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Figure 1: A collection of various sports environments for physically simulated humanoids.

Abstract
We present SMPLOlympics, a collection of physically simulated environments1

that allow humanoids to compete in a variety of Olympic sports. Sports simulation2

offers a rich and standardized testing ground for evaluating and improving the3

capabilities of learning algorithms due to the diversity and physically demanding4

nature of athletic activities. As humans have been competing in these sports for5

many years, there is also a plethora of existing knowledge on the preferred strategy6

to achieve better performance. To leverage these existing human demonstrations7

from videos and motion capture, we design our humanoid to be compatible with8

the widely-used SMPL and SMPL-X human models from the vision and graphics9

community. We provide a suite of individual sports environments, including golf,10

javelin throw, high jump, long jump, and hurdling, as well as competitive sports,11

including both 1v1 and 2v2 games such as table tennis, tennis, fencing, boxing,12

soccer, and basketball. Our analysis shows that combining strong motion priors13

with simple rewards can result in human-like behavior in various sports. By14

providing a unified sports benchmark and baseline implementation of state and15

reward designs, we hope that SMPLOlympics can help the control and animation16

communities achieve human-like and performant behaviors.17

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.
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1 Introduction18

Competitive sports, much like their role in human society, offer a standardized way of measuring19

the performance of learning algorithms and creating emergent human behavior. While there exist20

isolated efforts to bring individual sport into physics simulation [8, 34, 7, 33, 27], each work uses21

a different humanoid, simulator, and learning algorithm, which prevents unified evaluation. Their22

specially built humanoids also make it difficult to acquire compatible motion data, as retargeting23

might be required to translate motion to each humanoid. Building a collection of simulated sports24

environments that uses a shared humanoid embodiment and training pipeline is challenging, as it25

requires expert knowledge in humanoid design, reinforcement learning (RL), and physics simulation.26

These challenges have led to previous benchmarks and simulated environments [3, 25] focusing27

mainly on locomotion tasks for humanoids. While these tasks (e.g., moving forward, getting up from28

the ground, traversing terrains) are as benchmarks, they lack the depth and diversity needed to induce29

a wide range of behaviors and strategies. As a result, these environments do not fully exploit the30

potential of humanoids to discover actions and skills found in real-world human activities.31

Another important aspect of working with simulated humanoids is the ease of obtaining human32

demonstrations. The resemblance to the human body makes humanoids capable of performing a33

diverse set of skills; a human can also easily judge the strategies used by humanoids. Curated human34

motion can be used either as motion prior [17, 18, 24] or in evaluation protocols. Thus, having35

an easy way to obtain new human motion data compatible with the humanoid, either from motion36

capture (MoCap) or videos, is critical for simulated humanoid environments.37

In this work, we propose SMPLOlympics, a collection of physically simulated environments for38

a variety of Olympic sports. SMPLOlympics offers a wide range of sports scenarios that require39

not only locomotion skills, but also manipulation, coordination, and planning. Unified under one40

humanoid embodiment, our environments provide a rich set of challenges for developing and testing41

embodied agents. We use humanoids compatible with the SMPL family of models, which enables42

the direct conversion of human motion in the SMPL format to our humanoid. For tasks that require43

articulated fingers, we use SMPL-X [16] based humanoid which has a much higher degree of44

freedom (DOF); for tasks that do not need hands, we use SMPL [2]. As popular human models, the45

SMPL family of models is widely adopted in the vision and graphics community, which provides46

us with access to human pose estimation methods [32] capable of extracting coherent motion from47

videos. The existing large-scale human motion dataset [13] in the SMPL format also helps build48

general-purpose motion representation for humanoids [10].49

Our sports environments support both individual and competitive sports, providing a comprehensive50

platform for testing and benchmarking. For individual sports, we include activities such as golf,51

javelin throw, high jump, long jump, and hurdling. Competitive sports in our suite include 1v152

games such as ping pong, tennis, fencing, and boxing, as well as team sports such as soccer and53

basketball. To facilitate benchmarking, we also include tasks such as penalty kicks (for soccer) and54

ball-target hitting (for ping-pong and tennis) that are easy to measure performance. To demonstrate55

the importance of human demonstrations, we extract motion from videos using off-the-shelf pose56

estimation methods, and show that using human motion data as motion prior can [18] significantly57

improves human likeness in the resulting motion. We also test recent motion representations in58

simulated humanoid control using hierarchical RL [10], and show that a learned motion representation59

combined with simple rewards can lead to many versatile human-like behaviors to achieve impressive60

sports results (i.e. discovering the Fosbury way for high jump).61

In conclusion, our contributions are: (1) we propose SMPLOlympics, a collection of simulated62

environments that allow humanoids to compete in a variety of Olympic sports; (2) we extract human63

demonstration data from videos and show their effectiveness in helping build human-like strategies64

in simulated sports; (3) we provide the starting state and reward designs for each sport, benchmark65

state-of-the-art algorithms, and show that simple rewards combined with a strong motion prior can66

lead to impressive sports feats.67
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2 Related Works68

