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ABSTRACT

Several Riemannian manifolds in machine learning, such as Symmetric Positive
Definite (SPD), Grassmann, spherical, and hyperbolic manifolds, have been proven
to admit gyro structures, thus enabling a principled and effective extension of
Euclidean Deep Neural Networks (DNNs) to manifolds. Inspired by this, this
study introduces a general Riemannian Batch Normalization (RBN) framework
on gyrogroups, termed GyroBN. We identify the least requirements to guarantee
GyroBN with theoretical control over sample statistics, referred to as pseudo-
reduction and gyroisometric gyrations, which are satisfied by all the existing
gyrogroups in machine learning. Besides, our GyroBN incorporates several existing
normalization methods, including the one on general Lie groups and different types
of RBN on the non-group SPD geometry. Lastly, we instantiate our GyroBN on
the Grassmannian and hyperbolic spaces. Experiments on the Grassmannian and
hyperbolic networks demonstrate the effectiveness of our GyroBN. The code is
available at https://github.com/GitZH-Chen/GyroBN.git.

1 INTRODUCTION

Deep Neural Networks (DNNs) on Riemannian manifolds have gained increasing interest in various
machine learning applications, such as computer vision (Huang et al., 2017; Huang & Van Gool,
2017; Huang et al., 2018; Skopek et al., 2019; Wang et al., 2022b;a; Chen et al., 2023c; Gao et al.,
2023; Wang et al., 2024b; Chen et al., 2025), natural language processing (Ganea et al., 2018; Shimizu
et al., 2020), drone classification (Brooks et al., 2019; Chen et al., 2024a), human neuroimaging (Pan
et al., 2022; Kobler et al., 2022a; Ju et al., 2024; Wang et al., 2024a), medical imaging (Huang et al.,
2019; Chakraborty et al., 2020), node and graph classification (Chami et al., 2019; Dai et al., 2021;
Zhao et al., 2023; Chen et al., 2023b; Nguyen et al., 2024; Chen et al., 2024c). As core techniques in
DNNs, normalization techniques (Ioffe & Szegedy, 2015; Ba et al., 2016; Ulyanov et al., 2016; Wu &
He, 2018; Chen et al., 2023a) have also been extended into different geometries.

However, most existing Riemannian normalization methods are designed for a selected few geometries
or fail to normalize the sample statistics. Brooks et al. (2019); Kobler et al. (2022b;a) introduced
Riemannian Batch Normalization (RBN) on SPD manifolds under the specific Affine-Invariant
Metric (AIM). Chakraborty (2020) generalized this idea and proposed a Riemannian normalization
framework over homogeneous spaces. However, this approach cannot generally normalize the sample
statistics. Similar formulation and issue can also be found in Lou et al. (2020, Alg. 2) and Bdeir
et al. (2024, Sec. 4.2). Besides, Chakraborty (2020) also developed a Riemannian normalization
for matrix Lie groups. Although this approach can control first- and second-order statistics, it is
limited to a specific type of distance (Chakraborty, 2020, Sec. 3.2). Chen et al. (2024b) took one step
further and developed RBN over the general Lie group, referred to as LieBN. Although LieBN can
effectively normalize sample statistics, many geometries do not admit a group structure. In summary,
the existing RBN methods fail to normalize manifold-valued samples in a principled manner.

Recently, building Riemannian networks based on gyro structures has shown notable success across
various geometries, including Symmetric Positive Definite (SPD) (Nguyen, 2022a;b), Grassmannian
(Nguyen, 2022b), hyperbolic (Ganea et al., 2018), and spherical (Skopek et al., 2019) manifolds.
Gyro structures, natural extensions of vector structures, offer powerful mathematical tools for building
Riemannian neural networks. Moreover, gyrogroups naturally encompass Lie groups and extend to
non-group geometries. For instance, AIM on the SPD manifold, as well as Grassmannian, hyperbolic,
and spherical manifolds, do not form Lie groups but instead gyrogroups.
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Figure 1: Illustration of GyroBN on the Grassmannian and hyperbolic spaces. As Gr(1, 3) is
homeomorphic to the real projective space RP2, we illustrate Gr(1, 3) as the unit hemisphere with
antipodal points identified. We set the bias as I1,3 = (1, 0, 0)⊤ and the scaling scalar as 0.2 for better
illustration. For the hyperbolic space, we visualize the GyroBN on the Poincaré ball model P3

−1,
which is the interior of the unit sphere in R3. We set bias and shift as zero vector and 0.7, respectively.

Table 1: Comparison of previous RBN methods with our GyroBN, where M and V denote the sample
mean and variance. Compared with the existing RBN methods, our GyroBN can normalize sample
statistics in a principled manner. Besides, several previous RBN methods with theoretical control
over sample statistics are special cases of our GyroBN.

Method Controllable Statistics Applied Geometries Incorporated by GyroBN

SPDBN
(Brooks et al., 2019) M SPD manifolds under AIM ✓

SPDBN
(Kobler et al., 2022b) M+V SPD manifolds under AIM ✓

SPDDSMBN
(Kobler et al., 2022a) M+V SPD manifolds under AIM ✓

ManifoldNorm
(Chakraborty, 2020, Algs. 1-2) N/A Riemannian homogeneous space ✗

ManifoldNorm
(Chakraborty, 2020, Algs. 3-4) M+V

Matrix Lie groups under the distance
d(X,Y ) =

∥∥mlog
(
X−1Y

)∥∥ ✓

RBN
(Lou et al., 2020, Alg. 2) N/A Geodesically complete manifolds ✗

LieBN
(Chen et al., 2024b) M+V General Lie groups ✓

GyroBN M+V Pseudo-reductive gyrogroups
with gyro isometric gyrations N/A

Based on the above analysis, this paper introduces GyroBN, an RBN framework for general gy-
rogroups. We use the gyro addition, subtraction, and scalar product to extend the centering (vector
subtraction), biasing (vector addition), and scaling (vector scalar product) in the Euclidean BN into
manifolds in a principled manner. For broader applicability and in-depth theoretical analysis, we
adapt the existing gyrogroup into a more relaxed structure, termed pseudo-reductive gyrogroup. Our
theoretical analysis shows that pseudo-reductive gyrogroups with gyroisometric gyrations can enable
GyroBN with theoretical control over sample statistics. More importantly, these requirements are
satisfied by all the existing gyrogroups in machine learning. Therefore, compared with the existing
RBN methods, our GyroBN can normalize sample statistics in a principled manner. Besides, several
existing RBN methods are incorporated by our GyroBN as special cases, including the LieBN on
Lie groups, such as three SPD Lie groups and rotation matrices, and different types of RBN on the
non-group SPD geometry. We provide a detailed comparison in Tab. 1. Empirically, we instanti-
ate our GyroBN on the Grassmannian and hyperbolic spaces, as illustrated in Fig. 1. To the best
of our knowledge, our Grassmannian GyroBN is the first implementation of Grassmannian RBN.
Experiments on the Grassmannian and hyperbolic networks validate the effectiveness of our GyroBN.

Our main theoretical contributions are summarized as follows: (1) We propose the pseudo-reductive
gyrogroup, a relaxed structure of the gyrogroup, and present relevant theoretical analyses; (2) We
identify the requirements that guarantee our GyroBN with theoretical control over sample statistics,
i.e.,pseudo-reduction and gyroisometric gyrations; (3) We propose a GyroBN framework for RBN
over general gyrogroups, which can be manifested in various geometries in a plug-and-player manner.
(4) We implement our GyroBN on the Grassmannian and hyperbolic spaces. Extensive experiments
on popular Grassmannian and hyperbolic networks validate the effectiveness of our framework.
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Main theoretical results: Def. 3.1 relaxes the existing gyrogroup into the pseudo-reductive gy-
rogroup. Prop. 3.2 reveals that the non-reductive Grassmannian gyrogroup is, in fact, pseudo-reductive.
Thms. 3.3 and 3.5 highlight that the invariance of gyronorm under gyrations is crucial for enabling
several operators to act as gyroisometries. Prop. 3.6 confirms that all gyrogroups listed in Tab. 2
are pseudo-reductive and their gyrations are gyroisometries. These two properties are essential for
enabling GyroBN in Alg. 1 to normalize sample statistics, which are formalized in Thm. 4.1. Sec. 5
discusses how several existing RBN methods are special cases of our GyroBN. Lastly, Sec. 6 manifest
our GyroBN on the Grassmannian and hyperbolic spaces, where Prop. 6.1 discuss the efficient
implementation on the Grassmannian. Due to page limits, all the proofs are presented in App. G.

2 PRELIMINARIES

This section recaps gyrogroups (Ungar, 2009) and several concrete gyrogroups in machine learning.
Definition 2.1 (Gyrogroups (Ungar, 2009)). Given a nonempty set G with a binary operation
⊕ : G×G→ G, {G,⊕} forms a gyrogroup if its binary operation satisfies the following axioms for
any a, b, c ∈ G :

(G1) There is at least one element e ∈ G called a left identity (or neutral element) such that e⊕a = a.

(G2) There is an element ⊖a ∈ G called a left inverse of a such that ⊖a⊕ a = e.

(G3) There is an automorphism gyr[a, b] : G→ G for each a, b ∈ G such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c (Left Gyroassociative Law). (1)

The automorphism gyr[a, b] is called the gyroautomorphism, or the gyration of G generated by a, b.
(G4) Left reduction law: gyr[a, b] = gyr[a⊕ b, b].
Definition 2.2 (Gyrocommutative Gyrogroups (Ungar, 2009)). A gyrogroup {G,⊕} is gyrocommu-
tative if it satisfies

a⊕ b = gyr[a, b](b⊕ a) (Gyrocommutative Law). (2)

Definition 2.3 (Nonreductive Gyrogroups (Nguyen, 2022a)). A groupoid {G,⊕} is a nonreductive
gyrogroup if it satisfies axioms (G1), (G2), and (G3).

Intuitively, gyrogroups are natural generalizations of groups. Unlike groups, gyrogroups are non-
associative but have gyroassociativity characterized by gyrations. Since all gyrations in any (Lie)
group are the identity map, every (Lie) group is automatically a gyrogroup.

As shown by Nguyen & Yang (2023), given P , Q and R in a manifold M and t ∈ R, the gyro
structures can be defined as:

Gyro addition: P ⊕Q = ExpP (PTE→P (LogE(Q))) , (3)
Gyro scalar product: t⊙ P = ExpE (tLogE(P )) , (4)

Gyro inverse: ⊖ P = −1⊙ P = ExpE (−LogE(P )) , (5)
Gyration: gyr[P,Q]R = (⊖(P ⊕Q))⊕ (P ⊕ (Q⊕R)), (6)

Gyro inner product: ⟨P,Q⟩gr = ⟨LogE(P ),LogE(Q)⟩E , (7)

Gyro norm: ∥P∥gr = ⟨P, P ⟩gr , (8)

Gyrodistance: dgry(P,Q) = ∥⊖P ⊕Q∥gr , (9)

where E is the gyro identity element, and LogE and ⟨·, ·⟩E is the Riemannian logarithm and metric
at E. A bijection ω : G→ G is called gyroisometry, if it preserves the gyrodistance

dgry(ω(P ), ω(Q)) = dgry(P,Q). (10)

Note that the gyro scalar product ⊙ is required for a gyrogroup to form a gyrovector space (Nguyen,
2022b). Although this paper only involves gyrogroups, we also recap gyrovector spaces in App. C.

Several geometries in machine learning admit a gyro structure defined in Eq. (3)-Eq. (9) and form a
(nonreductive) gyrogroup, such as Affine-Invariant Metric (AIM) (Pennec et al., 2006), Log-Euclidean
Metric (LEM) (Arsigny et al., 2005), and Log-Cholesky Metric (LCM) (Lin, 2019) on the SPD
manifold Sn++ (Nguyen, 2022a), Orthonormal Basis (ONB) perspective Gr(p, n) (Bendokat et al.,
2024) and projector perspective G̃r(p, n) (Bendokat et al., 2024) for the Grassmannian (Nguyen,
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2022a; Nguyen & Yang, 2023), Poincaré ball Pn
K for the hyperboloid (Ungar, 2009; Ganea et al.,

2018), and projected hypersphere Dn
K for the hypersphere (Skopek et al., 2019). Besides, the

gyrogroups proposed by Nguyen (2022b) on the SPD manifold under the LEM and LCM coincide
with the Lie groups proposed by Arsigny et al. (2005); Lin (2019).

We denote MK as Pn
K(K < 0), Dn

K(K > 0) and Rn(K = 0), respectively. MK is known as
the Constant Curvature Space (CCS) (Do Carmo & Flaherty Francis, 1992). We summarize all the
necessary gyro properties in Tab. 2.

Table 2: Gyrogroup properties on several geometries. Related notations are defined in App. C.3.2.

Geometry Symbol P ⊕Q or x⊕ y E ⊖P or ⊖x Lie group Gyrogroup References

AIM Sn++ ⊕AI P
1
2QP

1
2 In P−1 ✗ ✓ (Nguyen, 2022b)

LEM Sn++ ⊕LE mexp(mlog(P ) + mlog(Q)) In P−1 ✓ ✓
(Arsigny et al., 2005)

(Nguyen, 2022b)

LCM Sn++ ⊕LC ψ−1
LC(ψLC(P ) + ψLC(Q)) In ψLC(−ψLC(P )) ✓ ✓

(Lin, 2019)
(Nguyen, 2022b)

(Chen et al., 2024e)

G̃r(p, n) ⊕̃Gr
mexp(Ω)Qmexp(−Ω) Ĩp,n mexp(−Ω)Ĩp,n mexp(Ω)

✗ Non-reductive
(Nguyen, 2022a)

Gr(p, n) ⊕Gr mexp(Ω)V Ip,n mexp(−Ω)Ip,n (Nguyen & Yang, 2023)

MK ⊕K
(1−2K⟨x,y⟩−K∥y∥2)x+(1+K∥x∥2)y

1−2K⟨x,y⟩+K2∥x∥2∥y∥2 0 −x ✗(✓for K=0) ✓
(Ungar, 2009)

(Ganea et al., 2018)
(Skopek et al., 2019)

3 PSEUDO-REDUCTIVE GYROGROUPS

As shown in Tab. 2, the Grassmannian does not satisfy left reduction (G4) in Def. 2.1. However, we
find that a relaxed version of (G4) is necessary to guarantee the sample normalization over gyrogroups.
Therefore, this section proposes an intermediate between the gyrogroup and the nonreductive one,
called pseudo-reductive gyrogroups.

