 2020; Radford et al., 2021; OpenAI, 2023). They provide a practical solution for
mitigating the data hunger and poor generalization ability in deep learning (Belkin et al., 2019; Xu
et al., 2020). For example, a series of models (Simonyan & Zisserman, 2014; He et al., 2016) are
trained on the large-scale visual recognition dataset such as ImageNet (Deng et al., 2009). The rich
knowledge in the dataset is injected into pre-trained models through model training and implicitly
encoded in model parameters. Through fine-tuning, this knowledge can be transferred to numerous
downstream tasks, spanning image classification (He et al., 2016), object detection (Sermanet et al.,
2013; Obaid et al., 2022), image segmentation (Iglovikov & Shvets, 2018; Kalapos & Gyires-Tóth,
2022), image generation (Bellagente et al., 2023), 3D vision (Zhang et al., 2023), etc.

Unfortunately, while PTMs have successfully benefited various downstream tasks by taking advantage
of the knowledge extracted from the original dataset, DD has not effectively harnessed this knowledge.
In this paper, we explore the role of PTMs in DD, paving the way for future research.

3 BACKGROUND AND EXPERIMENTAL SETUP

3.1 BACKGROUND

DD aims to synthesize small-scale surrogate datasets containing similar information to the original
large-scale datasets (Wang et al., 2018; Zhao et al., 2020; Wang et al., 2022). Let T = {(xi, yi)}|T |

i=1
be the original dataset consisted of |T | pairs of images and corresponding labels. The synthetic
surrogate dataset is denoted as S = {(si, yi)}|S|

i=1, where |S| ≪ |T |. Then the DD task can be
formulated as follows:

S∗ = argmax
S

ϕ(S, T ), (1)

where ϕ is a task-specific loss that varies among different DD methods. Below we introduce three
representative methods with each using a different technique.
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DC was proposed to match the training gradients of the synthetic data and original data (Zhao et al.,
2021). Given a model with parameters θ, the optimization process can be expressed as:

min
S

σ (∇θL(θ;S),∇θL(θ; T )) , (2)

where L(·; ·) and σ(·; ·) denote the training loss and a sum of cosine distances between the two
gradients of weights associated with each output node at each layer, respectively. Building upon DC,
DSA applies data augmentation techniques to further enhance performance (Zhao & Bilen, 2021). It
can be formulated as follows:

min
S

σ
(
∇θL(A(S, ωS), θ),∇θL(A(T , ωT ), θ)

)
, (3)

where A is a family of image transformations such as cropping, color jittering and flipping that are
parameterized with ωS and ωT . Different from DC and DSA, DM aligns the feature distributions of
the original dataset and synthetic dataset in sampled embedding spaces (Zhao & Bilen, 2023), which
can be formulated as:

min
S

σ

 1

|S|

|S|∑
i=0

f(θ; si),
1

|T |

|T |∑
i=0

f(θ;xi)

 , (4)

where f(·; ·) is the feature extraction function and σ(·; ·) represents maximum mean discrepancy (Gret-
ton et al., 2012).

3.2 EXPERIMENTAL SETUP

Datasets: We conduct primary experiments on two publicly-available datasets: CIFAR-
10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky et al., 2009), which are most commonly
used in DD. As for experiments related to domain knowledge, we use ImageNet-32 (Chrabaszcz
et al., 2017), PathMNIST (Yang et al., 2023), ImageNette3 and ImageFruit4. ImageNet-32 is a dataset
composed of small images downsampled from the original ImageNet (Deng et al., 2009). PathMNIST
is a biomedical dataset about colon pathology. ImageNette and ImageFruit are subsets of the 10
classes in ImageNet, respectively.

Models: Unless otherwise specified, staying consistent with precedent DD methods (Zhao et al.,
2021; Cazenavette et al., 2022; Cui et al., 2022), we use a standard ConvNet architecture with three
convolutional layers (ConvNet-3) to train and evaluate synthetic datasets. As for experiments on
ImageNette and ImageFruit, we increase the number of convolutional layers to 6 (ConvNet-6), in line
with Cazenavette et al. (2023).

