
Neural Jump-Diffusion Temporal Point Processes

Shuai Zhang 1 Chuan Zhou 1 2 Yang Liu 1 Peng Zhang 3 Xixun Lin 4 Zhi-Ming Ma 1

Abstract
We present a novel perspective on temporal point
processes (TPPs) by reformulating their inten-
sity processes as solutions to stochastic differ-
ential equations (SDEs). In particular, we first
prove the equivalent SDE formulations of sev-
eral classical TPPs, including Poisson processes,
Hawkes processes, and self-correcting processes.
Based on these proofs, we introduce a unified TPP
framework called Neural Jump-Diffusion Tempo-
ral Point Process (NJDTPP), whose intensity pro-
cess is governed by a neural jump-diffusion SDE
(NJDSDE) where the drift, diffusion, and jump
coefficient functions are parameterized by neural
networks. Compared to previous works, NJDTPP
exhibits model flexibility in capturing intensity dy-
namics without relying on any specific functional
form, and provides theoretical guarantees regard-
ing the existence and uniqueness of the solution to
the proposed NJDSDE. Experiments on both syn-
thetic and real-world datasets demonstrate that
NJDTPP is capable of capturing the dynamics
of intensity processes in different scenarios and
significantly outperforms the state-of-the-art TPP
models in prediction tasks.

1. Introduction
Many real-world scenarios often generate a large amount
of asynchronous event sequences. Each event consists of a
timestamp and a type mark, indicating when and what the
event occurred. Examples include user activities on social
media platforms (Farajtabar et al., 2017), electronic health
records in healthcare (Liu & Hauskrecht, 2021), and trans-
action behaviors in e-commerce systems (Xue et al., 2022).
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Modeling such data has become increasingly important for
tasks such as predicting the occurrence of future events (Du
et al., 2016; Mei & Eisner, 2017; Zhang et al., 2020a; Zuo
et al., 2020), detecting anomalies in event sequences (Liu &
Hauskrecht, 2021; Shchur et al., 2021; Zhang et al., 2023),
and performing causal inference on events (Xu et al., 2016;
Zhang et al., 2020b; Gao et al., 2021).

Temporal point processes (TPPs) (Daley et al., 2003) serve
as a useful mathematical tool for modeling sequences of dis-
crete events in continuous time. Classical examples of TPPs
include Poisson processes (Kingman, 1992), Hawkes pro-
cesses (Hawkes, 1971), and self-correcting processes (Isham
& Westcott, 1979). A central concept in TPPs is the intensity
process1 (Oakes, 1975), also known as the intensity func-
tion (Zhang et al., 2020b), which measures the expected rate
of events occurrence given historical events. While these
classical models exhibit favorable statistical properties, the
fixed parametric form of their intensity functions prevents
them from capturing complicated dynamics.

To enhance the capability of TPP models, there has been
a surge in modeling the intensity function as a transforma-
tion of the hidden state of neural networks. Depending on
the neural network structures, these TPP models can be di-
vided into two categories, i.e., those based on either RNNs
or Transformers (Du et al., 2016; Zuo et al., 2020; Yang
et al., 2022), and those based on continuous-depth neural
networks (Jia & Benson, 2019; Chen et al., 2020). While be-
ing more expressive than classical TPPs, the former models
usually assume a specific functional form for the intensity
function. For example, RMTPP (Du et al., 2016) assumes
that the intensity exponentially decreases or increases be-
tween events. However, relying on such an assumption
would limit model expressiveness when the employed as-
sumption deviates from reality (Omi et al., 2019). The latter
models represent the hidden state as the solution to a neural
jump stochastic differential equation (Jia & Benson, 2019).
These models, however, provide no theoretical guarantee
for the global existence and uniqueness of the solution.

In this paper, we provide a new view for TPPs by reformu-
lating the intensity process as the solution to a stochastic dif-
ferential equation (SDE) (Ikeda & Watanabe, 2014). Specifi-

1In this paper, we use intensity process and intensity function
interchangeably.
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cally, we first derive equivalent SDE formulations of several
classical TPPs mentioned above. From these SDE formula-
tions, we observe that the coefficient functions in SDE play
a key role in shaping the evolution of intensity process over
time and revealing the influences between events. Based on
these observations, we introduce the Neural Jump-Diffusion
Temporal Point Process (NJDTPP), whose intensity process
is governed by a neural jump-diffusion SDE (NJDSDE). The
drift, diffusion, and jump coefficient functions in NJDSDE
are parameterized by three neural networks, i.e., the drift
net, diffusion net, and jump net. Concretely, the drift net
captures the intrinsic evolution of the intensity process, the
diffusion net models the Gaussian noise with the Brownian
motion (Wang et al., 2017; 2018), and the jump net captures
the influences between events, such as the excitatory and
inhibitory influences. Remarkably, our NJDTPP model does
not require a specific functional form for the intensity func-
tion. Instead, by using the drift, diffusion, and jump nets, the
solution to NJDSDE can implicitly determine a free-form
intensity process consistent with the observed event data.
We summarize our contributions as follows:

• Theoretical Analysis. We prove the equivalent SDE for-
mulations of several classical TPPs. For the SDE formu-
lation, we provide a sufficient condition for the existence
of a unique positive solution. Moreover, we theoretically
analyze the existence and uniqueness of the solution to
the proposed neural jump-diffusion SDE.

• Unified Framework. By viewing the intensity process
as the solution to an SDE, we propose a unified TPP
framework NJDTPP which can learn a free-form intensity
process consistent with the observed data. A number of
classical TPPs can be interpreted as special cases of our
framework with simple coefficient functions.

• Extensive Experiments. We conduct experiments on
three synthetic and six real-world datasets to evaluate the
performance of NJDTPP. Experimental results show that
NJDTPP successfully captures the dynamics of intensity
processes and achieves state-of-the-art results in the tasks
of likelihood evaluation and event prediction.

2. Related Work
Neural Temporal Point Processes. Neural TPPs that
combine TPPs with neural networks have received con-
siderable attention (Du et al., 2016; Mei & Eisner, 2017;
Zhang et al., 2020a; Zuo et al., 2020; Lin et al., 2021; Yang
et al., 2022). While being more expressive than classical
parametric ones, neural TPPs usually assume a specific func-
tional form for the intensity function. For example, RMTPP
(Du et al., 2016) assumes that the intensity exponentially
decreases or increases between events; THP (Zuo et al.,
2020) utilizes the softplus function so that the intensity

between events is approximately linearly interpolated. How-
ever, relying on such an assumption can undermine model
effectiveness if the employed assumption deviates from real-
ity. In addition to the dominant paradigm of parameterizing
intensity functions, alternative methods involve modeling
cumulative intensity functions (Omi et al., 2019) and con-
ditional density functions (Shchur et al., 2019). However,
these methods may not fully capture the dynamics of the
intensity process. In contrast to existing studies, our model
formulates the intensity process as the solution to an SDE
without relying on any specific functional form.