Unless specifically emphasized, the gyro structure in this paper is defined as Eq. (3)-Eq. (9). Given a
gyrogroup {G,⊕}, the left gyrotranslation by P ∈ G is defined as

LP : G→ G, with LP (Q) = P ⊕Q,∀Q ∈ G. (11)
If any left gyrotranslation is a gyroisometry, we can use gyrotranslation to center samples. Nguyen
& Yang (2023) show that any left gyrotranslation on the SPD and Grassmannian manifolds is a
gyroisometry. However, the proof relies on the left cancellation law of gyrogroups, which does not
hold for nonreductive gyrogroups. Therefore, the proof is questionable for the Grassmannian. This
subsection proposes an intermediate structure, referred to as pseudo-reductive gyrogroups, which
can support left cancellation law in general and, therefore, gyroisometry of left gyrotranslation. We
illustrate the derivation logic in Fig. 2.

Invariance of gyronorm 
under any gyration

Left cancellation law

Left gyrotranslation law

Axiom (G1-3)
Pseudo-reduction

Gyroisometries of any 
gyration and left 
gyrotranslation

Gyroisometry of the 
gyroinverse

Gyrocommutativity

Axiom (G1-3)
Left reduction (G4)

Ours:

Previous:

Or

Figure 2: The conceptual comparison of derivation logic of gyroisometries of our work against
previous work (Nguyen & Yang, 2023), where the left gyrotranslation law is presented in Lem. G.1.
The previous work proves the results on the SPD and Grassmannian manifolds in a case-by-case
manner. In contrast, we relax the left reduction into pseudo-reduction and give a general theoretical
framework. Our framework also corrects the proof for the Grassmannian cases.

Definition 3.1 (Pseudo-reductive Gyrogroups). A groupoid {G,⊕} is a pseudo-reductive gyrogroup
if it satisfies axioms (G1), (G2), (G3) and the following pseudo-reductive law:

gyr[X,P ] = 1, for any left inverse X of P in G, (12)
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where 1 is the identity map.

Eq. (12) can be intuitively viewed as the intermediate between reduction and non-reduction. For
gyrogroups, Eq. (12) can be directly obtained from the left gyroassociativity (G3) and reduction
(G4) (Ungar, 2009, p. 12). However, there is no theoretical guarantee that Eq. (12) holds for general
non-reductive gyrogroups. Therefore, we name Eq. (12) as pseudo-reduction. Nevertheless, for the
specific non-reductive Grassmannian, it is indeed pseudo-reductive.
Proposition 3.2. [↓] Gr(p, n) and G̃r(p, n) form pseudo-reductive and gyrocommutative gyrogroups.

Our pseudo-reductive gyrogroup naturally generalizes the vanilla gyrogroup, as it shares most of the
basic properties of gyrogroups (Ungar, 2009, Thms. 1.13 - 1. 14), which are detiled in Thm. D.1.
The most related property in Thm. D.1 is the left cancellation law, one of the key prerequisites for
gyro translation as gyroisometry. Note that the left cancellation on the gyrogroup comes from left
gyro associativity and Eq. (12) (Ungar, 2009, p. 12). Therefore, left cancellation does not generally
hold for non-reductive gyrogroups, but exists in pseudo-reductive gyrogroups. Next, we point out an
iff statement about gyroisometry, which will be useful in the following.
Theorem 3.3. [↓] Given a pseudo-reductive gyrogroup {G,⊕}, gyr[P,Q] preserves gyronorm for
any P,Q ∈ G, iff gyr[P,Q] is a gyroisometry for any P,Q ∈ G.

We find that the isometry of any gyration is a key prerequisite for other gyro operators as isometries.
Definition 3.4 (Gyro Left-invariance). The gyrodistance or gyrogroup is gyro left-invariant if any
left gyrotranslation is a gyroisometry.
Theorem 3.5 (Gyroisometries). [↓] Given a pseudo-reductive gyrogroup {G,⊕} with any gyr[·, ·] as
a gyroisometry, then we have the following:

1. The gyrodistance (Eq. (9)) is gyro left-invariant;

2. Symmetry of the gyrodistance: ∀P,Q ∈ G,dgry(P,Q) = dgry(Q,P );

3. If {G,⊕} is gyrocommutative, then the gyroinverse is a gyroisometry;
Proposition 3.6. [↓] For every (pseudo-reductive) gyrogroup in Tab. 2, the gyrodistance is iden-
tical to the geodesic distance (therefore symmetric). The gyroinverse, any gyration and any left
gyrotranslation are gyroisometries.

Credit of the proof. For the Grassmannian and SPD manifolds, the isometries of gyration, gyroin-
verse, and left gyrotranslation have been proven by Nguyen & Yang (2023, Thms. 2. 12 - 2. 14 and
2.16 - 2. 18). Nevertheless, in the proof of Thms. 2. 12 - 2. 14, the authors view the non-reductive
Grassmannian as a gyrogroup, as they use the left cancellation property of the gyrogroup. Fortunately,
our Prop. 3.2 and Thm. D.1 shows that the Grassmannian still enjoys left cancellation. Therefore, all
the results on isometries in their Thms. 2.12-2.14 are correct. Nevertheless, these results on the SPD
and Grassmannian manifolds can be directly obtained by our Thms. 3.3 and 3.5, as these gyrogroups
are pseudo-reductive and the gyrations preserve the gyronorm. Besides, we show the expressions
for the gyrodistance of all gyrogroups in Tab. 2, and the associated gyroisometries onMK , both of
which is none-trivial. The detailed proof is presented in App. G.4.

4 GYROBN ON GENERAL PSEUDO-REDUCTIVE GYROGROUPS

Prop. 3.6 shows that several geometries enjoy isometric gyrotranslation, offering a theoretical
foundation for normalizing samples over gyrogroups in a principled manner. Inspired by this, this
section develops Riemannian Batch Normalization (RBN) for general pseudo-reductive gyrogroups,
referred to as GyroBN. In the following, {M,⊕} is assumed as a pseudo-reductive gyrogroup with
the gyro structure defined as Eq. (3)-Eq. (9)1.

4.1 EUCLIDEAN BATCH NORMALIZATION REVISITED

As the core operations of different Euclidean normalization variants (Ioffe & Szegedy, 2015; Ba et al.,
2016; Ulyanov et al., 2016; Wu & He, 2018) are similar, this paper focuses on BN. Given a batch of
activations {xi...N}, the core operations of BN can be expressed as:

∀i ≤ N, xi ← γ
xi − µ√
v2 + ϵ

+ β (13)

1In our GyroBN, ⊙ is not required to comply with the axioms of the gyrovector space (Def. C.4).
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where µ, v2, γ, and β are the sample mean, sample variance, scaling parameter, and biasing parameter,
respectively.

4.2 GYROBN

To generalize the Euclidean BN into gyrogroups, we first define sample mean, sample variance,
centering, biasing, and scaling over gyrogroups. Then, we introduce our GyroBN framework with a
theoretical analysis of the ability to normalize sample statistics.

We define the gyromean as the Fréchet mean under the gyrodistance:

M = FM({Pi}) = argmin
Q∈M

1

N

∑N

i=1
d2gry (Pi, Q) (14)

The gyrovariance is the Fréchet variance, i.e.,the minimization of the rightest hand side of Eq. (14).
When the distance in Eq. (14) is the geodesic distance, the Fréchet mean and variance are known as
the Riemannian mean and variance. Although the gyromean and gyrovariance are not necessarily the
same as the Riemannian ones, Prop. 3.6 indicates the equivalence for the gyrogroups in Tab. 2.

Easy computation shows that the centering and biasing in the Euclidean BN (Eq. (13)) can be viewed
as gyro addition (Eq. (3)) in Rn, and the scaling can be viewed as gyro scalar product (Eq. (4)),
scaling in the tangent space at the identity element. Inspired by this, we define the normalization over
gyrogroups by gyro addition and gyro scalar product. Given a batch of activations {Pi...N ∈M}, we
defined the core operations of GyroBN as

∀i ≤ N, P̃i =

Biasing︷︸︸︷
B⊕


Scaling︷ ︸︸ ︷
s√
v2 + ϵ

⊙

 Centering︷ ︸︸ ︷
⊖M ⊕ Pi


 , (15)

where M ∈M and v2 are gyromean and gyrovariance, B ∈M is the biasing parameter, s ∈ R is
the scaling parameter, and ϵ is a small value for numerical stability.
Theorem 4.1 (Homogeneity). [↓] Supposing {M,⊕} is a pseudo-reductive gyrogroup with any
gyration gyr[·, ·] as a gyroisometry, for N samples {Pi...N ∈M}, we have the following properties:

Homogeneity of gyromean: FM({B ⊕ Pi}) = B ⊕ FM({Pi}),∀B ∈M, (16)

Homogeneity of dispersion from E:
1

N

∑N

i=1
d2gry(t⊙ Pi, E) =

t2

N

∑N

i=1
d2gry(Pi, E), (17)

The most important property of the Euclidean BN (Eq. (13)) lies in its ability to normalize data
distribution by the control over sample mean and variance. Similarly, our formulation in Eq. (15) can
also normalize gyromean and gyrovariance. Specifically, given a pseudo-reductive gyrogroup with
isometric gyrations, Eq. (16) indicates that the centering and biasing can transfer the gyromean, while
Eq. (17) can scale the sample variance, since after centering, the resulting gyromean is the identity
element E.

To finalize our GyroBN, we define the running mean updates over gyrogroups as the binary barycenter
based on gyrodistance:

Barη(P1, P2) = argminQ∈M
(
ηd2gry (P1, Q) + (1− η)d2gry (P2, Q)

)
, with η ∈ [0, 1]. (18)

Notably, when the gyrodistance is identical to the geodesic distance, the binary barycenter can be
calculated by geodesic.

With all the above ingredients, the general framework for our GyroBN is presented in Alg. 1. Thm. 4.1
indicates that given a pseudo-reductive gyrogroup with any gyration as a gyroisometry, our GyroBN
enjoys a theoretical guarantee of control over the gyro statistics. Specifically, for the gyrogroups
in Tab. 2, our GyroBN can control the gyromean and gyrovariance. Besides, as the gyromean and
gyrovariance are identical to the Riemannian counterparts, the GyroBNs on these gyrogroups also
normalize the Riemannian statistics. Especially, simple computation shows that our GyroBN recovers
the standard Euclidean BN (Ioffe & Szegedy, 2015) whenM = Rn.
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Algorithm 1: Gyrogroup Batch Normalization (GyroBN)
Require : batch of activations {P1...N ∈M}, small positive constant ϵ, and momentum

η ∈ [0, 1], running mean Mr, running variance v2r , biasing parameter B ∈M,
scaling parameter s ∈ R.

Return :normalized batch {P̃1...N ∈M}
1 if training then
2 Compute batch mean Mb and variance v2b of {P1...N};
3 Update running statistics Mr = Barγ(Mb,Mr), v2r = γv2b + (1− γ)v2r ;
4 end
5 (M,v2) = (Mb, v

2
b ) if training else (Mr, v

2
r)

6 ∀i ≤ N, P̃i = B ⊕
(

s√
v2+ϵ

⊙ (⊖M ⊕ Pi)
)

5 A GYRO PERSPECTIVE FOR THE EXISTING RIEMANNIAN NORMALIZATIONS

Several existing Riemannian normalization methods on different geometries enjoy theoretical control
of sample mean and variance, including LieBN on general Lie groups (Chen et al., 2024b), and
SPDBNs based on the specific AIM geometry (Brooks et al., 2019; Kobler et al., 2022b;a). This
subsection further reveals that they are concrete implementations of our GyroBN.

5.1 LIEBN AS A SPECIAL CASE OF GYROBN
Chakraborty (2020, Algs. 3-4) first proposed Riemannian normalization on matrix Lie groups under
a specific distance. Chen et al. (2024b) extended their framework into general Lie groups, referred to
as LieBN, with a theoretical control over Riemannian mean and variance. This subsection shows that
LieBN is indeed a special case of our GyroBN.

LieBN is established under a left-invariant metric on the Lie group. The centering and biasing are
defined by left group translation, and scaling is defined by the scaling on the tangent space at the
identity element (Chen et al., 2024b, Eq.13-15). As every Lie group is automatically a gyrogroup,
the gyrotranslation is the exact group translation. Therefore, the centering, biasing, and scaling are
the same under GyroBN and LieBN. However, the mean, variance, and running mean updates on
LieBN are defined based on the geodesic distance. In contrast, the counterparts on the GyroBN are
based on gyrodistance. Nevertheless, the following proposition demonstrates the equivalence of these
operators under the GyroBN with LieBN.
Proposition 5.1. [↓] Given a Lie group with a left-invariant metric, the gyrodistance and geodesic
distance are identical. The GyroBN is, therefore, identical to the LieBN (Chen et al., 2024b, Alg. 1).

Chen et al. (2024b) implemented LieBN on four left-invariant geometries, including SPD manifold
with AIM2, LEM and LCM, and rotation matrices. According to Prop. 5.1, these implementations
are immediately the special cases of our GyroBN.

5.2 AIM-BASED SPDBNS AS SPECIAL CASES OF GYROBN
Several RBNs on the SPD manifold were developed based on AIM (Brooks et al., 2019; Kobler et al.,
2022b;a). The core operations of these approaches can be expressed as the following:

Normalization: ∀i ≤ N, P̃i = B
1
2

(
M− 1

2PiM
− 1

2

) s√
v2+ϵ B

1
2 (19)

where M and v2 are the Riemannian mean and variance, i.e.,the Fréchet mean and variance under the
geodesic distance. The running mean is updated by binary barycenter under the geodesic distance.

