
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAUCHY–SCHWARZ REGULARIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a novel class of regularization functions, called Cauchy–Schwarz (CS)
regularizers, which can be designed to induce a wide range of properties in solution
vectors of optimization problems. To demonstrate the versatility of CS regularizers,
we derive concrete regularization functions that promote discrete-valued vectors,
eigenvectors of a given matrix, and orthogonal matrices. The resulting CS regular-
izers are simple, differentiable, and can be free of spurious critical points, making
them suitable for gradient-based solvers and large-scale optimization problems. In
addition, CS regularizers automatically adapt to the appropriate scale, which is, for
example, beneficial when discretizing weights of neural networks. To demonstrate
the efficacy of CS regularizers, we provide results for solving underdetermined sys-
tems of linear equations and weight quantization in neural networks. Furthermore,
we discuss specializations, variations, and generalizations, which lead to an even
broader class of new and possibly more powerful regularizers.

1 INTRODUCTION

We focus on the design of novel regularization functions ℓ : RN → R≥0 that promote certain
pre-defined properties on the solution vector(s) x̂ ∈ RN of regularized optimization problems

x̂ ∈ arg min
x∈RN

f(x) + λℓ(x), (1)

where f : RN → R is an objective function and λ ∈ R≥0 a regularization parameter. One instance of
such an optimization problem is the binarization of neural-network weights, where the solution(s)
of (1) are the network’s weights that should be binary-valued x̂ ∈ {−α, α}N , but with appropriate
scale α ∈ R chosen by the regularizer—the scale can then be absorbed into the activation function.

1.1 CONTRIBUTIONS

We propose Cauchy–Schwarz (CS) regularizers, a novel class of regularization functions that can be
designed to impose a wide range of properties. We derive concrete examples of CS regularization
functions that promote discrete-valued vectors (e.g., binary- and ternary-valued vectors), eigenvectors
of a given matrix, and matrices with orthogonal columns. The resulting regularizers are (i) simple,
(ii) automatically determine the appropriate scale, (iii) free of any spurious critical points, and (iv)
differentiable, which enables the use of (stochastic) gradient-based numerical solvers that make
them suitable to be used in large-scale optimization problems. In addition, we discuss a variety of
specializations, variations, and generalizations, which allow for the design of an even broader class
of new and possibly more powerful regularization functions. Finally, we showcase the efficacy and
versatility of CS regularizers for solving underdetermined systems of linear equations and neural
network weight binarization and ternarization. All proofs and additional experimental results are
relegated to the appendices, which can be found in the supplementary material.

1.2 NOTATION

Column vectors and matrices are written in boldface lowercase and uppercase letters, respectively.
The entries of a vector x ∈ RN are [x]n = xn, n = 1, . . . , N , and transposition is xT. The N -
dimensional all-zeros vector is 0N and the all-ones vector 1N ; we omit the dimension N if it is clear
from the context. The inner product between the vectors x,y ∈ RN is ⟨x,y⟩ = xTy, and linear

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

dependence is denoted by

x ∼ y ⇐⇒ ∃(a1, a2) ∈ R2\{(0, 0)} : a1x = a2y. (2)

For p ≥ 1, the p-norm of a vector x ∈ RN is ∥x∥p ≜ (
∑N

n=1 |xn|p)1/p, and we will frequently
use the shorthand notation |[x]|p ≜

∑N
n=1 x

p
n (note the absence of absolute values). The entry on

the nth row and kth column of a matrix X is Xn,k, the Frobenius norm is ∥X∥F, and columnwise
vectorization is vec(X). The N ×N identity matrix is IN and the M ×N all-zero matrix is 0M×N .

1.3 RELEVANT PRIOR ART

Semidefinite relaxation (SDR) can be used for solving optimization problems with binary-valued
solutions (Luo et al., 2010). Since SDR requires lifting (i.e., increasing the dimension of the original
problem size), solving such problems quickly results in prohibitive complexity, even for moderately-
sized problems. As a remedy, non-lifting-based SDR approximations were proposed in (Shah et al.,
2016; Castañeda et al., 2017). These methods utilize biconvex relaxation that scales better to larger
optimization problems. Convex non-lifting-based approaches were also proposed for recovering
binary-valued solutions from linear measurements using ℓ∞-norm regularization (Mangasarian &
Recht, 2011). In contrast to such methods, the proposed CS regularizers are (i) differentiable, which
enables their use together with differentiable objective functions and any (stochastic) gradient-based
numerical solver, and (ii) can be specialized to impose a wider range of different structures.

Vector discretization is widely used for neural network parameter quantization (Hubara et al., 2017).
Regularization-free approaches, e.g., the method from Rastegari et al. (2016), perform neural network
binarization by simply quantizing the weights and adapting their scale to their average absolute value.
Approaches that utilize projections onto discrete sets within gradient-descent-based methods have
been proposed in (Hou et al., 2016; Leng et al., 2018). In contrast, the proposed CS regularizers are
differentiable and automatically adapt their scale to the magnitude of the solution vectors.

Prior art includes a plethora of references vector discretization methods that rely on regularization
functions have been proposed: The methods in (Hung et al., 2015; Tang et al., 2017; Wess et al.,
2018; Bai et al., 2019; Darabi et al., 2019; Choi et al., 2020; Yang et al., 2021; Razani et al., 2021;
Xu et al., 2023) use regularization functions related1 to the form ℓ(x, β) =

∑N
n=1(x

2
n − β)2 for

N -dimensional vectors x ∈ RN and either fix the magnitude β2 (e.g., β = 1) or learn this additional
parameter during gradient descent. Another strain regularization functions that utilizes trigonometric
functions related2 to the form ℓ(x, β) =

∑N
n=1 sin

2(βπxn) have been proposed in (Naumov et al.,
2018; Elthakeb et al., 2020; Solodskikh et al., 2022). In contrast to all of the above regularization
functions, the proposed CS regularizers (i) do not introduce additional trainable parameters while
still being able to automatically adapt their scale to the vectors’ magnitude and (ii) can be designed to
promote a wider range of structures. Finally, the proposed CS regularizers include the regularization
functions of Tang et al. (2017); Darabi et al. (2019) as a special case; see App. B.4.

Recovering matrices with orthogonal columns finds, for example, use in the orthogonal Procrustes
problem: X̂ = argminX∈RN×K ∥AX−B∥F subject to XTX = IN A closed-form solution to this
problem is given by X̂ = UVT , where U and V are the left- and right-singular matrices of the
matrix ATB (Schönemann, 1966). In contrast, CS regularizers can be designed to promote matrices
with orthogonal rows of arbitrary scale and without requiring a singular value decomposition.

We finally note that Tran et al. (2022) propose the use of the CS divergence to regularize autoencoders.
In contrast, we use the CS inequality (Steele, 2004) to design new regularization functions that
can—among many other structures—be used to promote discrete-valued vectors (e.g., binary or
ternary), eigenvectors to a given matrix, and matrices with orthogonal rows.

1Some methods, e.g., (Darabi et al., 2019), use non-differentiable regularizers with ||xn| − β| instead of
(x2

n − β)2, while others, e.g., (Xu et al., 2023), use regularizers of the form γ∥x− α sign(x)∥ and introduce
additional scaling factors.

2The method in (Naumov et al., 2018) fixes the scale, while Elthakeb et al. (2020) utilizes a trainable
parameter; the regularizer in (Solodskikh et al., 2022) introduces an additional differentiable regularizer that
imposes finite range.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 CAUCHY–SCHWARZ REGULARIZERS

In this section, we introduce the general recipe for deriving CS regularizers. We then use this recipe
to design specific CS regularization functions that promote discrete-valued (e.g., binary and ternary)
vectors, eigenvectors of a given matrix, and matrices with orthogonal columns.

2.1 THE RECIPE

The following result is an immediate consequence of the CS inequality (Steele, 2004) and provides a
recipe for the design of a wide range of regularization functions; a short proof is provided in App. A.1.
Proposition 1. Fix two vector-valued functions g,h : RN → RM and define the set

X ≜
{
x̃ ∈ RN : g(x̃) ∼ h(x̃)

}
. (3)

Then, the nonnegative regularization function

ℓ(x) ≜ ∥g(x)∥22∥h(x)∥22 − |⟨g(x),h(x)⟩|2 (4)

is zero if and only if (iff) x ∈ X .

We call regularization functions derived from Proposition 1 CS regularizers. While CS regularizers
are guaranteed to be (i) nonnegative and (ii) zero iff x ∈ X , it is also desirable for gradient-based
numerical solvers that these regularizers do not exhibit any spurious critical points.
Definition 1. A spurious critical point is a vector x /∈ X for which ∇ℓ(x) = 0.

Whether or not a CS regularizer has spurious critical points depends on the specific choice of g and h.
Nonetheless, even if a CS regularizer has spurious critical points, it may still accomplish the desired
goal. We conclude by noting that any vector x for which g(x) = 0 or h(x) = 0 will minimize (4).

The following result will be useful below when we analyze properties of specific CS regularizers; a
short proof is given in App. A.2.
Lemma 1. Fix two vector-valued functions g,h : RN → RM . Then, the following equalities hold:

ℓ(x) = ∥g(x)∥22 min
β∈R

∥βg(x)− h(x)∥22 = ∥h(x)∥22 min
β∈R

∥g(x)− βh(x)∥22. (5)

Lemma 1 will be used to highlight the important auto-scale property CS regularizers, since setting β
to its optimal value in (5) leads exactly to the regularization function in (4), as the optimization
problem in β is continuous, quadratic, and has a closed-form solution.

2.2 RECOVERING DISCRETE-VALUED VECTORS

From Proposition 1, we can derive a range of differentiable CS regularizers that, when minimized,
promote discrete-valued vectors. This can be accomplished by using entry-wise polynomials for the
functions g and h. We next show three concrete and practical useful examples.

