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Abstract

The soft-Dice loss is a very popular loss for image semantic segmentation in the medi-
cal field, and is often combined with the cross-entropy loss. It has recently been shown
that the gradient of the dice loss is a “negative” of the ground truth, and its supervision
can be trivially mimicked by multiplying the predicted probabilities with a pre-computed
“gradient-map” (Kervadec and de Bruijne, 2023). In this short paper, we study the proper-
ties of the dice loss, and two of its variants (Milletari et al., 2016; Sudre et al., 2017) when
sub-patching is required, and no foreground is present. As theory and experiments show,
this introduce divisions by zero which are difficult to handle gracefully while maintaining
good performances. On the contrary, the mime loss of (Kervadec and de Bruijne, 2023)
proved to be far more suited for sub-patching and handling of empty patches.
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1. Background

The Dice coefficient, measuring overlap between two areas can be written as DSC(y, s; k) :=
2
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, with Ω ⊂ RD a D-dimensional image space, y(·,·) : (Ω ×

K) → {0, 1} a ground-truth as a binary function, and s(·,·) : (Ω × K) → {0, 1} a predicted
segmentation. K = {0, 1, ...,K} is the set of classes to segment, 0 being the background

class and K the number of object classes. Ω
(k)
y := {i ∈ Ω|y(i,k) = 1} ⊆ Ω denotes the subset

of the image space where y is of class k. With continuous probabilities s
(·,·)
θ ∈ [0, 1] we can

define a Dice loss:
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It has been shown (Kervadec and de Bruijne, 2023) that its gradient wrt. the softmax
takes the following form:
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with I(k) =
∑
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(i,k)
θ and U (k) =

∑
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]
. This means that the gradient

of the dice loss takes only two different values over the whole image, as a weighted negative
of y.
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Moreover, (Kervadec and de Bruijne, 2023) has shown that the supervision of the Dice
loss can be mimicked with the following simple loss:

LMime(y, sθ) := ω⊤
y sθ, (3)

with ωy ∈ R|K||Ω| a flattened, pre-computed gradient map, and sθ ∈ [0, 1]|K||Ω| the flattened
predicted probabilities. With y ∈ {0, 1}|K||Ω| the flattened ground truth, we can simply
do: ωy = −ya + (1 − y)b with a, b > 0. In this paper, we set a and b based on the
class distribution over the whole dataset D = {(xn, yn)}Nn=1, i.e. a(k) = 1
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yn |

and
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Some well-known variants have been introduced to better handle imbalanced tasks. The
Generalized Dice Loss (Sudre et al., 2017) is based on the Generalized Dice Score (Crum
et al., 2006):
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with w(k) = 1

(
∑
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2 . V-Net (Milletari et al., 2016) slightly modify the base dice loss

by squaring the denominator probabilities:
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2. Sub-patching and empty patches

As the Dice overlap score is defined through the intersection and union of two areas, it
cannot be “decomposed” in smaller computations: one cannot compute a series of Dice on
subsets of Ω, and then aggregate them to get the original dice score. This is an issue when
training a neural network requires sub-patching—either a 3D sub-patch or a 2D slice—
due to memory limitations. Computing the dice on the sub-patch is doable, but it loses
its semantic meaning. More importantly, it increases the chance of encountering empty

foregrounds (Ω
(k)
y = Ω

(k)
s = ∅) within the patch, which for all dice variants (1), (4) and (5)

will cause divides-by-zero in various places. While it can be relatively mitigated through
careful addition of small ϵ in their implementation, it is less than ideal and can introduce
instabilities in the training.

3. Experiments

Experiments are performed with a lightweight 2D-ENet (Paszke et al., 2016) using the
Adam optimizer (Kingma and Ba, 2014). We report the mean DSC and 95th percentile of
the Hausdorff distance on the testing set for both datasets. For HD95, when no object is
predicted, we count the diagonal of the scan. When there is no object to predict, and no
object is predicted, we count 0. We evaluate on the following two datasets:
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Table 1: Mean testing DSC (%) ↑ / HD95 (mm) ↓.
.

Loss
Dataset ACDC WMH

RV Myo LV All WMH Other pathologies All

LDSC 77.2/11.8 79.2/04.9 90.3/03.2 82.2/06.7 68.6/009 00.5/251 34.6/130
LVNet 78.0/13.7 78.4/03.8 89.9/05.8 82.1/07.8 70.4/007 00.2/251 35.3/129
LGDL 78.3/14.6 80.4/03.8 90.2/06.0 83.0/08.1 08.2/088 00.0/286 04.1/187
LMime 81.5/09.7 80.2/03.4 90.9/04.0 84.2/05.7 61.1/006 63.0/135 62.1/071

(a) GT (b) LDSC (c) LVNet (d) LGDL (e) LMime

Figure 1: Example results from the WMH testing set.

ACDC (Bernard et al., 2018) contains cine-MRI of the heart, providing annotations
at systole and diastole of the right-ventricle (RV), myocardium (Myo) and left-ventricle
(LV) so that K = 3. The dataset contains 100 patients with different pathologies. We kept
10 patients for validation and 20 for testing.

WMH 1.0 (Kuijf et al., 2022) The full dataset of the White Matter Hyperintensities
(WMH) MICCAI 2017 challenge contains annotations for the 60 scans of the training set (10
are kept here for validation) and 110 scans of the testing set. Additionally, the annotations
also roughly segment other pathologies present in the scans, so that K = 2. This is a very
imbalanced dataset, even more pronounced for the other pathologies class.

4. Results, discussion and conclusion

Metrics computed on the testing set are reported in Table 1 and Figure 1 shows a single
slice of WMH testing set. We can see that all dice variants perform similarly on the ACDC
dataset, which is to be expected. However, on WMH, all dice variants struggle with the
“Other pathologies” class, while the hyperintensities are more-or-less well segmented. On
the contrary, the mime loss proved able to handle more gracefully empty patches, which
resulted in a better segmented “other pathologies” while maintaining performances on the
main class.

To summarize, we discussed the limitations of the dice loss and some of its variants,
with respect to sub-patching. Notably, all variants struggle when a patch is empty, as it
introduce division by zero. On the contrary the Mime loss from (Kervadec and de Bruijne,
2023) can easily be sub-patched without introducing extra instabilities. Its simple definition
also enables easy tuning with respect to the datasets imbalance.
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