Prop. 3.6 indicates that, under the AIM geometry, the gyrodistance is identical to the geodesic
distance. Therefore, the gyromean and gyrovariance are identical to the Riemannian mean and
variance. The running mean updates are also identical under the gyrodistance and geodesic distance.
Besides, simple computations show that Eq. (19) is exactly the specific implementation of Eq. (15)
under {Sn++,⊕AI, gAI}, where gAI denotes AIM. Therefore, the SPDBNs developed by Brooks et al.
(2019); Kobler et al. (2022b;a) are also special cases of our GryoBN.

2AIM is left-invariant w.r.t. the Lie group operation P ⊕LieAI Q = LQL⊤ with L as the Cholesky factor of
P = LL⊤ (Thanwerdas & Pennec, 2022). This group structure differs from the one presented in Tab. 2.
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Remark 5.2. Brooks et al. (2019) only consider centering and biasing. Kobler et al. (2022b) use
running mean for centering during the training. Kobler et al. (2022a) use different momentum to
update running statistics for training and testing and multi-channel mechanisms for domain adaptation.
Nevertheless, all of them are based on Eq. (19). Therefore, tricks such as multi-channel and separate
momentum can also be applied to our GyroBN. This is what we mean by claiming that our GyroBN
incorporates their approaches.

6 GYROBNS ON GRASSMANNIAN AND HYPERBOLIC SPACES

As indicated by Prop. 3.6 and Thm. 4.1, our GyroBN can be implemented on the Grassmannian
and hyperbolic spaces, with the ability to normalize sample statistics. Our Alg. 1 allows us to
implement GyroBN in a plug-and-play manner. This section clarifies additional technical details
regarding its application in these two spaces. As Prop. 3.6 has demonstrated the equivalence of the
gyrodistance and geodesic distance on these spaces, we use the terms "gyromean" and "gyrovariance"
interchangeably with their Riemannian counterparts.

6.1 GRASSMANNIAN GYROBN

We focus on the ONB perspective. To the best of our knowledge, this is the first RBN on the
Grassmannian. Given a batch of activations {U1···N} over {Gr(p, n),⊕Gr}, Eq. (15) can be expressed
as

Centering to the identity Ip,n: U1
i = mexp

(
−[MM⊤, Ĩp,n]

)
Ui, (20)

Scaling the dispersion from Ip,n: U2
i = mexp

(
s√
v2 + ϵ

[U1
i (U

1
i )

⊤, Ĩp,n]

)
Ip,n, (21)

Biasing towards parameter B ∈M: U3
i = mexp

(
[B, Ĩp,n]

)
U2
i (22)

where (·) = L̃ogĨp,n(·) with L̃og as the Riemannian logarithm under the projector perspective, andM

is the Riemannian mean of {U1···N}, and Ĩp,n = Ip,nI
⊤
p,n is the identity element under the projector

perspective. The Riemannian mean can be calculated by the Karcher flow (Karcher, 1977). We use
Alg. 5.3 by Bendokat et al. (2024) for a stable and efficient computation of the Riemannian logarithm
required in the Karcher flow. For [MM⊤, Ĩp,n] and [U1

i (U
1
i )

⊤, Ĩp,n], inspired by Bendokat et al.
(2024, Alg. 5.3) and Nguyen et al. (2024, Prop. 3.12), we have the following for fast computation.
Proposition 6.1. [↓] Given U = (U⊤

1 , U
⊤
2 )⊤ ∈ Gr(p, n) with U1 ∈ Rp×p and U2 ∈ R(n−p)×p, then

we have the following

[UU⊤, Ĩp,n] =

(
0 −ŨT

2

Ũ2 0

)
, (23)

where Ũ2 = U2Q
arcsin(Ŝ)

Ŝ
R⊤ and U⊤

1

SVD
:= QSR⊤. Here S is in ascending order, Q and R are

column-wisely flipped accordingly, and Ŝ =
√
1− S2.

Remark 6.2. Although we focus on the GyroBN under the ONB perspective, the GyroBN under
the projector perspective can be calculated via the ONB perspective by the following process: (1)
mapping data into the ONB perspective by π−1 : G̃r(p, n)→ Gr(p, n); (2) normalizing data by the
GyroBN under Gr(p, n); (3) mapping normalized data back to G̃r(p, n) by π. Technical details are
presented in App. E.

6.2 HYPERBOLIC GYROBN

We focus on the Poincaré ball model over the hyperbolic space, i.e.,Pn
K . The specific manifestation

can be conducted in a plug-in manner. We simply need to plug the required operators from Tab. 2 and
Tab. 8 into Alg. 1. Besides, the Poincaré Fréchet mean can be calculated by Lou et al. (2020, Alg. 1)].
Remark 6.3. As shown by Cannon et al. (1997), there are five isometric models that one can work for
the hyperbolic spaces. Although we focus on the Poincaré ball, the GyroBN under other isometric
metrics can also be easily constructed via the Poincaré GyroBN. The overall process is similar to
Rmk. 6.2. For more detail, please refer to Lem. E.1 and Thm. E.2.
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7 EXPERIMENTS

Our GyroBN layers are model-agnostic and can be seamlessly integrated into any network operating
over the gyrospaces listed in Tab. 2. This section evaluates the effectiveness of our GyroBN on
Grassmannian and hyperbolic neural networks.

7.1 EXPERIMENTS ON THE GRASSMANNIAN

Implementation. We focus on a newly developed Grassmannian network, GyroGr (Nguyen &
Yang, 2023), which replaces the non-intrinsic transformation block (FRMap + ReOrth layers) in
the classic GrNet (Huang et al., 2018) with Grassmannian left gyrotranslation. This modification
has demonstrated improved numerical performance and stability (Nguyen & Yang, 2023). GyroGr
is constructed over the ONB Grassmannian and consists of three basic blocks: left gyrotranslation,
pooling (Huang et al., 2018), and the projection map (ProjMap) (Huang et al., 2018). The projection
map functions as an activation layer that maps data into symmetric matrices for classification.
Following Nguyen & Yang (2023), we evaluate our method on skeleton-based action recognition
tasks, including the HDM05 (Müller et al., 2007), NTU60 (Shahroudy et al., 2016), and NTU120 (Liu
et al., 2019) datasets, focusing on mutual actions for NTU60 and NTU120. For a fair comparison,
we also extend ManifoldNorm (Chakraborty, 2020, Alg. 1-2) and RBN (Lou et al., 2020, Alg.
2) to the Grassmannian. Although these two BN methods were not originally implemented over
the Grassmannian, they can be adapted by leveraging Riemannian operators such as geodesics,
exponential and logarithmic maps, and parallel transport. The key difference is that our GyroBN
can normalize data distributions across different geometries, whereas the other two methods cannot.
Further details on datasets, implementation, and training efficiency are provided in App. F.2.

Table 3: Comparison of GyroBN against other Grassmannian BNs under GyroGr backbone.

BN None ManifoldNorm-Gr RBN-Gr GyroBN-Gr

Acc. Mean±std Max Mean±std Max Mean±std Max Mean±std Max

HDM05 48.97±0.24 49.23 49.67±0.76 50.41 48.64±0.77 49.49 51.89±0.37 52.43
NTU60 70.13±0.16 70.32 68.56±0.43 69.14 67.77±0.52 68.35 72.60±0.04 72.65

NTU120 53.76±0.18 53.96 51.41±0.38 51.92 50.56±0.22 50.82 55.47±0.10 55.59

Table 4: Ablation of Grassmannian GyroBN under various network architectures.

HDM05 NTU60 NTU120

Architecture 1Block 2Block 3Block 4Block 1Block 2Block 3Block 4Block 1Block 2Block 3Block 4Block

GyroGr 49.23 49.09 47.02 27.36 70.32 70.14 70.23 65.03 53.96 54.1 54.59 47.59
GyroGrBN 52.43 50.62 51.56 30.29 72.65 71.93 72.25 66.67 55.59 56.15 54.63 48.9

Main results. We compare our GyroBN with previous BN methods under the 1Block GyroGr
backbone, which consists of one block of gyrotranslation and pooling layers followed by a ProjMap
layer. We apply the BN after the pooling layer. The 5-fold results are presented in Tab. 3. GyroBN
consistently delivers improved performance, enhancing the average performance of the vanilla GyroGr
by 2.92%, 2.47%, and 1.71%. In contrast, Grassmannian ManifoldNorm and RBN could degrade
the vanilla GyroGr network, particularly on the NTU60 and NTU120 datasets. This is primarily due
to GyroBN’s theoretical guarantee of normalizing sample statistics, a capability lacking in previous
methods such as ManifoldNorm and RBN, as summarized in Tab. 1. Additionally, we observe that
GyroBN mitigates the performance gap between training and testing, indicating its ability to enhance
the model’s generalization. Detailed discussions are provided in App. F.5. Overall, the above findings
highlight the effectiveness of our GyroBN in facilitating network training.

Ablations on the architecture. We further validate our GyroBN across different architectures within
the GyroGr baseline, which includes up to four blocks of gyrotranslation and pooling. GyroBN is
applied after the first pooling layer, and we denote GyroGr with GyroBN as GyroGrBN. As implied
by Tab. 3, both GyroGr and GyroGrBN exhibit relatively small variances, allowing us to conduct
ablations using a single trial. Tab. 4 reports the results across all three datasets. We observe that
GyroBN consistently improves the performance of the vanilla GyroGr baseline, highlighting the
effectiveness of the GyroBN framework. Notably, as the network depth increases, the performance of
the GyroGr backbone, with or without GyroBN, degrades. This is because the dimensionality of the

9



Published as a conference paper at ICLR 2025

final feature becomes excessively low, leading to underfitting. For instance, in the deepest architecture
with four blocks on the HDM05 dataset, the final dimension is 12 × 10, which is insufficient to
effectively capture discriminative information. Despite this, our GyroBN still generally enhances the
performance of the GyroGr backbone.

Figure 3: Validation AUC of HNN with or without GyroBNH or RBN-H on the Disease, Airport and
Pubmed datasets. The results indicate that GyroBN facilitates the training of HNNs, improving both
convergence and performance, and surpasses the previous RBN-H.

7.2 EXPERIMENTS ON THE HYPERBOLIC SPACE

Table 5: Comparison of HNN with or without GyroBN-H or
RBN-H on the link prediction task.

Dataset HNN HNN-RBN-H HNN-GyroBN-H

Cora 89.0 ± 0.1 93.5 ± 0.5 94.3 ± 0.2
Disease 75.1 ± 0.3 76.6 ± 2.2 81.2 ± 0.9
Airport 90.8 ± 0.2 94.2 ± 0.4 95.4 ± 0.2
Pubmed 94.9 ± 0.1 93.4 ± 0.2 95.8 ± 0.1

Implementation. Following Lou et al.
(2020), we validate our hyperbolic
GyroBN, referred to as GyroBN-H,
on the Hyperbolic Neural Network
(HNN) (Ganea et al., 2018) backbone
for the link prediction task using the
Cora (Sen et al., 2008), Disease (An-
derson & May, 1991), Airport (Zhang
& Chen, 2018), and Pubmed (Namata
et al., 2012) datasets. We also com-
pare GyroBN-H with the hyperbolic
RBN proposed by Lou et al. (2020, Alg. 2), denoted as RBN-H. Notably, the core difference between
RBN and our GyroBN lies in the normalization – our GyroBN can normalize sample statistics across
different geometries, while RBN lacks this guarantee. More details can be found in App. F.3.

Results. Tab. 5 reports 5-fold average results of testing AUC on the four datasets. Although RBN
and our GyroBN can generally improve the vanilla HNN, our GyroBN shows consistently better
improvement than RBN. We also observe that RBN compromises HNN on the Pubmed dataset, while
our GyroBN can consistently facilitate network training. Empowered by the normalization of sample
statistics, our GyroBN also shows a smaller standard deviation than RBN. The above empirical results
demonstrate the superiority of our GyroBN framework. Additionally, the validation AUC curves
shown in Fig. 3 further highlight the effectiveness of our GyroBN in facilitating network training.

8 CONCLUSION

We propose a novel gyro structure on manifolds, termed the pseudo-reductive gyrogroup. This
structure establishes the minimal prerequisites for developing valid normalization techniques over
gyro spaces. Building on this gyro structure, we introduce a novel framework for batch normalization
over gyrogroups, called GyroBN, which enables the normalization of non-Euclidean statistics.
Several previous RBN methods, such as LieBN on general Lie groups (including three groups on
SPD manifolds and the group of rotation matrices) and various AIM-based SPDBN methods, are
revealed to be special cases of our GyroBN. Additionally, we manifest GyroBN on the Grassmannian
and hyperbolic spaces. To the best of our knowledge, our Grassmannian GyroBN is the first RBN
method on the Grassmannian manifold with a theoretical capability to normalize sample statistics.
Experiments on Grassmannian and hyperbolic networks confirm the effectiveness of GyroBN. As a
future avenue, we will implement our GyroBN over gyro spaces. We hope that our work will facilitate
the development of deep networks for data with non-trivial geometries.
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A LIMITATION

As shown in Prop. 3.6, several geometries, including SPD, Grassmannian, hyperbolic, and hyperpher-
ical manifolds, have gyro structures that can enable GyroBN with a theoretical control over sample
statistics. However, some geometries do not have gyro structures, or their gyro structures are still
untouched. Therefore, GyroBN cannot be established on these manifolds. We will explore other
techniques to establish an RBN framework for these non-gyro geometries.

B NOTATIONS

Tab. 6 summarizes all the notations in the main paper.

Table 6: Summary of notations.