2.2.1 SYMMETRIC BINARY

Define g(x) ≜ [x2
1, . . . , x

2
N ]T and h(x) ≜ 1N . Then, Proposition 1 yields the following CS

regularizer that promotes symmetric binary-valued vectors; see App. A.3 for the derivation.
Regularizer 1 (Symmetric Binary). Let x ∈ RN and define

ℓbin(x) ≜ N |[x]|4 −
(
|[x]|2

)2
. (6)

Then, the nonnegative function in (6) is only zero for symmetric binary-valued vectors, i.e., iff
x ∈ {−α, α}N for any α ∈ R. Furthermore, ℓbin(x) does not have any spurious critical points.

To gain insight into Regularizer 1, we invoke Lemma 1 and obtain

ℓbin(x) = N min
β∈R≥0

∑N
n=1

(
(xn −

√
β)(xn +

√
β)

)2
. (7)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

This equivalence implies that, for a given vector x, Regularizer 1 is the right-hand-side total square
error in (7), but with optimally chosen scale α ≜

√
β; this is the auto-scale property of CS regularizers.

In other words, the CS regularizer implicitly adapts its scale α to the scale of every argument x.
Furthermore, this CS regularizer is zero iff x ∈ {−α, α}N for some α ∈ R, as only xn = α or
xn = −α for n = 1, . . . , N allows the right-hand-side of (7) to be zero.

We showcase the efficacy of ℓbin for the recovery of binary-valued solutions in Section 3.1 and
compare its advantages to existing binarizing regularizers (cf. Section 1.3), e.g., being differentiable,
scale-adaptive, and free of additional optimization parameters, in App. C.1.

2.2.2 ONE-SIDED BINARY

Define g(x) ≜ [x2
1, . . . , x

2
N ]T and h(x) ≜ [x1, . . . , xN ]T. Then, Proposition 1 yields the following

CS regularizer that promotes one-sided binary-valued vectors; see App. A.4 for the derivation.
Regularizer 2 (One-Sided Binary). Let x ∈ RN and define

ℓosb(x) ≜ |[x]|2|[x]|4 −
(
|[x]|3

)2
. (8)

Then, the nonnegative function in (8) is only zero for one-sided binary-valued vectors, i.e., iff
x ∈ {0, α}N for any α ∈ R. Furthermore, ℓosb(x) does not have any spurious critical points.

To gain insight into Regularizer 2, we invoke Lemma 1 and obtain

ℓosb(x) = |[x]|2 min
β∈R

∑N
n=1

(
xn(xn − β)

)2
. (9)

Once again, we observe this CS regularizer’s auto-scale property and only vectors of the form
x ∈ {0, α}N for some α ∈ R minimize (9).

2.2.3 SYMMETRIC TERNARY

Define g(x) ≜ [x3
1, . . . , x

3
N ]T and h(x) ≜ [x1, . . . , xN ]T. Then, Proposition 1 yields the following

CS regularizer that promotes symmetric ternary-valued vectors; see App. A.5 for the derivation.
Regularizer 3 (Symmetric Ternary). Let x ∈ RN and define

ℓter(x) ≜ |[x]|2|[x]|6 −
(
|[x]|4

)2
. (10)

Then, the nonnegative function in (10) is only zero for symmetric ternary-valued vectors, i.e., iff
x ∈ {−α, 0, α}N for any α ∈ R. Furthermore, ℓter(x) does not have any spurious critical points.

To gain insight into Regularizer 3, we invoke Lemma 1 and obtain

ℓter(x) = |[x]|2 min
β∈R≥0

∑N
n=1

(
xn(xn −

√
β)(xn +

√
β)

)2
. (11)

As above, we observe this CS regularizer’s auto-scale property and only vectors of the form x ∈
{−α, 0, α}N for some α ∈ R minimize (11).

The CS regularizers introduced so far promote binary- or ternary-valued vectors. In App. B.1, we
detail an approach that generalizes CS regularizers to a symmetric, discrete-valued set with 2B

equispaced entries. In addition, al off the CS regularizers introduced above involve polynomials
of higher (e.g. quartic) order, leading to potential numerical stability issues. In App. B.2, we
propose alternative symmetric binarization regularizers that avoid such issues; similar alternative
regularization functions can be derived for the other discretization regularizers.

2.3 RECOVERING EIGENVECTORS OF A GIVEN MATRIX

All CS regularizers introduced so far promote vectors with discrete-valued entries. In order to
demonstrate the versatility of Proposition 1, we now propose a CS regularizer that promotes vectors
that are eigenvectors of a given (and fixed) C ∈ RN×N matrix.

Define g(x) ≜ Cx and h(x) = x. Then, Proposition 1 yields the following CS regularizer that
promotes eigenvectors of C; see App. A.6 for the derivation.
Regularizer 4 (Eigenvector Recovery). Fix C ∈ RN×N , let x ∈ RN , and define

ℓer(x) ≜ ∥Cx∥22∥x∥22 − (xTCx)2 (12)
Then, the nonnegative function in (12) is only zero for eigenvectors of C and the all-zeros vector.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.4 RECOVERING MATRICES WITH ORTHOGONAL COLUMNS

Finally, we demonstrate that Proposition 1 can also be used to promote structure in matrices. The
following CS regularizer promotes matrices X ∈ RN×K with K ≤ N to have orthogonal columns.

Define g(X) ≜ vec(XTX) and h(x) ≜ vec(IM ). Then, Proposition 1 yields the following CS
regularizer that promotes matrices with orthogonal columns; see App. A.7 for the derivation.
Regularizer 5 (Orthogonal Matrix). Let X ∈ RN×K with K ≤ N and define

ℓom(X) ≜ K∥XTX∥2F − ∥X∥4F. (13)

Let X = USVT be the singular value decomposition of X. Then, we equivalently have,

ℓom(X) ≜ K
(∑K

k=1 S
4
k,k

)
−

(∑K
k=1 S

2
k,k

)2

, (14)

which is the symmetric binarizer from (6) applied to the singular values of X. The nonnegative
function in (13) is only zero for matrices X with pairwise orthogonal columns of equal length, i.e., iff
XTX = αIN for α > 0. Furthermore, ℓom(X) does not have any spurious critical points.

2.5 GENERALIZATIONS AND VARIATIONS

Proposition 1 enables the design of a much broader range of CS regularizers, beyond those introduced
so far. We now outline a range of possible generalizations and variations. In addition, we propose a
range of non-differentiable variants of CS regularizers in App. B.5.

2.5.1 HÖLDER REGULARIZER

Proposition 1 can be generalized by replacing the CS inequality with Hölder’s inequality (Hölder,
1889). This results in the following recipe; a short proof is given in App. A.8.
Proposition 2. Fix two vector-valued functions g,h : RN → RN and define X as in (3). Let p, q ≥ 1
so that 1

p + 1
q = 1 and let r > 0. Then, the nonnegative function

ℓ̆(x) ≜ ∥g(x)∥rp∥h(x)∥rq − |⟨g(x),h(x)⟩|r (15)

is zero iff x ∈ X .

Proposition 1 is a special case of Proposition 2 by setting p = q = r = 2. A systematic investigation
of the potency of regularizers resulting from Proposition 2 is left for future work.

2.5.2 SCALE-INVARIANT HÖLDER REGULARIZER

By slightly modifying the proof of Proposition 2, one can also develop Hölder regularizers that are
scale-invariant, i.e., in which scaling the entire vector-valued function g(x) or h(x) with a nonzero
constant has no impact on the regularizer’s function value; see App. A.9 for the proof.
Proposition 3. Fix two vector-valued functions g,h : RN → RN and define X as in (3). Let p, q ≥ 1
so that 1

p + 1
q = 1 and let r > 0. Furthermore, set ε ≥ 0. Then, the nonnegative function

ℓ̄(x) ≜
∥g(x)∥rp∥h(x)∥rq + ε

|⟨g(x),h(x)⟩|r + ε
− 1 (16)

is zero iff x ∈ X .

Such scale-invariant regularization functions require special attention. First, while the parameter
ε > 0 prevents the denominator in (16) from becoming zero, only ε = 0 leads to a scale-invariant
regularizer. Second, regularizers derived from Proposition 3 may have significantly more spurious
critical points than those obtained via Proposition 2. Third, evaluating the gradient of regularizers
derived from (16) is typically more involved. Nonetheless, their (approximately) scale-invariant
property might turn out useful in some applications and outweigh the above drawbacks. We note that
scale-invariant versions of CS regularizers can be obtained as a special case of Proposition 3.

We conclude by noting that many other CS or Hölder regularizers can be derived when combining
the above ideas. We also note that most of these results can be generalized to complex-valued vectors.
A detailed investigation of such generalizations, variations, and specializations is left for future work.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 APPLICATION EXAMPLES

We now showcase application examples for vector discretization, recovery of eigenvectors of a given
matrix, recovering matrices with orthogonal columns, and quantization of neural network weights.

3.1 RECOVERING DISCRETE-VALUED VECTORS

The proposed CS regularizers enable the recovery of binary-, ternary- and two-bit-valued vectors
from underdetermined linear systems of equations. To this end, we solve systems of linear equations
b = Ax, where A ∈ RM×N has i.i.d. standard normal entries and M < N . We create vectors
x⋆ ∈ RN , whose entries are chosen i.i.d. with uniform probability from {−1,+1} for symmetric
binary and from {0,+1} for one-sided binary, and with probability 0.25, 0.5, 0.25 from {−1, 0,+1},
respectively, for ternary-valued vectors. For, two-bit-valued vectors, we create twp vectors y1 ∈ RN

and y2 ∈ RN whose entries are chosen i.i.d. with uniform probability from {−1,+1} and {−2,+2},
respectively, and calculate x⋆ = y1 + y2. Then, we calculate b = Ax⋆, and we try to recover the
vector x⋆ from b by solving optimization problems of the form

x̂ ∈ arg min
x̃∈RN

ℓ(x̃) subject to b = Ax̃ (17)

using a projected gradient descent algorithm—specifically, FISTA with backtracking (Beck &
Teboulle, 2009; Goldstein)3. Here, ℓ(x̃) are the CS regularizers from Section 2.2. We fix N = 100
and vary M between 30 and 90.4 We declare success for recovering x⋆ if the returned solution
x̂ satisfies ∥x̂ − x⋆∥2/∥x⋆∥2 ≤ 10−2.Fig. 1 shows the success probabilities with respect to the
undersampling ratio γ along with error bars calculated from the standard error of the mean.