Training configurations: During the evaluation of synthetic datasets, we uniformly apply DSA to
preprocess all synthetic images and train the augmented images with a batch size of 256 for 1,000
epochs. We employ the SGD optimizer with an initial learning rate of 0.01, a momentum of 0.9 and
a weight decay of 5× 10−4. The learning rate is reduced by a factor of 0.1 after every 500 epochs.
As for training to obtain PTMs, we train the model (without DSA) for 150 epochs, with a weight
decay of 5× 10−3 and reduce the learning rate by 0.1 after every 50 epochs. To mitigate the impact
of randomness, we repeat each experiment 5 times and report the mean and standard deviation. All
experiments are conducted on a server equipped with 2 NVIDIA Tesla A100 GPUs.

4 CAN PRE-TRAINED MODELS ASSIST IN DATASET DISTILLATION?

PTMs have already learned valid feature representations and rich semantic information from the
dataset on which they are trained (Tang et al., 2020; Gou et al., 2021). As a result, they inherently
possess a certain level of knowledge about the original dataset. Therefore, utilizing PTMs as
supervision signals may provide stable guidance for the optimization direction of synthetic datasets.
In order to verify our conjecture, we conduct a preliminary experiment.

To leverage the knowledge embedded in PTMs for enhancing DD, we propose a plug-and-play loss
term, called Classification Loss of pre-trained Model (CLoM). CLoM can be portable to any existing

3ImageNette is downloaded from https://github.com/fastai/imagenette.
4ImageFruit is downloaded using the label index provided in Cazenavette et al. (2023).
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Table 1: Performance comparison to different DD methods. C10 and C100 denote CIFAR10 and
CIFAR100, respectively. Nm represents the number of PTMs with different initialization parameters
(different random seeds). Na denotes the number of different model architectures. Experiments with
Nm = 1 and Na = 1 verify whether PTMs are beneficial for DD; Experiments with Nm = 10 and
Na = 1 investigate the influence of initialization parameters on synthetic datasets; Experiments with
Nm = 1 and Na = 4 investigate the influence of model architecture on synthetic datasets.

Dataset Method CLoM Nm Na

IPC
Dataset Method CLoM Nm Na

IPC

10 50 10 50

C10

DC

✗ - - 51.4±0.3 57.5±0.2

C100

DC

✗ - - 28.7±0.3 31.4±0.4

✓ 1 1 51.5±0.3 57.8±0.3 ✓ 1 1 29.4±0.4 33.7±0.4

✓ 10 1 52.0±0.3 60.2±0.3 ✓ 10 1 31.8±0.3 39.5±0.4

✓ 1 4 52.2±0.1 59.7±0.6 ✓ 1 4 30.2±0.2 36.0±0.6

DSA

✗ - - 53.3±0.2 60.7±0.5

DSA

✗ - - 32.8±0.2 42.8±0.4

✓ 1 1 53.4±0.3 61.9±0.3 ✓ 1 1 33.8±0.2 43.0±0.4

✓ 10 1 54.4±0.4 65.1±0.5 ✓ 10 1 35.5±0.2 43.2±0.3

✓ 1 4 53.5±0.4 63.0±0.2 ✓ 1 4 34.1±0.2 43.2±0.2

DM

✗ - - 49.6±0.3 62.5±0.7

DM

✗ - - 30.0±0.2 43.2±0.4

✓ 1 1 50.0±0.4 64.0±0.4 ✓ 1 1 30.3±0.2 44.6±0.3

✓ 10 1 51.2±0.4 66.2±0.2 ✓ 10 1 31.7±0.2 45.6±0.3

✓ 1 4 50.6±0.3 65.3±0.2 ✓ 1 4 30.7±0.2 44.8±0.4

DD baseline and serves as a stable guidance for the generation of synthetic datasets. The whole
optimizing target can be updated from Eq. (1) to:

S∗ = argmin
S

L(S, T ) + αLCLoM , (5)

where LCLoM = 1
|S|

∑|S|
i=1 ℓ (f (θ∗; si) , yi), ℓ is the cross-entropy loss, θ∗ denotes the pre-trained

model and α represents a tunable hyperparameter. In Section 6, we report the impact of different α
on performance.