Notation Explanation

{G,⊕} or abbreviated as G A gyrogroup
{M,⊕, g} or abbreviated asM A Riemannian manifold {M, g} with a gyrogroup structure induced by g

1 identity map
TPM Tangent space at P ∈M

gp(·, ·) or ⟨·, ·⟩P Riemannian metric at P ∈M
∥ · ∥P The norm induced by ⟨·, ·⟩P on TPM

dgeo(·, ·) Geodesic distance
LogP Riemannian logarithm at P
ExpP Riemannian exponentiation at P
f∗,P The differential map of the smooth map f at P ∈M

PTP→Q Parallel transportation along the geodesic connecting P and Q
E Gyro identity of {M,⊕}
⊖P Group inverse of P ∈M
⊙ Gyro scalar product

gyr[·, ·] Gyration
⟨·, ·⟩gr Gyro inner product
∥·∥gr Gyronorm

dgry(·, ·) Gyrodistance
FM Fréchet mean under a gyrodistance

Barη(·, ·) Binary barycenter based on a gyrodistance
⟨·, ·⟩ The standard Frobenius inner product
∥·∥ Norm induced by the standard Frobenius inner product
mlog Matrix logarithm
mexp Matrix exponentiation
L Cholesky decomposition
Dlog The diagonal element-wise logarithm
ψLC Dlog ◦L
Sn++ The SPD manifold
Sn The Euclidean space of symmetric matrices
Pn
K n-dimensional Poincaré ball with curvature K < 0

Rn n-dimensional Euclidean space
Dn

K , n-dimensional projected hypersphere with curvature K > 0
MK Constant Curvature Spaces (CCS)

Gr(p, n) The Grassmannian under the ONB perspective
G̃r(p, n) The Grassmannian under the projector perspective
Ip,n The Grassmannian identity under the ONB perspective
Ĩp,n The Grassmannian identity under the projector perspective
π The Riemannian isometry from Gr(p, n) onto G̃r(p, n)
[·, ·] Matrix commutator
[·] An element in Gr(p, n), which is a equivalent class
In n× n identity matrix
P θ Matrix power for SPD matrix P

⊕AI, ⊕LE and ⊕LC Gyro additions on the SPD manifold under AIM, LEM and LCM
⊕̃Gr

and ⊕Gr Gyro additions on the Grassmannian under the ONB and projector perspectives
⊕K Gyro additions on the CCS
(·) (·) = L̃ogĨp,n(·) with L̃og as the Riemannian logarithm on G̃r(p, n)

gAI, gLE and gLC AIM, LEM, LCM on the SPD manifold
gGr and g̃Gr Riemannian metrics on the Grassmannian under the ONB and projector perspectives

tanK tanK = tan if k > 0, elif K > 0, tanK = tanh
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C PRELIMINARIES

C.1 RIEMANNIAN GEOMETRY

Manifolds can be intuitively understood as locally Euclidean spaces. Differentials generalize the
concept of classical derivatives. For a detailed introduction to smooth manifolds, we refer readers
to Tu (2011); Lee (2013). A Riemannian manifold is a manifold equipped with a Riemannian
metric, which can be intuitively interpreted as a point-wise inner product. This metric allows for
the adaptation of various Euclidean operators to the manifold setting. For an in-depth discussion on
Riemannian manifolds, see Do Carmo & Flaherty Francis (1992); Lee (2018).
Definition C.1 (Riemannian Manifolds (Do Carmo & Flaherty Francis, 1992)). A Riemannian metric
onM is a smooth symmetric covariant 2-tensor field onM, which is positive definite at every point.
A Riemannian manifold is a pair {M, g}, whereM is a smooth manifold and g is a Riemannian
metric.

The isometries generalize the bijection in the set theory into the Riemannian geometry. If two
manifolds are isometric, they can be viewed as equivalent. The Riemannian operators in these
two manifolds are also closely related (Chen et al., 2024d, App. A. 2). The following defines the
Riemannian isometry.
Definition C.2 (Isometries (Lee, 2018)). If {M, g} and {M̃, g̃} are both Riemannian manifolds, a
smooth map f :M→M̃ is called a (Riemannian) isometry if it is a diffeomorphism that satisfies

gp(V,W ) = g̃f(p)(f∗,p(V ), f∗,p(W )), (24)

where f∗,p(·) : TpM→ Tf(p)M̃ is the differential map of f at p ∈M, and V,W ∈ TpM are two
tangent vectors.

The exponential & logarithmic maps and parallel transportation are also crucial for Riemannian
approaches in machine learning. To bypass the notation burdens caused by their definitions, we review
the geometric reinterpretations of these operators (Pennec et al., 2006; Do Carmo & Flaherty Francis,
1992). In detail, in a manifoldM, geodesics correspond to straight lines in Euclidean space. A
tangent vector −→xy ∈ TxM can be locally identified to a point y on the manifold by geodesic starting
at x with an initial velocity of −→xy, i.e. y = Expx(

−→xy). On the other hand, the logarithmic map is the
inverse of the exponential map, generating the initial velocity of the geodesic connecting x and y,
i.e.,−→xy = Logx(y). These two operators generalize the idea of addition and subtraction in Euclidean
space. For the parallel transportation PTx→y(V ), it is a generalization of parallelly moving a vector
along a curve in Euclidean space. we summarize the reinterpretation in Tab. 7.

Table 7: The geometric reinterpretations of Riemannian operators.

Operations Euclidean spaces Riemannian manifolds

Straight line Straight line Geodesic
Subtraction −→xy = y − x −→xy = Logx(y)

Addition y = x+−→xy y = Expx(
−→xy)

Parallelly moving V → V PTx→y(V )

A Lie group is a manifold with a smooth group structure. It is a combination of algebra and geometry.
Definition C.3 (Lie Groups). A manifold is a Lie group, if it forms a group with a group operation ⊙
such that m(x, y) 7→ x⊙ y and i(x) 7→ x−1

⊙ are both smooth, where x−1
⊙ is the group inverse of x.

The following are some naive examples of the Lie group:

1. The set of real numbers R, whose group operation is the addition.

2. The set of n× n invertible matrices GL(n), whose group operation is the matrix product.
This group is known as the general linear group.

3. The set of n× n orthogonal matrices O(n), whose group operation is the matrix product.
This group is a subgroup of GL(n), known as the orthogonal group.
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C.2 GYROVECTOR SPACES

Gyrogroups in Def. 2.1 generalize groups to non-associative algebraic systems by gyrations. Similarly,
the gyrovector space generalizes the vector space, which has shown impressive success in hyperbolic
geometry (Ungar, 2005; 2009; 2012; 2014).
Definition C.4 (Gyrovector Spaces (Nguyen, 2022a)). A gyrocommutative gyrogroup {G,⊕}
equipped with a scalar multiplication ⊙ : R×G→ G is called a gyrovector space if it satisfies the
following axioms for s, t ∈ R and a, b, c ∈ G:

(V1) 1⊙ a = a, 0⊙ a = t⊙ e = e, and (−1)⊙ a = ⊖a.

(V2) (s+ t)⊙ a = s⊙ a⊕ t⊙ a.

(V3) (st)⊙ a = s⊙ (t⊙ a).

(V4) gyr[a, b](t⊙ c) = t⊙ gyr[a, b]c.

(V5) gyr[s⊙ a, t⊙ a] = 1, where 1 is the identity map.

Gyrovector spaces generalize vector spaces to curved geometries, such as the SPD and Grassman-
nian manifolds (Nguyen, 2022a). While retaining familiar properties like distributivity (V2) and
associativity (V3), they incorporate the complexities of gyrations.

C.3 MATRIX AND VECTOR MANIFOLDS

C.3.1 DEFINITIONS

SPD: The set Sn++ of n× n SPD matrices form a manifold, named the SPD manifold (Pennec et al.,
2006). We focus on three popular Riemannian metrics on the SPD manifold: Affine-Invariant Metric
(AIM) (Pennec et al., 2006), Log-Euclidean Metric (LEM) (Arsigny et al., 2005), and Log-Cholesky
Metric (LCM) (Lin, 2019).

Grassmannian: The Grassmannian is the set of p-dimensional subspace of n-dimensional vector
space (Tu, 2011), which has two matrix representations (Bendokat et al., 2024):

Projector perspective: G̃r(p, n) = {P ∈ Sn : P 2 = P, rank(P ) = p},
ONB perspective: Gr(p, n) = {[U ] : [U ] := {Ũ ∈ St(p, n) | Ũ = UR,R ∈ O(p)}},

(25)

where Sn is the Euclidean space of symmetric matrices, St(p, n) is the Stiefel manifold, and O(p) is
the orthogonal group. By abuse of notations, we use [U ] and U interchangeably for the element of
Gr(p, n). As shown by Helmke & Moore (2012), the ONB perspective Gr(p, n) is diffeomorphism
to G̃r(p, n) by

π(U) = UU⊤,∀U ∈ Gr(p, n), (26)

where the n × p column-wise orthonormal matrix U should be more precisely understood as a
representative of an equivalence class (Bendokat et al., 2024).

CCS: The Poincaré ball Pn
K for the hyperbolic space (Ungar, 2009; Ganea et al., 2018), projected

hypersphere Dn
K for the hypersphere (Skopek et al., 2019), and standard Euclidean space Rn (Zorich

& Paniagua, 2016) are more generally called the Constant Curvature Space (CCS) (Do Carmo &
Flaherty Francis, 1992), as they have constant sectional curvature K. The n-dimensional Poincaré
ball and projected hypersphere are represented as Pn

K =
{
x ∈ Rn : ⟨x, x⟩ < − 1

K

}
with K < 0 and

Dn
K = Rn with K > 0. When K = 0, the CCS becomes the standard Euclidean space Rn.
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C.3.2 GYRO AND RIEMANNIAN STRUCTURES

For a matrix manifoldM and a CCSMK , we make the following notations:

{M, g} =



{Sn++, g
AI} (The SPD manifold under AIM)

{Sn++, g
LE} (The SPD manifold under LEM)

{Sn++, g
LC} (The SPD manifold under LEM)

{Gr(p, n), gGr} (The Grassmannian under the ONB perspective)
{G̃r(p, n), g̃Gr} (The Grassmannian under the projector perspective)

(27)

MK =


Pn
K , for K < 0

Rn, for K = 0

Dn
K , for K > 0

(28)

tanK =

{
tan if K > 0

tanh if K < 0
(29)

Notations in Tab. 2: We summarize all the necessary group operations in Tab. 2 with the following
notations. Given any P,Q ∈ M with M as Sn++ or G̃r(p, n), and x, y ∈ MK with MK as
Pn
K(K < 0) , Dn

K(K > 0) or Rn(K = 0), we make the following notations. For the Grassmannian,
U = π−1(P ) and V = π−1(Q) are the ONB representations. We denote matrix exponential,
matrix logarithm, and Cholesky decomposition as mexp, mlog, and L , respectively. We denote
ψLC = Dlog ◦L , where ψLC is the diagonal logarithm. As shown by Chen et al. (2024e), LCM and
the associated Lie group on Sn++ are pulled back by ψLC for the Euclidean space of lower triangular
matrices. In is the n × n identity matrix, Ip,n = (Ip, 0)

⊤ ∈ Rn×p, and Ĩp,n = π(Ip,n). For the
Grassmannian G̃r(n, p), Ω = [P , Ĩp,n], where P = LogĨp,n(P ) and [·, ·] is the matrix commutator.
We denote ⟨·, ·⟩ and ∥ · ∥ as the standard (matrix & vector) inner product and norm.

We further make the following notations for the related Riemannian operators in Tab. 8. Given
P ∈ M (x ∈ MK), we denote the tangent vector as V ∈ TPM (v ∈ TxMK). We denote
the geodesic distance, Riemannian logarithm, and Riemannian exponential as dgeo, Log and Exp,
respectively.

Table 8: Riemannian geometries of several matrix and vector manifolds. For CCSMK , we present
the operators for K ̸= 0, as when K = 0, all the Riemannian operators are reduced to the familiar
vector operators.

Manifolds dgeo(P,Q) or dgeo(x, y) LogP Q or Logx y ExpP V or Expx v References

{Sn++, g
LE} ∥mlog(P )−mlog(Q)∥ (mlog∗,P )

−1 (mlog(Q)−mlog(P )) mexp
(
mlog(P ) + mlog∗,P (V )

)
(Arsigny et al., 2005)

{Sn++, g
AI}

∥∥∥mlog
(
Q− 1

2PQ− 1
2

)∥∥∥ P
1
2 mlog

(
P− 1

2QP− 1
2

)
P

1
2 P

1
2 mexp

(
P− 1

2V P− 1
2

)
P

1
2 (Pennec et al., 2006)

{Sn++, g
LC} ∥ψLC(P )− ψLC(Q)∥ (L −1)∗,L (ψLC(Q)− ψLC(P ))) ψ−1

LC (ψLC(P ) + (ψLC)∗,P (V ))
(Lin, 2019)

(Chen et al., 2024e)

Gr(p, n)
∥arccos(Σ)∥

P⊤Q
SVD
:= OΣR⊤

O arctan(Σ)R⊤

(In − PP⊤)Q(P⊤Q)−1 SVD
:= OΣR⊤

[
PR cos(Σ)RT +O sin(Σ)RT

]
V

SVD
:= OΣR⊤

(Edelman et al., 1998)
(Bendokat et al., 2024)

G̃r(p, n) 1
2 ∥mlog ((In − 2Q) (In − 2P ))∥ 1

2 [mlog ((In − 2Q) (In − 2P )) , P ] mexp([V, P ])P mexp(−[V, P ]) (Bendokat et al., 2024)
(Batzies et al., 2015)

MK
2√
|K|

tan−1
K

(√
|K| ∥−x⊕K y∥

)
2√

|K|λK
x

tan−1
K

(√
|K| ∥−x⊕K y∥

)
−x⊕Ky

∥−x⊕Ky∥ x⊕K

(
tanK

(√
|K|λ

K
x ∥v∥
2

)
v√

|K|∥v∥

) (Do Carmo & Flaherty Francis, 1992)
(Petersen, 2006)

(Skopek et al., 2019)

Remark C.5 (The Grassmannian and cut locus). Due to the cut locus of the Grassmannian, the
logarithm map does not exist globally (Bendokat et al., 2024). In this paper, when we use LogP (Q)
on the Grassmannian, we implicitly assume P and Q are not in each other’s cut locus. Besides, more
precisely, the gyro addition and scalar multiplication on Grassmannian are also not globally defined
(Nguyen, 2022a), due to the cut locus. Following Nguyen (2022a) and Nguyen & Yang (2023), we
implicitly assume the gyro operations are well-defined on the Grassmannian.