Symmetric Binary We first recover symmetric binary-valued solutions using Regularizer 1 with
ℓbin from (6). For this scenario, Mangasarian & Recht (2011) showed that ℓ∞-norm minimization
recovers the binary-valued solution as long as γ = M/N satisfies γ > 0.5 and N approaches infinity.
Thus, our baseline is ℓ∞-norm minimization, which we solve with Douglas–Rachford splitting as
in (Studer et al., 2015). Fig. 1a shows the success rate for ℓbin and ℓ∞-norm minimization with respect
to the undersampling ratio γ. For ℓbin minimization, we observed that different initializations can have
an impact on the success rate since the objective is non-convex. Thus, we allow at most 10 random
initializations of projected gradient descent. We note that multiple initializations of Douglas-Rachford
splitting does not affect its success rate as the ℓ∞-norm is convex and the algorithm would converge
to the same solution. We see from Fig. 1a that ℓbin minimization has, for any undersampling ratio γ, a
higher probability of successfully recovering the true solution than ℓ∞-norm minimization.

We discuss the advantages of ℓbin over existing binarizing regularizers in App. C.1. We also provide a
comparison of the success rates of ℓbin and ℓ∞-norm minimization with existing binarizing regularizers
in App. C.2, and observe that ℓbin achievest the highest success rate. Moreover, in App. C.3,
we provide the success rates of other binarizing CS regularizer variants (e.g., the Hölder, non-
differentiable, and scale-invariant regularizers), where ℓbin, once again, achieves best performance.

One-Sided Binary We now recover vectors with one-sided binary-valued entries using Regular-
izer 2 with ℓosb from (8). In this experiment, we ran projected gradient descent for only one random
initialization. Our baseline for this scenario is ℓ1-norm minimization (Cai et al., 2009), as the gener-
ated vectors are sparse with half of the entries being nonzero (on average). We solve the ℓ1-norm
minimization problem with Douglas–Rachford splitting (Studer et al., 2015). Fig. 1b demonstrates
that ℓosb minimization significantly outperforms ℓ1-norm minimization for all undersampling ratios.

Symmetric Ternary We also recover vectors with symmetric ternary-valued entires using Reg-
ularizer 3 with ℓter from (10). In this experiment, we ran projected gradient descent for only one
random initialization. We use ℓ1-norm minimization as our baseline as the generated vectors are
sparse with half of the entries being nonzero (on average). Fig. 1c demonstrates that ℓter minimization
significantly outperforms ℓ1-norm minimization for all undersampling ratios.

3We run projected gradient descent and the baseline algorithms for a maximum of 104 iterations.
4We also study the impact of the sparsity of x⋆ while the number of measurements M is fixed in App. C.4.

For each M , we randomly generate 1000 problem instances and report the average success probability.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

(a) Symmetric binary

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

(b) One-sided binary

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

(c) Symmetric ternary

Figure 1: Probability of success for recovering vectors with (a) binary-, (b) one-sided binary-, and (c)
symmetric ternary values dependent on the undersampling ratio M/N .

Symmetric Two-Bit We also recover vectors with symmetric two-bit valued entries using Regular-
izer 6 from (43). In this experiment, we ran projected gradient descent for 10 random initializations.
Fig. 6 in App. C.5 demonstrates that ℓequ can recover symmetric two-bit vectors for all undersampling
ratios with reasonable success probability.

3.2 RECOVERING EIGENVECTORS OF A MATRIX

The proposed CS regularizers also enable the recovery of eigenvectors of a given (and fixed) matrix.
We once again consider a system of linear equations b = Ax, where A ∈ RM×N has i.i.d. standard
normal entries and M < N . We create vectors x⋆ ∈ RN by uniform randomly choosing an
eigenvector of a random matrix C ∈ RN×N with i.i.d. standard normal entries. We calculate
b = Ax⋆ and solve (17) using FISTA as in Section 3.1. As a baseline, we consider minimizing
ℓµ(x, µ) ≜ ∥Cx− µx∥22, which includes an additional optimization parameter (i.e., µ) compared to
minimizing ℓ(x̃) = ℓer(x) in (17). In App. C.6, Fig. 7, we observe that ℓer has significantly higher
success rates than the baseline.

3.3 RECOVERING MATRICES WITH ORTHOGONAL COLUMNS

We now demonstrate that the proposed regularizers can also impose structure to matrices. To this end,
we consider a system of linear equations AX = B, where A ∈ RM×N has i.i.d. standard normal
entries with M < N , and X ∈ RN×K with XTX = IK . We solve

X̂ ∈ arg min
X̃∈RN×K

ℓ(X̃) subject to AX̃ = B (18)

using FISTA as in Section 3.1. We have observed that for N = K = 10 and N = K = 100 and for
values of M such that M/N ∈ [0.1, 1], the output of FISTA was always an orthogonal matrix.

3.4 QUANTIZING NEURAL NETWORK WEIGHTS

We now provide another application example for binarizing and ternarizing neural network weights.
Our goal is to highlight the simplicity, versatility, and effectiveness of CS regularizers.

3.4.1 METHOD

Our weight quantization procedure consists of three steps: (i) training with CS regularizers, (ii)
weight quantization, and (iii) continued training of remaining parameters. We detail these steps below.
In order to demonstrate solely the impact of CS regularizers, we neither modify the neural network
architecture (e.g., we do not alter the layers or activations) nor the forward-backward propagation
stages, since we do not introduce any non-differentiable operations during training.

Step 1: Regularized Training Let θ denote the set of all parameters of a neural network and L(θ)
the loss function for learning the network’s task. We solve the following optimization problem:

θ̂ = argmin
θ

L(θ) + λ
∑K

k=1 ηk ℓ(θk). (19)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Here, λ ∈ R≥0 is a regularization parameter, θk is a vector consisting of the network weights which
should share a common scaling factor (this can, for example, be an entire layer, one convolution
kernel, or any other subset of network parameters), ηk is the associated normalization factor (e.g., the
reciprocal value of the dimension of θk), and ℓ can be any CS regularizer (e.g., ℓbin or ℓter).

After training the network parameters with the CS regularizers for a given number of epochs, the
weights contained in the vectors θk will be concentrated around {−αk, αk} for symmetric binary-
valued regularization or {−αk, 0, αk} for symmetric ternary-valued regularization for some αk > 0.

Step 2: Quantization The goal is to quantize the regularized weights {θk}Kk=1 from the previous
step. In what follows, we describe the quantization procedure for one weight vector w = θk.

We binarize the regularized weight vector w according to ŵ ≜ arg minx∈Xbin
∥w − x∥22 with

Xbin ≜ {x̃ ∈ {−α, α}N : α ∈ R} as in (Rastegari et al., 2016), which is given by
ŵn = α⋆ sign(wn), n = 1, . . . , N, with α⋆ = ∥w∥1/N. (20)

We ternarize the regularized weight vector w ̸= 0N according to ŵ ≜ arg minx∈Xter
∥w− x∥22 with

Xter ≜ {x̃ ∈ {−α, 0, α}N : α ∈ R} as in (Li et al., 2016), which is accomplished as follows: Let
Iτ = {i : |wi| ≥ τ}. Then, find the threshold that determines which entries of ŵ are nonzero as

τ⋆ = arg max
τ∈{|wi|:i∈I}

1
|Iτ | (

∑
i∈Iτ

|wi|)2. (21)

Finally, compute the ternarized vector as

ŵn =

{
α⋆ sign(wn), |wn| ≥ τ⋆

0, otherwise,
n = 1, . . . , N, with α⋆ = 1

|Iτ |
∑

i∈Iτ
|wi|. (22)

Step 3: Training with Quantized Weights After weight quantization, the number of trainable
parameters is significantly reduced since we now have only one scale factor for a vector of quantized
weights. Hence, we fix the signs of the weights and continue training only their shared scale factors
alongside other tunable network parameters (e.g., biases, batch normalization parameters, etc.)
without the use of CS regularizers and for a small number of epochs.

3.4.2 EXPERIMENTAL RESULTS

We conduct experiments on the benchmark datasets ImageNet (ILSVRC12) (Deng et al., 2009)
and CIFAR-10 (Krizhevsky, 2009) for image classification. We follow classical data augmentation
strategies as detailed in App. D.1.

Implementation As in (Rastegari et al., 2016; Qin et al., 2020; He et al., 2020), we regularize
and quantize all network layers except for the first convolutional layer and the last fully-connected
layer. For convolutional layers, we calculate the CS regularizer for vectors consisting of the weights
in all kernels that produce one output channel; this leads to one scaling factor for each output channel
following the approach from Rastegari et al. (2016). For fully-connected layers, we utilize one CS
regularizer for each row of the weight matrix; this leads to one scaling factor for each output feature.
We set the weights ηk in (19) to the reciprocal of the dimension of the elements in the corresponding
weight vector θk.

For ImageNet, we use ResNet-18 (He et al., 2016) and initialize the weights with a pretrained
full-precision model from PyTorch (pyt). In Step 1, we set the regularization parameter λ = 103

for binarization and λ = 107 for ternarization5 We train the network for 40 epochs each in Steps 1
and 3, with a batch size of 1024. We use Adam optimizer (Kingma & Ba, 2017) with learning rate
initialized by 0.001 and cosine annealing learning rate scheduler (Loshchilov & Hutter, 2016).

For CIFAR-10, we use ResNet-20 and initialize the weights with a pretrained full-precision model
from Idelbayev, similarly to (Qin et al., 2020). We set λ = 10 for binarization and λ = 105 for
ternarization. We train the network for 400 and 20 epochs in Steps 1 and 2, respectively, with a batch
size of 128. The optimizer and learning rate schedule is the same as ImageNet.