We implement CLoM on multiple state-of-the-art training pipelines of DD, including DC, DM, and
DSA, to synthesize 10, and 50 images per class (IPC) respectively. For the sake of consistency, we
opt for a pre-trained model (Nm = 1, Na = 1) that has the same architecture (ConvNet-3) as the one
used in DD. As shown in Table 1. We can observe that CLoM consistently improves the performance
across all the baselines, which demonstrates that PTMs can indeed assist in DD.

5 EMPRICAL STUDY

In the previous section, we have demonstrated that pre-trained models can assist in dataset distillation.
Herein, we systematically study different options in PTMs, including initialization parameters, model
architecture, training epoch and domain knowledge, and analyze the influence of each of these factors
on synthetic datasets individually.

5.1 MODEL DIVERSIFICATION

First of all, we focus on model diversification, which includes two types: one is the diversification
of initialization parameters, while the other is the diversification of model architecture. Herein, we
use Nm to denote the number of PTMs (these PTMs are initialized with different random seeds
and are thoroughly trained on the original dataset) and Na to denote the number of different model
architectures. To facilitate comparison, we set the experiments in Section 4 (Nm = 1, Na = 1) as
the control group and alter only one control variable at a time.

Initialization parameters. In Section 4, we utilize a single pre-trained model (Nm = 1, Na = 1)
with the same architecture as the one used in baselines to conduct experiments. In order to achieve
diversification of initialization parameters, we train 10 models initialized with different random seeds
from scratch (Nm = 10, Na = 1). In each iteration, according to Eq. (5), the synthetic dataset
is updated using one model at a time. As depicted in Table 1, when compared to a single model
architecture and a single initialization parameter, introducing diverse initialization parameters leads
to further performance improvements on synthetic datasets. These improvements can be attributed to
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Figure 1: Classification accuracy of different architectures on various categories of synthetic datasets.
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Figure 2: Performance of different baseline methods of DD. The models used in CLoM are derived
from different stages of training. The dotted line represents the baseline.

model ensemble (Sagi & Rokach, 2018; Dong et al., 2020; Zhou et al., 2021) (two heads are better
than one). Besides, we conduct an ablation study on Nm in Section 6.

Model architecture. Different from diverse initialization parameters, here, we use various model
architectures. Before starting experiments, we evaluate the classification accuracy of different
architectures on various categories of synthetic datasets, with the results in Fig. 1. We observe that
different architecture excels in specific categories, allowing them to complement each other effectively.
This finding highlights the rationality of utilizing diverse model architectures. Subsequently, we
expand PTMs from a single architecture (ConvNet-3) to 4 architectures (Nm = 1, Na = 4), including
ConvNet-3 (Gidaris & Komodakis, 2018), AlexNet (Krizhevsky et al., 2017), VGG-11 (Simonyan &
Zisserman, 2014) and ResNet-18 (He et al., 2016). These model architectures are commonly used in
mainstream DD methods (Cui et al., 2022). At each iteration, we randomly select one pre-trained
model from any of the 4 different architectures to calculate CLoM and update the synthetic dataset
according to Eq. (5). We report the results in Table 1. Compared with a single model architecture
and a single initialization parameter, diverse model architectures also enhance the performance of
synthetic datasets to a certain extent. The ablation study on Na is in Section 6.

