Under review as a conference paper at ICLR 2025

CAUCHY-SCHWARZ REGULARIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a novel class of regularization functions, called Cauchy—Schwarz (CS)
regularizers, which can be designed to induce a wide range of properties in solution
vectors of optimization problems. To demonstrate the versatility of CS regularizers,
we derive concrete regularization functions that promote discrete-valued vectors,
eigenvectors of a given matrix, and orthogonal matrices. The resulting CS regular-
izers are simple, differentiable, and can be free of spurious critical points, making
them suitable for gradient-based solvers and large-scale optimization problems. In
addition, CS regularizers automatically adapt to the appropriate scale, which is, for
example, beneficial when discretizing weights of neural networks. To demonstrate
the efficacy of CS regularizers, we provide results for solving underdetermined sys-
tems of linear equations and weight quantization in neural networks. Furthermore,
we discuss specializations, variations, and generalizations, which lead to an even
broader class of new and possibly more powerful regularizers.

1 INTRODUCTION

We focus on the design of novel regularization functions £: RY — R>q that promote certain
pre-defined properties on the solution vector(s) X € RY of regularized optimization problems

X € arg min f(x) + M(x), (H
xERN

where f: RY — R is an objective function and A € Rx a regularization parameter. One instance of
such an optimization problem is the binarization of neural-network weights, where the solution(s)
of H are the network’s weights that should be binary-valued X € {—a, o}, but with appropriate
scale a € R chosen by the regularizer—the scale can then be absorbed into the activation function.

1.1 CONTRIBUTIONS

We propose Cauchy—-Schwarz (CS) regularizers, a novel class of regularization functions that can be
designed to impose a wide range of properties. We derive concrete examples of CS regularization
functions that promote discrete-valued vectors (e.g., binary- and ternary-valued vectors), eigenvectors
of a given matrix, and matrices with orthogonal columns. The resulting regularizers are (i) simple,
(ii) automatically determine the appropriate scale, (iii) free of any spurious critical points, and (iv)
differentiable, which enables the use of (stochastic) gradient-based numerical solvers that make
them suitable to be used in large-scale optimization problems. In addition, we discuss a variety of
specializations, variations, and generalizations, which allow for the design of an even broader class
of new and possibly more powerful regularization functions. Finally, we showcase the efficacy and
versatility of CS regularizers for solving underdetermined systems of linear equations and neural
network weight binarization and ternarization. All proofs and additional experimental results are
relegated to the appendices, which can be found in the supplementary material.

1.2 NOTATION

Column vectors and matrices are written in boldface lowercase and uppercase letters, respectively.
The entries of a vector x € RY are [X]n, = @n, n = 1,..., N, and transposition is xT. The N-
dimensional all-zeros vector is O and the all-ones vector 1 ; we omit the dimension N if it is clear
from the context. The inner product between the vectors x,y € R is (x,y) = x"y, and linear

Under review as a conference paper at ICLR 2025

dependence is denoted by

X~y <= J(a1,a2) € R?\{(0,0)} : a1x = asy. 2)

For p > 1, the p-norm of a vector x € RV is ||x||, £ (Zﬁ;l |2,,[P)!/P, and we will frequently

use the shorthand notation [x]? £ 27]:’:1 2P (note the absence of absolute values). The entry on
the nth row and kth column of a matrix X is X, j, the Frobenius norm is || X||, and columnwise

vectorization is vec(X). The N x N identity matrix is Iy and the M x N all-zero matrix is Opzx -

1.3 RELEVANT PRIOR ART

Semidefinite relaxation (SDR) can be used for solving optimization problems with binary-valued
solutions (Luo et al.,[2010). Since SDR requires lifting (i.e., increasing the dimension of the original
problem size), solving such problems quickly results in prohibitive complexity, even for moderately-
sized problems. As a remedy, non-lifting-based SDR approximations were proposed in (Shah et al.,
2016; |Castaneda et al.,|2017). These methods utilize biconvex relaxation that scales better to larger
optimization problems. Convex non-lifting-based approaches were also proposed for recovering
binary-valued solutions from linear measurements using £°°-norm regularization (Mangasarian &
Recht, [2011)). In contrast to such methods, the proposed CS regularizers are (i) differentiable, which
enables their use together with differentiable objective functions and any (stochastic) gradient-based
numerical solver, and (ii) can be specialized to impose a wider range of different structures.

Vector discretization is widely used for neural network parameter quantization (Hubara et al.} 2017).
Regularization-free approaches, e.g., the method from |Rastegari et al.| (2016), perform neural network
binarization by simply quantizing the weights and adapting their scale to their average absolute value.
Approaches that utilize projections onto discrete sets within gradient-descent-based methods have
been proposed in (Hou et al.,[2016; [Leng et al.,|2018)). In contrast, the proposed CS regularizers are
differentiable and automatically adapt their scale to the magnitude of the solution vectors.

Prior art includes a plethora of references vector discretization methods that rely on regularization
functions have been proposed: The methods in (Hung et al., 2015} Tang et al., 2017; Wess et al.,
2018} [Bai et al., [2019; [Darabi et al.,|2019; |Choi et al., 2020; |Yang et al.,|2021; Razani et al., [2021}

Xu et al., [2023) use regularization functions relatecﬂ to the form 4(x, §) = Zﬁ;l(mi — B)? for
N-dimensional vectors x € R and either fix the magnitude 32 (e.g., 3 = 1) or learn this additional
parameter during gradient descent. Another strain regularization functions that utilizes trigonometric
functions relate to the form ¢(x, 8) = 25:1 sin?(Bm,,) have been proposed in (Naumov et al.,
2018 [Elthakeb et al.,|2020; Solodskikh et al., [2022). In contrast to all of the above regularization
functions, the proposed CS regularizers (i) do not introduce additional trainable parameters while
still being able to automatically adapt their scale to the vectors’ magnitude and (ii) can be designed to
promote a wider range of structures. Finally, the proposed CS regularizers include the regularization

functions of Tang et al.| (2017);|Darabi et al.|(2019) as a special case; see App.

Recovering matrices with orthogonal columns finds, for example, use in the orthogonal Procrustes
problem: X = arg miny cgnvxx ||AX — Bl|g subject to XX = Iy A closed-form solution to this

problem is given by X = UV7, where U and V are the left- and right-singular matrices of the
matrix ATB (Schénemannl,|1966). In contrast, CS regularizers can be designed to promote matrices
with orthogonal rows of arbitrary scale and without requiring a singular value decomposition.

We finally note that|Tran et al.|(2022) propose the use of the CS divergence to regularize autoencoders.
In contrast, we use the CS inequality (Steele, [2004) to design new regularization functions that
can—among many other structures—be used to promote discrete-valued vectors (e.g., binary or
ternary), eigenvectors to a given matrix, and matrices with orthogonal rows.

!Some methods, e.g., (Darabi et al.,[2019), use non-differentiable regularizers with ||2,,| — 3| instead of
(x2 — B)?, while others, e.g., (Xu et al.,[2023)), use regularizers of the form ~||x — « sign(x)|| and introduce
additional scaling factors.

>The method in (Naumov et al.| 2018)) fixes the scale, while |[Elthakeb et al.| (2020) utilizes a trainable
parameter; the regularizer in (Solodskikh et al.|2022) introduces an additional differentiable regularizer that
imposes finite range.

Under review as a conference paper at ICLR 2025

2 CAUCHY-SCHWARZ REGULARIZERS

In this section, we introduce the general recipe for deriving CS regularizers. We then use this recipe
to design specific CS regularization functions that promote discrete-valued (e.g., binary and ternary)
vectors, eigenvectors of a given matrix, and matrices with orthogonal columns.

2.1 THE RECIPE

The following result is an immediate consequence of the CS inequality (Steele, |2004)) and provides a
recipe for the design of a wide range of regularization functions; a short proof is provided in App.[A.T]
Proposition 1. Fix two vector-valued functions g, h : RN — RM and define the set

X2 {xeRV:gx) ~h(x)}. 3)
Then, the nonnegative regularization function

0(x) £ (g0 31 G) 15 — [(g(x), h(x))[* @
is zero if and only if (iff) x € X.
We call regularization functions derived from Proposition [T| CS regularizers. While CS regularizers

are guaranteed to be (i) nonnegative and (ii) zero iff x € X, it is also desirable for gradient-based
numerical solvers that these regularizers do not exhibit any spurious critical points.

Definition 1. A spurious critical point is a vector x ¢ X for which V{(x) = 0.
Whether or not a CS regularizer has spurious critical points depends on the specific choice of g and h.

Nonetheless, even if a CS regularizer has spurious critical points, it may still accomplish the desired
goal. We conclude by noting that any vector x for which g(x) = 0 or h(x) = 0 will minimize ().

The following result will be useful below when we analyze properties of specific CS regularizers; a
short proof is given in App.[A.2]

Lemma 1. Fix two vector-valued functions g, h : RN — RM . Then, the following equalities hold:
l(x) = 2 mi —h 2—|h 2 mi — sh 2, 5
(x) = llg(x)ll2 min | fg(x) — h(x)]lz = [h(x)[z min [lg(x) — Sh(x)[|2 Q)

Lemma|T|will be used to highlight the important auto-scale property CS regularizers, since setting /3
to its optimal value in (3)) leads exactly to the regularization function in (@), as the optimization
problem in /3 is continuous, quadratic, and has a closed-form solution.

2.2 RECOVERING DISCRETE-VALUED VECTORS

From Proposition[I] we can derive a range of differentiable CS regularizers that, when minimized,
promote discrete-valued vectors. This can be accomplished by using entry-wise polynomials for the
functions g and h. We next show three concrete and practical useful examples.