5We chose the regularization parameter λ empirically based on using 1/10th of the training sets for validation.
We have observed that changes by a factor of 10 in λ has insignificant effect on the resulting accuracies. Please
see Tables 4-7 in App. D.2 for an ablation study for varying λ.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
weight values

0

20

40

60

80

100

120

140

co
un

t

(a) Pretrained

0.04 0.02 0.00 0.02 0.04
weight values

0

20

40

60

80

100

120

co
un

t

(b) ℓbin, 5 epochs

0.04 0.02 0.00 0.02 0.04
weight values

0

25

50

75

100

125

150

175

co
un

t

(c) ℓbin, 20 epochs

0.06 0.04 0.02 0.00 0.02 0.04 0.06
weight values

0

20

40

60

80

co
un

t

(d) ℓter, 5 epochs

0.04 0.02 0.00 0.02 0.04
weight values

0

20

40

60

80

100

120

140

co
un

t

(e) ℓter, 20 epochs

Figure 2: Neural network weight histograms of one output channel of a convolutional layer in the
pretrained ResNet-18 model and the model after regularized training with ℓbin or ℓter over ImageNet.

Weight Distribution Fig. 2 illustrates the impact of CS regularizers on the network weights
with histograms for one output channel of one convolutional layer based on training ResNet-18 on
ImageNet. We observe in Fig. 2(a) the weight distribution of the pretrained network resembles that
of a zero-mean Gaussian distribution. Figures 2(b) and (c) reveal, as intended, that the weights
are becoming more concentrated around binary values after 5 and 20 epochs of training with the
regularizer ℓbin, respectively. Figures 2(d) and (e) reveal a similar behavior when using ℓter.

Performance Evaluation In App. D.3, Tables 8-10, we provide the top-1 accuracy for our methods
along with the full-precision baseline and various SOTA baselines that binarize or ternarize the
weights of the network while the activations are left in full precision. All SOTA top-1 accuracy results
in Tables 8-10 are taken from the corresponding papers.

For ImageNet, we observe from Tables 8 and Table 9 that for binary-valued weights, our approach
outperforms SQ-BWN (Dong et al., 2017), BWN (Rastegari et al., 2016), HWGQ (Cai et al., 2017),
PCCN (Gu et al., 2019), and the ternary TWN (Li et al., 2016), while the accuracy we achieve is
4.9% lower than the best SOTA method ProxyBNN (He et al., 2020). For ternary-valued weights,
our approach outperforms TWN and SQ-TWN (Dong et al., 2017), while the accuracy we achieve is
2.8% lower than the SOTA method QIL (Jung et al., 2019).

For CIFAR-10, we observe from Table 10 that for binary-valued weights, our approach outperforms
DoReFa-Net by a small margin and achieve the same performance as LQ-Net (Zhang et al., 2018),
while the accuracy of our approach is 0.9% lower than the SOTA methods DAQ (Kim et al., 2021)
and LCR-BNN (Shang et al., 2022); these two methods are also the only methods outperforming our
ternary-valued approach by 0.2%.

While some of the SOTA methods achieve better accuracy than our approach, our results (i) require a
simpler training procedure6 and (ii) showcase the potential of CS regularizers: We only have one
step of regularized training with full-precision weights, a quantization step, and a second step of
training with fewer parameters; this procedure does not require any additional storage at any stage of
training. In contrast, all of the baseline methods retain both the quantized and full-precision values
for the weights during training, and use the quantized weights in forward and backward propagation
while the full-precision values are updated with the gradients calculated with respect to the quantized
values. This results in additional storage. Moreover, to reduce the quantization error or to alleviate the
mismatch between forward and backward propagation, references (Gu et al., 2019; Hu et al., 2018;
Kim et al., 2021; He et al., 2020; Yang et al., 2019; Zhang et al., 2018; Jung et al., 2019) introduce
more trainable parameters and Shang et al. (2022) proposes a regularization method that requires the
construction of matrices that scale with the square of the number of features in one layer. Please see
Table 3 for a detailed comparison of the

We conclude by noting that the proposed CS regularizers could be combined with any of these
existing approaches for possible further accuracy improvements.

4 LIMITATIONS

While the proposed CS regularizers provide a recipe for designing regularization functions with a
wide variety of properties, they suffer from a range of limitations summarized next.

First and foremost, CS regularizers are typically nonconvex. While we have been able to prove that
some of the proposed nonconvex CS regularizers are free of any spurious critical points, convergence

6Please see Table 3 for the advantages/disadvantages of our training strategy compared to the SOTA methods.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

to a global minimum depends on the combination of the objective, regularizer, and optimization
algorithm. Thus, multiple random restarts of the optimizer might be necessary in practice.

Furthermore, some of the CS regularizers involve higher-order polynomials (e.g., the ternarization
regularizer in (10) involves eighth-order polynomials), which can result in poor convergence behavior,
especially around their minimum. To counteract this issue, one can either resort to non-differentiable
variants outlined in App. B.5 or to scale-invariant variants outlined in Section 2.5.2. In addition, uti-
lizing adaptive step-size selection methods and schedules that adapt (e.g., increase) the regularization
parameter λ over iterations could also be used to improve convergence.

Finally, we have only scratched the surface of many of the specializations, variations, and gener-
alizations put forward in Section 2.5. Besides that, we have only investigated the efficacy of CS
regularizers with two example applications, i.e., solving underdetermined systems of linear equations
and neural network weight quantization with a simple training recipe, in Section 3. A thorough theo-
retical analysis and simulative study of alternative CS regularizers in a broader range of applications,
as well as combining CS regularizers with sophisticated SOTA quantized neural network training
procedures, such as the ones in (He et al., 2020; Jung et al., 2019), are left for future work.

5 CONCLUSIONS

We have proposed Cauchy–Schwarz (CS) regularizers, a novel class of regularization functions that
can be designed to promote a wide range of properties. We have derived example regularization
functions that promote discrete-valued vectors, eigenvectors to matrices, or matrices with orthogonal
columns, and we have outlined a range of specializations, variations, and generalizations that lead to
an even broader class of new and possibly more powerful regularizers. For solving underdetermined
systems of linear equations, we have shown that CS regularizers can outperform well-established
baseline methods, such as ℓ∞-norm or ℓ1-norm minimization. For weight quantization of neural
networks, we have shown that utilizing CS regularizers enables one to achieve competitive accuracy
to existing quantization methods while using a simple training procedure.

REFERENCES

https://pytorch.org/vision/0.13/models/generated/torchvision.
models.resnet18.html.

Yu Bai, Yu-Xiang Wang, and Edo Liberty. ProxQuant: Quantized neural networks via proximal
operators. In International Conference on Learning Representations, ICLR, 2019.

Amir Beck and Marc Teboulle. Fast gradient-based algorithms for constrained total variation image
denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11):2419–2434,
January 2009.

T. Tony Cai, Guangwu Xu, and Jun Zhang. On recovery of sparse signals via ℓ1-norm minimization.
IEEE Transactions on Information Theory, 55(7):3388–3397, June 2009.

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision by
half-wave Gaussian quantization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

Oscar Castañeda, Sven Jacobsson, Giuseppe Durisi, Mikael Coldrey, Tom Goldstein, and Christoph
Studer. 1-bit massive MU-MIMO precoding in VLSI. IEEE J. Emerging Sel. Topics Circuits Syst.,
7(4):508–522, December 2017.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Learning sparse low-precision neural networks
with learnable regularization. IEEE Access, 8:96963–96974, 2020.

Clayton W. Commander. Maximum cut problem, MAX-CUTMaximum Cut Problem, MAX-CUT,
pp. 1991–1999. Springer US, Boston, MA, 2009. ISBN 978-0-387-74759-0. doi: 10.1007/
978-0-387-74759-0_358. URL https://doi.org/10.1007/978-0-387-74759-0_
358.

10

https://pytorch.org/vision/0.13/models/generated/torchvision.models.resnet18.html
https://pytorch.org/vision/0.13/models/generated/torchvision.models.resnet18.html
https://doi.org/10.1007/978-0-387-74759-0_358
https://doi.org/10.1007/978-0-387-74759-0_358


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, and Vahid Partovi Nia. Regularized binary
network training. arXiv preprint arXiv:1812.11800, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Proc. IEEE Conf. Comp. Vision and Patt. Recog., pp. 248–255,
May 2009. doi: 10.1109/CVPR.2009.5206848.

Yinpeng Dong, Jianguo Li, and Renkun Ni. Learning accurate low-bit deep neural networks with
stochastic quantization. In BMVC, 01 2017. doi: 10.5244/C.31.189.

Ahmed T Elthakeb, Prannoy Pilligundla, Fatemehsadat Mireshghallah, Tarek Elgindi, Charles-Alban
Deledalle, and Hadi Esmaeilzadeh. WaveQ: Gradient-based deep quantization of neural networks
through sinusoidal adaptive regularization. arXiv preprint arXiv:2003.00146, 2020.

Tom Goldstein. fasta-matlab. https://github.com/tomgoldstein/fasta-matlab.
Accessed: 2024-03-30.

Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and
Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4852–4861,
2019.

Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David Doermann.
Projection convolutional neural networks for 1-bit CNNs via discrete back propagation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 8344–8351, July
2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. in IEEE Conf. on Comp. Vision and Pattern Recognition (CVPR), pp.
770–778, June 2016. doi: 10.1109/CVPR.2016.90.

Xiangyu He, Zitao Mo, Ke Cheng, Weixiang Xu, Qinghao Hu, Peisong Wang, Qingshan Liu, and
Jian Cheng. ProxyBNN: Learning binarized neural networks via proxy matrices. In European
Conference on Computer Vision, pp. 223–241. Springer, August 2020.

Otto Hölder. Ueber einen Mittelwerthssatz. Nachrichten von der Königlichen Gesellschaft der
Wissenschaften und der Georg-Augusts-Universität zu Göttingen, (2):38–47, 1889.

Lu Hou, Quanming Yao, and James T Kwok. Loss-aware binarization of deep networks. arXiv
preprint arXiv:1611.01600, 2016.

Qinghao Hu, Peisong Wang, and Jian Cheng. From hashing to CNNs: Training binary weight
networks via hashing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
April 2018.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. The Journal
of Machine Learning Research, 18(1):6869–6898, 2017.

Pei-Hen Hung, Chia-Han Lee, Shao-Wen Yang, V Srinivasa Somayazulu, Yen-Kuang Chen, and
Shao-Yi Chien. Bridge deep learning to the physical world: An efficient method to quantize
network. In IEEE Workshop on Signal Processing Systems (SiPS). IEEE, 2015.