5.2 TRAINING EPOCH

In previous studies, we have demonstrated that PTMs can assist in DD, and increasing the diversity
of PTMs can further improve the performance of synthetic datasets. Herein, we want to ask whether
a (well-trained) PTM is necessary and if it’s possible to use a sub-optimal model as a supervision
signal instead.

To answer the aforementioned questions, we conduct experiments using a single model architecture
and a single initialization parameter (Nm = 1, Na = 1). Different from using the well-trained PTM
in Section 4, we utilize a sub-optimal model (ConvNet-3) instead. Specifically, we employ models at
different training stages to calculate CLoM, encompassing epochs 1, 4, 6, 10, 20, 35, 70, 120, and
150. Subsequently, we apply these models to the baselines of DC, DSA and DM on CIFAR-10 with
IPC=10 as well as IPC=50, and the results are presented in Fig. 2. Even with fewer training epochs,
implementing CLoM on such sub-optimal models still leads to significant improvements, and in
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some cases, it even outperforms well-trained PTMs. For example, on CIFAR-10 with IPC=50, DSA
achieves an average accuracy of 68.1 at epoch 4, which is significantly higher than 61.9 achieved at
epoch 150. This experimental result highlights that it is not necessary to utilize well-trained PTMs
as supervision signals. Sub-optimal models can be employed instead, which not only enhances the
performance of synthetic datasets but also takes less training cost.

5.3 DOMAIN KNOWLEDGE

In Section 5.2, we find that sub-optimal models can also assist in DD. Therefore, in this subsection,
we further lower the threshold for PTMs. We wonder whether domain-specific PTMs are necessary
as supervision signals. In other words, are these PTMs, when utilized as supervision signals, limited
to training on the original dataset, or can they also be trained on other datasets? To this end, we
utilize PTMs trained on other datasets to conduct experiments. However, a challenge arises when
attempting to switch to PTMs trained on other datasets. Since the final classification layer of each
PTM is tailored to the specific classes on which it was trained and there is no inherent correspondence
between the original and new label sets, directly feeding the synthetic dataset into PTMs (trained on
other datasets) for calculating CLoM is not feasible.

To tackle this issue of label mismatch, we introduce a novel loss term named CCLoM, which stands
for Contrastive Classification Loss of pre-trained Model. Inspired by contrastive learning (Khosla
et al., 2020; Jaiswal et al., 2020), this loss aims to minimize intra-class distances while maximizing
inter-class distances using only feature representations. Specifically, in each training iteration, we
sample a batch of examples (xB, yB) from the target dataset5 T and feed them into the PTM (trained
on the source dataset) to obtain real features F (xB). Here, F is the feature extractor. Likewise, we
take all examples (xS , yS) from the synthetic dataset S and feed them into the PTM to get synthetic
features F (xS). We then utilize Eq. (6) to construct a distance matrix.

Dcon = 1− F (xB)
TF (xS)

∥F (xB)∥2 ∥F (xS)∥2
(6)

Due to the presence of labels, traditional contrastive losses are incapable of handling the case. In this
case, we consider supervised contrastive learning (Khosla et al., 2020). Specifically, it contrasts all
samples from the same class as positives against the negatives from the remainder of the batch. Let
O(yB) and O(yS) be one-hot label encoding of the real batch and synthetic images, respectively. The
label correspondence matrix is defined as M = O(yB)

TO(yS), and CCLoM is computed as follows:

LCCLoM =

N∑
i=1

∑
Dcon ⊙M∑

Dcon
, (7)

where N denotes the total batch of the target dataset. Finally, the whole optimizing target can be
updated to Eq. (8) and Algorithm 1 in appendix provides the details of the calculation of CCLoM.

S∗ = argmin
S

L(S, T ) + αLCCLoM . (8)

We conduct evaluations on two image classification benchmarks: CIFAR-10 and PathMNIST. To
control variables, we use a single model architecture and a single initialization parameter (Nm = 1,
Na = 1). The only difference from Section 4 is that the PTM is trained on ImageNet-32 or
CIFAR-100. Table 2 reports the results, from which we can draw two key conclusion:

1) As supervision signals, PTMs do not need to be trained on the original dataset, they can also be
trained on other datasets. This is evidenced by the consistent improvement of synthetic datasets with
the assistance of CCLoM.