C.4 INTUITIVE EXPLANATIONS OF GYROGROUPS

This subsection intuitively explains gyrogroups by contrast with the trivial R. Gyrogroups are
proposed to generalize the concept of addition in R or Rn to non-Euclidean spaces.

Gyrogroups in Def. 2.1 extend the concept of groups to non-associative algebraic systems, i.e.,a⊕
(b⊕ c) ̸= (a⊕ b)⊕ c. The gyrogroups over the manifolds in Tab. 2 are defined by Eqs. (3), (5) and (6).
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More importantly, these definitions are natural generalizations of Euclidean vector operations. Take
the gyro addition Eq. (3) as an example. When the manifoldM is the Euclidean space Rn, the gyro
addition defined by Eq. (3) becomes the familiar vector addition.

Gyration & gyroassociativity: The gyration is an automorphism gyr[a, b] : G → G for each
a, b ∈ G. It is called an automorphism as it can preserve the gyro addition:

gyr[a, b](c⊕ d) = gyr[a, b](c)⊕ gyr[a, b](d), ∀c, d ∈ G. (30)

The gyration is used to generalize the associativity:

a+ (b+ c) = (a+ b) + c, ∀a, b, c ∈ R. (31)

Take the Grassmannian gyrogroup {Gr(p, n),⊕Gr} as an example. For any U, V,R ∈ ⊕Gr, we have

Non-associativity: V ⊕Gr (U ⊕Gr R) ̸= (V ⊕Gr U)⊕Gr R, (32)

Left gyroassociativity: V ⊕Gr (U ⊕Gr R) = (V ⊕Gr U)⊕Gr gyrGr[U, V ](R). (33)

Eq. (33) differs with Eq. (31) only in a gyration. The concrete expression of the gyration over the
Grassmannian is presented by Nguyen (2022a, Def. 3.18).

Left reduction is defined as gyr[a, b] = gyr[a⊕ b, b] for any a and b in the gyrogroup G. It is called
a "left reduction" because b in a⊕ b can be canceled out.

Gyrocommutativity in Def. 2.2 generalizes the commutative property (a+b = b+a) by the gyration
operator gyr[a, b].

Nonreductive gyrogroups in Def. 2.3 are relaxed gyrogroups, allowing structures where the left
reduction law (G4) does not hold. Its prototype comes from the gyrogroup of the Grassmannian
(Nguyen, 2022a, Thm. 3.20), where (G4) does not hold.

Relation between left reduction, non-reduction, & pseudo-reduction: The left reduction can
induce many basic properties of gyrogroups ( see Thm. D.1 and Ungar (2009, Thms. 1.13 and
1.14)). However, non-reduction does not guarantee several basic properties. This drawback will
undermine the rationality of the non-reductive gyrogroups. Therefore, as an intermediate, we propose
pseudo-reduction. The associated pseudo-reductive gyrogroups maintain most of the basic properties
of gyrogroups. Please refer to Thm. D.1 and its remark for more details.

D FIRST PSEUDO-REDUCTIVE GYROGROUPS PROPERTIES

Theorem D.1 (First Pseudo-reductive Gyrogroups Properties). Let {G,⊕} be a pseudo-reductive
gyrogroup. For any elements P,Q,R,X ∈ G, we have:

1. If P ⊕Q = P ⊕R, then Q = R (General Left Cancellation law; see (9) below).

2. gyr[E,P ] = 1 for any left identity E in G.

3. gyr[X,P ] = 1 for any left inverse X of P in G.

4. There is P left identity which is P right identity.

5. There is only one left identity.

6. Every left inverse is P right inverse.

7. There is only one left inverse, ⊖P , of P , and ⊖(⊖P ) = P .

8. The left cancellation law: ⊖P ⊕ (P ⊕Q) = Q.

9. The gyrator identity: gyr[P,Q]X = ⊖(P ⊕Q)⊕ {P ⊕ (Q⊕X)}.

10. gyr[P,Q]E = E.

11. gyr[P,Q](⊖X) = ⊖ gyr[P,Q]X .

12. gyr[P,E] = 1.

13. The gyrosum inversion law: ⊖(P ⊕Q) = gyr[P,Q](⊖Q⊖ P )
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Credit of the proof. Most of the proof is borrowed from Ungar (2009, Thms. 1.13 and 1.14), which
presents the corresponding properties for gyrogroups. After re-analyzing these two theorems, we find
that most of the proof can be readily extended into pseudo-reductive gyrogroups.

Proof. This theorem follows Ungar (2009, Thms. 1.13 and 1.14), which presents some useful
properties for gyrogroups. We argue that all the properties except gyr[a, a] = 1 are independent
of the left reduction law (G4), and are therefore satisfied on pseudo-reductive gyrogroups. All the
properties can be proven in the same way as the ones for Thms. 1.13 and 1. 14 by Ungar (2009). We
summarize the logic in the following:

• left gyroassociativity⇒ 1

• left gyroassociativity + 1⇒ 2

• definition⇒ 3

• left gyroassociativity + 1 + 3⇒ 4

• definition⇒ 5

• left gyroassociativity + (G2) + 1 + 3 + 4 + 5⇒ 6

• 1+6⇒ 7

• left gyroassociativity +3⇒ 8

• left gyroassociativity + left cancellation in 8⇒ 9

• gyro identity in 9⇒ 10

• 10⇒ 11

• left cancellation in 8 + gyro identity in 9⇒ 12

• left cancellation in 8 + gyro identity in 9⇒ 13

Remark D.2. For non-reductive gyrogroups, 2 and 3 are agnostic. Therefore, every property based
on 2 or 3 is not guaranteed, such as 4, and from 6 to 10. The missing of these basic properties
will undermine the rationality of non-reductive gyrogroups. In contrast, most basic properties of
gyrogroups are preserved in our pseudo-reductive gyrogroups.

E GRASSMANNIAN GYROBN UNDER THE PROJECTOR PERSPECTIVE

Given two isometric manifolds {M1, g
1} and {M2, g

2}, the induced gyro structures in Eq. (3)-
Eq. (9) have the following relations. We first present a useful lemma.
Lemma E.1. Given manifolds {M1, g

1} and {M2, g
2} and a Riemannian isometry f :M1 →M2,

we have the following:

1. The groupoid {M1,⊕1} induced by g1 is pseudo-reductive (left-invariant), iff the groupoid
{M2,⊕2} induced by g2 is pseudo-reductive (left-invariant);

2. Any gyration in {M1, g
1} preserves gyronorm iff any gyration in {M2, g

2} preserves
gyronorm;

3. f preserves the gyrodistance.

Proof. First, we review some facts about gyrogroups under the Riemannian isometry. As shown by
Nguyen & Yang (2023, Thm. 2.5), {M1,⊕1} satisfies (G1-G3) in Def. 2.1 iff {M2,⊕2} satisfies
(G1-G3). Besides, f−1 is an isomorphism satisfying

f−1(P ⊕2 Q) = f−1(P )⊕1 f
−1(Q), (34)

f−1(t⊙2 P ) = t⊕1 f
−1(P ), (35)

f−1(⊖2P ) = ⊖1f
−1(P ), (36)

gyr2[P,Q](R) = f
(
gyr1[f

−1(P ), f−1(Q)](f−1(R))
)
. (37)
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where P,Q,R ∈M2 are arbitrary points, t ∈ R is a real scalar, ⊖i, gyri are the gyro inverses and
gyrations onMi for i = 1, 2. f is also an isomorphism with similar properties.

We only need to prove one direction for the iff condition for the pseudo-reduction or norm invariance.
We focus on⇒ and follow the above notations in the following.

Pseudo-reduction:

gyr2[⊖P, P ] = f ◦ gyr1[f−1(⊖2P ), f
−1(P )] ◦ f−1 (Eq. (37))

= f ◦ gyr1[⊖1f
−1(P ), f−1(P )] ◦ f−1 (Eq. (36))

= 1.

(38)

Gyronorm invariance under gyrations: For simplicity, we denote the gyronorm, identity element,
and Riemannian logarithm onMi as ∥∥i Ei, and Logi, respectively. First, the following demonstrates
that the Riemannian isometry f preserves gyronorm:

∥P∥2 =
∥∥Log2E2

(P )
∥∥
E2

(1)
=
∥∥∥Log1f−1(E2)

(
f−1(P )

)∥∥∥
f−1(E2)

(2)
=
∥∥LogE1

(
f−1(P )

)∥∥
E1

=
∥∥f−1(P )

∥∥
1

(39)

(1) As f :M1 →M2 is a Riemannian isometry, we have the following equations:

Log2P Q = f∗,f−1(P )

(
Log1f−1(P )

(
f−1(Q)

))
,∀P,Q ∈M2, (40)

g2P (V,W ) = g1f−1(P )((f
−1)∗,P (V ), (f−1)∗,P (W )),∀V,W ∈ TPM2, (41)

where (·)∗ is the differential map;

(2) E2 = f(E1).

Then we have the following:

∥gyr2[P,Q](R)∥2
(1)
=
∥∥f (gyr1[f−1(P ), f−1(Q)](f−1(R))

)∥∥
2

(2)
=
∥∥gyr1[f−1(P ), f−1(Q)](f−1(R))

∥∥
1

(3)
=
∥∥f−1(R)

∥∥
1

(4)
= ∥R∥2

(42)

The above derivation comes from the following.

(1) Eq. (37);

(2) Eq. (39);

(3) Any gyration onM1 can preserve the gyronorm;

(4) Eq. (39).

Invariance of gyrodistance under f : Denoting the gyrodistance onMi as di, for any U, V ∈M1,
we have the following:

d1(U, V ) = ∥⊖1U ⊕1 V ∥1
(1)
= ∥f(⊖1P ⊕1 Q)∥2
(2)
= ∥⊖1f(P )⊕2 f(Q)∥2
= d2(f(P ), f(Q))2

(43)

The above derivation comes from the following.

(1) f preserves gyronorm;
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(2) f is an isomorphism.

Given a batch of activations {P1···N} on a gyrogroup {M,⊕}, we denote the GyroBN as
GyroBN({Pi};B, s, ϵ, η), (44)

where B ∈ M and s are biasing and scaling parameters, ϵ is a small positive value, and η is the
momentum.
Theorem E.2. Given manifolds {M1, g

1} and {M2, g
2} and a Riemannian isometry f :M1 →

M2, for a batch of activation {P1...N} inM1, GyroBN1(Pi;B, s, ϵ, γ) inM1 can be calculated as

GyroBN1(Pi;B, s, ϵ, γ) = f−1 (GyroBN2(f(Pi); f(B), s, ϵ, γ)) , (45)
where GyroBN2 is the GyroBN inM2.

Proof. This theorem is inspired by Chen et al. (2024b, thm. 5.3), which characterizes the LieBNs
under isometric manifolds. As gyrogroups are natural generalizations of Lie groups, our GyroBN is
expected to have similar results. The following proof follows a similar logic to the one by Chen et al.
(2024b, thm. 5.3), except that all operations are gyro operations.

For i = 1, 2, we denote Eq. (15) and binary gyro barycenter onMi as ξi(·|M,v2, B, s) and Bariη(·, ·).
Let B = {P1...N} and f(B) = {f(P1...N )}. We only need to show the following:

M2 = f(M1), v1 = v2, (46)

ξ1(Pi|M1, v
2, B, s) = f−1(ξ2(f(Pi)|M2, v

2, f(B), s)), (47)

Bar1η(P,Q) = f−1
(
Bar2η(f(P ), f(Q))

)
,∀P,Q ∈M1. (48)

where Mi and vi are the batch Fréchet mean and variance overMi for i = 1, 2. Eqs. (46) and (48)
can be directly obtained by the invariance of gyrodistance under f (Lem. E.1). We only need to show
Eq. (47).

We have the following:

f−1(ξ2(f(Pi)|M2, v
2, f(B), s)) = f−1(f(B)⊕2 (t⊙2 (⊖2M2 ⊕2 f(Pi)))

(1)
= f−1 ◦ f (B ⊕1 (t⊙ (⊖1M1 ⊕1 Pi)))

= B ⊕1 (t⊙ (⊖1M1 ⊕1 Pi))

= ξ1(Pi|M, v2, B, s),

(49)

where t = s√
v2+ϵ

. The above derivation comes from the following.

(1) f is an isomorphism preserving gyro operations.

As π−1 : G̃r(p, n)→ Gr(p, n) is a Riemannian isometry, Thm. E.2 indicates that the GyroBN under
the projector perspective can be calculated by the ONB perspective by the following process:

1. mapping data into the ONB perspective by π−1 : G̃r(p, n)→ Gr(p, n);

2. normalizing data by the GyroBN under Gr(p, n);

3. mapping normalized data back to G̃r(p, n) by π.

Besides, both Lem. E.1 or Prop. 3.6 can guarantee theoretical control over the gyromean and
gyrovariance under the projector perspective.

F EXPERIMENTAL DETAILS AND ADDITIONAL ABLATIONS

F.1 SUMMARY OF OPERATORS IN GRASSMANNIAN AND HYPERBOLIC GYROBNS

The specific implementation of Alg. 1 on a gyrogroup can be carried out in a plug-in manner. This
involves simply substituting the required operators from Tabs. 2 and 8 into Alg. 1. To streamline this
process, we summarize the discussion in Sec. 6 in Tab. 9, where we present all the required operators
for the Grassmannian and hyperbolic GyroBNs.
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Table 9: Key operators in calculating GyroBN on the Grassmannian and hyperbolic manifolds. Here
P,Q ∈ Gr(p, n) are two ONB Grassmannian points, while x, y ∈ Pn

K are two Poincaré vectors.
Other notations follow from Tabs. 2 and 8.

Operator Gr(p, n) Pn
K

Identity element Ip,n 0 ∈ Rn

P ⊕Gr Q or x⊕K y mexp(Ω)V
(1−2K⟨x,y⟩−K∥y∥2)x+(1+K∥x∥2)y

1−2K⟨x,y⟩+K2∥x∥2∥y∥2

⊖GrP or ⊖Kx mexp(−Ω)Ip,n −x
t⊙Gr P or t⊙K x mexp(tΩ)Ip,n

1√
|K|

tanh
(
t tanh−1(

√
|K|∥x∥)

)
x

∥x∥

BarGr
γ (Q,P ) or BarKγ (y, x) ExpGr

P (γ LogGr
P (Q)) x⊕K (−x⊕K y)⊙K t

Fréchet Mean Karcher Flow (Karcher, 1977) (Lou et al., 2020, Alg. 1)
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Figure 4: Training and testing performance on the NTU datasets of 1Block GyroGr. Our BN improves
the generalization abilities of GyroGr.