Yerlan Idelbayev. Proper ResNet implementation for CIFAR10/CIFAR100 in PyTorch. https:
//github.com/akamaster/pytorch_resnet_cifar10. Accessed: 2024-04-30.

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju
Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing quantization
intervals with task loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4350–4359, 2019.

Dohyung Kim, Junghyup Lee, and Bumsub Ham. Distance-aware quantization. In IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 5251–5260, October 2021. doi: 10.
1109/ICCV48922.2021.00522.

11

 https://github.com/tomgoldstein/fasta-matlab
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, January 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely low bit neural net-
work: Squeeze the last bit out with admm. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711,
2016.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Zhi-quan Luo, Wing-kin Ma, Anthony Man-cho So, Yinyu Ye, and Shuzhong Zhang. Semidefinite
relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3):20–34,
May 2010.

Olvi L. Mangasarian and Benjamin Recht. Probability of unique integer solution to a system of linear
equations. Eur. J. Oper. Res., 214(1):27–30, October 2011.

Yoshiki Matsuda. Benchmarking the MAX-CUT problem on the simulated bi-
furcation machine, 209. URL https://medium.com/toshiba-sbm/
benchmarking-the-max-cut-problem-on-the-simulated-bifurcation-machine-e26e1127c0b0.
Accessed: 2024-06-27.

Maxim Naumov, Utku Diril, Jongsoo Park, Benjamin Ray, Jedrzej Jablonski, and Andrew Tul-
loch. On periodic functions as regularizers for quantization of neural networks. arXiv preprint
arXiv:1811.09862, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035. 2019.

Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu, and Jingkuan
Song. Forward and backward information retention for accurate binary neural networks. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2247–2256, June
2020. doi: 10.1109/CVPR42600.2020.00232.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: ImageNet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525–542. Springer, 2016.

Ryan Razani, Gregoire Morin, Eyyub Sari, and Vahid Partovi Nia. Adaptive binary-ternary quantiza-
tion. In Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops,
pp. 4613–4618, June 2021.

Peter H Schönemann. A generalized solution of the orthogonal procrustes problem. Psychometrika,
31(1):1–10, 1966.

Sohil Shah, Abhay Kumar Yadav, Carlos D Castillo, David W Jacobs, Christoph Studer, and Tom
Goldstein. Biconvex relaxation for semidefinite programming in computer vision. pp. 717–735,
September 2016.

Yuzhang Shang, Dan Xu, Bin Duan, Ziliang Zong, Liqiang Nie, and Yan Yan. Lipschitz continuity
retained binary neural network. In European Conference on Computer Vision, pp. 603–619.
Springer, October 2022.

12

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://medium.com/toshiba-sbm/benchmarking-the-max-cut-problem-on-the-simulated-bifurcation-machine-e26e1127c0b0
https://medium.com/toshiba-sbm/benchmarking-the-max-cut-problem-on-the-simulated-bifurcation-machine-e26e1127c0b0


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kirill Solodskikh, Vladimir Chikin, Ruslan Aydarkhanov, Dehua Song, Irina Zhelavskaya, and
Jiansheng Wei. Towards accurate network quantization with equivalent smooth regularizer. In
European Conference on Computer Vision, pp. 727–742. Springer, 2022.

J. Michael Steele. The Cauchy–Schwarz Master Class: an Introduction to the Art of Mathematical
Inequalities. Cambridge University Press, 2004.

Christoph Studer, Tom Goldstein, Wotao Yin, and Richard G. Baraniuk. Democratic representations.
arXiv:1401.3420, April 2015.

Sueda Taner and Christoph Studer. ℓp−ℓq-norm minimization for joint precoding and peak-to-average-
power ratio reduction. In Proc. Asilomar Conf. Signals, Syst., Comput., pp. 437–442, October
2021.

Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with high
accuracy? In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Linh Tran, Maja Pantic, and Marc Peter Deisenroth. Cauchy–Schwarz regularized autoencoder.
Journal of Machine Learning Research, 23(115):1–37, 2022.

Matthias Wess, Sai Manoj Pudukotai Dinakarrao, and Axel Jantsch. Weighted quantization-
regularization in DNNs for weight memory minimization toward HW implementation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(11):2929–2939,
2018.

Sheng Xu, Yanjing Li, Teli Ma, Mingbao Lin, Hao Dong, Baochang Zhang, Peng Gao, and Jinhu Lu.
Resilient binary neural network. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 10620–10628, 2023.

Huanrui Yang, Lin Duan, Yiran Chen, and Hai Li. BSQ: Exploring bit-level sparsity for mixed-
precision neural network quantization. arXiv preprint arXiv:2102.10462, 2021.

Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, and Xian-
sheng Hua. Quantization networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7308–7316, 2019.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. LQ-nets: Learned quantization for
highly accurate and compact deep neural networks. In Proceedings of the European conference on
computer vision (ECCV), pp. 365–382, 2018.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix: Cauchy–Schwarz Regularizers

A PROOFS AND DERIVATIONS

A.1 PROOF OF PROPOSITION 1

From the Cauchy–Schwarz inequality (Steele, 2004) follows that

|⟨g(x),h(x)⟩| ≤ ∥g(x)∥2∥h(x)∥2. (23)

Squaring both sides of (23) and rearranging terms leads to

0 ≤ ∥g(x)∥22∥h(x)∥22 − |⟨g(x),h(x)⟩|2 ≜ ℓ(x). (24)

Equality in (23) holds iff g(x) ∼ h(x), for which ℓ(x) = 0.

A.2 PROOF OF LEMMA 1

Assume that h(x) ̸= 0. Then,

∂∥g(x)− βh(x)∥22
∂β

= 0 =⇒ β =
⟨g(x),h(x)⟩
∥h(x)∥22

. (25)

Plugging the right-hand-side into ∥g(x)− βh(x)∥22 yields

min
β∈R

∥g(x)− βh(x)∥22 = ∥g(x)∥22 −
|⟨g(x),h(x)⟩|2

∥h(x)∥22
. (26)

Multiplying both sides by ∥h(x)∥22 results in

ℓ(x) = ∥h(x)∥22 min
β∈R

∥g(x)− βh(x)∥22. (27)

If h(x) = 0, then (27) still holds. By swapping g(x) with h(x), the equalities in (5) follow.

A.3 DERIVATION OF REGULARIZER 1

Regularizer 1 is minimized by vectors x ∈ RN that satisfy the linear dependence condition g(x) ∼
h(x) for the specific choices g(x) = [x2

1, . . . , x
2
N ]T and h(x) = 1N . We have

g(x) ∼ h(x) ⇐⇒ ∃(a1, a2) ∈ R2\{(0, 0)} : a1x
2
n = a2, n = 1, . . . , N. (28)

If a1 ̸= 0, then x2
n = a2/a1 which implies xn = ±α, n = 1, . . . , N , for some α ∈ R. If a1 = 0

then a2 ̸= 0, so the condition a1x
2
n = a2 cannot be satisfied; this implies that the only vectors that

satisfy ℓbin(x) = 0 from (6) are in the following set:

Xbin =
{
x̃ ∈ {−α, α}N : α ∈ R

}
. (29)

The same result would also follow directly from inspection of (7).

To establish the fact that Regularizer 1 does not have any spurious critical points, we need to show
that ∇ℓbin(x) = 0 iff x ∈ Xbin. To this end, we inspect

∂ℓbin(x)
∂xn

= 4Nx3
n − 4|[x]|2xn = 4xn(Nx2

n − |[x]|2) = 0, n = 1, . . . , N. (30)

Clearly, every vector x ∈ Xbin satisfies (30). For any other vector, the gradient is nonzero. To prove
this, it is sufficient to show that the derivative is nonzero for a two-dimensional, non-binary-valued
vector, because any vector with a non-binary-valued subvector is non-binary-valued (and, any non-
binary-valued vector has a non-binary-valued subvector). To this end, let x = [α, β]T for α ̸= β,
α ̸= −β, and α, β ̸= 0. Then, we have

∂ℓbin(x)
∂x1

= 4α(2α2 − (α2 + β2)) = 4α(α2 − β2) ̸= 0. (31)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.4 DERIVATION OF REGULARIZER 2

Regularizer 2 is minimized by vectors x ∈ RN that satisfy the linear dependence condition g(x) ∼
h(x) for the specific choices g(x) = [x2

1, . . . , x
2
N ]T and h(x) = x. We have

g(x) ∼ h(x) ⇐⇒ ∃(a1, a2) ∈ R2\{(0, 0)} : a1x
2
n = a2xn, n = 1, . . . , N. (32)

If xn = 0, then the condition a1x
2
n = a2xn is trivially satisfied. If xn ̸= 0, then we inspect

a1xn = a2. If a1 ̸= 0, then xn = a2/a1, which implies xn = α for some α ∈ R. If a1 = 0 then
a2 ̸= 0, so the condition a1xn = a2 cannot be satisfied; this implies that the only vectors that satisfy
ℓosb(x) = 0 from (8) are in the following set:

Xosb =
{
x̃ ∈ {0, α}N : α ∈ R

}
. (33)

The same result would also follow directly from inspection of (9).

To establish the fact that Regularizer 2 does not have any spurious critical points, we need to show
that ∇ℓosb(x) = 0 iff x ∈ Xosb. To this end, we inspect

∂ℓosb(x)
∂xn

= 2xn

(
|[x]|4 + 2x2

n|[x]|2 − 3xn|[x]|3
)
= 0, n = 1, . . . , N. (34)

Clearly, every vector x ∈ Xosb satisfies (34). For any other vector, the gradient is nonzero. To prove
this, it is sufficient to show that the derivative is nonzero for a two-dimensional, non-one-sided-
binary-valued (non-OSB) vector, because any vector with a non-OSB subvector is non-OSB (and,
any non-OSB vector has a non-OSB subvector). Assume x = [α, β]T for α ̸= β and α, β ̸= 0. Then
∂ℓosb(x)
∂x1

= 2αβ2(2α− β)(α− β), and by symmetry, ∂ℓosb(x)
∂x2

= 2α2β(α− 2β)(α− β); this implies

that ∂ℓosb(x)
∂x1

and ∂ℓosb(x)
∂x2

cannot be zero simultaneously.