2.2.1 SYMMETRIC BINARY

Define g(x) £ [#2,...,2%]" and h(x) £ 1y. Then, Proposition |I| yields the following CS
regularizer that promotes symmetric binary-valued vectors; see App.|A.3|for the derivation.
Regularizer 1 (Symmetric Binary). Let x € RY and define

lon(x) £ N[x]* = ([x]%)*. ©6)

Then, the nonnegative function in () is only zero for symmetric binary-valued vectors, i.e., iff
x € {—a,a}¥ for any a € R. Furthermore, lni,(x) does not have any spurious critical points.

To gain insight into Regularizer[T] we invoke Lemma[T]and obtain

fon(3) = N uin S, (@0 = VB @ + VB’ -

Under review as a conference paper at ICLR 2025

This equivalence implies that, for a given vector x, Regularizer[I]is the right-hand-side total square
error in , but with optimally chosen scale o« £ +/J3; this is the auto-scale property of CS regularizers.
In other words, the CS regularizer implicitly adapts its scale « to the scale of every argument x.
Furthermore, this CS regularizer is zero iff x € {—a,a}" for some o € R, as only z,, = a or
x, = —aforn=1,..., N allows the right-hand-side of (7)) to be zero.

We showcase the efficacy of 4, for the recovery of binary-valued solutions in Section and
compare its advantages to existing binarizing regularizers (cf. Section|I.3)), e.g., being differentiable,
scale-adaptive, and free of additional optimization parameters, in App.

2.2.2 ONE-SIDED BINARY

Define g(x) = [22,...,2%]" and h(x) £ [21,...,2y]". Then, Propositionyields the following
CS regularizer that promotes one-sided binary-valued vectors; see App.[A.4]for the derivation.
Regularizer 2 (One-Sided Binary). Let x € RY and define

Cown(x) 2 [x)?[x)* = ([x)%)" ®
Then, the nonnegative function in (8)) is only zero for one-sided binary-valued vectors, i.e., iff
x € {0,a}Y for any a € R. Furthermore, lyg(X) does not have any spurious critical points.

To gain insight into Regularizer 2] we invoke Lemma|T]and obtain
. 2
Lo (%) =[x mmin 3 (o = 8) ©)
Once again, we observe this CS regularizer’s auto-scale property and only vectors of the form
x € {0,a}" for some o € R minimize @])

2.2.3 SYMMETRIC TERNARY

Define g(x) £ [23,...,2%]" and h(x) £ [21,...,2n]". Then, Proposition|l|yields the following
CS regularizer that promotes symmetric ternary-valued vectors; see App.[A.5|for the derivation.
Regularizer 3 (Symmetric Ternary). Let x € RY and define

fer(3) 2 [= (I *)”. (10)

Then, the nonnegative function in is only zero for symmetric ternary-valued vectors, i.e., iff
x € {—a,0,a}" for any a € R. Furthermore, {e;(x) does not have any spurious critical points.

To gain insight into Regularizer [3| we invoke Lemma|[T]and obtain
. 2
ler() = [min 52,0 (o (n = V/B) (o +V/B))" (11)
>0

As above, we observe this CS regularizer’s auto-scale property and only vectors of the form x €
_ N . . .
{—a,0,a}" for some a € R minimize (11).

The CS regularizers introduced so far promote binary- or ternary-valued vectors. In App. we
detail an approach that generalizes CS regularizers to a symmetric, discrete-valued set with 25
equispaced entries. In addition, al off the CS regularizers introduced above involve polynomials
of higher (e.g. quartic) order, leading to potential numerical stability issues. In App. we
propose alternative symmetric binarization regularizers that avoid such issues; similar alternative
regularization functions can be derived for the other discretization regularizers.

2.3 RECOVERING EIGENVECTORS OF A GIVEN MATRIX

All CS regularizers introduced so far promote vectors with discrete-valued entries. In order to
demonstrate the versatility of Proposition [I] we now propose a CS regularizer that promotes vectors
that are eigenvectors of a given (and fixed) C € RV > matrix.

Define g(x) = Cx and h(x) = x. Then, Proposition |1| yields the following CS regularizer that
promotes eigenvectors of C; see App.[A.6|for the derivation.
Regularizer 4 (Eigenvector Recovery). Fix C € RVXN et x € R, and define

ler(x) 2 [|Cx|3]1x]13 — (x" Cx)? (12)
Then, the nonnegative function in is only zero for eigenvectors of C and the all-zeros vector.

Under review as a conference paper at ICLR 2025

2.4 RECOVERING MATRICES WITH ORTHOGONAL COLUMNS

Finally, we demonstrate that Proposition [1|can also be used to promote structure in matrices. The
following CS regularizer promotes matrices X € RV*X with K < N to have orthogonal columns.

Define g(X) £ vec(X"X) and h(x) £ vec(I,;). Then, Proposition |1| yields the following CS
regularizer that promotes matrices with orthogonal columns; see App. for the derivation.

Regularizer 5 (Orthogonal Matrix). Let X € RV *K ywith K < N and define

lom(X) = K[XTX[§ = [IX][- (13)
Let X = USVT be the singular value decomposition of X. Then, we equivalently have,
2
tn(X) 2 K (D45, 58,) - (ZI8058.) (14)

which is the symmetric binarizer from (6) applied to the singular values of X. The nonnegative
function in is only zero for matrices X with pairwise orthogonal columns of equal length, i.e., iff
XX = aly for a > 0. Furthermore, {on(X) does not have any spurious critical points.

2.5 GENERALIZATIONS AND VARIATIONS

Proposition[I|enables the design of a much broader range of CS regularizers, beyond those introduced
so far. We now outline a range of possible generalizations and variations. In addition, we propose a
range of non-differentiable variants of CS regularizers in App.

2.5.1 HOLDER REGULARIZER

Proposition|I{can be generalized by replacing the CS inequality with Holder’s inequality (Holder,
1889). This results in the following recipe; a short proof is given in App.[A.§]

Proposition 2. Fix two vector-valued functions g, h: RN — RY and define X as in . Letp,g>1
so that % + % = 1 and let r > 0. Then, the nonnegative function

(%) £ |85 Ih()[; — [(g(x), h(x))|" (15)
iszero iff x € X.

Proposition I]is a special case of Proposition 2] by setting p = ¢ = r = 2. A systematic investigation
of the potency of regularizers resulting from Proposition [2]is left for future work.

2.5.2 SCALE-INVARIANT HOLDER REGULARIZER

By slightly modifying the proof of Proposition 2] one can also develop Holder regularizers that are
scale-invariant, i.e., in which scaling the entire vector-valued function g(x) or h(x) with a nonzero
constant has no impact on the regularizer’s function value; see App. for the proof.

Proposition 3. Fix two vector-valued functions g, h: RY — RN and define X as in (§). Let p,q > 1
so that % + % = 1 and let r > 0. Furthermore, set € > 0. Then, the nonnegative function

— A g IhE)G + e

) = T, heapl 12 (10

is zero iffx € X.

Such scale-invariant regularization functions require special attention. First, while the parameter
€ > 0 prevents the denominator in (I6) from becoming zero, only € = 0 leads to a scale-invariant
regularizer. Second, regularizers derived from Proposition 3| may have significantly more spurious
critical points than those obtained via Proposition 2| Third, evaluating the gradient of regularizers
derived from (I6) is typically more involved. Nonetheless, their (approximately) scale-invariant
property might turn out useful in some applications and outweigh the above drawbacks. We note that
scale-invariant versions of CS regularizers can be obtained as a special case of Proposition 3}

We conclude by noting that many other CS or Holder regularizers can be derived when combining
the above ideas. We also note that most of these results can be generalized to complex-valued vectors.
A detailed investigation of such generalizations, variations, and specializations is left for future work.

Under review as a conference paper at ICLR 2025

3 APPLICATION EXAMPLES

We now showcase application examples for vector discretization, recovery of eigenvectors of a given
matrix, recovering matrices with orthogonal columns, and quantization of neural network weights.

3.1 RECOVERING DISCRETE-VALUED VECTORS

The proposed CS regularizers enable the recovery of binary-, ternary- and two-bit-valued vectors
from underdetermined linear systems of equations. To this end, we solve systems of linear equations
b = Ax, where A € RM™*N hag ii.d. standard normal entries and M < N. We create vectors
x* € RY, whose entries are chosen i.i.d. with uniform probability from {—1, +1} for symmetric
binary and from {0, +1} for one-sided binary, and with probability 0.25, 0.5, 0.25 from {—1,0, +1},
respectively, for ternary-valued vectors. For, two-bit-valued vectors, we create twp vectors y; € R
and y2 € RY whose entries are chosen i.i.d. with uniform probability from {—1,+1} and {—2, +2},
respectively, and calculate x* = y; + y2. Then, we calculate b = Ax*, and we try to recover the
vector x* from b by solving optimization problems of the form

X € arg min 4(X) subjectto b= Ax (17)
XERN

using a projected gradient descent algorithm—specifically, FISTA with backtracking (Beck &
Teboullel, [2009; Goldsteinﬂ Here, /(%) are the CS regularizers from Section We fix N = 100
and vary M between 30 and QOEI We declare success for recovering x* if the returned solution
X satisfies ||%x — x*||2/||x*||2 < 1072.Fig. |l| shows the success probabilities with respect to the
undersampling ratio -y along with error bars calculated from the standard error of the mean.

Symmetric Binary We first recover symmetric binary-valued solutions using Regularizer [T| with
Lpin from @ For this scenario,|[Mangasarian & Recht| (2011) showed that °°-norm minimization
recovers the binary-valued solution as long as v = M /N satisfies v > 0.5 and N approaches infinity.
Thus, our baseline is /°°-norm minimization, which we solve with Douglas—Rachford splitting as
in (Studer et al.,2015). Fig.|lalshows the success rate for fy;, and ¢°°-norm minimization with respect
to the undersampling ratio -y. For £y, minimization, we observed that different initializations can have
an impact on the success rate since the objective is non-convex. Thus, we allow at most 10 random
initializations of projected gradient descent. We note that multiple initializations of Douglas-Rachford
splitting does not affect its success rate as the £>°-norm is convex and the algorithm would converge
to the same solution. We see from Fig. [Ta]that £y, minimization has, for any undersampling ratio -, a
higher probability of successfully recovering the true solution than £°°-norm minimization.