Neural Differential Equations. Neural differential equa-
tions (NDEs) (Kidger et al., 2021a) are defined as differ-
ential equations in which coefficient functions are parame-
terized by neural networks. Many NDEs, including neural
ODE and its variants (Chen et al., 2018; Rubanova et al.,
2019; Kidger et al., 2020; Herrera et al., 2020), as well
as neural SDEs (Li et al., 2020; Kong et al., 2020; Kidger
et al., 2021a;b), have been proposed for modeling time se-
ries. However, there is a distinction between time series
and event sequences (Xiao et al., 2017). In time series, time
serves only as the index to order the sequence of values for
the target variable. In event sequences, time is regarded
as a random variable representing the timestamp of asyn-
chronous events, with time itself being the subject of re-
search. Therefore, many existing NDE-based models are
not directly suitable for modeling event sequences. While
Jia & Benson (2019) and Chen et al. (2020) utilize NDEs to
model event sequences, they actually capture the dynamics
of the hidden state of neural networks. Besides, they solely
focus on the jump term, neglecting the diffusion term as-
sociated with randomness driven by Brownian motion. In
contrast, we incorporate Brownian motion to model Gaus-
sian noise, and more importantly our proposed NJDSDE
models the dynamics of the intensity process.

Equivalent SDE Formulations for TPPs. Wang et al.
(2018) provided a jump-diffusion SDE framework for mod-
eling user activities. They introduced the diffusion term to
model the Gaussian noise, such as fluctuations in the dynam-
ics caused by unobserved factors. However, their utilization
of fixed linear coefficient functions in the SDE might not
fully capture the actual intensity. On the contrary, we em-
ploy neural networks to parameterize coefficient functions,
allowing for a more flexible modeling of the intensity that
better aligns with the observed data. While De et al. (2016);
Zarezade et al. (2017); Wang et al. (2018) established the
equivalent SDE formulation for Hawkes processes, we pro-
vide a distinct proof method. Besides, we derive equivalent
SDE formulations for several other classical TPPs, such as
Poisson processes and self-correcting processes. Moreover,
for the SDE formulation, we provide a sufficient condition
for the existence of a unique positive solution.
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3. Background
In this section, we provide a brief overview of temporal
point processes and jump-diffusion stochastic differential
equations.

3.1. Temporal Point Processes

A temporal point process (TPP) (Daley et al., 2003) is a
stochastic process {ti}∞i=1, in which the non-negative ran-
dom variable ti represents the occurrence time of the i-th
event and ti < ti+1. Such a process can be equivalently
represented as a counting process {Nt}t≥0, where Nt rep-
resents the number of events up to time t.

The most common way to characterize a TPP is via its
intensity process (Oakes, 1975), also known as the intensity
function. Specifically, the intensity process of {Nt}t≥0 is a
left-continuous with right-limits process {λ(t | Ft−)}t≥0,
denoted for simplicity as {λt}t≥0, where λt measures the
expected rate of events occurring in an infinitesimal window
(t, t+ dt] given the historical events up to time t. Formally,

λt dt = P (dNt = 1 | Ft−) = E [dNt | Ft−] , (1)

where Ft− = σ(Ns : 0 ≤ s < t) and the jump size
dNt = Nt+dt −Nt ∈ {0, 1}.

In the following, we review several classical TPPs, where
the intensity function has a fixed parametric form.

Poisson processes (Kingman, 1992). The intensity function
of the Poisson process {Nt}t≥0 is independent of event his-
tory. The simplest case is a homogeneous Poisson process
where the intensity is a positive constant:

λt = λ > 0. (2)

For a more general inhomogeneous poisson process, the
intensity is a function varying over time:

λt = g(t) > 0. (3)

Hawkes processes (Hawkes, 1971). The Hawkes process
{Nt}t≥0 with the widely used exponential kernel assumes
that events are self-exciting. The arrival of a new event
results in a sudden increase in intensity, and this influence
decays exponentially:

λt = µ+ α
∑

i: ti<t

exp (−β(t− ti)), (4)

where µ > 0, α > 0 and β > 0.

Self-correcting processes (Isham & Westcott, 1979). In
contrast to the Hawkes process, the self-correcting process
{Nt}t≥0 assumes that a new event inhibits future events
and the intensity grows exponentially over time:

λt = exp
(
µt−

∑
i: ti<t

α
)
, (5)

where µ > 0 and α > 0.

3.2. Jump-Diffusion Stochastic Differential Equations

One-dimensional autonomous jump-diffusion stochastic dif-
ferential equations (JDSDE) (Hanson, 2007) with initial
conditions are of the form{

dXt = f(Xt) dt+ g(Xt) dWt + h(Xt) dNt,

X0 = x0,
(6)

where x0 ∈ R is the initial value, f : R → R is the drift
coefficient function, g : R → R is the diffusion coeffi-
cient function, h : R → R is the jump coefficient function,
{Wt}t≥0 is a standard Brownian motion, and {Nt}t≥0 is a
counting process that jumps at times {ti}∞i=1. Suppose that
{Wt}t≥0 and {Nt}t≥0 are independent. In this paper, it is
essential to highlight that the process {Nt}t≥0 in Eq.(6) is
a general counting process introduced in Section 3.1, dis-
tinct from many previous works (Cyganowski et al., 2002;
Hanson, 2007; Lamberton & Lapeyre, 2011) that focus on a
Poisson process.

The JDSDE Eq.(6) is interpreted as a stochastic integral
equation (Cyganowski et al., 2002):

Xt = x0+

∫ t

0

f(Xs) ds+

∫ t

0

g(Xs) dWs+

∫ t

0

h(Xs) dNs,

where the first integral is a Riemann integral, the second is
an Itô integral and the third is a Riemann–Stieltjes integral.
In fact, Eq.(6) behaves as a normal Itô SDE (Cyganowski
et al., 2002; Hanson, 2007) between jumps of {Nt}t≥0.
This can be expressed as:

dXt = f(Xt) dt+ g(Xt) dWt, t ∈ (ti−1, ti] .

On the other hand, at a jump time ti, {Nt}t≥0 has a jump
size of ∆Nti = 1, which implies that the process {Xt}t≥0

will have a jump of size

∆Xti = Xti+ −Xti = h(Xti)∆Nti = h(Xti),

where Xti+ = lim
s↓ti

Xs. Then Xti+ = Xti + h(Xti).

4. Equivalent SDE Formulations for TPPs
In this section, we derive equivalent SDE formulations of
several classical TPPs, which involves expressing their re-
spective intensity process as a solution to the corresponding
SDE. Then for the SDE formulation, we provide a sufficient
condition for the existence of a unique positive solution.
Theorem 1. The intensity processes of homogeneous and
inhomogeneous Poisson processes can be equivalently ex-
pressed as solutions to the following ODEs, respectively.
These ODEs can be viewed as degenerate forms of SDEs.

dλt = 0, λ0 = λ, (7)

dλt = g′(t) dt, λ0 = g(0), (8)

where λ > 0 and g(t) > 0 is assumed to be differentiable.
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According to Eq.(2) and Eq.(3), Theorem 1 is evident. Sub-
sequently, we establish equivalent SDE formulations for
Hawkes processes and self-correcting processes.
Theorem 2. The intensity process {λt}t≥0 of the Hawkes
process {Nt}t≥0 can be equivalently expressed as the solu-
tion to the jump SDE

dλt = β(µ− λt) dt+ α dNt, λ0 = µ. (9)

Proof. See Appendix A.1. The proof sketch is as follows:
Taking inspiration from (Björk, 2021), we now solve the
above SDE. Let the jump times of {Nt}t≥0 be {ti}∞i=1, then
Eq.(9) behaves as an ODE dλt = β(µ − λt) dt between
these jump points. And at a jump time ti, the jump size is
α, leading to λti+ = λti + α. Iteratively solving this ODE
between jumps with the initial value λti−1+, we establish
that the intensity process Eq.(4) satisfies Eq.(9).