A.5 DERIVATION OF REGULARIZER 3

Regularizer 3 is minimized by vectors x ∈ RN that satisfy the linear dependence condition g(x) ∼
h(x) for the specific choices g(x) = [x3

1, . . . , x
3
N ]T and h(x) = x. We have

g(x) ∼ h(x) ⇐⇒ ∃(a1, a2) ∈ R2\{(0, 0)} : a1x
3
n = a2xn, n = 1, . . . , N. (35)

If xn = 0, then the condition a1x
2
n = a2xn is trivially satisfied. If xn ̸= 0, then we inspect

a1x
2
n = a2. If a1 ̸= 0, then x2

n = a2/a1, which implies xn = ±α for some α ∈ R. If a1 = 0 then
a2 ̸= 0, so the condition a1x

2
n = a2 cannot be satisfied; this implies that the only vectors that satisfy

ℓosb(x) = 0 from (10) are in the following set:

Xter =
{
x̃ ∈ {−α, 0, α}N : α ∈ R

}
. (36)

The same result would also follow directly from inspection of (11).

To establish the fact that Regularizer 3 does not have any spurious critical points, we need to show
that ∇ℓter(x) = 0 iff x ∈ Xter. To this end, we inspect

∂ℓter(x)
∂xn

= 2xn

(
|[x]|6 + 3|[x]|2x4

n − 4|[x]|4x2
n

)
= 0, n = 1, . . . , N. (37)

Clearly, every vector x ∈ Xter satisfies (37). For any other vector, the derivative is nonzero. To prove
this, it is sufficient to show that the derivative is nonzero for a two-dimensional, non-ternary-valued
vector, because any vector with a non-ternary-valued subvector is non-ternary-valued (and, any
non-ternary-valued vector has a non-ternary-valued subvector). Assume x = [α, β] for α ̸= β,
α ̸= −β and α, β ̸= 0. Then ∂ℓter(x)

∂x1
= 2αβ2(3α2 − β2)(α2 − β2), and, by symmetry, ∂ℓter(x)

∂x2
=

2α2β(α2 − 3β2)(α2 − β2); this implies that ∂ℓter(x)
∂x1

and ∂ℓter(x)
∂x2

cannot be zero simultaneously.

A.6 DERIVATION OF REGULARIZER 4

Regularizer 4 is minimized by vectors x ∈ RN that satisfy the linear dependence condition g(x) ∼
h(x) for the specific choices g(x) = Cx and h(x) = x. By definition, we have that g(x) ∼ h(x) if
and only if x is an eigenvector of C.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.7 DERIVATION OF REGULARIZER 5

Regularizer 5 is minimized by matrices X ∈ RN that satisfy the linear dependence condition
g(x) ∼ h(x) for the specific choices g(X) ≜ vec(XTX) and h(x) ≜ vec(IM ).

To establish the fact that Regularizer 5 does not have any spurious critical points, we need to show
that ∇ℓom(x) = 0 iff x ∈ Xom. To this end, we inspect

∇ℓomX(X) = 4NXXTX− 4∥X∥2FX = 0 (38)

⇒ 4X(NXTX− ∥X∥2FIN ) = 0 (39)

⇒ NXTX = ∥X∥2FIN , (40)

which implies that X must have orthogonal columns.

A.8 PROOF OF PROPOSITION 2

From the triangle inequality and Hölder’s inequality (Hölder, 1889) follows that

|⟨g(x),h(x)⟩| ≤
∑N

n=1

∣∣[g(x)]n[h(x)]n∣∣ ≤ ∥g(x)∥p∥h(x)∥q, (41)

where p, q ≥ 1 so that 1
p + 1

q = 1. Raising the left-hand and the right-hand sides of (41) to the power
of r > 0 and rearranging terms leads to

0 ≤ ∥g(x)∥rp∥h(x)∥rq − |⟨g(x),h(x)⟩|r ≜ ℓ̆(x). (42)

Both inequalities in (41) hold iff g(x) ∼ h(x), for which ℓ̆(x) = 0.

A.9 PROOF OF PROPOSITION 3

The proof follows that of App. A.8, but where we first add ε ≥ 0 to the left-hand and right-hand sides
of (41), followed by a division by |⟨g(x),h(x)⟩|+ ε and rearranging terms to arrive at ℓ̄(x) in (16).

B ALTERNATIVE CAUCHY–SCHWARZ REGULARIZERS

B.1 BEYOND VECTOR TERNARIZATION

We now show one approach that generalizes CS regularizers to a symmetric, discrete-valued set
with 2B equispaced entries. The idea behind this approach is as follows: (i) decompose x ∈ RN into
a sum of B auxiliary vectors x =

∑B
b=1 yb with yb ∈ RN and (ii) apply one regularization function

to the auxiliary vectors yb, b = 1, . . . , B.

Define g
(
{yb}Bb=1

)
=

[
g̃(y1)

T, . . . , g̃(yB)
T
]T

using g̃(y) = [y21 , . . . , y
2
N ]T and h

(
{yb}Bb=1

)
=[

h̃1(y1)
T, . . . , h̃B(yB)

T
]T

using h̃b(y) = 4b−11N . Then, Proposition 1 yields the following CS
regularizer that promotes symmetric equispaced-valued vectors; see App. B.1.1 for the derivation.
Regularizer 6 (Symmetric Equispaced). Let yb ∈ RN for b = 1, . . . , B and define

ℓequ
(
{yb}Bb=1

)
≜ KN

(∑B
b=1 |[yb]|4

)
−
(∑B

b=1 4
b−1|[yb]|2

)2
(43)

with K ≜
∑B

b=1 4
2(b−1). Then, the nonnegative function (43) is only zero for vectors yb ∈

{−2b−1α, 2b−1α}N ∪ 0N , b = 1, . . . , B, for any α ∈ R; this implies that the sum of these vectors
x ≜

∑B
b=1 yb is in the set Xequ ≜ {±(2b − 1)α}Bb=1 with |Xequ| = 2B. Furthermore, ℓequ does not

have any spurious critical points.

To gain insight into Regularizer 6, we invoke Lemma 1 and obtain

ℓequ({yb}Bb=1) = KN min
β∈R

B∑
b=1

(
(yb[n]− 2b−1

√
β)(yb[n] + 2b−1

√
β)

)2
(44)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We also observe this CS regularizer’s auto-scale property and only vectors of the form yb ∈
{−2b−1α, 2b−1α}N for some α ∈ R minimize (44). This implies that the vectors x are of the
form x ∈ {−(2B − 1)α, . . . ,−α, α, . . . , (2B − 1)α}N for some α ∈ R.

In contrast to the initially introduced binarization and ternarization regularizers, Regularizer 6
introduces additional optimization parameters, i.e., increases the dimension of the optimization
problem by a factor of B.

B.1.1 DERIVATION OF REGULARIZER 6

Regularizer 6 is minimized by vectors {yb}Bb=1 that satisfy the linear dependence condition
g
(
{yb}Bb=1

)
∼ h

(
{yb}Bb=1

)
for the specific choices g

(
{yb}Bb=1

)
= [g̃(y1), . . . , g̃(yB)]

T using
g̃(y) = [y21 , . . . , y

2
N ]T and h

(
{yb}Bb=1

)
= [h̃(y1), . . . , h̃(yB)]

T using h̃(yb) = 4b−11N . We have

g
(
{yb}Bb=1

)
∼ h

(
{yb}Bb=1

)
⇐⇒ ∃(a1, a2) ∈ R2\{(0, 0)} : a1y

2
b,n = a24

b−1, b = 1, . . . , B, n = 1, . . . , N. (45)

If a1 ̸= 0, then y2n,b = a2

a1
4b−1 which implies yn,b = 0 or yb,n = ±α2b−1, n = 1, . . . , N ,

b = 1, . . . , B, for some α ∈ R. If a1 = 0 then a2 ̸= 0, so the condition a1y
2
b,n = a24

b−1 cannot be
satisfied; this implies that the only vectors yb that satisfy ℓequ

(
{yb}Bb=1

)
= 0 from (43) are in the

following set:

Yb,α = {−2b−1α, 2b−1α}N ∪ 0N , (46)

with yb ∈ Yb,α, b = 1, . . . , B for any α ∈ R. The same result would also follow directly from
inspection of (44). Then, the vectors x =

∑B
b=1 yb are in the following set:

Xequ =
{
x ∈ {−2B−1α, . . . ,−α, α, . . . , 2B−1α}N : α ∈ R

}
. (47)

To establish the fact that Regularizer 6 does not have any spurious critical points, we need to show
that ∇ℓequ(yb) = 0, b = 1, . . . , B iff yb ∈ Yb,α, b = 1, . . . , B for any α ∈ R. To this end, we
inspect

∂ℓequ({yb}Bb=1)

∂yb[n]
= 4yb[n]

(
KN(yb[n])

2 − 4b−1
∑B

b̃=1 4
b̃−1|[yb̃]|2

)
= 0 (48)

for n = 1, . . . , N and b = 1, . . . , B. Clearly, yb ∈ Yb,α, b = 1, . . . , B satisfies (48). For a set of
vectors in any other form, the derivative is nonzero. To prove this, it is sufficient to show that the
derivative is nonzero for a pair of scalars (i.e., N = 1) (yb, yb′) for yb ̸= 0, |yb| ≠ 2b−1|α| and
|yb′ | = 2b

′−1|α|, because any pair of vectors including these entries would not satisfy (48) (and, any
set of vectors that do not satisfy (48) must have such a pair of entries). We have,

∂ℓequ(yb, yb′)

∂yb
= 4yb4

2(b′−1)
(
y2b − 4b−1α2

)
̸= 0. (49)

B.2 BOUNDED CS REGULARIZERS FOR VECTOR BINARIZATION

We now propose alternative binarization regularizers that avoids potential numerical issues caused by
higher-order polynomials.

Define b(x) ≜ (1 + x2)−1 and g(x) ≜ [b(x1), . . . , b(xN )]T. Furthermore, let h(x) ≜ 1N . Then,
Proposition 1 yields the following CS regularizer that promotes symmetric binary-valued vectors.