2) When domain-specific PTMs are not available, as supervision signals, domain-related datasets
are preferred. It is worth noting that PathMNIST is a biomedical dataset and ImageNet-32 is a
downsampled version of the original ImageNet. As supervision signals, PTMs trained on CIFAR-100
lead to significant performance gains (the average gain is 1.35) when CIFAR-10 is used as the target
dataset for DD. Conversely, when the target dataset is switched to PathMNIST, the performance

5For ease of understanding, we refer to the dataset that needs to be distilled as the target dataset, and the
dataset where PTMs are located as the source dataset in Section 5.3.
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Table 2: Performance comparison to different DD methods. C10, C100, I32 and PM represents
CIFAR-10, CIFAR-100, ImageNet-32 and PathMNIST, respectively. In this context, C100→C10
denotes using a PTM trained on CIFAR-100 as a supervision signal to guide the generation of
synthetic datasets.

Dataset Method
IPC

Avg Gain Dataset Method
IPC

Avg Gain10 50 10 50

C100→C10

DC 51.4±0.3 57.5±0.2

+1.35 C100→PM

DC 56.1±1.2 69.3±0.6

+0.15

DC+CCLoM 52.5±0.4 59.5±0.2 DC+CCLoM 56.4±0.7 70.3±1.2

Gain +1.1 +2.0 Gain +0.3 +1.0

DSA 53.3±0.2 60.7±0.5 DSA 62.0±0.3 78.7±0.6

DSA+CCLoM 54.3±0.3 62.9±0.5 DSA+CCLoM 62.1±1.3 77.9±0.8

Gain +1.0 +2.2 Gain +0.1 -0.8

DM 49.6±0.3 62.5±0.7 DM 67.9±0.9 78.9±0.1

DM+CCLoM 50.0±0.3 63.9±0.5 DM+CCLoM 67.9±1.1 79.2±0.8

Gain +0.4 +1.4 Gain 0.0 +0.3

I32→C10

DC 51.4±0.3 57.5±0.2

+0.83 I32→PM

DC 56.1±1.2 69.3±0.6

+0.40

DC+CCLoM 52.2±0.4 58.1±0.3 DC+CCLoM 56.5±0.8 70.0±0.6

Gain +0.8 +0.6 Gain +0.4 +0.7

DSA 53.3±0.2 60.7±0.5 DSA 62.0±0.3 78.7±0.6

DSA+CCLoM 53.6±0.2 61.9±0.1 DSA+CCLoM 63.0±0.8 78.7±1.3

Gain +0.3 +1.2 Gain +1.0 +0.0

DM 49.6±0.3 62.5±0.7 DM 67.9±0.9 78.9±0.1

DM+CCLoM 50.6±0.2 63.6±0.4 DM+CCLoM 68.7±0.6 78.4±0.6

Gain +1.0 +1.1 Gain +0.8 -0.5

Table 3: Performance comparison to DM. Since the CLIP model is trained on a dataset of 400 million
(image, text) pairs collected from the Internet, we call the dataset Internet.

Dataset Method
IPC

Avg Gain Dataset Method
IPC

Avg Gain1 10 1 10

ImageNet→ImageNette
DM 28.3±1.5 48.5±0.7

+1.35 ImageNet→ImageFruit
DM 21.3±1.0 28.7±1.2

+0.65DM+CCLoM 30.0±0.9 49.5±0.4 DM+CCLoM 22.1±0.3 29.2±1.0

Gain +1.7 +1.0 Gain +0.8 +0.5

Internet→ImageNette
DM 28.3±1.5 48.5±0.7

+1.20 Internet→ImageFruit
DM 21.3±1.0 28.7±1.2

+1.30DM+CCLoM 31.2±0.7 49.0±0.3 DM+CCLoM 22.3±1.0 30.3±1.9

Gain +1.9 +0.5 Gain +1.0 +1.6

improvement is minimal (the average gain is 0.15). We believe this is attributed to the significant
domain gap (Nam et al., 2021) between CIFAR-100 and PathMNIST. The same phenomenon occurs
when ImageNet-32 is utilized as the source dataset.