F.2 DETAILS ON THE GRASSMANNIAN EXPERIMENTS

F.2.1 DATASETS AND PREPROCESSING

HDM053 (Müller et al., 2007). It consists of 2,273 skeleton-based motion capture sequences
executed by different actors. Each frame consists of 3D coordinates of 31 joints. We remove the
under-represented clips, trimming the dataset down to 2086 instances scattered throughout 117 classes.
Following Nguyen & Yang (2023), we model each sequence as a 93× 10 Grassmannian matrix.

NTU60 (Shahroudy et al., 2016). It has 56,880 sequences of 3D skeleton data classified into 60
classes, where each frame contains the 3D coordinates of 25 or 50 body joints. We use mutual actions
and follow the cross-view protocol (Shahroudy et al., 2016). Following Nguyen & Yang (2023), we
model each sequence as a 150× 10 Grassmannian matrix.

NTU1204 (Liu et al., 2019). This dataset contains 114,480 sequences in 120 action classes. We use
mutual actions and follow the cross-setup protocol (Liu et al., 2019). Following Nguyen & Yang
(2023), we model each sequence as a 150× 10 Grassmannian matrix.

3https://resources.mpi-inf.mpg.de/HDM05/
4https://github.com/shahroudy/NTURGB-D
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F.2.2 IMPLEMENTATION DETAILS

Architectures. The 1Block GyroGr is structured as: gyrotranslation → pooling → [GyroBN]
→ ProjMap → classification. The KBlock GyroGr consists of K blocks of gyrotranslation and
pooling, followed by a final ProjMap layer for classification. Since each pooling operation halves the
dimensionality, we omit pooling in the last block when K > 1. Following Huang et al. (2018), the
number of channels is set to 8. The momentum for GyroBN is the default value of 0.1. Additionally, in
line with Nguyen & Yang (2023), we use the Cayley transform to approximate matrix exponentiation
over skew-symmetric matrices.

Optimization. Following Nguyen & Yang (2023), we adopt the trivialization tricks (Lezcano Casado,
2019) for the Grassmannian parameters in the gyrotranslation and our GyroBN layers. Given a
parameter U ∈ Gr(p, n), we parameterize it by a matrix U ∈ R(n−p)×p such that[

0 −UT

U 0

]
=
[
UU⊤, Ĩp,n

]
. (50)

The biasing parameter U can be retrieved by

U = mexp
([
UU⊤, Ĩp,n

])
Ip,n = mexp

([
0 −UT

U 0

])
Ip,n. (51)

In this way, all parameters lie in Euclidean spaces. We, therefore, can directly use the optimizers in
Pytorch (Paszke et al., 2019). In all experiments, we use an SGD optimizer with a learning rate of
5e-2 and zero weight decay. The batch size is 30, and training epochs are 400, 200, and 200 for the
HDM05, NTU60, and NTU120 datasets.

F.3 DETAILS ON THE HYPERBOLIC EXPERIMENTS

F.3.1 DATASETS

Cora (Sen et al., 2008). It is a citation network where nodes represent scientific papers in the area
of machine learning, edges are citations between them, and node labels are academic (sub)areas.

Disease (Anderson & May, 1991). It represents a disease propagation tree, simulating the SIR
disease transmission model, with each node representing either an infection or a non-infection state.

Airport (Zhang & Chen, 2018). It is a transductive dataset where nodes represent airports and
edges represent the airline routes as from OpenFlights.org.

Pubmed (Namata et al., 2012). This is a standard benchmark describing citation networks where
nodes represent scientific papers in the area of medicine, edges are citations between them, and node
labels are academic (sub)areas.

F.3.2 IMPLEMENTATION DETAILS

We use the official implementations of HGCN5 (Chami et al., 2019) and Lou et al. (2020)6 to
conduct the experiments. We follow all the settings as Lou et al. (2020, Sec. H.1) to implement our
experiments. Specifically, the baseline encoder is an HNN (Ganea et al., 2018) with two layers: the
first maps the input feature dimension to 128, and the second maps 128 to 128. Hyperbolic BN layers,
such as GyroBN or RBN, follow each layer. We use the Adam optimizer (Kingma, 2014), with a
learning rate of 1e−2 and a weight decay of 1e−3, except for the Cora dataset, where the weight
decay is set to 0.

F.4 HARDWARE

All experiments except the ones on the Pubmed dataset use an Intel Core i9-7960X CPU with 32GB
RAM and an NVIDIA GeForce RTX 2080 Ti GPU. The experiments on the Pubmed dataset are
conducted on a single NVIDIA Quadro RTX A6000 48GB GPU.

F.5 GYROBN AND MODEL GENERALIZATION ABILITY

We denoted GyroGr with our GyroBN as GyroGrBN. The training and testing curves on the NTU
datasets are presented in Fig. 4. We can observe that the gap between training and testing performance
is much lower when GyroGr is endowed with the Grassmannian GyroBN. This phenomenon indicates
that our GyroBN can improve the generalization ability of the Grassmannian neural networks.

5https://github.com/HazyResearch/hgcn
6https://github.com/CUAI/Differentiable-Frechet-Mean
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F.6 TRAINING EFFICIENCY

F.6.1 TRAINING EFFICIENCY ON THE GRASSMANNIAN NETWORKS

Table 10: Average training time (seconds/epoch) for GyroGr with and without different Grassmannian
BNs. The dimensions of the input Grassmannian matrices for the BN layer are also reported.

Methods HDM05
(47× 10)

NTU60
(75× 10)

NTU120
(75× 10)

GyroGr 2.19 50.92 80.72
GyroGr-ManifoldNorm 4.98 242.12 409.48

GyroGr-RBN 5.16 242.63 410.08
GyroGr-GyroBN 3.10 59.55 108.92

As the Riemannian computations over the ONB Grassmannian Gr(p, n) involve matrix decomposi-
tions, the disparity in efficiency is more evident.

Empirical Results. Tab. 10 shows the training efficiency of GyroGr with and without different
Grassmannian BNs. Compared to other Grassmannian BNs, GyroBN is significantly more efficient
due to the simplicity of the gyro operation.

Analysis. The key difference between GyroBN (Alg. 1) and the ManifoldNorm (Chakraborty, 2020,
Algs. 1-2) or RBN (Lou et al., 2020, Alg. 2) lies in their methods for centering, biasing, and scaling.
GyroBN uses gyro operations, while ManifoldNorm and RBN rely on Riemannian operators, such as
parallel transport and the Riemannian logarithmic and exponential maps. This distinction underpins
the efficiency of GyroBN. The three primary contributing factors, ranked by importance, are as
follows:

1. Riemann vs. Gyro. The Riemannian operators over the Grassmannian involve computa-
tionally expensive processes like SVD decomposition or matrix inversion (see Tab. 8 for
Riemannian exp and log, and (Edelman et al., 1998, Thm. 2.4) for parallel transport). Con-
sequently, ManifoldNorm and RBN require multiple SVD or matrix inversion operations. In
contrast, GyroBN is relatively simpler. As discussed in Sec. 6.1, the gyro operation can be
further simplified, and the involved SVD is performed on a reduced p× p matrix instead of
n× p. Additionally, as noted in App. F.2.2, computationally intensive matrix exponentiation
is efficiently approximated using the Cayley map.

2. Reduced Matrix Products. As shown in Tab. 8, each Riemannian operator involves
several matrix products over n× p matrices. GyroBN reduces these to matrix products over
(n− p)× p or p× p matrices, which are computationally more efficient, such as Prop. 6.1.

3. Optimization. The biasing parameter optimization in GyroBN is simpler. ManifoldNorm
uses an n×n orthogonal matrix for biasing, and RBN employs an n×pGrassmannian matrix,
both requiring Riemannian optimization. In contrast, GyroBN applies trivialization tricks
(parameterizing manifold data via the Riemannian exp (Lezcano Casado, 2019), as shown in
Eq. (51)), making the biasing parameter a (n−p)×p Euclidean matrix. Furthermore, Eq. (51)
and Eq. (22) share a similar form, allowing them to be jointly simplified. Although RBN
could adopt similar trivialization for biasing, this would introduce an additional Riemannian
exp step, leaving little advantage over the Riemannian optimization. In summary, GyroBN
benefits from joint simplification with trivialization, whereas the other two Grassmannian
BN methods require additional Riemannian optimization.

F.6.2 TRAINING EFFICIENCY ON THE HYPERBOLIC NETWORKS

Table 11: Average training time (seconds/epoch) for HNN with and without different hyperbolic BNs.

Methods Cora Disease Airport Pubmed

HNN 0.0323 0.0271 0.054 0.1253
HNN-RBN-H 0.0905 0.0883 0.1215 0.3416

HNN-GyroBN-H 0.0757 0.0842 0.119 0.3351

27



Published as a conference paper at ICLR 2025

Recalling Tab. 8, the Riemannian logarithmic and exponential maps over the hyperbolic space contain
gyro operations. Therefore, it is expected that our GyroBN is more efficient than RBN. Tab. 11
reports the average training time per epoch, indicating that our GyroBN is more efficient than RBN
(Lou et al., 2020) in the hyperbolic space.

F.7 EXPERIMENTS ON OTHER HYPERBOLIC BASELINES

The subsection validates our GryoBN on the HNN++ (Shimizu et al., 2020) and RResNet (Katsman
et al., 2024) backbones. We follow the HNN experiments and use these two backbones as the encoder
for the link prediction task.

F.7.1 EXPERIMENTS ON HNN++

Table 12: Comparison of HNN++ with or without RBN-H and GyroBN-H on the Cora, Disease, and
Airport datasets.

Dataset Cora Disease Airport

HNN++ 91.06 ± 0.47 77.83 ± 1.39 94.93 ± 0.23
HNN++-RBN-H 88.22 ± 0.67 59.50 ± 1.67 94.91 ± 0.23

HNN++-GyroBN-H 92.83 ± 0.32 79.53 ± 0.74 95.89 ± 0.10

We evaluate HNN++ with and without RBN-H (Lou et al., 2020) and our GyroBN-H on the Cora,
Disease, and Airport datasets. Like the HNN experiments, we used a two-layer HNN++ backbone
as the encoder, with hyperbolic hidden feature dimensions set to 128. Tab. A reports the five-fold
average results, leading to the following findings:

1. GyroBN can improve and stabilize HNN++. While RBN can degrade HNN++’s perfor-
mance, particularly on the Cora dataset, GyroBN consistently enhances it. Additionally, we
observed that HNN++ could be sensitive to weight decay. For instance, on the Cora dataset,
setting the weight decay to 1e−3 reduces the performance to 62.55, prompting us to use zero
weight decay for HNN++ on this dataset. In contrast, HNN++ with GyroBN is robust to
weight decay. Furthermore, HNN++-GyroBN achieves the smallest performance variance
across all three datasets, indicating that GyroBN facilitates more robust learning.

2. GyroBN can accelerate convergence. On the Cora dataset, HNN++ requires over 400
epochs to converge. In contrast, HNN++-GyroBN converges in approximately 150 epochs,
significantly improving convergence.

F.7.2 EXPERIMENTS ON RRESNET

Table 13: Comparison of RResNet with or without RBN-H and GyroBN-H under different hidden
feature dimensions on the Cora dataset.

Dim 8 16 32 64 128

RResNet 71.77 ± 6.67 77.38 ± 10.82 77.14 ± 7.48 66.73±11.85 80.75±4.12
RResNet-RBN-H 61.94 ± 2.28 63.54 ± 3.01 62.26 ± 3.48 60.38±2.97 87.92±2.67

RResNet-GyroBN-H 84.58 ± 5.44 87.67 ± 2.53 88.08 ± 2.90 86.50±1.59 89.52±3.42

We focus on the RResNet Horo (Katsman et al., 2024), which leverages a vector field induced
by the horosphere projection feature map. Following the settings of HNN and HNN++, we use
2 residual blocks as the backbone. For a more comprehensive comparison, we evaluate hidden
feature dimensions ranging from 8 to 128. Tab. 13 reports the five-fold average results, leading to the
following findings:

1. GyroBN consistently improves performance. While RBN performs well only under the
128-dimensional setting, it fails under other dimensions, performing worse than the baseline
RResNet. In contrast, GyroBN consistently improves RResNet’s performance across all
hidden feature dimensions.

2. GyroBN stabilizes performance and preserves representation power. Both RResNet
and RResNet-RBN exhibit significant fluctuations in performance across different hidden
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dimensions. However, RResNet-GyroBN shows a more stable performance. This indicates
that our GyroBN could maintain the representation power of the backbone network.

F.8 EXPERIMENTS ON COVARIATE SHIFTS

The covariate shift serves as the main motivation for the classical Euclidean BN (Ioffe & Szegedy,
2015). Similar challenges arise in Riemannian networks, where the complexity of the manifold
often disrupts data distributions, underscoring the utility of our proposed GyroBN. To demonstrate
covariate shifts, we perform numerical experiments on the Grassmannian and hyperbolic networks.

F.8.1 COVARIATE SHIFTS ON THE GRASSMANNIAN NETWORK

Table 14: Ten-fold results for geodesic distance d(Mout, Ip,n) and shift ∆ =
d(Mout,Ip,n)

b × 100,
where b =

√
pπ
2 is the boundary of geodesic distance over Gr(p, n).

Pooling Transformation

d(Mout, Ip,n) 2.90 ± 0.11 4.18 ± 0.04
∆ (%) 58.47% ± 2.28% 84.22% ± 0.72%

The transformation and pooling layers in the GyroGr baseline can be expressed as

ftrans : Gr(p, n)→ Gr(p, n), (52)
fpooling : Gr(p, n)→ Gr(p, n/2). (53)

For simplicity, we assume n is even for the pooling layer. Since the ONB Grassmannian Gr(p, n)
is a quotient manifold and pooling changes dimensions, we use the geodesic distance between the
batch mean and the identity element Ip,n = (Ip,0)

⊤ ∈ Rn×p as a consistent measure. Note that the
geodesic distance on Gr(p, n) is bounded by

√
pπ
2 (Wong, 1967, Thm. 8).