Regularizer 7 (Bounded Symmetric Binarizer). Let x ∈ RN and define

ℓbbin(x) ≜ N
∑N

n=1
1

(1+x2
n)

2 −
(∑N

n=1
1

1+x2
n

)2

(50)

Then, the nonnegative function in (50) is only zero for one-sided binary-valued vectors, i.e., iff
x ∈ {0, α}N for any α ∈ R. Furthermore, ℓbbin(x) does not have any spurious critical points.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

An alternative binarization regularizer can be obtained as follows. Define b(x) ≜ e−x2

and g(x) ≜
[b(x1), . . . , b(xN )]T. Furthermore, let h(x) ≜ 1N . Then, Proposition 1 yields the following CS
regularizer that promotes symmetric binary-valued vectors.
Regularizer 8 (Alternative Bounded Symmetric Binarizer). Let x ∈ RN and define

ℓbin,exp(x) ≜ N
∑N

n=1 e
−2x2

n −
(∑N

n=1 e
−2x2

n

)2

(51)

Then, the nonnegative function in (51) is only zero for one-sided binary-valued vectors, i.e., iff
x ∈ {0, α}N for any α ∈ R.

Note that by normalizing (50) and (51) with 1/N2, the maximum value of the resulting CS regularizer
is bounded from above by 1.

B.3 VECTORS IN NULLSPACE OF A GIVEN MATRIX

The following regularizer promotes unit-norm vectors in the nullspace of a given (and fixed) matrix
C ∈ RM×N . Define g(x) ≜ [(Cx)T, ∥x∥22 − 1, 1]T and h(x) ≜ [0T

M×1, 0, 1]
T. Then, Proposition 1

yields the following CS regularizer that promotes unit-norm vectors in nullspace of C.
Regularizer 9 (Nullspace Vector). Fix C ∈ RM×N with M ≥ N and let x ∈ RN . Define

ℓns(x) ≜ ∥Cx∥22 + (∥x∥22 − 1)2 (52)

Then, the nonnegative function in Regularizer 52 is zero for only unit-norm vectors x in the nullspace
of C, i.e., iff Cx = 0M×1 with ∥x∥22 = 1.

B.4 CS REGULARIZERS WITH FIXED SCALE

If one is, for example, interested in promoting binary-valued vectors with predefined scale, i.e.,
x ∈ {−α, α}N but for a given fixed value of α, then one can use g(x) ≜ [x2

1, . . . , x
2
N , α2]T and

h(x) ≜ 1N+1 in (4). We note, however, that this particular binarization regularizer with α = 1 has
been utilized before in (Tang et al., 2017); similar regularizers can be found in (Hung et al., 2015;
Darabi et al., 2019). In general, the idea of augmenting the functions g and h with constants removes
the auto-scale property of CS regularizers.

B.5 NON-DIFFERENTIABLE VARIANTS

One can also develop non-differentiable variants of CS regularizers. For example, by defining
g(x) ≜

[
|x1|, . . . , |xN |

]T
and h(x) ≜ 1N in Proposition 1, one obtains the CS regularizer

ℓ̃bin(x) ≜ N |[x]|2 − ∥x∥21, (53)

which also promotes symmetric binary-valued entries. Intriguingly, this regularizer is equal to the
scaled empirical variance of the entry-wise absolute values of x ∈ RN , i.e., ℓ̃bin(x) = N2Var(|x|).
One could also combine the idea of (53) with Proposition 2 using p = q = 2 and r = 1 to obtain

ℓ̆bin(x) ≜
√
N∥x∥2 − ∥x∥1, (54)

which also promotes symmetric binary-valued entries. Such alternative versions might result in better
empirical convergence if, for example, used within auto-differentiation frameworks that allow for
non-differentiable functions. We conclude by noting that the specific regularizer in (53) has been used
in (Taner & Studer, 2021) for dynamic-range reduction of complex-valued data in wireless systems.

C ADDITIONAL RESULTS

C.1 COMPARISON OF THE BINARIZING CS REGULARIZER WITH EXISTING REGULARIZERS

Table 1 summarizes the key properties of existing regularizers from Section 1.3 and how our regu-
larizer can be superior to those, i.e., by being differentiable, scale-adaptive, and avoiding additional
optimization parameters.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 1: Comparison of regularizers for vector binarization. Advantages are designated by (+) and
disadvantages by (-).

Regularizer Differentiable (+) Scale-adaptive (+) Requires additional optimization variables (-)∑
n(|xn| − 1)2 No No No∑
n(|xn| − β)2 No Yes Yes∑
n(x

2
n − 1)2 Yes No No∑

n(x
2
n − β)2 Yes Yes Yes

Ours (ℓbin) Yes Yes No

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Figure 3: Probability of success in binary solution recovery with ℓbin and three baselines

C.2 COMPARISONS WITH BASELINES FOR BINARY RECOVERY

We follow the same experimental setup as in Section 3.1 and provide experiments for two additional
baselines: (i) assuming that the scale β is known and fixed as a constant and (ii) letting β be a separate
(and explicit) optimization parameter (that is learned together with the entries of the vector). As
mentioned in Section 1.3, we use ℓbin,β=1 ≜

∑N
n=1(x

2
n − β)2 with known and fixed β = 1, and

ℓbin,β ≜
∑N

n=1(x
2
n − β)2 with additional optimization parameter β.

In Fig. 3, we observe that both of these baseline methods achieve comparable recovery performance,
but CS regularizers have the advantages of (i) not requiring to know the scale a-priori and (ii) not
introducing additional optimization parameters.

C.3 ADDITIONAL RESULTS FOR MORE CS REGULARIZERS FOR BINARY RECOVERY

We follow the same experimental setup as Section 3.1 and provide experiments for four additional
variants of CS regularizers: Here, ℓbin,H refers to the Hölder CS regularizer from (15) with p = q =

2, r = 1, ℓbin,si to the scale-invariant Hölder CS regularizer from (16) with p = q = 2, r = 1, ℓ̃bin to
the non-differentiable CS regularizer from (53), and ℓ̃bin,exp to the bounded CS regularizer from (51).

In Fig. 4, we observe that while ℓbin,H has comparable success rate to ℓbin, the remaining variants are
unfortunately outperformed by the baseline ℓ∞-norm.

C.4 ADDITIONAL RESULTS FOR SPARSE RECOVERY

In this subsection, we slightly modify our experimental setup from Section 3.1 in order to compare
the solution recovery performance of ℓosb- and ℓter-minimization to that of ℓ1-norm minimization with
respect to the sparsity of x⋆. We fix N = 100 and M = 75. We create vectors x⋆ ∈ RN with a fixed
number of K uniform randomly chosen nonzero entries; these nonzero entries are +1 for one-sided
binary vectors, and are chosen i.i.d. with uniform probability from {−1,+1} for ternary vectors. We
vary K from 20 to 80. For each K, we randomly generate 1000 problem instances and report the

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Figure 4: Probability of success in binary solution recovery with five CS regularizer variants and
ℓ∞-norm-based recovery.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

(a) One-sided binary

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

(b) Symmetric ternary

Figure 5: Probability of success for recovering vectors with (a) one-sided binary-, and (b) symmetric
ternary values dependent on the density ratio K/N .

average success probability and the standard deviation from the mean. We only allow one random
initialization, and the remaining details of the setup are the same as those presented in Section 3.1.

Fig. 5 demonstrates the success rate of (a) ℓosb-minimization and (b) ℓter-minimization compared
to ℓ1-norm minimization with respect to the density ratio of x⋆ given by δ = K/N . In Fig. 5 (a),
we observe that while the success rate of ℓ1-norm minimization reduces with δ > 0.3 and almost
reaches 0 at δ = 0.5, the success rate of ℓosb-minimization is almost always 1 for any density
ratio. In Fig. 5 (b), we observe that ℓ1-norm minimization follows the same trend as in Fig. 5 (a)
as expected, while the success rate of ℓter-minimization increases with density. The success rate of
ℓter-minimization surpasses that of ℓ1-norm minimization for δ > 0.4. For small density ratios δ, CS
regularization with ℓter does perform poorly as projected gradient descent seems to get stuck in local
minima. To counteract this issue, one could perform multiple restarts with random initialization.

C.5 SIMULATION RESULTS FOR TWO-BIT SOLUTION RECOVERY FROM SECTION 3.1

Please see Fig. 6.

C.6 SIMULATION RESULTS FOR EIGENVECTOR RECOVERY FROM SECTION 3.2

Please see Fig. 7.

C.7 APPROXIMATING MAXIMUM-CUT PROBLEMS WITH CS REGULARIZERS

@sue

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Figure 6: Two-bit solution recovery for N = 10 with CS regularizer ℓequ.

0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

Figure 7: Eigenvector recovery for N = 100 with ℓer and with ℓµ, where µ must also be learned, as a
baseline.

We now showcase another application in which CS regularizers can be utilized. Specifically, CS
regualzers can be used to find approximate solutions to the well-known weighted maximum cut (MAX-
CUT) problem (Commander, 2009). MAX-CUT of a graph is the partition of a graph’s vertices
into two disjoint sets such that the total weight of the edges between these two sets is maximized.
For an undirected weighted graph G = (V,E), this maximization problem can be formulated as the
following integer quadratic programming problem:

maximize
x∈{−1,+1}N

1

2

∑
1≤i<j≤N

wij(1− xixj)︸ ︷︷ ︸
≜ ℓMC(x)

. (55)

Here, xi ∈ {−1,+1}, i = 1, . . . , N , denotes the binary set label for the ith vertex of the graph, N is
the number of noces, and wij ∈ R denotes the weight of the edge between the ith and jth vertices.

The MAX-CUT problem is NP-hard and many approximations have been proposed in the literature.
Classical approximations base on semidefinite and continuous relaxation; see, e.g, Commander (2009)
and the references therein. Here, we propose a continuous reformulation that utilizes CS regularizers:

x̂ ∈ arg min
x∈RN

−ℓMC(x) + λℓbin(x) subject to |xi| ≤ 1, (56)

which we solve by using a projected gradient descent algorithm, similarly to Section 2.2 with a fixed
maximum number of iterations.