We discuss the advantages of ¢y, over existing binarizing regularizers in App. We also provide a
comparison of the success rates of fy;;, and £°°-norm minimization with existing binarizing regularizers
in App. [C.2] and observe that /, achievest the highest success rate. Moreover, in App. [C.3]
we provide the success rates of other binarizing CS regularizer variants (e.g., the Holder, non-
differentiable, and scale-invariant regularizers), where £y;,, once again, achieves best performance.

One-Sided Binary We now recover vectors with one-sided binary-valued entries using Regular-
izer[2| with £y, from (8)). In this experiment, we ran projected gradient descent for only one random
initialization. Our baseline for this scenario is #!-norm minimization (Cai et al., 2009), as the gener-
ated vectors are sparse with half of the entries being nonzero (on average). We solve the ¢!-norm
minimization problem with Douglas—Rachford splitting (Studer et al.,|2015). Fig.|1b|demonstrates
that £, minimization significantly outperforms ¢!-norm minimization for all undersampling ratios.

Symmetric Ternary We also recover vectors with symmetric ternary-valued entires using Reg-
ularizer [3| with 4, from (I0). In this experiment, we ran projected gradient descent for only one
random initialization. We use ¢!-norm minimization as our baseline as the generated vectors are
sparse with half of the entries being nonzero (on average). Fig.[Ic|demonstrates that ¢, minimization
significantly outperforms ¢*-norm minimization for all undersampling ratios.

3We run projected gradient descent and the baseline algorithms for a maximum of 10* iterations.
We also study the impact of the sparsity of x while the number of measurements M is fixed in App.
For each M, we randomly generate 1000 problem instances and report the average success probability.

Under review as a conference paper at ICLR 2025

1 Fab 1 Lad x 1 -
] 8 o ¥ . &
st 50> |1y oot g ¢ osf| 3¢t ¢/
£ 7 £ 4 g F2
= 06 4 = 06 § S o6 ¢ £
@ © / :
1t 3 i i
g 04 ; / g o4 O 04
02 éy 0.2 i £ . 0.2 f/ §
e Jg AAAAAAAA s ‘tll 0 }f AA‘KE}
03 04 05 06 07 08 09 03 04 05 06 07 08 09 0s oa 08 To6 o7 o8 o9
M/N M/N M/N

(a) Symmetric binary

(b) One-sided binary

(c) Symmetric ternary

Figure 1: Probability of success for recovering vectors with (a) binary-, (b) one-sided binary-, and (c)
symmetric ternary values dependent on the undersampling ratio M/N.

Symmetric Two-Bit We also recover vectors with symmetric two-bit valued entries using Regular-
izer (6] from . In this experiment, we ran projected gradient descent for 10 random initializations.
Fig.|6|in App. demonstrates that £.q, can recover symmetric two-bit vectors for all undersampling
ratios with reasonable success probability.

3.2 RECOVERING EIGENVECTORS OF A MATRIX

The proposed CS regularizers also enable the recovery of eigenvectors of a given (and fixed) matrix.
We once again consider a system of linear equations b = Ax, where A € RM*¥ has i.i.d. standard
normal entries and M < N. We create vectors x* € R by uniform randomly choosing an
eigenvector of a random matrix C € R™V*¥ with i.i.d. standard normal entries. We calculate
b = Ax* and solve using FISTA as in Section[3.1} As a baseline, we consider minimizing
£, (x,) £ ||Cx — ux||3, which includes an additional optimization parameter (i.e., 1) compared to
minimizing {(X) = le;(x) in (7). In App. Fig.[7} we observe that £, has significantly higher
success rates than the baseline.

3.3 RECOVERING MATRICES WITH ORTHOGONAL COLUMNS

We now demonstrate that the proposed regularizers can also impose structure to matrices. To this end,
we consider a system of linear equations AX = B, where A € R™*" has i.i.d. standard normal
entries with M < N, and X € RV*K with XTX = I. We solve

X carg min /(X) subjectto AX =B

XGRNXK

using FISTA as in Section[3.1} We have observed that for N = K = 10 and N = K = 100 and for
values of M such that M/N € [0.1, 1], the output of FISTA was always an orthogonal matrix.

(18)

3.4 QUANTIZING NEURAL NETWORK WEIGHTS

We now provide another application example for binarizing and ternarizing neural network weights.
Our goal is to highlight the simplicity, versatility, and effectiveness of CS regularizers.

3.4.1 METHOD

Our weight quantization procedure consists of three steps: (i) training with CS regularizers, (ii)
weight quantization, and (iii) continued training of remaining parameters. We detail these steps below.
In order to demonstrate solely the impact of CS regularizers, we neither modify the neural network
architecture (e.g., we do not alter the layers or activations) nor the forward-backward propagation
stages, since we do not introduce any non-differentiable operations during training.

Step 1: Regularized Training Let 6 denote the set of all parameters of a neural network and L(0)
the loss function for learning the network’s task. We solve the following optimization problem:

6 = arg mein L(O) + XS0 i £(0r). (19)

Under review as a conference paper at ICLR 2025

Here, A € R is a regularization parameter, 8}, is a vector consisting of the network weights which
should share a common scaling factor (this can, for example, be an entire layer, one convolution
kernel, or any other subset of network parameters), 7, is the associated normalization factor (e.g., the
reciprocal value of the dimension of 6y), and ¢ can be any CS regularizer (e.g., fpin OF Cier).

After training the network parameters with the CS regularizers for a given number of epochs, the
weights contained in the vectors 8}, will be concentrated around {—ay, a } for symmetric binary-
valued regularization or {—ay, 0, a } for symmetric ternary-valued regularization for some ay, > 0.

Step 2: Quantization The goal is to quantize the regularized weights {6}, }7_ | from the previous
step. In what follows, we describe the quantization procedure for one weight vector w = 0y.

We binarize the regularized weight vector w according to W £ arg min,. X IW — x||3 with
Xoin 2 {x € {—a,a}? : @ € R} as in (Rastegari et al., 2016), which is given by

Wy, = a*sign(wy,), n=1,..., N, with o* = ||w]j;/N. (20)

We ternarize the regularized weight vector w # 0 according to W £ arg min ¢ »,_ [|[w — x|[|3 with

Xer = {x € {—,0,a}" : a € R} as in (Li et al.,|2016), which is accomplished as follows: Let
Z. = {i: |w;| > 7}. Then, find the threshold that determines which entries of W are nonzero as

* 1 2
TS =ar max =) w;|)?. 21
gTG{\wi\:iGI} |Z-| (ZZEI., | L|) ()
Finally, compute the ternarized vector as
R a*sign(wy,), |wn| > 7*) .
Wr, = ~— n=1,...,N, with a* = 5, wil. 2
" {07 otherwise, ’ D IZ,] ZzeL |w| (22)

Step 3: Training with Quantized Weights After weight quantization, the number of trainable
parameters is significantly reduced since we now have only one scale factor for a vector of quantized
weights. Hence, we fix the signs of the weights and continue training only their shared scale factors
alongside other tunable network parameters (e.g., biases, batch normalization parameters, etc.)
without the use of CS regularizers and for a small number of epochs.

3.4.2 EXPERIMENTAL RESULTS

We conduct experiments on the benchmark datasets ImageNet ILSVRC12) (Deng et al., 2009)
and CIFAR-10 (Krizhevsky, [2009) for image classification. We follow classical data augmentation
strategies as detailed in App. [D.I}

Implementation As in (Rastegari et al.l 20165 [Qin et al., [2020; He et al.| 2020), we regularize
and quantize all network layers except for the first convolutional layer and the last fully-connected
layer. For convolutional layers, we calculate the CS regularizer for vectors consisting of the weights
in all kernels that produce one output channel; this leads to one scaling factor for each output channel
following the approach from [Rastegari et al.|(2016). For fully-connected layers, we utilize one CS
regularizer for each row of the weight matrix; this leads to one scaling factor for each output feature.
We set the weights 7, in (T9) to the reciprocal of the dimension of the elements in the corresponding
weight vector 6.

For ImageNet, we use ResNet-18 (He et al.l 2016) and initialize the weights with a pretrained
full-precision model from PyTorch (pyt). In Step 1, we set the regularization parameter A\ = 103
for binarization and A = 107 for ternarizationﬂ We train the network for 40 epochs each in Steps 1
and 3, with a batch size of 1024. We use Adam optimizer (Kingma & Bal [2017) with learning rate
initialized by 0.001 and cosine annealing learning rate scheduler (Loshchilov & Hutter, 2016).

For CIFAR-10, we use ResNet-20 and initialize the weights with a pretrained full-precision model
from [Idelbayev, similarly to (Qin et al., |2020). We set A = 10 for binarization and A = 10° for
ternarization. We train the network for 400 and 20 epochs in Steps 1 and 2, respectively, with a batch
size of 128. The optimizer and learning rate schedule is the same as ImageNet.

>We chose the regularization parameter A empirically based on using 1/10th of the training sets for validation.
We have observed that changes by a factor of 10 in A has insignificant effect on the resulting accuracies. Please
see Tables[d]{7)in App.|D.2for an ablation study for varying \.