Theorem 3. The intensity process {λt}t≥0 of the self-
correcting process {Nt}t≥0 can be equivalently expressed
as the solution to the jump SDE

dλt = µλt dt+
(
e−α − 1

)
λt dNt, λ0 = 1. (10)

The proof of this theorem is similar to the previous one and
can be found in Appendix A.2. The following result shows
that under certain conditions, there exits a unique positive
solution to an SDE, which means that an SDE can determine
an intensity process of a TPP.
Theorem 4. Assume that the ODE

dyt =
f (eyt)

eyt
dt, t ≥ 0, y0 = y,

has a unique global solution for every y ∈ R and let h(x) :
R → R be a chosen function such that h(x) + x > 0 for
x > 0. Then the jump SDE

dλt = f (λt) dt+ h (λt) dNt, λ0 = λ, (11)

has a unique global positive solution for every λ > 0.

Appendix A.3 includes the detailed proof. Specially, ac-
cording to this theorem, by setting f(x) = µx and h(x) =
(e−α − 1)x, it follows that Eq.(10) has a unique global
positive solution.

From the above equivalent SDE formulations of several clas-
sical TPPs, we can clearly see that the coefficient functions
within the SDE play a key role in shaping the evolution of
intensity processes over time and revealing the influences
between events. For example, in Hawkes processes (Eq.(9)),
there exists excitatory influences between events, where
each occurrence of an event leads to an instantaneous in-
crease in intensity by α. This inspires us that by defining
appropriate coefficient functions, it becomes feasible to con-
struct an intensity process consistent with the observed data.
These observations motivate us to propose our model Neural
Jump-Diffusion Temporal Point Processes.

5. Neural Jump-Diffusion TPPs
In this section, for symbol simplicity and reader comprehen-
sion, we first model the intensity process of the univariate
TPPs. Subsequently, we extend our method to address the
multivariate TPPs, proposing a more comprehensive model.

5.1. Neural Jump-Diffusion Univariate Point Process

Unlike classical TPPs with known linear drift and jump co-
efficient functions, we consider a general problem where
the dynamics of the intensity process are completely un-
known. Specifically, we assume access to a large set of
event sequences, each denoted as S = {ti}ni=1, represent-
ing independent realizations of a counting process {Nt}t≥0.
The objective is to identify the unknown dynamics govern-
ing the intensity process {λt}t≥0 of {Nt}t≥0.

To this end, we propose the Neural Jump-Diffusion Univari-
ate Point Process whose intensity process is governed by a
neural jump-diffusion SDE (NJDSDE). The drift, diffusion,
and jump coefficient functions in the NJDSDE are parame-
terized by three neural networks which are called the drift
net, diffusion net, and jump net, respectively. To ensure
that the intensity {λt}t≥0 remains positive, we introduce
the log-intensity process ηt := log λt. Then we formally
present the NJDSDE for {ηt}t≥0 as follows:

dηt = fθf (ηt)︸ ︷︷ ︸
drift net

dt+ gθg (ηt)︸ ︷︷ ︸
diffusion net

dWt + hθh(ηt)︸ ︷︷ ︸
jump net

dNt,

η0 = log λ0,
(12)

where η0 ∈ R is the initial value, fθf : R → R, gθg : R →
R, hθh : R → R, {Wt}t≥0 is a standard Brownian mo-
tion (Le Gall, 2016), and {Nt}t≥0 is the counting process
mentioned above, which records the occurrence of events.
Suppose that {Wt}t≥0 and {Nt}t≥0 are independent. We
explain each term in Eq.(12) in detail:

• The drift term fθf (ηt) dt captures the intrinsic evolution
of {ηt}t≥0.

• The diffusion term gθg (ηt) dWt models the Gaussian
noise with the Brownian motion. Inspired by (Wang et al.,
2018), we add the diffusion term to model the impact of
noise on the intensity process.

• The jump term hθh(ηt) dNt represents the magnitude of
the jump, capturing the influence of historical events up
to time t. Its sign indicates whether the influence is exci-
tatory or inhibitory.

The proposed NJDSDE Eq.(12) is a general framework.
When the function fθf is set to β(µe−ηt − 1), gθg is set to
0, and hθh is set to log(1+αe−ηt) in Eq.(12), the NJDSDE
characterizes Hawkes processes. Similarly, when fθf is set
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to µ, gθg is set to 0, and hθh is set to −α, Eq.(12) char-
acterizes self-correcting processes. The similar results for
Poisson processes are trivial. In other words, the proposed
NJDSDE encompasses the classical TPPs mentioned above.
In addition, a specific class (but not all) of log-Gaussian
Cox processes (Møller et al., 1998) can also be incorporated
into our modeling framework Eq.(12). The proofs for these
conclusions are detailed in Appendix A.4.

We proceed to investigate the existence and uniqueness of
the solution {ηt}t≥0 to the proposed NJDSDE. The theoret-
ical analysis in the following theorem provides insights into
designing an effective network architecture for the drift net
fθf , diffusion net gθg , and jump net hθh .

Theorem 5. Assuming that fθf (x), gθg (x), hθh(x) are mea-
surable functions R → R, hθh(x) is continuous, and there
exists a positive constant C such that for all x, y ∈ R,

|fθf (x)− fθf (y)|+ |gθg (x)− gθg (y)| ≤ C|x− y|,

then for every λ0 > 0, there exists a unique adapted left-
continuous process {ηt}t≥0 with right-limits that satisfies
Eq.(12).

The proof is available in Appendix A.5. According to Theo-
rem 5, if fθf (x), gθg (x) and hθh(x) are uniformly Lipschitz
continuous, then Eq.(12) has a unique strong solution. Thus,
we utilize Lipschitz nonlinear activations, such as ReLU,
sigmoid, and Tanh, within the network architectures, as
highlighted in previous works (Anil et al., 2019; Kong et al.,
2020; Oh et al., 2024; Lin et al., 2024). Moreover, in this
paper, the drift net, diffusion net, and jump net are imple-
mented as three multi-layer perceptrons (MLPs).

Remarks. We summarize the differences of our model
compared to existing TPP models:

• Different from the SDE formulation of classical TPPs
(e.g., Eq.(9)), the coefficient functions in our model are
parameterized by neural networks rather than relying on
fixed functions. This enables a more flexible modeling of
the complex dynamics of the intensity process.

• Compared to neural TPPs (Du et al., 2016; Zuo et al.,
2020), our model eliminates the need to assume a specific
functional form for the intensity function. Instead, based
on the NJDSDE, our model formulates the time evolution
of the intensity process in a general manner.

• Furthermore, our model differs from previous TPP mod-
els based on neural differential equations (Jia & Benson,
2019; Chen et al., 2020; Song et al., 2024). In addition to
incorporating the Brownian motion to model the Gaussian
noise, a key distinction lies in our proposed NJDSDE,
which models the dynamics of the intensity process rather
than the hidden state.

5.2. Model Training

To learn model parameters in fθf , gθg , hθh , and the initial
value η0, we perform the Maximum Likelihood Estima-
tion (MLE). For an event sequence S = {ti}ni=1 over the
time interval [0, T ], given its intensity λt, the log-likelihood
function (Rasmussen, 2018) is

ℓ(S) =
n∑

i=1

log λti −
∫ T

0

λs ds =

n∑
i=1

ηti −
∫ T

0

eηs ds.