To evaluate our approach, we ran our projected gradient descent algorithm with random initializations
for 10 trials. First, we considered small graphs; here, we set λ = 1.

• For the N = 5, E = 7 graph from Matsuda (209), we recovered the MAX-CUT in less than
300 iterations across 10 trials with random initializations.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• For a graph with N = 4 vertices, E = 5 edges, and weights w12 = 10, w13 = 20, w14 = 30,
w24 = 40, and w34 = 50, we recovered the MAX-CUT in less than 40 iterations across 10
trials.

Second, we considered the larger graphs given in Matsuda (209) for benchmarking; here, we set
λ = 10−7. The table below demonstrates the graph ID and the maximum cut values from Matsuda
(209) along with the average cut values of our random initializations and our recovered solutions
across 10 trials. Unfortunately, it seems that our approach struggles to recover the MAX-CUT for

Table 2: Comparison of Maximum Known Cut and Ours for Different Graphs

Graph ID Target Initial Ours

G10 2000 67.4±50.5 1769.1±26.8
G11 564 7.2±14.9 482.0±10.46
G12 556 -0.2±24.3 470.8±13.7
G13 582 22.6±25.1 494.2±8.1

large graphs; however, it significantly improves the objective value compared to the initialization,
demonstrating its practical applicability. Moreover, with notable computational advantages over the
method in Matsuda (209), our approach shows promise and could inspire valuable directions for
future research.

D DETAILS OF NEURAL NETWORK QUANTIZATION EXPERIMENTS FROM
SECTION 3.4

D.1 DATASETS AND PREPROCESSING

ImageNet has over 1.2 M training images and 50 k validation images from 1000 object classes. We
train and evaluate our network on the training and validation splits, respectively, and report the top-1
accuracy for performance evaluation. We adopt a typical data augmentation strategy on the training
images as resizing the shorter side of the images to 256 pixels, taking a random crop of size 224×224,
and applying a random horizontal flip. For validation, we apply the same resizing and take the center
224×224 crop.

CIFAR-10 (Krizhevsky, 2009) consists of over 50 k training images and 10 k testing images from 10
object classes. We adopt a typical data-augmentation strategy on the training images as padding by 4
pixels, taking a random 32×32 crop, and applying a random horizontal flip. For testing, we use the
original images.

D.2 THE IMPACT OF VARYING THE REGULARIZATION PARAMETER ON THE CLASSIFICATION
ACCURACIES

Please see Tables 4-7. These accuracies are based on the average of 10 runs.

D.3 PERFORMANCE COMPARISON WITH SOTA BINARIZED AND TERNARIZED NEURAL
NETWORKS FROM SECTION 3.4.2

Please see Table 3 for the advantages/disadvantages of our training strategy compared to the SOTA
methods.

Please see Tables 8-10 for accuracy comparisons. Here, we report the average accuracy and standard
deviation for 10 random initializations of training.

E COMPUTATIONAL RESOURCES

For our underdetermined linear systems experiments in Section 3.1, we used MATLAB. For the
maximum number of 104 iterations, projected gradient descent and Douglas-Rachford splitting
algorithms each took approximately one second at most.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 3: Comparison of variables that are required by SOTA neural network quantization methods
and CS regularizers (ours) for training. Each column represents variables that are required in addition
to (unquantized) full-precision neural network training. Due to lack of space, we cannot list all SOTA
methods in this table, but we emphasize that ours is the only method that introduces no trainable or
non-trainable variables with only one hyperparameter; please see our response to Q2 of Reviewer
Kqkn to observe that our method is not sensitive to small changes in this parameter.

Method Trainable variables Non-trainable variables Tunable hyper-parameters

SQ-BWN (Dong et al., 2017) Yes Yes 0
BWN (Rastegari et al., 2016) No Yes 0
HWGQ (Cai et al., 2017) No Yes 0
PCCN (Gu et al., 2019) Yes Yes 0
BWHN (Hu et al., 2018) No Yes 0
ADMM (Leng et al., 2018) Yes No 1
IR-Net (Qin et al., 2020) No Yes 0
LCR-BNN (Shang et al., 2022) No Yes 2
DAQ (Kim et al., 2021) No Yes 1
ProxyBNN (He et al., 2020) Yes Yes 1
TWN (Li et al., 2016) No Yes 1
QNet (Yang et al., 2019) No Yes 1
QIL (Jung et al., 2019) Yes Yes 0
DoReFa-Net (Zhou et al., 2016) No Yes 0
LQ (Zhang et al., 2018) Yes Yes 0
DSQ (Gong et al., 2019) Yes Yes 0

Ours (ℓbin and ℓter) No No 1

Table 4: Top-1 accuracy of binarized ResNet-18 on ImageNet for regularized training with varying
values of λ.

λ 1 10 100 1000 1e4

Top-1 % 62.4 62.8 62.7 59.8 57.4

Table 5: Top-1 accuracy of ternarized ResNet-18 on ImageNet for regularized training with varying
values of λ.

λ 1e3 1e4 1e5 1e6 1e7 1e8

Top-1 % 62.8 64.1 65.3 65.3 65.1 64.0

Table 6: Top-1 accuracy of binarized ResNet-20 on CIFAR10 for regularized training with varying
values of λ.

λ 1 10 100 1000

Top-1 % 89.8 90.7 90.1 89.9

Table 7: Top-1 accuracy of ternarized ResNet-20 on CIFAR10 for regularized training with varying
values of λ.

λ 1000 1e4 1e5 1e6 1e7

Top-1 % 90.8 90.9 91.0 91.0 90.9

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Method Top-1 (%)

ResNet-18 (FP) 69.8

SQ-BWN (Dong et al., 2017) 58.4
BWN (Rastegari et al., 2016) 60.8
HWGQ (Cai et al., 2017) 61.3
PCCN (Gu et al., 2019) 63.5
BWHN (Hu et al., 2018) 64.3
ADMM (Leng et al., 2018) 64.8
IR-Net (Qin et al., 2020) 66.5
LCR-BNN (Shang et al., 2022) 66.9
DAQ (Kim et al., 2021) 67.2
ProxyBNN (He et al., 2020) 67.7

Ours (ℓbin) 62.8±0.09

Table 8: Top-1 accuracy of ResNet-18 with binary-valued weights on ImageNet. FP stands for the
full-precision model accuracy.

Method Top-1 (%)

ResNet-18 (FP) 69.8

TWN (Li et al., 2016) 61.8
SQ-TWN (Dong et al., 2017) 63.8
QNet (Yang et al., 2019) 66.5
ADMM (Leng et al., 2018) 67.0
LQ (Zhang et al., 2018) 68.0
QIL (Jung et al., 2019) 68.1

Ours (ℓter) 65.3±0.08

Table 9: Top-1 accuracy of ResNet-18 with ternary-valued weights on ImageNet. FP stands for the
full-precision model accuracy.

Method Top-1 (%)

ResNet-20 (FP) 91.7

DoReFa-Net (Zhou et al., 2016) 90.0
LQ (Zhang et al., 2018) 90.1
DSQ (Gong et al., 2019) 90.2
IR-Net (Qin et al., 2020) 90.8
DAQ (Kim et al., 2021) 91.2
LCR-BNN (Shang et al., 2022) 91.2

Ours (ℓbin) 90.3±0.17
Ours (ℓter)† 91.0±0.11

Table 10: Top-1 accuracy of ResNet-20 on CIFAR-10 (c) with binary- and ternary-valued weights.
FP stands for the full-precision model accuracy.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

For our neural network weight quantization experiments in Section 3.4, we use PyTorch (Paszke
et al., 2019). We used a machine with eight NVIDIA GeForce RTX 4090 GPUs with 24 GB memory.
Training ResNet-18 on ImageNet took approximately 800 seconds per epoch for a batch size of 1024.
Training ResNet-20 on CIFAR-10 took approximately five seconds for a batch size of 128.

25


	Introduction
	Contributions
	Notation
	Relevant Prior Art

	Cauchy–Schwarz Regularizers
	The Recipe
	Recovering Discrete-Valued Vectors
	Symmetric Binary
	One-Sided Binary
	Symmetric Ternary

	Recovering Eigenvectors of a Given Matrix
	Recovering Matrices with Orthogonal Columns
	Generalizations and Variations
	Hölder Regularizer
	Scale-Invariant Hölder Regularizer


	Application Examples
	Recovering Discrete-Valued Vectors
	Recovering Eigenvectors of a Matrix
	Recovering Matrices with Orthogonal Columns
	Quantizing Neural Network Weights
	Method
	Experimental Results


	Limitations
	Conclusions
	Proofs and Derivations
	Proof of prop:mainresult
	Proof of lem:equivalences
	Derivation of reg:mainsymmetricbinarization
	Derivation of reg:mainonesidedbinarization
	Derivation of reg:mainsymmetricternarization
	Derivation of reg:maineigenvectorrecovery
	Derivation of reg:mainorthogonalmatrix
	Proof of prop:fullgeneral
	Proof of prop:fullgeneralfraction

	Alternative Cauchy–Schwarz Regularizers
	Beyond Vector Ternarization
	Derivation of reg:mainsymmetricequispaced

	Bounded CS Regularizers for Vector Binarization
	Vectors in Nullspace of a Given Matrix
	CS Regularizers with Fixed Scale
	Non-Differentiable Variants

	Additional Results
	Comparison of the Binarizing CS Regularizer with Existing Regularizers
	Comparisons with Baselines for Binary Recovery
	Additional Results for More CS Regularizers for Binary Recovery
	Additional Results for Sparse Recovery
	Simulation Results for Two-Bit Solution Recovery from sec:discretesolrecovery
	Simulation Results for Eigenvector Recovery from sec:eigvecrecexperiment
	Approximating Maximum-Cut Problems with CS Regularizers

	Details of Neural Network Quantization Experiments from sec:quantizingnns 
	Datasets and Preprocessing
	The Impact of Varying the Regularization Parameter on the Classification Accuracies
	Performance Comparison with SOTA Binarized and Ternarized Neural Networks from sec:nnexperiments

	Computational Resources