Under review as a conference paper at ICLR 2025

T
lliall

W | ; i i
|‘ - ') w I
[., i 1] " \iiu}iﬂﬂim

\
L N " (Al

-
e

(a) Pretrained (b) Luin, 5 epochs (¢) £bin, 20 epochs (d) leer, 5 epochs () Lier, 20 epochs

Figure 2: Neural network weight histograms of one output channel of a convolutional layer in the
pretrained ResNet-18 model and the model after regularized training with ¢y;, or ¢, over ImageNet.

Weight Distribution Fig. 2] illustrates the impact of CS regularizers on the network weights
with histograms for one output channel of one convolutional layer based on training ResNet-18 on
ImageNet. We observe in Fig.2[a) the weight distribution of the pretrained network resembles that
of a zero-mean Gaussian distribution. Figures |Zkb) and (c) reveal, as intended, that the weights
are becoming more concentrated around binary values after 5 and 20 epochs of training with the
regularizer fy;,, respectively. Figures |de) and (e) reveal a similar behavior when using ;.

Performance Evaluation In App. Tables[8}{I0] we provide the top-1 accuracy for our methods
along with the full-precision baseline and various SOTA baselines that binarize or ternarize the
weights of the network while the activations are left in full precision. All SOTA top-1 accuracy results
in Tables [8}{I0] are taken from the corresponding papers.

For ImageNet, we observe from Tables [§]and Table [J]that for binary-valued weights, our approach
outperforms SQ-BWN (Dong et al.,2017), BWN (Rastegari et al., 2016), HWGQ (Cai et al., 2017),
PCCN (Gu et al.,[2019), and the ternary TWN (Li et al., 2016)), while the accuracy we achieve is
4.9% lower than the best SOTA method ProxyBNN (He et al., [2020). For ternary-valued weights,
our approach outperforms TWN and SQ-TWN (Dong et al.l 2017), while the accuracy we achieve is
2.8% lower than the SOTA method QIL (Jung et al., 2019).

For CIFAR-10, we observe from Table [T0] that for binary-valued weights, our approach outperforms
DoReFa-Net by a small margin and achieve the same performance as LQ-Net (Zhang et al.| |2018)),
while the accuracy of our approach is 0.9% lower than the SOTA methods DAQ (Kim et al., 2021)
and LCR-BNN (Shang et al.,|2022)); these two methods are also the only methods outperforming our
ternary-valued approach by 0.2%.

While some of the SOTA methods achieve better accuracy than our approach, our results (i) require a
simpler training procedureﬂ and (ii) showcase the potential of CS regularizers: We only have one
step of regularized training with full-precision weights, a quantization step, and a second step of
training with fewer parameters; this procedure does not require any additional storage at any stage of
training. In contrast, all of the baseline methods retain both the quantized and full-precision values
for the weights during training, and use the quantized weights in forward and backward propagation
while the full-precision values are updated with the gradients calculated with respect to the quantized
values. This results in additional storage. Moreover, to reduce the quantization error or to alleviate the
mismatch between forward and backward propagation, references (Gu et al.,[2019; Hu et al., 2018
Kim et al.| 2021} |He et al.,|2020; |Yang et al., 2019; Zhang et al., 2018; Jung et al.| 2019) introduce
more trainable parameters and [Shang et al.| (2022)) proposes a regularization method that requires the
construction of matrices that scale with the square of the number of features in one layer. Please see
Table 3] for a detailed comparison of the

We conclude by noting that the proposed CS regularizers could be combined with any of these
existing approaches for possible further accuracy improvements.

4 LIMITATIONS
While the proposed CS regularizers provide a recipe for designing regularization functions with a
wide variety of properties, they suffer from a range of limitations summarized next.

First and foremost, CS regularizers are typically nonconvex. While we have been able to prove that
some of the proposed nonconvex CS regularizers are free of any spurious critical points, convergence

SPlease see Tablefor the advantages/disadvantages of our training strategy compared to the SOTA methods.

Under review as a conference paper at ICLR 2025

to a global minimum depends on the combination of the objective, regularizer, and optimization
algorithm. Thus, multiple random restarts of the optimizer might be necessary in practice.

Furthermore, some of the CS regularizers involve higher-order polynomials (e.g., the ternarization
regularizer in (I0) involves eighth-order polynomials), which can result in poor convergence behavior,
especially around their minimum. To counteract this issue, one can either resort to non-differentiable
variants outlined in App. [B.5]or to scale-invariant variants outlined in Section[2.5.2] In addition, uti-
lizing adaptive step-size selection methods and schedules that adapt (e.g., increase) the regularization
parameter A\ over iterations could also be used to improve convergence.

Finally, we have only scratched the surface of many of the specializations, variations, and gener-
alizations put forward in Section [2.5] Besides that, we have only investigated the efficacy of CS
regularizers with two example applications, i.e., solving underdetermined systems of linear equations
and neural network weight quantization with a simple training recipe, in Section[3] A thorough theo-
retical analysis and simulative study of alternative CS regularizers in a broader range of applications,
as well as combining CS regularizers with sophisticated SOTA quantized neural network training
procedures, such as the ones in (He et al.| 20205 Jung et al.l|2019), are left for future work.

5 CONCLUSIONS

We have proposed Cauchy—Schwarz (CS) regularizers, a novel class of regularization functions that
can be designed to promote a wide range of properties. We have derived example regularization
functions that promote discrete-valued vectors, eigenvectors to matrices, or matrices with orthogonal
columns, and we have outlined a range of specializations, variations, and generalizations that lead to
an even broader class of new and possibly more powerful regularizers. For solving underdetermined
systems of linear equations, we have shown that CS regularizers can outperform well-established
baseline methods, such as />*°-norm or £!-norm minimization. For weight quantization of neural
networks, we have shown that utilizing CS regularizers enables one to achieve competitive accuracy
to existing quantization methods while using a simple training procedure.

REFERENCES

https://pytorch.org/vision/0.13/models/generated/torchvision.
models.resnet18.html.

Yu Bai, Yu-Xiang Wang, and Edo Liberty. ProxQuant: Quantized neural networks via proximal
operators. In International Conference on Learning Representations, ICLR, 2019.

Amir Beck and Marc Teboulle. Fast gradient-based algorithms for constrained total variation image
denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11):2419-2434,
January 2009.

T. Tony Cai, Guangwu Xu, and Jun Zhang. On recovery of sparse signals via £;-norm minimization.
IEEE Transactions on Information Theory, 55(7):3388-3397, June 2009.

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision by
half-wave Gaussian quantization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

Oscar Castafieda, Sven Jacobsson, Giuseppe Durisi, Mikael Coldrey, Tom Goldstein, and Christoph
Studer. 1-bit massive MU-MIMO precoding in VLSI. IEEE J. Emerging Sel. Topics Circuits Syst.,
7(4):508-522, December 2017.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Learning sparse low-precision neural networks
with learnable regularization. IEEE Access, 8:96963-96974, 2020.

Clayton W. Commander. Maximum cut problem, MAX-CUTMaximum Cut Problem, MAX-CUT,
pp- 1991-1999. Springer US, Boston, MA, 2009. ISBN 978-0-387-74759-0. doi: 10.1007/
978-0-387-74759-0_358. URL https://doi.org/10.1007/978-0-387-74759-0_
358l

10

https://pytorch.org/vision/0.13/models/generated/torchvision.models.resnet18.html
https://pytorch.org/vision/0.13/models/generated/torchvision.models.resnet18.html
https://doi.org/10.1007/978-0-387-74759-0_358
https://doi.org/10.1007/978-0-387-74759-0_358

Under review as a conference paper at ICLR 2025

Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, and Vahid Partovi Nia. Regularized binary
network training. arXiv preprint arXiv:1812.11800, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Proc. IEEE Conf. Comp. Vision and Patt. Recog., pp. 248-255,
May 2009. doi: 10.1109/CVPR.2009.5206848.

Yinpeng Dong, Jianguo Li, and Renkun Ni. Learning accurate low-bit deep neural networks with
stochastic quantization. In BMVC, 01 2017. doi: 10.5244/C.31.189.

Ahmed T Elthakeb, Prannoy Pilligundla, Fatemehsadat Mireshghallah, Tarek Elgindi, Charles-Alban
Deledalle, and Hadi Esmaeilzadeh. WaveQ: Gradient-based deep quantization of neural networks
through sinusoidal adaptive regularization. arXiv preprint arXiv:2003.00146, 2020.

Tom Goldstein. fasta-matlab. https://github.com/tomgoldstein/fasta-matlabl
Accessed: 2024-03-30.

Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and
Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 48524861,
2019.

Jiaxin Gu, Ce Li, Baochang Zhang, Jungong Han, Xianbin Cao, Jianzhuang Liu, and David Doermann.
Projection convolutional neural networks for 1-bit CNNs via discrete back propagation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 8344-8351, July
2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. in IEEE Conf. on Comp. Vision and Pattern Recognition (CVPR), pp.
770-778, June 2016. doi: 10.1109/CVPR.2016.90.

Xiangyu He, Zitao Mo, Ke Cheng, Weixiang Xu, Qinghao Hu, Peisong Wang, Qingshan Liu, and
Jian Cheng. ProxyBNN: Learning binarized neural networks via proxy matrices. In European
Conference on Computer Vision, pp. 223-241. Springer, August 2020.

Otto Holder. Ueber einen Mittelwerthssatz. Nachrichten von der Koniglichen Gesellschaft der
Wissenschaften und der Georg-Augusts-Universitit zu Gottingen, (2):38—47, 1889.

Lu Hou, Quanming Yao, and James T Kwok. Loss-aware binarization of deep networks. arXiv
preprint arXiv:1611.01600, 2016.

Qinghao Hu, Peisong Wang, and Jian Cheng. From hashing to CNNs: Training binary weight
networks via hashing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
April 2018.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. The Journal
of Machine Learning Research, 18(1):6869-6898, 2017.