We randomly generate 30 Grassmannian matrices of size 100× 10 with an initial batch mean as the
identity element Ip,n. We denote the resulting batch mean after transformation or pooling as Mout. If
the distribution were preserved, the geodesic distance d(Mout, Ip,n) (or d(Mout, Ip,n/2) for pooling)
would be zero. Tab. 14 shows that Mout significantly deviates from Ip,n, indicating the covariate
shift.

F.8.2 COVARIATE SHIFTS ON THE HYPERBOLIC NETWORK

We examine the covariate shift in the transformation layer (Ganea et al., 2018, Lem. 6) in HNN. We
focus on the canonical Poincaré ball (curvature K = −1). We randomly generate 30 5-dimensional
Poincaré vectors. The batch mean vectors of input and output in the transformation layer are

Min = [−0.0055, 0.0503,−0.0913,−0.0493, 0.0652]⊤, (54)

Mout = [−0.0969,−0.0443, 0.0385, 0.0936,−0.0770]⊤. (55)

The geodesic distance between Min and Mout is 0.55, indicating the covariate shift in HNN.

F.9 EXPERIMENTS ON CONDITION NUMBERS

In the GyroGr network, the transformation layer outputs n × p Grassmannian matrices, whose
condition numbers are trivial since all singular values of a Grassmannian matrix are 1. Similarly,
for the HNN model, the transformation layer outputs a vector, leading to a trivial condition number
as well. Thus, we focus on evaluating the condition numbers of the weight matrices in the hidden
transformation layer and the overall network Jacobian matrix. We evaluate Grassmannian GyroGr
networks without loss of generality under one block architecture, both with and without different
BN layers, using each trained model. The results demonstrate that GyroBN consistently reduces the
condition numbers of the weight matrices and the network Jacobian.

F.9.1 CONDITION NUMBERS OF WEIGHT MATRICES OF THE TRANSFORMATION LAYER

As shown in Tab. 15, GyroBN consistently reduces the condition numbers of the weight matrices
across datasets. Interestingly, although ManifoldNorm achieves the lowest condition numbers, its
performance could be even worse than the GyroGr baseline, suggesting that excessively reducing the
condition number could limit the model’s capacity to capture sufficient expressive features.
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Table 15: Statistics of condition numbers for the weight matrices in the GyroGr transformation layer
along with different normalization methods. As weight matrices have 8 channels, we report the mean,
standard deviation (std), minimum, and maximum values of their condition numbers. The dimensions
of the 8-channel transformation matrices are 83× 10 on the HDM05 dataset and 140× 10 on the
other datasets.

Dataset BN Mean Min Max

HDM05

None 3.81 ± 0.23 3.46 4.17
ManifoldNorm-Gr 1.97 ± 0.15 1.83 2.30

RBN-Gr 3.49 ± 0.46 2.96 4.43
GyroBN-Gr 2.37 ± 0.18 2.12 2.67

NTU60

None 2.77 ± 0.12 2.61 2.94
ManifoldNorm-Gr 1.76 ± 0.10 1.63 1.92

RBN-Gr 2.17 ± 0.20 1.94 2.51
GyroBN-Gr 2.02 ± 0.14 1.82 2.28

NTU120

None 3.35 ± 0.28 2.97 3.72
ManifoldNorm-Gr 1.91 ± 0.10 1.80 2.14

RBN-Gr 2.22 ± 0.11 2.00 2.36
GyroBN-Gr 2.16 ± 0.11 2.00 2.33

F.9.2 CONDITION NUMBER OF NETWORK JACOBIAN

We further analyze the condition number of the network Jacobian on the HDM05 and NTU120
datasets. We randomly select 100 samples to calculate the statistics of the associated network condi-
tion numbers, as shown in Tab. 16. Our GyroBN consistently lowers condition numbers compared to
other methods across both datasets, indicating that GyroBN stabilizes network training. Additionally,
the reduced maximum condition numbers, especially on the NTU120 dataset, suggest that GyroBN
avoids extreme outliers in conditioning, further highlighting its advantage over previous methods.
Notably, on the HDM05 dataset, both ManifoldNorm and RBN increase network conditioning.

Table 16: Condition numbers of network Jacobian (output w.r.t. input) across different normalization
methods on the GyroGr baseline. The statistics come from 100 random samples. The dimensions of
Jacobian matrices are 117× 930 on the HDM05 dataset and 11× 9600 on the NTU120 dataset.

Dataset BN Mean Min Max

HDM05

None 61.05 ± 4.15 52.19 74.29
ManifoldNorm-Gr 67.38 ± 6.82 51.15 88.81

RBN-Gr 64.16 ± 6.44 50.54 80.07
GyroBN-Gr 59.85 ± 4.33 48.46 70.47

NTU120

None 122.24 ± 68.45 61.8 399.28
ManifoldNorm-Gr 116.75 ± 65.17 75.46 443.01

RBN-Gr 108.75 ± 52.27 63.19 349.25
GyroBN-Gr 97.01 ± 41.88 61.19 262.55

G PROOFS

G.1 PROOF OF PROP. 3.2

Proof of Prop. 3.2. By Nguyen & Yang (2023, Lem. 2.3), easy computations show that Eq. (12)
holds for Gr(p, n) iff it holds for G̃r(p, n). Without loss of generality, we prove the case for the
projector perspective.

Given any P,Q ∈ G̃r(p, n), Def. 3.18 by Nguyen (2022a) gives the expression for gyration:

gyr[⊖P, P ]Q = F (⊖P, P )Q (F (⊖P, P ))−1
, (56)
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with F (⊖P, P ) defined as

F (⊖P, P ) = mexp
(
−
[
⊖P ⊕ P , Ĩp,n

])
mexp

([
⊖P , Ĩp,n

])
mexp

([
P , Ĩp,n

])
, (57)

where (·) = LogĨp,n(·). This equation can be further simplified as

F (⊖P, P ) (1)
= mexp(0)mexp

([
⊖P , Ĩp,n

])
mexp

([
P , Ĩp,n

])
,

(2)
= mexp

([
⊖P , Ĩp,n

])
mexp

([
P , Ĩp,n

])
,

(3)
= In.

(58)

The above derivation follows from

(1) ⊖P ⊕ P = Ĩp,n = 0 ∈ Rn×n.

(2) mexp(0) = In.

(3) ⊖P = −P and mexp
([
−P , Ĩp,n

])
= mexp

([
P , Ĩp,n

])−1

.

Therefore, gyr[⊖P, P ] is the identity map.

G.2 PROOF OF THM. 3.3

Proof of Thm. 3.3. We first prove a useful lemma.

Lemma G.1 (Left Gyrotranslation Law). Every pseudo-reductive gyrogroups {G,⊕} verifies the left
gyrotranslation law:

⊖ (P ⊕Q)⊕ (P ⊕R) = gyr[P,Q] (⊖Q⊕R) ,∀P,Q,R ∈ G. (59)

Proof. This lemma generalizes Lems. I.1 and L.1 by Nguyen & Yang (2023), which proves the left
gyrotranslation law on the specific gyrogroups of the SPD and Grassmannian manifolds. Their proof
only relies on the left cancellation and the basic axioms (G1-3). Note that the original proof of left
gyrotranslation on the Grassmannian (Nguyen & Yang, 2023, Lems. I.1) is questionable, as relies on
the left cancellation of gyrogroups, and the Grassmannian is not a gyrogroup but a non-reductive
gyrogroup. Fortunately, as we show in Thm. D.1, the general pseudo-reductive gyrogroups, including
the Grassmannian, enjoy left cancellation. Therefore, all the proof by Nguyen & Yang (2023, Lems.
I.1) can be readily generalized into the general pseudo-reductive gyrogroups.

⇒: For any R,S ∈ G, the gyroautomorphism can be expressed by the gyrator identity in Thm. D.1:

gyr[P,Q]R = X ⊕ R̄, (60)

gyr[P,Q]S = X ⊕ S̄, (61)

where X = ⊖(P ⊕ Q), R̄ = P ⊕ (Q ⊕ R), and S̄ = P ⊕ (Q ⊕ S). Then Eq. (30) in (Nguyen
& Yang, 2023) for the specific Grassmannian can be directly extended into the pseudo-reductive
gyrogroup, as it only relies on left gyrotranslation, invariance of the norm under gyroautomorphisms,
and the axioms of (G1-G3).

⇐:

∥gyr[P,Q](R)∥gr = ∥gyr[P,Q](⊖E ⊕R)∥gr , (7 in Thm. D.1 indicates ⊖E = E)

= ∥⊖ gyr[P,Q](E)⊕ gyr[P,Q](R)∥gr , (automorphism)

= dgry (gyr[P,Q](E), gyr[P,Q](R)) ,

= dgry (E,R) ,

= ∥⊖E ⊕R∥gr ,
= ∥R∥gr .

(62)
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G.3 PROOF OF THM. 3.5

Proof of Thm. 3.5. Given any P,Q,R ∈ G, we make the following proof.

Gyroisometry of the left gyrotranslation: This property generalizes Thms. 2.12 and 2.16 by Nguyen
& Yang (2023), which deal with the gyrotranslations in the SPD and Grassmannian manifolds. We
have the following:

dgry(LP (Q), LP (R)) = dgry(P ⊕Q,P ⊕R),
= ∥⊖(P ⊕Q)⊕ (P ⊕R)∥gr ,
= ∥gyr[P,Q] (⊖Q⊕R)∥gr (left gyrotranslation),

= ∥⊖Q⊕R∥gr (gyroisometry of the automorphism),

= dgry(Q,R).

(63)

Symmetry of the gyrodistance:

dgry(P,Q) = ∥⊖P ⊕Q∥gr ,
= ∥⊖(⊖P ⊕Q)∥gr (Eq. (5) and Eq. (7)),

= ∥gyr[⊖P,Q](⊖Q⊕ P )∥gr (gyrosum inversion law),

= ∥⊖Q⊕ P∥gr (gyroisometry of the automorphism),

= dgry(Q,P ).

(64)

Gyroisometry of the gyroinverse:

dgry(⊖P,⊖Q)

= ∥P ⊖Q∥gr ,
= ∥⊖Q⊕ P∥gr ( gyrocommutativity and gyroisometry of the automorphism),

= dgry(Q,P ),

= dgry(P,Q) (Symmetry of the gyrodistance).

(65)

G.4 PROOF OF PROP. 3.6
Proof of Prop. 3.6. We first show the expressions of the gyrodistance onM . Then we proceed to
show the gyrodistance and gyroisometries onMK . We follow all the notations in Tab. 2 and denote
the geodesic distance under a specific geometry as dgeo.

Expressions of gyrodistance onM:

For {Sn++,⊕AI}, we have the following:

dgry(P,Q) =
∥∥∥P− 1

2QP− 1
2

∥∥∥
gr
,

=
∥∥∥mlog(P− 1

2QP− 1
2 )
∥∥∥ (LogI = mlog),

= dgeo(P,Q).

(66)

For {Sn++,⊕LE}, we have the following:

dgry(P,Q) = ∥mexp(−mlog(P ) + mlog(Q))∥gr ,

=
∥∥mlog−1

∗,I(−mlog(P ) + mlog(Q))
∥∥
I
, (LogI(P ) = mlog−1

∗,I(mlog(P ))),

= ∥mlog(P )−mlog(Q)∥ , (the pullback of LEM (Chen et al., 2024e))
= dgeo(P,Q),

(67)

where mlog−1
∗,I is the inverse of the differential map of mlog, and ∥·∥I is the norm induced by the

LEM at I .
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As LCM is also a pullback metric (Chen et al., 2024e), {Sn++,⊕LC} follow the same logic:

dgry(P,Q) =
∥∥ψ−1

LC(−ψLC(P ) + ψLC(Q))
∥∥
gr
,

=
∥∥∥(ψLC)

−1
∗,I(−ψLC(P ) + ψLC(Q))

∥∥∥
I
(LogI(P ) = (ψLC)

−1
∗,IψLC(P )),

= ∥ψLC(P )− ψLC(Q)∥ , (the pullback of LCM (Chen et al., 2024e))
= dgeo(P,Q).

(68)

For {G̃r(p, n), ⊕̃Gr}, we have the following:

dgry(P,Q) =
∥∥∥mexp(−[P , Ĩp,n])Qmexp([P , Ĩp,n])

∥∥∥
gr
(⊖P = −P ),

=
∥∥∥P̃⊤QP̃

∥∥∥
gr
(P̃ = mexp([P , Ĩp,n]) ∈ SO(n)),

=
1

2

∥∥∥LogĨp,n (P̃⊤QP̃
)∥∥∥ (∥·∥I =

1

2
∥·∥),

=
1

2

∥∥∥[Ω, Ĩp,n]∥∥∥ ,
(69)

where [Ω, Ĩp,n] = LogĨp,n

(
P̃⊤QP̃

)
. For Ω, we have the following:

Ω =
1

2
mlog

((
In − 2P̃⊤QP̃

)(
In − 2Ĩp,n

))
((Bendokat et al., 2024, Prop. 5.6)),

=
1

2
mlog

(
P̃⊤ (In − 2Q) P̃ P̃⊤

(
In − 2P̃ Ĩp,nP̃

⊤
)
P̃
)

=
1

2
mlog

(
P̃⊤ (In − 2Q)

(
In − 2P̃ Ĩp,nP̃

⊤
)
P̃
)
,

(1)
= P̃⊤

(
1

2
mlog

(
(In − 2Q)

(
In − 2P̃ Ĩp,nP̃

⊤
)))

P̃ ,

(2)
= P̃⊤

(
1

2
mlog ((In − 2Q) (In − 2P ))

)
P̃ ,

(3)
= P̃⊤ΩP̃ ,

(70)

Eq. (70) follows from the following facts:

(1) When mlog(B) is well-defined and A is non-singular, A−1(logB)A = log
(
A−1BA

)
(Horn & Johnson, 2012).