In general, the integral term does not have a closed-form
computational method. Therefore, we apply numerical inte-
gration methods for approximate calculations, such as the
trapezoidal rule (Zuo et al., 2020). This requires determin-
ing the value of ηt at the divided time points. Noting that
this process {ηt}t≥0 is governed by our proposed NJDSDE
Eq.(12). That is, on the time interval (ti−1, ti], ηt is gov-
erned by the neural SDE

dηt = fθf (ηt) dt+ gθg (ηt) dWt. (13)

And at a jump time ti, the jump size of ηt is given by

∆ηti = ηti+ − ηti = hθh(ηti)∆Nti = hθh(ηti). (14)

Then the right-limit of ηt at ti is

ηti+ = ηti + hθh(ηti). (15)

Since the solution of neural SDEs (e.g., Eq.(13)) is generally
analytically intractable, numerical approximation methods
are often required (Kong et al., 2020; Kidger et al., 2021b).
We adopt the Euler-Maruyama scheme (Kloeden & Platen,
1992) with fixed step size due to its computational efficiency.
Under such a scheme, the time interval (ti−1, ti] is divided
into N subintervals ti−1 = τ i0 < · · · < τ ik < · · · < τ iN = ti
with stepsize ∆i

k = τ ik+1 − τ ik = (ti − ti−1)/N . Then we
discretize Eq.(13) on (ti−1, ti] by the recursive equation

ητ i
k+1

= ητ i
k
+ fθf (ητ i

k
)∆i

k + gθg (ητ i
k
)∆W i

k, (16)

for k = 0, 1, . . . , N − 1 with ητ i
0
= ηti−1+. Here, ∆W i

k =

Wτ i
k+1

− Wτ i
k

is sampled from N (0,∆i
k) for numerical

computation. The advantage of introducing the log-intensity
ηt = log λt is evident in obtaining a numerical solution of
Eq.(12) over the entire real number space, rather than being
restricted to the domain of positive real numbers.

Iteratively using Eq.(15) and Eq.(16), we can calculate the
log-likelihood function as follows:

ℓ(S) =
n∑

i=1

ηti−
n+1∑
i=1

N∑
k=1

τ ik − τ ik−1

2

(
e
η
τi
k−1 +e

η
τi
k

)
, (17)

where τ10 = 0, τn+1
N = T , ητ i

0
= ηti−1+ and ητ i

N
= ηti .

The complete algorithm of model training is described in
Algorithm 1 in Appendix B.
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5.3. Neural Jump-Diffusion Multivariate Point Process

An important example of multivariate TPPs is the multi-
variate Hawkes process N t = (N1

t , . . . , N
M
t )T, whose

intensity process λt = (λ1
t , . . . , λ

M
t )T characterizes the

past event influences on future ones in an excitatory man-
ner (Hawkes, 1971):

λm
t = µm

0 +

M∑
l=1

∑
ti<t,mi=l

αml exp (−β (t− ti)), m ∈ [M ],

where [M ] := {1, 2, . . . ,M}. For this intensity process, we
derive the following equivalent SDE formulation.
Theorem 6. The intensity process {λt}t≥0 of the multivari-
ate Hawkes process {N t}t≥0 can be equivalently expressed
as the solution to the jump SDEs

dλm
t = β (µm

0 − λm
t ) dt+

M∑
l=1

αml dN l
t ,

λm
0 = µm

0 , m ∈ [M ].

The proof follows a similar approach to that given earlier
for Theorem 2, and is omitted here.

Subsequently, we extend our approach to identify the un-
known dynamics of general multivariate point processes.
Let S = {(ti,mi)}ni=1 be a multi-type event sequence,
where each event (ti,mi) indicates that the i-th event oc-
curs at time ti ∈ R+ and is of type mi ∈ [M ]. We still
denote N t = (N1

t , . . . , N
M
t )T the associated multivari-

ate counting process. Similar to Section 5.1, we introduce
the M -dimensional log-intensity process ηt := logλt =
(log λ1

t , . . . , log λ
M
t )T. For each m ∈ [M ], we propose the

NJDSDE for {ηmt }t≥0 as follows:

dηmt = fm(ηt)dt+

K∑
k=1

gmk(ηt)dW
k
t +

M∑
l=1

hml(ηt)dN
l
t ,

where the superscripts are used for the indices of vectors and
matrices, such as the function gmk and hml are the (m, k)-
th component of the M ×K-matrix gθg

and the (m, l)-th
component of the M ×M -matrix hθh =

[
h1
θh
| · · · |hM

θh

]
with hl

θh
as its l-th column vector, respectively. Moreover,

the components W k
t of W t = (W 1

t , . . . ,W
K
t )T are stan-

dard Brownian motions which are pairwise independent.
Suppose that W t and N t are independent.

We rewrite the above componentwise expression into vec-
tor form, leading to the formulation of the NJDSDE for
{ηt}t≥0 as follows:

dηt = fθf
(ηt)︸ ︷︷ ︸

drift net

dt+ gθg
(ηt)︸ ︷︷ ︸

diffusion net

dW t + hθh(ηt)︸ ︷︷ ︸
jump net

dN t,

η0 = logλ0,
(18)

Time
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Figure 1. Illustration of the NJDSDE-governed intensity process
with three event types. This example shows that the intensity
process behaves as a diffusion process between event points, with
a jump occurring at these specific points.

where η0 ∈ RM is the initial value, the coefficient func-
tions fθf

: RM → RM , gθg
: RM → RM×K , and

hθh : RM → RM×M are the drift net, diffusion net, and
jump net, respectively. In particular, when M = K = 1,
this NJDSDE degenerates into Eq.(12). Essentially, Eq.(18)
behaves as a neural SDE between event points, with a jump
occurring at these points. This can be interpreted as:{

dηt = fθf
(ηt) dt+ gθg

(ηt) dW t, t ∈ (ti−1, ti],

ηti+ = ηti + hmi

θh
(ηti), t = ti, m = mi.

(19)
It is evident from this expression that the numerical value
of l-th element in vector hmi

θh
characterizes the influence

magnitude of event type mi on event type l, with the sign
reflecting the excitatory or inhibitory influence.

As discussed in Section 5.1, we employ Lipschitz continu-
ous activations in the neural networks fθf

, gθg
, and hθh .

This ensures the existence of a unique strong solution to
Eq.(18). We also apply MLE to learn model parameters and
provide the complete training algorithm in Appendix B. Fig-
ure 1 presents a concrete example of the intensity process
governed by the NJDSDE Eq.(18).

5.4. Event Prediction

With the proposed NJDSDE-governed intensity process, we
aim to predict the next event time and next event type given
the historical events Htn+1

= {(ti,mi)}ni=1.

The conditional density function of the next event time (Ras-
mussen, 2018) is that for t ≥ tn,

ftn+1
(t) = λg

t exp(−
∫ t

tn

λg
s ds), (20)

where λg
t :=

∑M
m=1 λ

m
t =

∑M
m=1 exp (η

m
t ). Then for the

next event time prediction, we employ the formula

t̂n+1 =

∫ ∞

tn

t ftn+1(t) dt. (21)

Note that after the jump time tn, the process ηt governed
by Eq.(18) will have the dynamics{

dηt = fθf
(ηt) dt+ gθg

(ηt) dW t, t > tn,

ηtn+ = ηtn + hmn

θh
(ηtn).