Pei-Hen Hung, Chia-Han Lee, Shao-Wen Yang, V Srinivasa Somayazulu, Yen-Kuang Chen, and
Shao-Yi Chien. Bridge deep learning to the physical world: An efficient method to quantize
network. In IEEE Workshop on Signal Processing Systems (SiPS). IEEE, 2015.

Yerlan Idelbayev. Proper ResNet implementation for CIFAR10/CIFAR100 in PyTorch. https:
//github.com/akamaster/pytorch_resnet_cifarl0. Accessed: 2024-04-30.

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju
Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing quantization
intervals with task loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4350-4359, 2019.

Dohyung Kim, Junghyup Lee, and Bumsub Ham. Distance-aware quantization. In /EEE/CVF
International Conference on Computer Vision (ICCV), pp. 5251-5260, October 2021. doi: 10.
1109/ICCV48922.2021.00522.

11

 https://github.com/tomgoldstein/fasta-matlab
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, January 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Cong Leng, Zesheng Dou, Hao Li, Shenghuo Zhu, and Rong Jin. Extremely low bit neural net-
work: Squeeze the last bit out with admm. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711,
2016.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Zhi-quan Luo, Wing-kin Ma, Anthony Man-cho So, Yinyu Ye, and Shuzhong Zhang. Semidefinite
relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3):20-34,
May 2010.

Olvi L. Mangasarian and Benjamin Recht. Probability of unique integer solution to a system of linear
equations. Eur. J. Oper. Res., 214(1):27-30, October 2011.

Yoshiki Matsuda. Benchmarking the MAX-CUT problem on the simulated bi-

furcation machine, 209. URL |https://medium.com/toshiba-sbm/
benchmarking-the-max—cut-problem-on-the-simulated-bifurcation-machine-e26e1127c0b0
Accessed: 2024-06-27.

Maxim Naumov, Utku Diril, Jongsoo Park, Benjamin Ray, Jedrzej Jablonski, and Andrew Tul-
loch. On periodic functions as regularizers for quantization of neural networks. arXiv preprint
arXiv:1811.09862, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pp. 8024-8035. 2019.

Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu, and Jingkuan
Song. Forward and backward information retention for accurate binary neural networks. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2247-2256, June
2020. doi: 10.1109/CVPR42600.2020.00232.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: ImageNet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525-542. Springer, 2016.

Ryan Razani, Gregoire Morin, Eyyub Sari, and Vahid Partovi Nia. Adaptive binary-ternary quantiza-
tion. In Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops,
pp. 4613-4618, June 2021.

Peter H Schonemann. A generalized solution of the orthogonal procrustes problem. Psychometrika,
31(1):1-10, 1966.

Sohil Shah, Abhay Kumar Yadav, Carlos D Castillo, David W Jacobs, Christoph Studer, and Tom
Goldstein. Biconvex relaxation for semidefinite programming in computer vision. pp. 717735,
September 2016.

Yuzhang Shang, Dan Xu, Bin Duan, Ziliang Zong, Ligiang Nie, and Yan Yan. Lipschitz continuity

retained binary neural network. In European Conference on Computer Vision, pp. 603—-619.
Springer, October 2022.

12

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://medium.com/toshiba-sbm/benchmarking-the-max-cut-problem-on-the-simulated-bifurcation-machine-e26e1127c0b0
https://medium.com/toshiba-sbm/benchmarking-the-max-cut-problem-on-the-simulated-bifurcation-machine-e26e1127c0b0

Under review as a conference paper at ICLR 2025

Kirill Solodskikh, Vladimir Chikin, Ruslan Aydarkhanov, Dehua Song, Irina Zhelavskaya, and
Jiansheng Wei. Towards accurate network quantization with equivalent smooth regularizer. In
European Conference on Computer Vision, pp. 727-742. Springer, 2022.

J. Michael Steele. The Cauchy—Schwarz Master Class: an Introduction to the Art of Mathematical
Inequalities. Cambridge University Press, 2004.

Christoph Studer, Tom Goldstein, Wotao Yin, and Richard G. Baraniuk. Democratic representations.
arXiv:1401.3420, April 2015.

Sueda Taner and Christoph Studer. /P—¢?-norm minimization for joint precoding and peak-to-average-
power ratio reduction. In Proc. Asilomar Conf. Signals, Syst., Comput., pp. 437-442, October
2021.

Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with high
accuracy? In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Linh Tran, Maja Pantic, and Marc Peter Deisenroth. Cauchy—Schwarz regularized autoencoder.
Journal of Machine Learning Research, 23(115):1-37, 2022.

Matthias Wess, Sai Manoj Pudukotai Dinakarrao, and Axel Jantsch. Weighted quantization-
regularization in DNNs for weight memory minimization toward HW implementation. /EEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(11):2929-2939,
2018.

Sheng Xu, Yanjing Li, Teli Ma, Mingbao Lin, Hao Dong, Baochang Zhang, Peng Gao, and Jinhu Lu.
Resilient binary neural network. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 10620-10628, 2023.

Huanrui Yang, Lin Duan, Yiran Chen, and Hai Li. BSQ: Exploring bit-level sparsity for mixed-
precision neural network quantization. arXiv preprint arXiv:2102.10462, 2021.

Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, and Xian-
sheng Hua. Quantization networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7308-7316, 2019.

Dongging Zhang, Jiaolong Yang, Donggiangzi Ye, and Gang Hua. LQ-nets: Learned quantization for
highly accurate and compact deep neural networks. In Proceedings of the European conference on
computer vision (ECCV), pp. 365-382, 2018.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

13

Under review as a conference paper at ICLR 2025

Appendix: Cauchy-Schwarz Regularizers

A PROOFS AND DERIVATIONS

A.1 PROOF OF PROPOSITION[]]

From the Cauchy—Schwarz inequality (Steele}, 2004) follows that

[(&(x), h(x))| < [[g(x)[l2[[h(x)]]2. (23)
Squaring both sides of (23] and rearranging terms leads to

0 < [lgx)[3IMm(x)[3 — (g(x), h(x))]* £ £(x). (24)
Equality in holds iff g(x) ~ h(x), for which ¢(x) = 0.

A.2 PROOF OF LEMMA[I]

Assume that h(x) # 0. Then,

9llg(x) — fh(x)]13 (8(x),h(x))
=0 = ———, 25
95 BTG =
Plugging the right-hand-side into ||g(x) — Bh(x)||3 yields
: 2 _ 2 _ [(g(x), h(x))[?
min f[g(x) — Sh(x)[lz = lls()ll2 TR (26)
Multiplying both sides by ||h(x)]|3 results in
_ 2 . _ 2
{(x) = [h(x)[|2 min |lg(x) — Fh(x)[2. 27

If h(x) = 0, then still holds. By swapping g(x) with h(x), the equalities in (5] follow.

A.3 DERIVATION OF REGULARIZER [I]

Regularizeris minimized by vectors x € R¥ that satisfy the linear dependence condition g(x) ~

h(x) for the specific choices g(x) = [#%,...,2%]" and h(x) = 1. We have
g(x) ~ h(x) < J(a1,a9) € Rz\{(0,0)} : alxi =ay, n=1,...,N. (28)
If a; # 0, then xfl = ay/a; which implies 2, = +a,n =1,...,N, forsome o € R. If a; = 0

then as # 0, so the condition alx% = a9 cannot be satisfied; this implies that the only vectors that
satisfy fyin(x) = 0 from @) are in the following set:

Xoin = {X € {~a,a} 1@ e R} (29)
The same result would also follow directly from inspection of (7).
To establish the fact that Regularizer[T]does not have any spurious critical points, we need to show

that Vi, (x) = 0 iff x € Xi,. To this end, we inspect

O — AN23 — d[x]?2, = 4o, (N2 — [x]?) =0, n=1,...,N. (30)
Clearly, every vector x € Ay, satisfies (30). For any other vector, the gradient is nonzero. To prove
this, it is sufficient to show that the derivative is nonzero for a two-dimensional, non-binary-valued
vector, because any vector with a non-binary-valued subvector is non-binary-valued (and, any non-
binary-valued vector has a non-binary-valued subvector). To this end, let x = [a, 8]T for a # 3,
a # —f, and «, 5 # 0. Then, we have

Venls) — 40 (202 — (o® + 2)) = daa® — %) £ 0. (3D

14

Under review as a conference paper at ICLR 2025

A.4 DERIVATION OF REGULARIZER 2]

Regularlzerlls minimized by vectors x € RY that satisfy the linear dependence condition g(x) ~
h(x) for the specific choices g(x) = [z%,...,2%]" and h(x) = x. We have

g(x) ~h(x) <= J(a1,a2) € Rz\{(070)} ca1r? = agx,, n=1,...,N. (32)

If 7, = 0, then the condition a122 = agx,, is trivially satisfied. If z,, # 0, then we inspect
a1z, = ag. If ay # 0, then z,, = as/a1, which implies z,, = « for some o € R. If a; = 0 then
as # 0, so the condition a1z, = ag cannot be satisfied; this implies that the only vectors that satisfy
Losp(x) = 0 from (8) are in the following set:

Kosh = {5(€ {O,OL}N RS R} 33)
The same result would also follow directly from inspection of (9).