To further demonstrate that domain-specific PTMs are not necessary for supervision signals to
provide precise guidance to DD, we conduct experiments on ImageNette and ImageFruit (224× 224
resolution scale). We utilize a pre-trained ResNet-18 (He et al., 2016) on ImageNet (Deng et al.,
2009) and a pre-trained CLIP (Radford et al., 2021) model as supervision signals6. It’s worth
noting that these models can be obtained directly without the need for training. Then we conduct
evaluations on DM with a batchsize of 512. The reason for using only DM is that DC and DSA
require saving the computational graph to calculate the matching loss, which prevents them from
conducting experiments on high-resolution datasets. Table 3 reports the results. The conclusion that
domain-specific PTMs are not necessary for DD still holds true in the case of high resolution. More
importantly, based on the success of the CLIP model in guiding ImageNette and ImageFruit synthesis,
we are inspired to use existing foundational models, such as GPT-4 (OpenAI, 2023), to assist in DD.

5.4 VALIDATION AND EXTENSIONS

In the previous subsections, we analyze a variety of options in PTMs, including initialization
parameters, model architecture, training epoch and domain knowledge, one by one. Herein, we
choose various combinations of these options to perform extensive experiments. Since existing DD
methods generally suffer from architecture overfitting (Zhao & Bilen, 2021; Cazenavette et al., 2022;
Zhao & Bilen, 2023; Lei & Tao, 2023). That is, the optimization of synthetic dataset is closely tied to

6ResNet-18 is downloaded from torchvision. As for the CLIP model, we use ResNet-50 as the base
architecture for the image encoder.
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Table 4: Cross-architecture performance comparison to different baseline methods of DD. The
distillation architecture is ConvNet-3. The experiments are conducted on CIFAR-10 with IPC-50.
WT and SO represent well-trained and sub-optimal, respectively. Bold entries are best results.

Method CLoM Nm Na Training Epoch
Model

Avg GainConvNet-3 VGG-11 ResNet-18 AlexNet

DC

✗ - - - 57.5±0.2 50.4±0.9 46.7±0.4 37.6±0.6 -
✓ 10 1 WT 60.2±0.3 52.9±0.7 47.4±0.3 37.7±0.4 +1.5
✓ 10 4 WT 61.3±0.2 55.2±0.7 48.6±1.1 37.9±0.4 +2.7
✓ 10 4 SO 63.0±0.2 59.2±0.6 50.3±1.2 37.8±1.0 +4.5

DSA

✗ - - - 60.7±0.5 50.9±0.7 50.3±1.1 46.0±0.3 -
✓ 10 1 WT 65.1±0.5 52.8±0.9 51.6±0.8 45.5±0.5 +1.8
✓ 10 4 WT 66.4±0.3 55.9±0.9 52.7±0.8 46.1±0.9 +3.3
✓ 10 4 SO 69.2±0.2 61.7±0.7 60.7±1.0 58.9±0.7 +10.7

DM

✗ - - - 62.5±0.4 55.9±0.5 54.6±0.5 50.6±0.7 -
✓ 10 1 WT 66.2±0.2 59.6±0.4 56.9±0.6 52.4±0.6 +2.9
✓ 10 4 WT 66.4±0.3 60.4±0.4 58.1±0.8 57.1±0.9 +4.6
✓ 10 4 SO 67.5±0.1 62.1±0.6 58.3±1.0 56.3±1.1 +5.2

the specific model architecture, and there is a performance drop when the synthetic dataset is applied to
unknown architectures. Therefore, we employ CLoM with various combinations of options to mitigate
architecture overfitting in DD. Specifically, we utilize ConvNet-3 with the default hyperparameters
from the previous work (Cui et al., 2022) to generate synthetic datasets. Subsequently, we evaluate
the performance of synthetic datasets on ConvNet-3, VGG-11, ResNet-18 and AlexNet. With the
goal of conducting a fair comparison, we utilize the same training configurations for evaluation. All
experiments are conducted on CIFAR-10 with IPC-50.