(2) P = mexp([P , Ĩp,n])Ĩp,n mexp(−[P , Ĩp,n]) (Nguyen, 2022a, Eq. (36)).

(3) Let Ω = 1
2 mlog ((In − 2Q) (In − 2P ))

Combining Eqs. (69) and (70), we have

dgry(P,Q) =
1

2

∥∥∥[Ω, Ĩp,n]∥∥∥ ,
=

1

2

∥∥∥[P̃⊤ΩP̃ , Ĩp,n]
∥∥∥ ,

(1)
=

1

2

∥∥∥P̃⊤[Ω, P̃ Ĩp,nP̃
⊤]P̃

∥∥∥ ,
(2)
=

1

2

∥∥∥[Ω, P̃ Ĩp,nP̃⊤]
∥∥∥ ,

(3)
=

1

2

∥∥[Ω, P ]∥∥ ,
(4)
=

1

2
∥LogP (Q)∥ ,

(5)
= ∥LogP (Q)∥P ,
(6)
= dgeo(P,Q).

(71)
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Eq. (71) follows from the following facts:

(1)
[P̃⊤ΩP̃ , Ĩp,n] = P̃⊤ΩP̃ Ĩp,n − Ĩp,nP̃⊤ΩP̃ ,

= P̃⊤
(
ΩP̃ Ĩp,nP̃

⊤ − P̃ Ĩp,nP̃⊤Ω
)
P̃ ,

= P̃⊤[Ω, P̃ Ĩp,nP̃
⊤]P̃ .

(72)

(2) Euclidean norm is invariant under the action A 7→ OAO⊤,∀A ∈ Rn×n, O ∈ O(n).

(3) P = mexp([P , Ĩp,n])Ĩp,n mexp(−[P , Ĩp,n]).

(4) LogP (Q) = [Ω, P ].

(5) ∥·∥P = 1
2 ∥·∥ ,∀P ∈ G̃r(p, n).

(6) dgeo(P,Q) = ∥LogP (Q)∥P for any P,Q ∈ G̃r(p, n) not in each other’s cut locus.

For {Gr(p, n),⊕Gr}, we first make the following notations: We denote the geodesic distance,
gyrodistance, Riemannian logarithm at Ip,n, and Riemannian metric at Ip,n on Gr(p, n) as dgeo, dgry,
LogIp,n , and ∥·∥ONB

Ip,n
. The counterparts on G̃r(p, n) are d̃geo, d̃gry, L̃ogĨp,n , and ∥·∥PP

Ĩp,n
. As shown

by Nguyen et al. (2024, App. N), π : Gr(p, n)→ G̃r(p, n) is a Riemannian isometry. Then, for any
U, V ∈ Gr(p, n) with π(U) = P and π(V ) = Q, we have the following:

dgry(U, V ) =
∥∥∥LogIp,n (⊖GrU ⊕Gr V

)∥∥∥ONB

Ip,n

(1)
=
∥∥∥LogIp,n (π−1(⊖̃Gr

P ⊕̃Gr
Q)
)∥∥∥ONB

Ip,n

(2)
=
∥∥∥π−1

∗,Ip,n

(
L̃ogĨp,n

(
⊖̃Gr

P ⊕̃Gr
Q
))∥∥∥ONB

Ip,n

(3)
=
∥∥∥L̃ogĨp,n (⊖̃Gr

P ⊕̃Gr
Q
)∥∥∥PP

Ĩp,n

= d̃gry(P,Q)

= d̃geo(P,Q)

(4)
= dgeo(U, V )

(73)

The above comes from the following.
(1) Gyro additions under the Riemannian isometry (Nguyen & Yang, 2023, Lem. 2.1).
(2,3,4) Riemannian operators under the Riemannian isometry (Gallier & Quaintance, 2020).

Constant Curvature Spaces:

WhenMK = Rn(K = 0), the gyro structures defined in Eq. (3)-Eq. (9) are reduced to the vector
structures. The claim can be directly proved. In the following, we present the proof for K ̸= 0. We
first show the expression for the gyrodistance underMK , then the isometry of gyration, and finally
the results on the gyroisometry of gyrotranslation and gyroinverse. In the following, a, b, x, y are
arbitrary points inMK .

Gyrodistance and geodesic distance: The Riemannian metric, logarithm, and geodesic distance on
the CCS (Skopek et al., 2019) are

gKx =
(
λKx
)2
gE, (74)

LogKx (y) =
2√
|K|λKx

tan−1
K

(√
|K| ∥−x⊕K y∥

) −x⊕K y

∥−x⊕K y∥
, (75)

dgeo(x, y) =
2√
|K|

tan−1
K

(√
|K| ∥−x⊕ y∥

)
, (76)
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where λKx = 2
1+K∥x∥2 , gE is the standard Euclidean inner product, and ⊕K is the gyro addition in

Tab. 2. Especially, when x = 0, we have

gK0 = 22gE, (77)

LogK0 (y) =
1√
|K|

tan−1
K

(√
|K| ∥y∥

) y

∥y∥
(78)

For the gyrodistance, we have the following:
dgry(x, y) = ∥−x⊕ y∥gr ,

= ∥Log0(−x⊕ y)∥0,

= 2

∥∥∥∥∥ 1√
|K|

tan−1
K

(√
|K| ∥−x⊕ y∥

) −x⊕ y
∥−x⊕ y∥

∥∥∥∥∥ ,
=

2√
|K|

tan−1
K

(√
|K| ∥−x⊕ y∥

)
(∀s > 0, tan−1

K (s) > 0),

(79)

where ∥ · ∥0 is the norm induced by gK0 .

Norm invariance under gyration: AsMK forms a real inner product gyrovector spaces (Ungar,
2009, Def. 3.2), any gyration on CCS preserves the norm induced by standard inner product:

∥ gyr[a, b](x)∥ = ∥x∥,∀x. (80)
For the gyronorm, we have the following:

∥gyr[a, b]x∥gr = 2∥Log0(gyr[a, b]x)∥0,

=
2√
|K|

tan−1
K

(√
|K| ∥gyr[a, b]x∥

)
,

=
2√
|K|

tan−1
K

(√
|K| ∥x∥

)
,

= ∥x∥gr .

(81)

Isometry of left gyrotranslation and gyroinverse: Note thatMK forms a gyrocommutative gyrogroup.
According to Thm. 3.5, we can obtain the results.

G.5 PROOF OF THM. 4.1

Proof of Thm. 4.1. According to Thm. 3.3 and Thm. 3.5, any left gyrotranslation is a gyroisometry.
Therefore, for any Q ∈M, we have the following:

dgry (B ⊕ Pi, Q)
(1)
= dgry (⊖B ⊕ (B ⊕ Pi),⊖B ⊕Q)

(2)
= dgry ((⊖B ⊕B)⊕ gyr[⊖B,B](Pi)),⊖B ⊕Q)

(3)
= dgry (Pi,⊖B ⊕Q) .

(82)

The above comes from the following.

(1) Any left gyrotranslation is a gyroisometry.

(2) Left gyroassociative law.

(3) ⊖B ⊕B = E and pseudo-reduction.

Denoting the gyromean of {Pi} and {B ⊕ Pi} as M and M̃ , we have the following:

B ⊕M (1)
= B ⊕ (⊖B ⊕ M̃)

(2)
= gyr[B,⊖B](M̃)

(3)
= M̃.

(83)

The above comes from the following.

35



Published as a conference paper at ICLR 2025

(1) Eq. (82) indicates that M = ⊖B ⊕ M̃ .

(2) Left gyroassociative law.

(3) Pseudo-reduction.

Now, we proceed to deal with the second property. We have the following:

dgry(t⊙ Pi, E)
(1)
= ∥⊖E ⊕ (t⊙ Pi)∥gr
(2)
= ∥t⊙ Pi∥gr
= ∥tLogE Pi∥E
= |t| ∥LogE Pi∥E
= |t| ∥Pi∥gr
(3)
= |t| ∥⊖E ⊕ Pi∥gr
= |t|dgry(E,Pi)

(4)
= |t|dgry(Pi, E)

(84)

The above follows from the following.

(1) Symmetry of gyrodistance (Thm. 3.5).

(2) ⊖E = E.

(3) Pi = ⊖E ⊕ Pi.

(4) Symmetry of gyrodistance.

The last equation in Eq. (84) indicates the homogeneity of dispersion from E.

G.6 PROOF OF PROP. 5.1

Proof of Prop. 5.1. We only need to prove the equivalence of gyrodistance and geodesic distance.
Note that every Lie group is automatically a gyrogroup with each gyration as the identity map.

We denote {M,⊕, g} as a Lie group with left-invariant metric g. For any P and Q inM, we have
the following:

dgry(P,Q)
(1)
= ∥⊖P ⊕Q∥gr
(2)
= ∥LogE(⊖P ⊕Q)∥E
= dgeo(E,⊖P ⊕Q)

(3)
= dgeo(P, P ⊕ (⊖P ⊕Q))

(4)
= dgeo(P,Q).

(85)

The above derivation comes from the following.

1. Definition of gyrodistance Eq. (9).

2. Definition of gyronorm Eq. (8).

3. Under a left-invariant metric, any left Lie group translation is a Riemannian isometry.

4.
P ⊕ (⊖P ⊕Q) = (P ⊖ P )⊕Q( the associative of group addition)

= E ⊕Q
= Q.

(86)

Therefore, the gyromean and gyrovariance are exactly the Fréchet mean and variance under the
geodesic distance, while the running mean updates are also identical under gyrodistance and geodesic
distance.
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G.7 PROOF OF PROP. 6.1
We first review a fast and stable algorithm for the ONB Grassmannian logarithm (Bendokat et al.,
2024, Alg. 5.3), and the calculation of Grassmannian logarithm under the projector perspective by
the ONB Grassmannian logarithm (Nguyen et al., 2024, Prop. 3.12).

Algorithm 2: Grassmann logarithm under the ONB perspective (Bendokat et al., 2024, Alg. 5.3)
Input: U, Y ∈ Gr(p, n) are Stiefle representatives under ONB perspective.

1 QSRT SVD
:= Y TU with S in ascending order, and Q and R column-wisely flipped accordingly;

2 Ŝ =
√
In − S2;

3 ∆ = (In − UU⊤)Y Q arcsin(Ŝ)

Ŝ
RT ;

Output: LogU (Y ) = ∆

Alg. 2 reviews a fast and stable algorithm for the Grassmannian Riemannian logarithm under the
ONB perspective Gr(p, n). The vanilla Riemannian logarithm in Tab. 8 requires an n× p SVD and a
p× p matrix inverse, while Alg. 2 only requires an p× p SVD. Therefore, Alg. 2 is more efficient
than the vanilla logarithm. Besides, Alg. 2 can also return a unique tangent vector when Y is in the
cut locus of U . For more details, please refer to Bendokat et al. (2024, Sec. 5.2).

As the projector perspective is isometric to the ONB perspective, the Grassmannian logarithm under
the projector perspective can be calculated by the ONB Grassmannian logarithm (Nguyen et al., 2024,
Prop. 3.12).
Proposition G.2 ((Nguyen et al., 2024)). Given any P,Q ∈ G̃r(p, n) with U = π−1(P ) and
V = π−1(Q), the Riemannian logarithm L̃ogP (Q) on G̃r(p, n) is given as

L̃ogP (Q) = π∗,U (LogU V ) , (87)

where Log is the Riemannian logarithm under the ONB perspective, π∗,U : TUGr(p, n) →
TP G̃r(p, n) is the differential map of π at U , which is defined as

π∗,U (∆) = ∆U⊤ + U∆⊤,∀∆ ∈ TUGr(p, n). (88)

Now, we begin to present the proof.

Proof of Prop. 6.1. We first show the expression for LogIp,n and L̃ogĨp,n .

First note the following:

(In − Ip,nI⊤p,n) =
(

0 0
0 In−p

)
, (89)

U⊤Ip,n =
(
U⊤
1 , U

⊤
2

)( Ip
0

)
= U⊤

1 ,

(90)

By the above two equations, the ONB Grassmannian logarithm at Ip,n is

LogIp,n(U) =

(
0 0
0 In−p

)(
U1

U2

)
Q
arcsin(Ŝ)

Ŝ
RT (Alg. 2)

=

(
0

U2Q
arcsin(Ŝ)

Ŝ
RT

)

=

(
0

Ũ2

)
,

(91)

where QSRT SVD
:= U⊤

1 with S in ascending order, and Q and R column-wisely flipped accordingly,
and Ŝ =

√
In − S2.
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For L̃ogĨp,n , we have

L̃ogĨp,n(UU
⊤)

(1)
= π∗,Ip,n

(
LogIp,n(U)

)
(2)
= π∗,Ip,n

((
0

Ũ2

))
(3)
=

(
0 Ũ⊤

2

Ũ2 0

)
.

(92)

The above derivation comes from the following.

(1) Prop. G.2

(2) Eq. (91)

(3) For any ∆ = (∆⊤
1 ,∆

⊤
2 )

⊤ ∈ TIp,nGr(p, n), where ∆1 is p× p, we have the following

π∗,Ip,n

((
∆1

∆2

))
=

(
∆1

∆2

)
(Ip, 0) +

(
Ip
0

)(
∆⊤

1 ,∆
⊤
2

)
=

(
∆1 0
∆2 0

)
+

(
∆⊤

1 ∆⊤
2

0 0

)
=

(
∆1 +∆⊤

1 ∆⊤
2

∆2 0

)
.

(93)

Combining all the above results together, we have the following:

[UU⊤, Ĩp,n] =
[
L̃ogĨp,n(UU

⊤), Ĩp,n

]
=

[(
0 Ũ⊤

2

Ũ2 0

)
, Ĩp,n

]
=

(
0 Ũ⊤

2

Ũ2 0

)(
Ip 0
0 0

)
−
(
Ip 0
0 0

)(
0 Ũ⊤

2

Ũ2 0

)
=

(
0 −ŨT

2

ŨT
2 0

)
.

(94)
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