To establish the fact that Regularizer 2] does not have any spurious critical points, we need to show
that Vs (x) = 0 iff x € Xygp. To this end, we inspect

el — 93, ([x]* + 222 [x]? — 32, [x]?) =0, n=1,....N. (34)

Clearly, every vector x € Xog, satisfies (34). For any other vector, the gradient is nonzero. To prove
this, it is sufficient to show that the derivative is nonzero for a two-dimensional, non-one-sided-
binary-valued (non-OSB) vector, because any vector with a non-OSB subvector is non-OSB (and,
any non-OSB vector has a non-OSB subvector). Assume x = [«, 3] for a # 3 and «, 8 # 0. Then
6[5572(1") = 2a3%(2a — B)(a — f3), and by symmetry, ae"“’(x) = 202B(a — 28)(a — 3); this implies

that aegb(x) and aég",(x) cannot be zero 51mu1taneously.
xTq)

A.5 DERIVATION OF REGULARIZER 3]

Regularlzerlls minimized by vectors x € RY that satisfy the linear dependence condition g(x) ~
h(x) for the specific choices g(x) = [z3,...,2%]T and h(x) = x. We have

g(x) ~h(x) < J(a1,a2) € RQ\{(O,O)} La12d = asr,, n=1,...,N. (35)

If z,, = 0, then the condition alxi = agx, is trivially satisfied. If x,, # 0, then we inspect
a1r2 = ag. If a; # 0, then 22 = ay /a1, which implies 2, = +a for some a € R. If a; = 0 then
az # 0, so the condition a3 72 = ay cannot be satisfied; this implies that the only vectors that satisfy

Losh(x) = 0 from are in the following set:
Xer = {X € {~,0,a}" : a € R}. (36)
The same result would also follow directly from inspection of (TT).

To establish the fact that Regularizer 3] does not have any spurious critical points, we need to show
that Ve (x) = 0 iff x € X, To this end, we inspect

90 — 9, ([x])° + 3[x)ah — 4x]*a2) =0, n=1,...,N. (37)

Clearly, every vector x € X, satisfies (37). For any other vector, the derivative is nonzero. To prove
this, it is sufficient to show that the derivative is nonzero for a two-dimensional, non-ternary-valued
vector, because any vector with a non-ternary-valued subvector is non-ternary-valued (and, any
non-ternary-valued vector has a non-ternary-valued subvector). Assume x = [«, 5] for a # S,

a # —fand o, B # 0. Then aem(x = 2a3%(3a? — 8%)(a? — %), and, by symmetry, Z‘”(x)

2023(a? — 38%)(a? — 3?); this 1mphes that M‘“(x) and M‘“(x) cannot be zero 51mu1taneously

A.6 DERIVATION OF REGULARIZER [4]
Regularizeris minimized by vectors x € R¥ that satisfy the linear dependence condition g(x) ~

h(x) for the specific choices g(x) = Cx and h(x) = x. By definition, we have that g(x) ~ h(x) if
and only if x is an eigenvector of C.

15

Under review as a conference paper at ICLR 2025

A.7 DERIVATION OF REGULARIZER [3]

Regularizer [5| is minimized by matrices X € RY that satisfy the linear dependence condition
g(x) ~ h(x) for the specific choices g(X) £ vec(XTX) and h(x) = vec(Is).

To establish the fact that Regularizer 5] does not have any spurious critical points, we need to show
that Vo (x) = 0 iff x € Xo. To this end, we inspect

Vlomx (X) = ANXXTX — 4| X|ZX =0 (38)
= 4X(NX™X — |X|fIy) =0 (39)
= NX™X = | X|ZIy, (40)

which implies that X must have orthogonal columns.

A.8 PROOF OF PROPOSITION[Z]

From the triangle inequality and Holder’s inequality (Holder, |1889)) follows that

(g(x), h(x))| < 30, [18()]a[h (| < g6 1B(x)lo, (41)

where p, ¢ > 1 so that % + % = 1. Raising the left-hand and the right-hand sides of to the power
of 7 > 0 and rearranging terms leads to

0 < llg)lpIIhG 5 — gx), h(x)|" £ f(x). (42)

Both inequalities in hold iff g(x) ~ h(x), for which {(x) = 0.

A.9 PROOF OF PROPOSITION[3]

The proof follows that of App.[A.8] but where we first add € > 0 to the left-hand and right-hand sides
of (1), followed by a division by |(g(x), h(x))| + ¢ and rearranging terms to arrive at £(x) in (16).

B ALTERNATIVE CAUCHY-SCHWARZ REGULARIZERS

B.1 BEYOND VECTOR TERNARIZATION

We now show one approach that generalizes CS regularizers to a symmetric, discrete-valued set
with 28 equispaced entries. The idea behind this approach is as follows: (i) decompose x € R” into

a sum of B auxiliary vectors x = Zszl yp with y, € RY and (ii) apply one regularization function
to the auxiliary vectors y, b =1,..., B

- . T ..
Define g({yv};-1) = [8(v1)",---.8(yp)"] using g(y) = [yf,... y}]" and h({ye}i’,) =
[hi(y1)", ... ,hB(yB)T]T using hy(y) = 4°~11y. Then, Proposition |1|yields the following CS
regularizer that promotes symmetric equispaced-valued vectors; see App.[B.1.1|for the derivation.

Regularizer 6 (Symmetric Equispaced). Lety;, € RY forb =1,..., B and define

2
B B _
lean([y0}£0) 2 KN (S0 Ivol!) = (S0, 4 yel?) (43)
with K £ ZbB:l 42=1) " Then, the nonnegative function is only zero for vectors y, €
{—2b71q, 2"} UOyN,b = 1,..., B, for any o € R; this implies that the sum of these vectors

x £ Zle Yo is in the set Xegy £ {+(2° - 1)a}P | with | Xequ| = 2B. Furthermore, leqy does not
have any spurious critical points.

To gain insight into Regularizer [6] we invoke Lemma [T]and obtain

B
lew({yo}0) = KNmin }_ ((woln] = 2"~ /B) (ln] + 2-1./B))* (44)
b=1

16

Under review as a conference paper at ICLR 2025

{—2""1a, 2" ta}¥ for some o € R minimize (44). This implies that the vectors x are of the

We also observe this CS regularizer’s auto-scale property and only vectors of the form y; €
44)
formx € {—(28 - 1)a,...,—a,a,..., (28 - 1)§N for some o € R.

In contrast to the initially introduced binarization and ternarization regularizers, Regularizer [6]
introduces additional optimization parameters, i.e., increases the dimension of the optimization
problem by a factor of B.

B.1.1 DERIVATION OF REGULARIZERI[6]

Regularizer E] is minimized by vectors {yb}f’:l that satisfy the linear dependence condition
g({yo}l)) ~ h({ys}2,) for the specific choices g({ys},) = [&(y1).....&(ys)|" using
&) =1lyi,....,yx]" and h({ys};.,) = [h(y1),.... h(yp)]" using h(ys) = 4"~ '1x. We have

g({yo}ii1) ~h({ys}ii1)
> J(a1,a2) € R2\{(0,0)} : a1y, = a24”', b=1,...,B, n=1,...,N. (45

If ay # 0, then y7, = %4b_1 which implies y,,, = 0 or 4, = +a2"L, n = 1,...,N,
b=1,...,B,forsome a € R. If a; = 0 then ay # 0, so the condition alyin = 4%~ cannot be

satisfied; this implies that the only vectors y; that satisfy leqy ({yb}{?:l) = 0 from are in the
following set:

Voo = {20710, 2" Ta}N Loy, (46)

withy, € Vpo,b = 1,..., B for any a« € R. The same result would also follow directly from
inspection of l| Then, the vectors x = Zle Yy are in the following set:

Xequ = {x c{-27ta,...,—a,a,....,227 0}V 10 € R}. 47)

To establish the fact that Regularizer [6] does not have any spurious critical points, we need to show
that Vlqu(ys) = 0,0 =1,...,Biff yy € Vpa,b =1,...,B for any a € R. To this end, we
inspect

3£equ({yb}f:1)
ys[n]
forn =1,...,Nand b =1,...,B. Clearly, y, € V0,0 = 1,..., B satisfies (48). For a set of

vectors in any other form, the derivative is nonzero. To prove this, it is sufficient to show that the
derivative is nonzero for a pair of scalars (i.e., N = 1) (s, yp) for y, # 0, |ys| # 2°~ || and

lyp | = b’ ~1 ||, because any pair of vectors including these entries would not satisfy li (and, any
set of vectors that do not satisfy (8] must have such a pair of entries). We have,

= dy[n] (KN (ln))? - 471 3L, 47y) = 0 (48)

aEequ(ybv yb’)

—4 42(b’—1) 2 _ gb-1,2 0. 49
o s (vi o?) # (49)

B.2 BOUNDED CS REGULARIZERS FOR VECTOR BINARIZATION

We now propose alternative binarization regularizers that avoids potential numerical issues caused by
higher-order polynomials.

Define b(z) = (1 + 2%)~! and g(x) £ [b(x1),...,b(zn)]". Furthermore, let h(x) = 1. Then,
Proposition[I] yields the following CS regularizer that promotes symmetric binary-valued vectors.

Regularizer 7 (Bounded Symmetric Binarizer). Let x € RY and define

2
loin(%) & N300 ez — (Zgzl ﬁ) (50)

Then, the nonnegative function in (30) is only zero for one-sided binary-valued vectors, i.e., iff
x € {0,a}" for any a € R. Furthermore, lyyin(X) does not have any spurious critical points.

17

Under review as a conference paper at ICLR 2025

An alternative binarization regularizer can be obtained as follows. Define b(z) £ e~ and g(x) £
[b(x1),...,b(xn)]T. Furthermore, let h(x) £ 1. Then, Proposition |1|yields the following CS
regularizer that promotes symmetric binary-valued vectors.

Regularizer 8 (Alternative Bounded Symmetric Binarizer). Let x € RN and define

2
Zbin,exp(x> £ Nzgzl e—Qwi - <251V:1 6_21%) (5])

Then, the nonnegative function in (31)) is only zero for one-sided binary-valued vectors, i.e., iff
x € {0,a}" forany a € R.

Note that by normalizing and (51) with 1/N?2, the maximum value of the resulting CS regularizer
is bounded from above by 1.