(22)
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Therefore, similar to the method discussed in Section 5.2
for computing the log-likelihood function, we utilize the
Euler-Maruyama scheme to discretize Eq.(22), followed by
numerical integration techniques to compute the integrals
mentioned above. Here, the value of ηtn required for dis-
cretizing Eq.(22) can be obtained by discretizing Eq.(18)
over the interval [0, tn] using the Euler-Maruyama scheme
and the historical events Htn+1 .

Following previous works (Zuo et al., 2020; Shi et al., 2023;
Xue et al., 2024), the next event type prediction is given by

m̂n+1 = argmaxm λm
tn+1

/λg
tn+1

. (23)

6. Experiments
We first test the flexibility of our NJDTPP model by recov-
ering the ground truth dynamics of the intensity process of
classical TPPs. Then, we evaluate the modeling capabil-
ity for event sequences and the prediction performance of
NJDTPP on six real-world datasets. Our code is available at
https://github.com/Zh-Shuai/NJDTPP.

6.1. Intensity Process Recovery for Classical TPPs

Synthetic Datasets. We consider the following classical
TPPs: (i) Poisson Process: the intensity is given by λt =
λ0, where λ0 = 1.0; (ii) Hawkes Process: the intensity is
given by λt = µ + α

∑
ti<t exp (−β(t− ti)), where µ =

0.2, α = 0.8, β = 1.0; and (iii) Self-Correcting Process:
the intensity is given by λt = exp

(
µt−

∑
ti<t α

)
, where

µ = 0.5, α = 0.2. For each TPP, we simulate a dataset
using the Ogata’s thinning algorithm (Ogata, 1981). Each
dataset contains 500 event sequences within the time interval
[0, 100]. The train-validation-test data split is 3 : 1 : 1.

Experimental Setup. We fit our NJDTPP model to each
dataset using the training procedure described in Section 5.2.
In this experiment, the drift, diffusion, and jump nets are
implemented as three MLPs, each with 2 hidden layers of
32 units. The activation function chosen for these networks
is Tanh. More training details are reported in Appendix C.5.
For evaluation, we visually demonstrate the similarity be-
tween the estimated intensity from the learned NJDTPP and
the ground truth intensity.

In addition, we compare the mean absolute percentage er-
ror (MAPE) of the estimated intensity of our model with
the Poisson process (PP) model, the Hawkes process (HP)
model, the self-correcting process (SC) model, an RNN-
based model (Jia & Benson, 2019), and the Neural Jump
SDE (NJSDE, Jia & Benson (2019)) model. The baseline
results in Table 1 are extracted from (Jia & Benson, 2019).
Similar to the calculation of the log-likelihood function, we
first numerically solve Eq.(12) using the Euler-Maruyama
scheme, and then compute MAPE through numerical inte-
gration. See Appendix C.4 for the definition of MAPE.
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Figure 2. The estimated and ground truth intensity process of the
Poisson Process, Hawkes Process, and Self-Correcting Process.
Each blue cross represents an event at the corresponding time.

Table 1. The MAPE comparison of the estimated intensity. Each
row represents a synthetic dataset. Each column represents a model.

PP HP SC RNN NJSDE NJDTPP

Poisson 0.1 0.3 98.7 3.2 1.3 0.1
Hawkes 188.2 3.5 101.0 22.0 5.9 0.2

Self-Correcting 29.1 29.1 1.6 24.3 9.3 0.1

Results. Figure 2 compares the estimated intensity pro-
cess (red curve) of our NJDTPP model with the ground
truth (grayish purple curve). It clearly shows that NJDTPP
effectively recovers the dynamics of ground truth intensi-
ties. This also indicates that our model can capture the
excitatory and inhibitory influences between events. Table 1
reports the estimated MAPE for NJDTPP and the baseline
models. These values are the average results for all 100
event sequences in the test set. As shown, our model fits the
data well and shows a substantial performance improvement
compared to baselines.

Having observed that NJDTPP achieves superior experi-
mental results, we now turn to analyze the two main factors
that contributed to this success. Firstly, as discussed in
Section 5.1, these classical TPPs are special cases of our
modeling framework. Specifically, when the drift, diffu-
sion, and jump functions take certain forms, our proposed
NJDSDE Eq.(12) characterizes these classical TPPs. Sec-
ondly, we employ neural networks to parameterize the drift,
diffusion, and jump functions in Eq.(12). Due to the power-
ful capability of neural networks, our model can fit the data
well and effectively recover the ground truth intensity.
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Figure 3. Event time prediction RMSE comparison.

Table 2. Event type prediction accuracy and F1 comparison.

Model Retweet Earthquake Taxi Taobao StackOverflow MIMIC-II

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

RMTPP 0.503 0.415 0.214 0.082 0.836 0.815 0.431 0.429 0.437 0.265 0.812 0.600
NHP 0.601 0.573 0.451 0.283 0.890 0.886 0.463 0.447 0.467 0.315 0.832 0.680

SAHP 0.522 0.497 0.417 0.246 0.847 0.802 0.442 0.320 0.452 0.301 0.827 0.639
THP 0.536 0.375 0.451 0.281 0.865 0.828 0.467 0.406 0.463 0.309 0.853 0.596

AttNHP 0.592 0.575 0.452 0.283 0.761 0.724 0.458 0.386 0.465 0.310 0.856 0.817
NSTPP 0.513 0.482 0.354 0.165 0.884 0.837 0.437 0.289 0.449 0.293 0.840 0.799

NJDTPP 0.608 0.584 0.472 0.313 0.908 0.891 0.486 0.452 0.469 0.327 0.861 0.823

Table 3. Negative log-likelihood comparison.
Model Retweet Earthquake Taxi Taobao StackOverflow MIMIC-II

RMTPP 4.241 3.653 0.227 1.659 2.891 2.333
NHP 4.137 2.189 0.208 0.986 2.496 2.205

SAHP 5.009 3.941 0.478 1.640 2.952 3.394
THP 4.560 3.387 0.442 1.191 2.630 1.515

AttNHP 4.756 2.376 0.491 1.206 2.586 1.697
NSTPP 4.527 2.203 0.217 1.415 2.541 2.421

NJDTPP 4.092 1.305 -0.293 -0.440 2.347 1.398

6.2. Likelihood Evaluation and Event Prediction

We use the negative log-likelihood (NLL) as a metric to eval-
uate the ability of NJDTPP in modeling event sequences
on real-world datasets. Moreover, we evaluate the perfor-
mance of NJDTPP in the standard next-event prediction
task in TPPs, predicting every next event (ti,mi) given the
history Hti . We use Eq.(21) and Eq.(23) to predict the next
event time and type, respectively. We evaluate event time
prediction by Root Mean Square Error (RMSE) and event
type prediction by accuracy and the weighted F1 score. The
training details and the configuration of our NJDTPP model
are provided in Appendix C.5 and Appendix C.6.

Datasets. We evaluate our model on six real-world bench-
mark datasets: Retweet (Zhou et al., 2013), Earthquake
(Xue et al., 2024), Taxi (Whong, 2014), Taobao (Xue
et al., 2022), StackOverflow (Leskovec & Krevl, 2014),
and MIMIC-II (Johnson et al., 2016). The MIMIC-II
dataset is available at the public Github repository2, and all
other datasets are available at the public EasyTPP3 library
(Xue et al., 2024), an open benchmark for evaluating TPPs.
See Appendix C.2 for dataset details.

2https://github.com/hongyuanmei/neurawkes
3https://github.com/ant-research/

EasyTemporalPointProcess

Table 4. Performance of the NJDTPP variant on Earthquake and
Taxi. NJDTPP-BM refers to the variant without Brownian motion.