Simulated Humanoid Sports. Simulated humanoid sports can help generate animations and explore69

optimal sports strategies. Research has focused on various individual sports within simulated70

environments, including tennis [34], boxing [27, 36], fencing [27], basketball dribbling [7] and soccer71

[29, 8]. These studies leverage human motion to achieve human-like behaviors, using it to acquire72

motor skills [8, 27] or establish motion prior [34]. However, the diversity in humanoid definitions73

across studies makes it difficult to aggregate additional human demonstration data due to the need for74

retargetting. Furthermore, the task-specific training pipelines in these studies are hard to generalize75

to new sports. In contrast, SMPLOlympics provides a unified benchmark employing a consistent76

humanoid model and training pipeline across all sports. This standardization not only facilitates the77

extension to more sports, but also simplifies the process of benchmarking learning algorithms.78

Simulated RL Benchmarks. Simulated full-body humanoids provide a valuable platform for79

studying embodied intelligence due to their close resemblance to real-world human behavior and80

physical interactions. Current RL benchmarks [3, 25, 14] often focus on locomotion tasks such81

as moving forward and traversing terrain. dm_control [25] and OpenAI [3] Gym only include82

locomotion tasks. ASE [19] includes results for five tasks based on mocap data, which involve83

mainly simple locomotion and sword-swinging actions. These tasks lack the complexity required84

to fully exploit the capabilities of simulated humanoids. Sports scenarios require agile motion and85

strategic teamwork. They are also easily interpretable and provide measurable outcomes for success.86

A concurrent work, HumanoidBench [23] employs a commercially available humanoid robot in87

simulation to address 27 locomotion and manipulation tasks. Unlike HumanoidBench, ours targets88

competitive sports and uses available human demonstration data to enhance the learning of human-89

like behaviors. This emphasis is essential, as without human demonstrations, behaviors developed in90

benchmarks can often appear erratic, nonhuman-like, and inefficient.91

Humanoid Motion Representation. Adversarial learning has proven to be a powerful method for92

using human reference motions to enhance the naturalness of humanoid animations [18, 30, 1]. Due93

to the high DoF in humanoids and the inherent sample inefficiency of RL training, efforts have94

focused on developing motion primitives [6, 15, 5, 20] and motion latent spaces [4, 19, 24]. These95

techniques aim to accelerate training and provide human-like motion priors. Notably, approaches such96

as ASE [19], CASE [4], and CALM [24] utilize adversarial learning objectives to encourage mapping97

between random noise and realistic motor behavior. Furthermore, methods such as ControlVAE [31],98

NPMP [15], PhysicsVAE [28], NCP [36], and PULSE [10] leverage the motion imitation task to99

acquire and reuse motor skills for the learning of downstream tasks. In this work, we study AMP100

[18] and PULSE [10] as exemplary methods to provide motion priors. Our findings demonstrate101

that a robust motion prior, combined with straightforward reward designs, can effectively induce102

human-like behaviors in solving complex sports tasks.103

3 Preliminaries104

We define the full-body human pose as qt ≜ (θt,pt), consisting of 3D joint rotations θt ∈ RJ×6105

and positions pt ∈ RJ×3 of all J joints on the humanoid, using the 6 DoF rotation representation106

[35]. To define velocities q̇1:T , we have q̇t ≜ (ωt,vt) as angular ωt ∈ RJ×3 and linear velocities107

vt ∈ RJ×3. If an object is involved (e.g. javelin, football, ping-pong ball), we define their 3D108

trajectories qobj
t using object position pobj

t , orientation θobj
t , linear velocity vobj

t , and angular velocity109

ωobj
t . As a notation convention, we use ·̂ to denote the ground truth kinematic quantities from Motion110

Capture (MoCap) and normal symbols without accents for values from the physics simulation.111