B.3 VECTORS IN NULLSPACE OF A GIVEN MATRIX

The following regularizer promotes unit-norm vectors in the nullspace of a given (and fixed) matrix
C € RM*N Define g(x) = [(Cx)T, [|x[3 — 1,1]T and h(x) £ [0Y,,,,,0, 1]T. Then, Proposition
yields the following CS regularizer that promotes unit-norm vectors in nullspace of C.

Regularizer 9 (Nullspace Vector). Fix C € RM*N with M > N and let x € RN, Define
s (%) 2 [|Cx|13 + (|[x[I3 — 1)? (52)
Then, the nonnegative function in Regularizer[52]is zero for only unit-norm vectors x in the nullspace

of G, i.e., iff Cx = Oprxq with ||x]|3 = 1.

B.4 CS REGULARIZERS WITH FIXED SCALE

If one is, for example, interested in promoting binary-valued vectors with predefined scale, i.e.,
x € {—a,a}” but for a given fixed value of «, then one can use g(x) = [2?,...,2%,a?|" and
h(x) 21 N41 1n . We note, however, that this particular binarization regularizer with o = 1 has
been utilized before in (Tang et al., | 2017); similar regularizers can be found in (Hung et al., 2015}
Darabi et al., 2019). In general, the idea of augmenting the functions g and h with constants removes
the auto-scale property of CS regularizers.

B.5 NON-DIFFERENTIABLE VARIANTS

One can also develop non-differentiable variants of CS regularizers. For example, by defining
g(x) = [|z,. .., |xN|]T and h(x) £ 1y in Proposition one obtains the CS regularizer
loin(3) = N — 1|3, (53)

which also promotes symmetric binary-valued entries. Intriguingly, this regularizer is equal to the

scaled empirical variance of the entry-wise absolute values of x € RV, i.e., pin(x) = N?Var(|x|).
One could also combine the idea of with Proposition 2Jusing p = ¢ = 2 and 7 = 1 to obtain

byin(x) 2 VN x|z — [|x]1, (54)

which also promotes symmetric binary-valued entries. Such alternative versions might result in better
empirical convergence if, for example, used within auto-differentiation frameworks that allow for
non-differentiable functions. We conclude by noting that the specific regularizer in has been used
in (Taner & Studer, 2021)) for dynamic-range reduction of complex-valued data in wireless systems.

C ADDITIONAL RESULTS

C.1 COMPARISON OF THE BINARIZING CS REGULARIZER WITH EXISTING REGULARIZERS
Table [T summarizes the key properties of existing regularizers from Section [I.3]and how our regu-

larizer can be superior to those, i.e., by being differentiable, scale-adaptive, and avoiding additional
optimization parameters.

18

Under review as a conference paper at ICLR 2025

Table 1: Comparison of regularizers for vector binarization. Advantages are designated by (+) and
disadvantages by (-).

Regularizer Differentiable (+) Scale-adaptive (+) Requires additional optimization variables (-)
>, (an| — 1)? No No No
> (x| = B)? No Yes Yes
o,z —1)? Yes No No
o, (a2 = B)? Yes Yes Yes
Ours (Lpin) Yes Yes No
1 R e
0.8
&
«
06 |
%
S o4t At bin]
= —¢Llyin,p1
wn
02| Loin 3
—4
o 704 o5 06 o7 08 09

M / N
Figure 3: Probability of success in binary solution recovery with ¢y, and three baselines

C.2 COMPARISONS WITH BASELINES FOR BINARY RECOVERY

We follow the same experimental setup as in Section [3.1]and provide experiments for two additional
baselines: (i) assuming that the scale /3 is known and fixed as a constant and (ii) letting /3 be a separate
(and explicit) optimization parameter (that is learned together with the entries of the vector). As

mentioned in Section [1.3} we use fyin 5—1 2 S0 (22 —)2 with known and fixed 8 = 1, and

n=1*n

loing = Zgzl(x% — /3)? with additional optimization parameter 3.

In Fig. 3] we observe that both of these baseline methods achieve comparable recovery performance,
but CS regularizers have the advantages of (i) not requiring to know the scale a-priori and (ii) not
introducing additional optimization parameters.

C.3 ADDITIONAL RESULTS FOR MORE CS REGULARIZERS FOR BINARY RECOVERY

We follow the same experimental setup as Section [3.1]and provide experiments for four additional
variants of CS regularizers: Here, {y;n i refers to the Holder CS regularizer from (I5) withp = ¢ =
2,7 =1, lyinsi to the scale-invariant Holder CS regularizer from withp=q=2,r =1, Ebin to
the non-differentiable CS regularizer from , and ébin,exp to the bounded CS regularizer from .

In Fig. {4l we observe that while ¢y, g has comparable success rate to £y, the remaining variants are
unfortunately outperformed by the baseline £°°-norm.

C.4 ADDITIONAL RESULTS FOR SPARSE RECOVERY

In this subsection, we slightly modify our experimental setup from Section [3.1]in order to compare
the solution recovery performance of /.- and ¢ie,-minimization to that of ¢ L_norm minimization with
respect to the sparsity of x*. We fix N = 100 and M = 75. We create vectors x* € RY with a fixed
number of K uniform randomly chosen nonzero entries; these nonzero entries are +1 for one-sided
binary vectors, and are chosen i.i.d. with uniform probability from {—1, 41} for ternary vectors. We
vary K from 20 to 80. For each K, we randomly generate 1000 problem instances and report the

19

Under review as a conference paper at ICLR 2025

success rate

Figure 4: Probability of success in binary solution recovery with five CS regularizer variants and
£>°-norm-based recovery.

1000082000000000000000000000000 1 4hAdh . ; .
It - ﬁ?ﬁ;ﬁﬂ"
08 I i 1 08 |
) N ©
+— A +
< \]
= 0.6 § = 0.6
15} \ n
192} \ n
o) \ O
O 04t 4 O 04t
o \ [} \
: X E 3 | ;
02t § Kusb 1 02 Kter
\}\l E fl P’ % § (1
0 L L TRAAAAAAAAAAAAA 0 L L ;tAAAAAAAAAAAAA
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8
K / N K / N
(a) One-sided binary (b) Symmetric ternary

Figure 5: Probability of success for recovering vectors with (a) one-sided binary-, and (b) symmetric
ternary values dependent on the density ratio K /N.

average success probability and the standard deviation from the mean. We only allow one random
initialization, and the remaining details of the setup are the same as those presented in Section 3.1}

Fig. E] demonstrates the success rate of (a) £,g,-minimization and (b) ¢,.,-minimization compared
to /!-norm minimization with respect to the density ratio of x* given by § = K/N. In Fig.[5|(a),
we observe that while the success rate of #'-norm minimization reduces with § > 0.3 and almost
reaches 0 at § = 0.5, the success rate of {y,-minimization is almost always 1 for any density
ratio. In Fig. (b), we observe that £!-norm minimization follows the same trend as in Fig. (a)
as expected, while the success rate of f,-minimization increases with density. The success rate of
{e:-minimization surpasses that of ¢!-norm minimization for & > 0.4. For small density ratios §, CS
regularization with £, does perform poorly as projected gradient descent seems to get stuck in local
minima. To counteract this issue, one could perform multiple restarts with random initialization.

C.5 SIMULATION RESULTS FOR TWO-BIT SOLUTION RECOVERY FROM SECTION [3.1]

Please see Fig. [6]

C.6 SIMULATION RESULTS FOR EIGENVECTOR RECOVERY FROM SECTION[3.2]

Please see Fig.

C.7 APPROXIMATING MAXIMUM-CUT PROBLEMS WITH CS REGULARIZERS

@sue

20

Under review as a conference paper at ICLR 2025

%gequ

0.6

/
/

"l MN/%N
0 ‘ ‘

0.33' v 0.6
M/N

success rate

0.4 0.5 0.7 0.8 0.9

Figure 6: Two-bit solution recovery for N = 10 with CS regularizer £cqq.

I g—e—e——+ ¢ 2
[o &
08 r & -
o -
= &
P &
= 0.6%
0
n
[}
Q 04
O
z
0.2 +€("I‘ 4
E gll
0
0.3 0.4 0.5 0.6 0.7
M/N

Figure 7: Eigenvector recovery for N = 100 with £, and with ¢,,, where © must also be learned, as a
baseline.

We now showcase another application in which CS regularizers can be utilized. Specifically, CS
regualzers can be used to find approximate solutions to the well-known weighted maximum cut (MAX-
CUT) problem (Commander, 2009). MAX-CUT of a graph is the partition of a graph’s vertices
into two disjoint sets such that the total weight of the edges between these two sets is maximized.
For an undirected weighted graph G = (V, E), this maximization problem can be formulated as the
following integer quadratic programming problem:

1
maximize - Z wii (1 — x525) . (55)
xe{-1+1}¥ 1<i<j<N

é éMC (X)

Here, x; € {—1,+1},i=1,..., N, denotes the binary set label for the ith vertex of the graph, N is
the number of noces, and w;; € R denotes the weight of the edge between the ith and jth vertices.

The MAX-CUT problem is NP-hard and many approximations have been proposed in the literature.
Classical approximations base on semidefinite and continuous relaxation; see, e.g,|(Commander| (2009)
and the references therein. Here, we propose a continuous reformulation that utilizes CS regularizers:

X € arg mﬂlg]lv —ch(X) +)\Kbin(x) subject to |l‘l| <1, (56)
xE

which we solve by using a projected gradient descent algorithm, similarly to Section 2.2 with a fixed
maximum number of iterations.

To evaluate our approach, we ran our projected gradient descent algorithm with random initializations
for 10 trials. First, we considered small graphs; here, we set A = 1.

» Forthe N = 5, E = 7 graph from Matsudal (209), we recovered the MAX-CUT in less than
300 iterations across 10 trials with random initializations.