Table 4 exhibits the experimental results. In general, different combinations of options mitigate archi-
tecture overfitting to varying degrees. Among these combinations, sub-optimal models (According to
Fig. 2, we select the models at the epoch with the best performance as sub-optimal models.) with
diverse initialization parameters and various model architectures (Nm = 10, Na = 4) perform best.
Specifically, among these model architectures, DSA achieves an average performance improvement
of 10.7% on synthetic datasets with the assistance of CLoM. In comparison, the improvements on DC
and DM are relatively small but still substantial, at 4.5% and 5.2%, respectively. Besides, we visualize
the feature distribution of these synthetic images and compare them to the feature distribution learned
by DC, DSA and DM. Following the settings of Zhao & Bilen (2023), we utilize a model trained
on the whole training set to extract features and visualize the features with t-SNE (Van der Maaten
& Hinton, 2008). As depicted in Fig. A1, compared to the baseline, our synthetic images more
accurately reflect the distribution of the original training set.

For additional supplementary experiments, please refer to Appendix A.

6 ABLATION STUDY

In Section 5.1, we find that diverse initialization parameters and diverse model architectures can
enhance the performance of synthetic datasets. Here, we conduct ablation studies on Nm and Na.
Additionally, we also investigate the influence of α on the performance of synthetic datasets. Unless
otherwise specified, all ablation studies are conducted on CIFAR-10 with IPC=50.

Ablation on α. We conduct experiments on the basis of Section 4 with varying α. The outcome is
presented in the left part of Fig. 3. We observe that different values of α have a slight impact on the
performance of the synthetic dataset. This impact is primarily attributed to the trade-off between two
losses in Eq. (5).

Ablation on Nm. Following the experimental settings of Section 4, we use different Nm to perform
experiments. As shown in the right part of Fig. 3, with the number of Nm increasing, the overall
performance of the synthetic dataset exhibits an upward trend. The best results are achieved when
Nm = 10. Hence, in the previous experiments, we set Nm = 10 by default.
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Figure 3: Ablation study on α and Nm. The dotted line represents the baseline.

Table 5: Explorations of the diversity of model architectures. This experiment is conducted based on
DC. Bold entries are best results.

ConvNet-3 VGG-11 ResNet-18 AlexNet ConvNet-4 Performance

✓ 57.8±0.3

✓ 57.7±0.3

✓ 57.3±0.3

✓ 57.3±0.6

✓ 58.2±0.2

✓ ✓ 58.7±0.5

✓ ✓ ✓ 59.1±0.6

✓ ✓ ✓ ✓ 59.7±0.6

✓ ✓ ✓ ✓ ✓ 60.0±0.2

Ablation on Na. Similarly, based on the experiment settings of Section 4, we only change Na. Our
experiments cover a range of scenarios, from a single model architecture to various combinations of
model architectures. To make the experiment more convincing, we further add the ConvNet-4. The
results are exhibited in the Table 5. We observe that diverse model architectures consistently lead
to improved performance of the synthetic dataset. The best results are achieved with all five model
architectures included.