Goal-conditioned Reinforcement Learning for Humanoid Control. We define each sport using112

the general framework of goal-conditioned RL. Namely, a goal-conditioned policy πtask is trained to113

control a simulated humanoid competing in a sports environment. The learning task is formulated114

as a Markov Decision Process (MDP) defined by the tuple M = ⟨S,A,T ,R, γ⟩ of states, actions,115
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Figure 2: An overview of SMPLOlympics: we design a collection of simulated sports environments and
leverage RL and human demonstrations (from videos or MoCap) as prior to tackle them.

transition dynamics, reward function, and discount factor. The simulation determines the state116

st ∈ S and transition dynamics T , where a policy computes the action at. The state st contains the117

proprioception sp
t and the goal state sg

t . Proprioception is defined as sp
t ≜ (qt, q̇t), which contains118

the 3D body pose qt and velocity q̇t. We use b to indicate the boundary of the arena to which a sport119

is limited. All values are normalized with respect to the humanoid heading (yaw).120

4 SMPLOlympics: sports environments For Simulated Humanoids121

In this section, we describe the formulation of each of our sports environments, from single-person122

sports (Sec. 4.1) to multi-person sports (Sec. 4.2). Then, we describe our pipeline for acquiring123

human demonstration data from videos (Sec. 4.3). An overview can be found in Fig. 2. For each124

sport, we provide a preliminary reward design that serves as a baseline for future research. Due to125

space constraints, omitted details can be found in the supplement.126

4.1 Single-person Sports127

High Jump. In the high jump environment, the humanoid’s objective is to jump over a horizontal128

bar placed at a certain height without touching it. The bar is positioned following the setup of the129

official Olympic game. The high jump goal state sg-high_jump
t = (pb

t ,p
l
t) contains the positions of the130

bar pb
t ∈ R3 and the landing area pl

t ∈ R3. The reward is defined as Rhigh jump(sp
t , s

g-high_jump
t ) =131

wprp
t + whrh

t . The position reward rpt encourages the humanoid to go closer to the goal point, which132

is behind the high jump bar. The height reward rht encourages the humanoid to jump higher. Training133

terminates when the humanoid is in contact with the bar, does not pass the bar, or falls to the ground134

before jumping. We also set up four bar heights for curriculum learning: 0.5m, 1m, 1.5m, and 2m.135

Long Jump. Long jump is also set similar to the Olympic games, with a 20m runway followed136

by a jump area. Before the humanoid jumps, its feet should be behind the jump line. The goal137

state sg-long_jump
t ≜ (ps

t ,p
l
t,p

g
t ) includes the position of the starting point ps

t ∈ R3, jump line138

pl
t ∈ R3, and the goal pg

t ∈ R3. The training reward is defined as Rlong jump(sp
t , s

g-long_jump
t ) ≜139

wprp
t + wvrv

t + whrh
t + wlrl

t. The position reward rp
t encourages the humanoid to get closer to the140

goal, the velocity reward rv
t encourages larger running speed, and the height reward rh

t encourages141

higher jump. Finally, rl
t encourages jumping far.142

Hurdling. In hurdling, the humanoid tries to reach a finishing line 110 meters ahead and needs to143

jump over 10 hurdles (each 1.067m high, placed 13.72m from the start, with subsequent hurdles144

spaced every 9.14m). The goal state is defined as sg-hurdling
t ≜ (ph

t ,p
f
t ), where ph

t ∈ R10×3 and145

pf
t ∈ R3 includes the positions of these hurdles as well as the finish line. We define a simple reward146

function as Rhurdling(sp
t , s

g-hurdling
t ) = rdistance

t . Rhurdling encourages the agent to run towards the finish147

line and clear each hurdle. Additionally, we employ a curriculum for hurdling, where the height of148

each hurdle is randomly sampled between 0 and 1.167 meters for each episode.149

Golf. For golf, the humanoid’s right hand is replaced with a golf club measuring 1.14 meters. The150

driver of the golf club is simulated as a small box ( 0.05m × 0.025m × 0.02m). We incorporate a151
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randomly generated terrain in the golf environment, designed to mimic real-world grasslands with152

wave-like features and an amplitude of 0.5 meters. The objective for the humanoid is to hit the ball153

towards a randomly sampled target position. The goal state sg-golf
t ≜ (pb

t ,p
c
t ,p

g
t ,ot) includes the ball154

position pb
t ∈ R3, club cbt ∈ R3, goal position pg

t ∈ R3, and terrain height map ot ∈ R32×32. The155

reward is defined as Rgolf(sp
t , s

g-golf
t ) = wprp

t + wcrc
t + wgrg

t + wpredrpred
t , where the rp

t encourages156

the ball to move forward, rc
t encourages swinging the golf club to hit the ball, and rg