Model Earthquake Taxi

NLL RMSE Acc F1 NLL RMSE Acc F1

NJDTPP-BM 1.594 1.507 0.470 0.306 -0.290 0.302 0.905 0.887
NJDTPP 1.305 1.420 0.472 0.313 -0.293 0.296 0.908 0.891

Baselines. We compare NJDTPP with the following mod-
els. Two RNN-based models: Recurrent Marked Tempo-
ral Point Process (RMTPP, Du et al. (2016)) and Neu-
ral Hawkes Process (NHP, Mei & Eisner (2017)). Three
attention-based models: Self-Attentive Hawkes Process
(SAHP, Zhang et al. (2020a)), Transformer Hawkes Process
(THP, Zuo et al. (2020)), and Attentive Neural Hawkes
Process (AttNHP, Yang et al. (2022)). One TPP with the
hidden state governed by a neural jump SDE: Neural Spatio-
Temporal Point Process (NSTPP, Chen et al. (2020)). More
details in Appendix C.3. For the implementation of base-
lines, we use the code from EasyTPP3 (Xue et al., 2024),
and extract partial baseline results from the same paper.

Results. Table 3 summarizes the per-event NLL of these
models on each test set. From this table, we can observe
that NJDTPP fits the data well and significantly outperforms
baselines across all experiments. This demonstrates our
model’s capability to learn complex real-world intensity
dynamics. The results for next event time and event type
prediction are presented in Figure 3 and Table 2 respectively.
It is evident that, in each dataset, NJDTPP outperforms
all competing models, often by a substantial margin. This
shows the superior performance of our model in predic-
tion tasks. The success of NJDTPP can be attributed to its
flexibility in capturing complex intensity dynamics and the
influences between events.
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6.3. Ablation Study

We conduct an ablation study on the Earthquake and Taxi
datasets, investigating the variant of NJDTPP by removing
the diffusion term. We evaluate models based on NLL and
prediction performance. Table 4 reports the experimental
results. As shown, the diffusion term contributes to model
performance due to the fact that it models the Gaussian
noise with the Brownian motion.

7. Conclusion
We have presented Neural Jump-Diffusion Temporal Point
Processes, a unified TPP framework that can learn a free-
form intensity process consistent with the observed event
data. By modeling the intensity process as the solution to
an SDE, our approach eliminates the need to pre-specify
the functional form of the intensity function, thereby sig-
nificantly enhancing the flexibility and capability of TPP
models. Experimental results show that our model effec-
tively captures intensity dynamics and the influences be-
tween events, as well as achieves state-of-the-art results
on benchmark datasets in likelihood evaluation and event
prediction tasks.
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Appendix

A. Proofs
A.1. Proof of Theorem 2

Proof. To solve the SDE Eq.(9), we first denote the jump times of the Hawkes process {Nt}t≥0 as {ti}∞i=1. On the time
interval (ti−1, ti], Eq.(9) behaves as an ODE dλt = β(µ− λt) dt. On the other hand, at a jump time ti, the jump size of
{λt}t≥0 is given by ∆λti = λti+ − λti = α∆Nti = α. The right-limit at ti is then λti+ = λti + α.

Up to the first jump time t1, the solution follows the ODE dλt = β(µ − λt) dt on [0, t1] with the initial value λ0 = µ.
Solving this ODE yields λt = µ−C1e

−βt, where C1 is a constant. Using the initial condition λ0 = µ, we find that C1 = 0.
Thus, we have λt = µ for all t ∈ [0, t1]. In particular, λt1 = µ and λt1+ = λt1 + α = µ+ α.

Subsequently, we solve the ODE dλt = β(µ−λt) dt on (t1, t2] with λt1+ = µ+α to obtain λt = µ−C2e
−βt, where C2 is a

constant. Using λt1+ = µ+α and taking the right-limit at t1 in the above equation, we obtain λt1+ = µ+α = µ−C2e
−βt1 .

Then C2 = −αeβt1 . Thus, we get λt = µ+αe−β(t−t1) for t ∈ (t1, t2]. This allows us to determine λt2 = µ+αe−β(t2−t1)

and λt2+ = λt2 + α = µ+ αe−β(t2−t1) + α.

Iterating this procedure, the solution is given by λt = µ+ α
∑

i: ti<t exp (−β (t− ti)), which is the intensity process of
the Hawkes process.

A.2. Proof of Theorem 3

Proof. To solve the SDE Eq.(10), we first denote the jump times of the self-correcting process {Nt}t≥0 as {ti}∞i=1. On
the time interval (ti−1, ti], Eq.(10) behaves as an ODE dλt = µλt dt. On the other hand, at a jump time ti, the jump
size of {λt}t≥0 is given by ∆λti = λti+ − λti = (e−α − 1)λti ∆Nti = (e−α − 1)λti . The right-limit at ti is then
λti+ = e−αλti .

Up to the first jump time t1, the solution follows the ODE dλt = µλt dt on [0, t1] with the initial value λ0 = 1. Solving this
ODE yields λt = C1e

µt, where C1 is a constant. Using the initial condition λ0 = 1, we can find that C1 = 1. Thus, we
have λt = eµt for t ∈ [0, t1]. In particular, λt1 = eµt1 and λt1+ = e−αλt1 = eµt1−α.

Subsequently, we solve the ODE dλt = µλt dt on (t1, t2] with λt1+ = eµt1−α to obtain λt = C2e
µt, where C2 is a constant.

Using λt1+ = eµt1−α and taking the right-limit at t1 in the above equation, we obtain λt1+ = eµt1−α = C2e
µt1 . Then

C2 = e−α. Thus, we get λt = eµt−α for t ∈ (t1, t2]. This allows us to determine λt2 = eµt2−α and λt2+ = e−αλt2 =
eµt2−2α.

Iterating this procedure, the solution is given by λt = exp(µt −
∑

i: ti<t α), which is the intensity process of the self-
correcting process.

A.3. Proof of Theorem 4

Proof. Step 1: For every λ > 0, we shall prove the existence and uniqueness of the solution to the SDE given bydηt =
f (eηt)

eηt
dt+ log

eηt + h (eηt)

eηt
dNt,

η0 = log λ,
(24)

where the logarithmic function is well-defined due to the condition h(x) + x > 0 for all x > 0.

To initiate the proof, we denote the jump times of {Nt}t≥0 as {ti}∞i=1. Since the ODEdyt =
f (eyt)

eyt
dt, t ≥ 0,

y0 = y,
(25)

has a unique global solution for every y ∈ R, we can solve the ODE dηt =
f(eηt )
eηt dt on the interval [0, t1] with the initial

value η0 = log λ for every λ > 0. In particular, we can obtain the value of ηt1 and then ηt1+ = ηt1 + log
e
ηt1 +h(eηt1 )

e
ηt1

=
log(eηt1 + h(eηt1 )).
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Since the ODE Eq.(25) is autonomous, we can similarly solve the ODE dηt =
f(eηt )
eηt dt on (t1, t2] with the initial value

ηt1+. This yields ηt2 and then ηt2+ = ηt2 + log
e
ηt2 +h(eηt2 )

e
ηt2

= log(eηt2 + h(eηt2 )).

Iterating this procedure, we have proved that Eq.(24) has a unique global solution for every λ > 0.

Step 2: We now aim to prove that λt = eηt is the unique global positive solution of the SDE Eq.(11), where {ηt}t≥0 is the
solution of Eq.(24).