21

Under review as a conference paper at ICLR 2025

* For a graph with N = 4 vertices, F = 5 edges, and weights wis = 10, w13 = 20, w4 = 30,
way = 40, and w34 = 50, we recovered the MAX-CUT in less than 40 iterations across 10
trials.

Second, we considered the larger graphs given in Matsuda) (209) for benchmarking; here, we set
A = 1077, The table below demonstrates the graph ID and the maximum cut values from Matsudal
(209) along with the average cut values of our random initializations and our recovered solutions
across 10 trials. Unfortunately, it seems that our approach struggles to recover the MAX-CUT for

Table 2: Comparison of Maximum Known Cut and Ours for Different Graphs

GraphID Target Initial Ours
G10 2000 67.44£50.5 1769.1£26.8
Gl1 564 7.2+£149 482.0+10.46
Gl12 556 -0.2£243 470.8£13.7
G13 582 22.6£25.1 494.248.1

large graphs; however, it significantly improves the objective value compared to the initialization,
demonstrating its practical applicability. Moreover, with notable computational advantages over the
method in |[Matsuda (209), our approach shows promise and could inspire valuable directions for
future research.

D DETAILS OF NEURAL NETWORK QUANTIZATION EXPERIMENTS FROM
SECTION[3.4]

D.1 DATASETS AND PREPROCESSING

ImageNet has over 1.2 M training images and 50 k validation images from 1000 object classes. We
train and evaluate our network on the training and validation splits, respectively, and report the top-1
accuracy for performance evaluation. We adopt a typical data augmentation strategy on the training
images as resizing the shorter side of the images to 256 pixels, taking a random crop of size 224 x224,
and applying a random horizontal flip. For validation, we apply the same resizing and take the center
224 %224 crop.

CIFAR-10 (Krizhevsky, [2009) consists of over 50k training images and 10 k testing images from 10
object classes. We adopt a typical data-augmentation strategy on the training images as padding by 4
pixels, taking a random 32x32 crop, and applying a random horizontal flip. For testing, we use the
original images.

D.2 THE IMPACT OF VARYING THE REGULARIZATION PARAMETER ON THE CLASSIFICATION
ACCURACIES

Please see Tables These accuracies are based on the average of 10 runs.

D.3 PERFORMANCE COMPARISON WITH SOTA BINARIZED AND TERNARIZED NEURAL
NETWORKS FROM SECTION[3.4.2|

Please see Table [3|for the advantages/disadvantages of our training strategy compared to the SOTA
methods.

Please see Tables [8}{10]for accuracy comparisons. Here, we report the average accuracy and standard
deviation for 10 random initializations of training.

E COMPUTATIONAL RESOURCES

For our underdetermined linear systems experiments in Section [3.1] we used MATLAB. For the
maximum number of 10* iterations, projected gradient descent and Douglas-Rachford splitting
algorithms each took approximately one second at most.

22

Under review as a conference paper at ICLR 2025

Table 3: Comparison of variables that are required by SOTA neural network quantization methods
and CS regularizers (ours) for training. Each column represents variables that are required in addition
to (unquantized) full-precision neural network training. Due to lack of space, we cannot list all SOTA
methods in this table, but we emphasize that ours is the only method that introduces no trainable or
non-trainable variables with only one hyperparameter; please see our response to Q2 of Reviewer
Kgkn to observe that our method is not sensitive to small changes in this parameter.

Method Trainable variables Non-trainable variables Tunable hyper-parameters
SQ-BWN (Dong et al.,[2017) Yes Yes 0
BWN (Rastegari et al., 2016) No Yes 0
HWGQ (Cai et al.,|2017) No Yes 0
PCCN (Gu et al.,[2019) Yes Yes 0
BWHN (Hu et al., [2018) No Yes 0
ADMM (Leng et al.,[2018) Yes No 1
IR-Net (Qin et al., [2020) No Yes 0
LCR-BNN (Shang et al.| [2022) No Yes 2
DAQ (Kim et al .| 2021)) No Yes 1
ProxyBNN (He et al., [2020) Yes Yes 1
TWN (Li et al.,[2016) No Yes 1
QNet (Yang et al.,[2019) No Yes 1
QIL (Jung et al.} 2019) Yes Yes 0
DoReFa-Net (Zhou et al., [2016) No Yes 0
LQ (Zhang et al.,[2018]) Yes Yes 0
DSQ (Gong et al.,[2019) Yes Yes 0
Ours (Ypin and Zier) No No 1

Table 4: Top-1 accuracy of binarized ResNet-18 on ImageNet for regularized training with varying
values of \.

A 1 10 100 1000 1le4
Top-1% 624 62.8 627 598 574

Table 5: Top-1 accuracy of ternarized ResNet-18 on ImageNet for regularized training with varying
values of \.

A 1e3 le4 1eS 1e6 le7 1e8
Top-1% 628 64.1 653 653 651 64.0

Table 6: Top-1 accuracy of binarized ResNet-20 on CIFAR10 for regularized training with varying
values of \.

A 1 10 100 1000
Top-1% 89.8 90.7 90.1 899

Table 7: Top-1 accuracy of ternarized ResNet-20 on CIFAR10 for regularized training with varying
values of \.

A 1000 1le4 leS le6 1e7
Top-1% 90.8 909 91.0 91.0 909

23

Under review as a conference paper at ICLR 2025

Method Top-1 (%)
ResNet-18 (FP) 69.8
SQ-BWN (Dong et al.| 2017) 58.4
BWN (Rastegari et al.,[2016) 60.8
HWGQ (Cai et al.,[2017) 61.3
PCCN (Gu et al., 2019 63.5
BWHN (Hu et al.;[2018) 64.3
ADMM (Leng et al., [2018) 64.8
IR-Net (Qin et al.;[2020) 66.5
LCR-BNN (Shang et al.| [2022) 66.9
DAQ (Kim et al. 67.2
Proxy] e et al., 2020 67.7
Ours (Ybin) 62.8+0.09

Table 8: Top-1 accuracy of ResNet-18 with binary-valued weights on ImageNet. FP stands for the
full-precision model accuracy.

Method Top-1 (%)
ResNet-18 (FP) 69.8
TWN (Li et al., 2016 61.8
SQ-TWN (Dong et al.} 63.8
QNet (Yang et al.,[2019) 66.5
ADMM (Leng et al., 2018) 67.0
LQ (Zhang et al.| 2018 68.0
QIL (Jung et al., 2019 68.1
Ours (Cier) 65.34+0.08

Table 9: Top-1 accuracy of ResNet-18 with ternary-valued weights on ImageNet. FP stands for the
full-precision model accuracy.

Method Top-1 (%)
ResNet-20 (FP) 91.7
DoReFa-Net (Zhou et al., 2016) 90.0
LQ (Zhang et al.,|2018) 90.1
DSQ (Gong et al., {2019 90.2
IR-Net (Qin et al., 2020 90.8
DAQ (Kim et al.; 2021) 91.2
LCR-BNN (Shang et al., 2022) 91.2
Ours (Yyin) 90.3£0.17
Ours (ler) 91.040.11

Table 10: Top-1 accuracy of ResNet-20 on CIFAR-10 (c) with binary- and ternary-valued weights.
FP stands for the full-precision model accuracy.

24

Under review as a conference paper at ICLR 2025

For our neural network weight quantization experiments in Section [3.4 we use PyTorch (Paszke
et al.} 2019). We used a machine with eight NVIDIA GeForce RTX 4090 GPUs with 24 GB memory.
Training ResNet-18 on ImageNet took approximately 800 seconds per epoch for a batch size of 1024.
Training ResNet-20 on CIFAR-10 took approximately five seconds for a batch size of 128.

25

	Introduction
	Contributions
	Notation
	Relevant Prior Art

	Cauchy–Schwarz Regularizers
	The Recipe
	Recovering Discrete-Valued Vectors
	Symmetric Binary
	One-Sided Binary
	Symmetric Ternary

	Recovering Eigenvectors of a Given Matrix
	Recovering Matrices with Orthogonal Columns
	Generalizations and Variations
	Hölder Regularizer
	Scale-Invariant Hölder Regularizer

	Application Examples
	Recovering Discrete-Valued Vectors
	Recovering Eigenvectors of a Matrix
	Recovering Matrices with Orthogonal Columns
	Quantizing Neural Network Weights
	Method
	Experimental Results

	Limitations
	Conclusions
	Proofs and Derivations
	Proof of prop:mainresult
	Proof of lem:equivalences
	Derivation of reg:mainsymmetricbinarization
	Derivation of reg:mainonesidedbinarization
	Derivation of reg:mainsymmetricternarization
	Derivation of reg:maineigenvectorrecovery
	Derivation of reg:mainorthogonalmatrix
	Proof of prop:fullgeneral
	Proof of prop:fullgeneralfraction

	Alternative Cauchy–Schwarz Regularizers
	Beyond Vector Ternarization
	Derivation of reg:mainsymmetricequispaced

	Bounded CS Regularizers for Vector Binarization
	Vectors in Nullspace of a Given Matrix
	CS Regularizers with Fixed Scale
	Non-Differentiable Variants

	Additional Results
	Comparison of the Binarizing CS Regularizer with Existing Regularizers
	Comparisons with Baselines for Binary Recovery
	Additional Results for More CS Regularizers for Binary Recovery
	Additional Results for Sparse Recovery
	Simulation Results for Two-Bit Solution Recovery from sec:discretesolrecovery
	Simulation Results for Eigenvector Recovery from sec:eigvecrecexperiment
	Approximating Maximum-Cut Problems with CS Regularizers

	Details of Neural Network Quantization Experiments from sec:quantizingnns
	Datasets and Preprocessing
	The Impact of Varying the Regularization Parameter on the Classification Accuracies
	Performance Comparison with SOTA Binarized and Ternarized Neural Networks from sec:nnexperiments

	Computational Resources