7 CONCLUSION

In this paper, we explore the question: "Can pre-trained models assist in dataset distillation?" To this
end, we introduce two plug-and-play loss terms, i.e., CLoM and CCLoM, portable to any existing
DD baseline. By leveraging PTMs as supervision signals, they serve as stable guidance on the
optimization direction of synthetic datasets. Then we systematically study the effects of different
options in PTMs on DD, including initialization parameters, model architecture, training epoch
and domain knowledge, and summarize several key findings. Based on these findings, we achieve
significant improvements in cross-architecture generalization compared to the baseline method.
Finally, we aspire that our research will facilitate the DD community to concentrate on PTMs and
inspire the development of innovative algorithms in the future.

Limitations. While PTMs as supervision signals provide stable guidance for optimizing synthetic
datasets, there is a potential limitation that should be acknowledged. For example, the training cost of
PTMs cannot be overlooked. This can be mitigated by using sub-optimal models (see Section 5.2).
Besides, thanks to the CCLoM, domain-agnostic PTMs are able to serve as supervision signals (see
Section 5.3), which eliminates the need to train PTMs.

Future Works. In this paper, we demonstrate that domain-agnostic PTMs can also assist in DD (see
Section 5.3). Therefore, a promising direction is harnessing existing foundational models, such as
CLIP (Radford et al., 2021) and GPT-4 (OpenAI, 2023), to steer and enhance DD. Thanks to the
generalization capabilities exhibited by these foundational models, the application of DD in more
intricate scenarios, such as semantic segmentation (Long et al., 2015), objective detection (Girshick
et al., 2014) and multi-modal (Radford et al., 2021), becomes feasible.
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Algorithm 1 PyTorch-like pseudo-code for CCLoM.

# num_classes: number of classes
# batch_size: batch size of real images

def calculating_CCLoM(real_img, real_label, syn_img, syn_label):
# One-Hot Encoding to real label
real_label_onehot = torch.zeros((batch_size, num_classes))
real_label_onehot[torch.arange(batch_size), real_label] = 1

# One-Hot Encoding to synthetic label
syn_label_onehot = torch.zeros((ipc * num_classes, num_classes))
syn_label_onehot[torch.arange(ipc * num_classes), syn_label] = 1

# True and false sample matrix
labels = syn_label_onehot @ real_label_onehot.T

# extract feature representations
real_feat = model(real_img)
syn_feat = model(syn_img)
real_feature_norm = real_feat / real_feat.norm(dim=-1, keepdim=True)
syn_feature_norm = syn_feat / syn_feat.norm(dim=-1, keepdim=True)

cos_dist = 1 - syn_feature_norm @ real_feature_norm.T
cclom = torch.sum(labels * cos_dist) / torch.sum(cos_dist)

return cclom
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Figure A1: Distributions of synthetic images learned by DC, DSA and DM. The first row represents
the distribution without CLoM, while the second row represents the distribution with CLoM using
the best combination of options. From left to right are the distributions of DC, DSA, and DM. Best
viewed in color.

A APPENDIX

We apply the proposed CLoM to state-of-the-art methods, including IDC (Kim et al., 2022),
DiM (Wang et al., 2023), DREAM (Liu et al., 2023) and TM (Cazenavette et al., 2022), and
compare the performance in Table A1. For fair comparison, the experiments are conducted under the
default parameters provided in original papers. Herein, we utilize well-trained models with diverse
initialization parameters and single model architectures (Nm = 10, Na = 1) to conduct experiments.
The stable performance improvements demonstrate that even with state-of-the-art DD methods, PTMs
can still improve the performance of synthetic datasets.
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Table A1: The performance comparison to state-of-the-art methods on CIFAR-10. Underline denotes
results from the original papers. Bold entries are best results.

Method IPC
CLoM

Method IPC
CLoM

✗ ✓ ✗ ✓

IDC 10 67.5±0.5 69.4±0.3 DREAM 10 69.4±0.4 70.0±0.4

50 74.5±0.1 76.3±0.2 50 74.8±0.1 76.1±0.1

DiM 10 66.2±0.5 67.3±0.5 TM 10 65.3±0.7 66.3±0.4

50 72.6±0.4 72.7±0.3 50 71.6±0.2 73.1±0.2
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