Note that λt = eηt ensures that λt is positive and λ0 = eη0 = λ. According to Eq.(24), between the jumps of {Nt}t≥0, the
process {ηt}t≥0 follows the dynamics dηt =

f(eηt )
eηt dt. Therefore, the dynamics of λt can be expressed as follows:

dλt = deηt = eηt dηt = f(eηt) dt = f(λt) dt. (26)

On the other hand, at a jump time t, the process {Nt}t≥0 has a jump size of ∆Nt = Nt+ − Nt = 1, implying that
the process {ηt}t≥0 will have a jump of size ∆ηt = log eηt+h(eηt )

eηt ∆Nt = log eηt+h(eηt )
eηt . Then ηt+ = ηt + ∆ηt =

ηt + log eηt+h(eηt )
eηt = log(eηt + h(eηt)). Since λt = eηt , the induced jump size of λt is given by

∆λt = eηt+ − eηt = elog(e
ηt+h(eηt )) − eηt = h(eηt) = h(λt). (27)

Combining Eq.(26) and Eq.(27), the equation holds: dλt = f(λt) dt+ h(λt) dNt. Therefore, we establish that the SDE
Eq.(11) given by {

dλt = f (λt) dt+ h (λt) dNt,

λ0 = λ,

has a unique global positive solution for every λ > 0.

A.4. Proofs of Special Cases of Our Proposed NJDSDE

Proof. We first provide the proof for the case of Hawkes processes, and the proofs for self-correcting processes and Poisson
processes are similar.

According to Theorem 2, between the jumps of the Hawkes process {Nt}t≥0, the intensity process {λt}t≥0 follows the
dynamics dλt = β(µ− λt) dt. Therefore, the dynamics of ηt := log(λt) can be expressed as follows:

dηt = d log(λt) =
1

λt
dλt =

β(µ− λt)

λt
dt =

β(µ− eηt)

eηt
dt = β(µe−ηt − 1) dt. (28)

On the other hand, at a jump time t, the intensity process {λt}t≥0 has a jump of size ∆λt = α. Then λt+ = λt +∆λt =
λt + α. Since ηt = log(λt), the induced jump size of ηt is given by

∆ηt = log(λt+)− log(λt) = log(
λt + α

λt
) = log(

eηt + α

eηt
) = log(1 + αe−ηt). (29)

Combining Eq.(28) and Eq.(29), the equation holds: dηt = β(µe−ηt − 1) dt+ log(1 + αe−ηt) dNt.

Therefore, when the function fθf (ηt) is set to β(µe−ηt − 1), gθg (ηt) is set to 0, and hθh(ηt) is set to log(1 + αe−ηt) in
Eq.(12), the proposed NJDSDE characterizes Hawkes processes.

Now, we prove that a specific class (but not all) of log-Gaussian Cox processes (LGCPs) can be incorporated into our
modeling framework Eq.(12).

Specifically, when fθf takes 0, gθg takes 1, and hθh takes 0 in Eq.(12), the NJDSDE reduces to dηt = dWt. Given the
initial value η0 = log λ0 and W0 = 0, we have ηt = Wt + log λ0. Since λt = exp(ηt), it follows that λt = λ0 exp(Wt).
Taking λ0 as 1, we obtain λt = exp(Wt), which indeed represents a specific class of LGCPs, since the Brownian motion
Wt is a Gaussian process with independent stationary increments (Bertoin, 1996). In turn, since a Gaussian process is not
necessarily a Brownian motion, for example when the increments of a Gaussian process do not satisfy independence, our
framework Eq.(12) cannot incorporate all LGCPs.
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A.5. Proof of Theorem 5

Proof. The following proof is adapted from the Theorem 9.1 in (Ikeda & Watanabe, 2014).

Consider a probability space (Ω,F ,P) on which we define a Brownian motion W = {Wt}t≥0 and a counting process
N = {Nt}t≥0 that jumps at the times {ti}∞i=1. Suppose that W and N are independent. We define the filtration {Ft}t≥0

as the augmented natural filtration of W and N , i.e., for all t ≥ 0 we set Ft = σ ({(Ws, Ns) : s ≤ t} ∪ N ), where
N = {A ∈ F : P(A) = 0}. With this, (Ω,F , {Ft}t≥0,P) is a filtered probability space that satisfies the usual conditions.

It is easy to see that the jump times {ti}∞i=1 are stopping times of {Ft}t≥0 since {ti ≤ t} = {Nt ≥ i} ∈ Ft, and
lim
i→∞

ti = ∞ a.s. First we shall show the existence and uniqueness of solutions in the time interval [0, t1]. For this, consider

the following equation

dX(t) = fθf (X(s)) ds+ gθg (X(s)) dWs, X(0) = η0. (30)

The functions fθf and gθg in the above equation depend only on the variable x and are independent of the time variable t. In
this case, note that the Lipschitz condition |fθf (x)− fθf (y)|+ |gθg (x)− gθg (y)| ≤ C|x− y| implies |fθf (x)− fθf (y)| ≤
C|x− y|. Then we derive

|fθf (x)| ≤ |fθf (x)− fθf (0)|+ |fθf (0)| ≤ C|x|+ |fθf (0)| ≤ D(1 + |x|), (31)

where D = max{C, |fθf (0)|}. Therefore, the linear growth condition automatically follows from the Lipschitz condi-
tion (Kuo, 2006). According to the Theorem 5.2.1 in (Oksendal, 2013), we know that the solution X(t) of Eq.(30) exists
uniquely. This solution is a measurable function of X(0), W and N in the obvious sense. Using the continuity of hθh(x),
we can set

η1(t) = X(t), t ∈ [0, t1], (32)

and

η1(t1+) = X(t1) + hθh(X(t1)). (33)

The process {η1(t)}t∈[0,t1]
is clearly the unique solution of Eq.(12) in the time interval [0, t1]. Next, set X̃(0) = η1(t1+),

W̃ = {W̃t}t≥0 where W̃t = Wt+t1 − Wt1 , and Ñ = {Ñt}t≥0 where Ñt = Nt+t1 − Nt1 . Since the SDE Eq.(30) is
autonomous, we can determine the process η̃2(t) on

[
0, t̃1

]
with respect to X̃(0), W̃ and Ñ in the same way as η1(t).

Clearly t̃1, defined with respect to Ñ , coincides with t2 − t1. Define {η(t)}t∈[0,t2] by

η(t) =

{
η1(t), t ∈ [0, t1] ,

η̃2 (t− t1) , t ∈ (t1, t2] .
(34)

It is easy to see that {η(t)}t∈[0,t2] is the unique solution of Eq.(12) in the time interval [0, t2]. Continuing this process
successively, η(t) is determined uniquely in the time interval [0, ti] for every i and hence η(t) is determined globally. This
completes the proof.

B. Training Algorithm
The pseudo-codes of training algorithm of the Neural Jump-Diffusion Univariate Point Process (NJDUPP) and the Neural
Jump-Diffusion Multivariate Point Process (NJDMPP) are presented in Algorithm 1 and Algorithm 2, respectively.
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Algorithm 1 Training of the NJDUPP.

Input: Model parameter θ = {θf , θg, θh, η0}, start time t0 = 0, event sequences {Sl}Ll=1, where Sl =
{
tli
}nl

i=1

Initialize fθf , gθg , hθh , ηt0+ = η0, L = 0

while Not Converge do
for each sequence Sl in batch do

for i = 1, . . . , nl + 1 do
{ητ i

k
}Nk=1 = SDESolve

(
fθf , gθg , ηtli−1+

, (τ i0 = tli−1, . . . , τ
i
k, . . . , τ

i
N = tli)

)
▷ using Eq.(16)

ηtli+
= ηtli

+ hθh(ηtli
) ▷ right-limit at tli = τ i

N

end
Ll = −ℓ

(
{ητ i

k
}N,nl+1
k=0
i=1

; θ
)

▷ compute the NLL Eq.(17)

L + = Ll

end
back-propagate with gradient ∇θL
update model parameters by Adam optimizer

end

Algorithm 2 Training of the NJDMPP.

Input: Model parameter θ = {θf ,θg,θh,η0}, t0 = 0, multi-type event sequences {Sl}Ll=1, where Sl =
{
(tli,m

l
i)
}nl

i=1

Initialize fθf
, gθg

, hθh , ηt0+ = η0, L = 0

while Not Converge do
for each sequence Sl in batch do

for i = 1, . . . , nl + 1 do
{ητ i

k
}Nk=1 = SDESolve

(
fθf

, gθg
,ηtli−1+

, (τ i0 = tli−1, . . . , τ
i
k, . . . , τ

i
N = tli)

)
▷ using Euler-Maruyama scheme

ηtli+
= ηtli

+ h
ml

i
θh

(ηtli
)

end
Ll = −ℓ

(
{ητ i

k
}N,nl+1
k=0
i=1

; θ
)

▷ compute the NLL Eq.(36)

L + = Ll

end
back-propagate with gradient ∇θL
update model parameters by Adam optimizer

end

C. Experimental Details
C.1. Experimental Environment

The experiments are conducted on a Linux server with eight GPUs (NVIDIA RTX 2080 Ti * 8). We implement our model
and all baselines with the deep learning library PyTorch (Paszke et al., 2017).

C.2. Dataset Descriptions

• Retweet (Zhou et al., 2013). The dataset consists of sequences of time-stamped user retweet events, categorized into
three types based on the users’ following sizes: “small”, “medium”, and “large”.

• Earthquake (Xue et al., 2024). This dataset contains timestamped earthquake events over the Conterminous U.S from
1996 to 2023. The seven event types are defined based on the magnitude of earthquakes.
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Table 5. Statistics of the used datasets.

Dataset # Types # Sequences Sequence Length # Events

Train Dev Test Min Mean Max Train Dev Test

Retweet 3 9, 000 1, 535 1, 520 10 40 97 369, 731 62, 823 61, 154
Earthquake 7 3000 400 896 11 16 18 49, 363 6, 612 14, 748

Taxi 10 1, 400 200 400 36 37 38 51, 854 7, 404 14, 820
Taobao 17 1, 300 200 500 32 57 64 75, 205 11, 737 28, 455

StackOverflow 22 1, 401 401 401 41 65 101 90, 497 25, 762 26, 518
MIMIC-II 75 527 58 65 2 4 33 1, 930 252 237

• Taxi (Whong, 2014). This dataset contains time-stamped taxi pick-up and drop-off events throughout the five boroughs
of New York city. Each combination of borough, whether it’s a pick-up or drop-off, defines an event type, resulting in a
total of 10 event types.

• Taobao (Xue et al., 2022). This dataset includes the time-stamped click behavior of users in Taobao platform from
November 25 to December 3, 2017. Each user has a sequence of product click events, where each event contains a
timestamp and the product category.

• StackOverflow (Leskovec & Krevl, 2014). This dataset contains two years of user-awarded collections from the
question-answering website. Each user is awarded a sequence of badges, with a total of 22 different badge types.

• MIMIC-II (Johnson et al., 2016). This dataset includes timestamped de-identified clinical visit events of Intensive
Care Unit patients for seven years. Each patient has a sequence of hospital visit events, and each event records its
timestamp and disease diagnosis.

Table 5 shows statistics about each dataset mentioned above.

C.3. Baseline Descriptions

We provide detailed descriptions of the used baselines as follows:

• RMTPP (Du et al., 2016). RMTPP leverages RNNs to learn a hidden representation of event history, and then applies
an exponential transformation on this representation for defining the intensity function.

• NHP (Mei & Eisner, 2017). NHP proposes a continuous-time LSTM to encode event sequences. The intensity function
of NHP can decay over time and does not need to encode inter-event times as numerical inputs to the LSTM.

• SAHP (Zhang et al., 2020a). SAHP uses a self-attention mechanism to aggregate historical events, which enhances the
expression ability of the intensity function.

• THP (Zuo et al., 2020). To capture the long-term dependence of events, THP proposes to model the intensity function
using a Transformer architecture.

• AttNHP (Yang et al., 2022). AttNHP generalizes the Transformer architecture for modeling event sequences. Its
architecture builds rich embeddings of actual and possible events at any given time, based on lower-level representations
of these events and their context.

• NSTPP (Chen et al., 2020). With the goal of modeling high-fidelity distributions in continuous time and space, NSTPP
uses the Neural ODE framework to parameterize the spatio-temporal TPP by combining ideas from Neural Jump
SDEs (Jia & Benson, 2019) and continuous-time normalizing flows (Chen et al., 2018).
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C.4. Evaluation Metrics

We formulate the metrics used in this paper as follows:

• The mean absolute percentage error (MAPE) of the estimated intensity is given by

MAPE =
1

T

∫ T

0

∣∣∣∣λmodel
t − λGT

t

λGT
t

∣∣∣∣ dt× 100%, (35)

where T is the observation length, λmodel
t is the trained model intensity, and λGT

t is the ground truth intensity.

• The negative log-likelihood (NLL) of a multivariate point process over a time interval [0, T ] is

NLL = −
n∑

i=1

log λmi
ti +

M∑
m=1

(

∫ T

0

λm
s ds) = −

n∑
i=1

ηmi
ti +

M∑
m=1

(

∫ T

0

exp (ηms ) ds). (36)

• The root mean square error (RMSE) is

RMSE(t, t̂) =

√√√√ 1

N

N∑
i=1

(
ti − t̂i

)2
. (37)

• The accuracy of multiclass classification is the fraction of correct classifications, that is

Accuracy =
# correct classifications

# all classifications
. (38)

• The formula for the weighted F1 score, accounting for class imbalance, is expressed as:

F1weighted =

C∑
i=1

wi · F1i, (39)

where C is the number of classes, wi represents the sample weight for class i, and F1i is the F1 score for class i.

C.5. Training Details

We train our NJDTPP model for all experiments by minimizing the negative log-likelihood of training sequences, as
described in Appendix B. The drift net, diffusion net, and jump net of NJDTPP are implemented as three multi-layer
perceptrons (MLPs) with the same network structure. The activation function chosen for these networks is Tanh. Optimizer
is Adam (Kingma & Ba, 2015) with a weight decay of 10−5. The MLP parameters and the initial value η0 are initialized by
the Gaussian distribution.

C.6. Hyper-parameter Setting

We employ the “diagonal” noise in the diffusion term of Eq.(18), i.e., gθg
is a diagonal matrix. In this case, the dimension

of the Brownian motion W t is equal to the total number of event types, i.e., K = M . Grid search is used to determine other
hyper-parameters: the learning rate is selected from {0.001, 0.01, 0.1}, the hidden layer number is selected from {1, 2, 3},
and the hidden layer size is selected from {16, 32, 64}.
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