t encourages the157

ball to reach the goal. In addition, we predict the ball’s trajectory and provide a dense reward rpred
t158

based on the distance between the predicted landing point and the goal.159

Javelin. For javelin throw, we use SMPL-X humanoid with articulated fingers. The goal state is160

defined as sg-javelin
t ≜ (qobj

t ,pr
t ,p

h
t ), where qobj

t ∈ R13, includes the position, orientation, linear, and161

angular velocity of the javelin. pr
t and ph

t are the positions of the root and right hand. The reward162

is defined as Rjavelin(sp
t , s

g-javelin
t ) ≜ wgrabrgrab

t + wjsrjs
t + wgoalrgoal

t + wsrs
t. The grab reward rgrab

t163

encourages the right hand to grab the javelin. The javelin stability reward rjs
t minimizes the javelin’s164

self-rotation. The goal reward rgoal
t encourages the humanoid to throw the javelin further. The stability165

reward rs
t is to avoid large movements of the body.166

4.2 Multi-person Sports167

Tennis. For tennis, each humanoid’s right hand is replaced as an oval racket. We use the same168

measurement as a real tennis court and ball. We design two tasks: a single-player task where the169

humanoid trains to hit balls launched randomly, and a 1v1 mode where the humanoid plays against170

another humanoid. For both tasks, the goal state is defined as sg-tennis
t ≜ (pball

t ,vball
t ,pracket

t ,ptar
t ,171

where pball
t ∈ R3,vball

t ∈ R3,pracket
t ∈ R3 and ptar

t ∈ R3, which includes the position and velocity of172

the ball, position of the racket and position of the target. The reward function for tennis is defined173

as Rtennis(sp
t , s

g-tennis
t ) = wpr

racket
t + wbr

ball
t . The racket reward rracket

t encourages the racket to reach174

the ball, and the ball reward rball
t aims to successfully hit the ball into the opponent’s court, as close175

to the target as possible. For the single-player task, we shoot a ball from the opposite side from a176

random position and trajectory, simulating a ball hit by the opponent. The target ptar
t is also randomly177

sampled. For the 1v1 scenario, we can either train models from scratch or initialize two identical178

single-player models as opponents, which can play back and forth.179

Table Tennis. For table tennis, each humanoid is equipped with a circular paddle (replacing the right180

hand) and play on a standard table. Similar to tennis, we have the single-player task and the 1v1 task.181

Similarly, the goal state is defined as sg-tennis
t ≜ (pball

t ,vball
t ,pracket

t ,ptar
t ). The reward function for182

table tennis is defined as Rtable tennis(sp
t , s

g-table_tennis
t ) = wpr

racket
t + wbr

ball
t . The paddle reward rracket

t183

is the same as the tennis while we modify the rball
t slightly to encourage more hits for table tennis.184

Fencing. For 1v1 fencing, each humanoid is equipped with a sword (replacing the right hand)185

and plays on a standard fencing field. The goal state is defined as sg-fencing
t ≜ (popp

t ,vopp
t ,psword

t −186

popp-target
t , ∥ct∥22, ∥c

opp
t ∥22, b), which contains the opponent’s position body popp

t ∈ R24×3, linear187

velocity vopp
t ∈ R24×3, the difference between target body position popp-target

t ∈ R5×3 on the opponent188

and agent’s sword tip position psword
t , normalized contract forces on the agent itself ∥ct∥22 ∈ R24×3189

and its opponent ∥copp
t ∥22 ∈ R24×3, as well as the bounding box b ∈ R4. To train the fencing agent, we190

define the fencing reward function as Rfencing(sp
t , s

g-fencing
t ) = wfr

facing
t +wvr

vel
t +wsr

strike
t +wpr

point
t .191

The facing rfacing
t and velocity reward rvel

t encourage the agent to face and move toward the opponent.192

The strike reward rstrike
t encourages the agent’s sword tip to get close to the target, while rpoint

t is the193

reward for getting in contact with the target. We use the pelvis, head, spine, chest, and torso as the194

target bodies. The episode terminates if either of the humanoids falls or steps out of bounds.195

Boxing. For boxing, we simulate two humanoids with sphere hands in a bounded arena. The goal196

state is similar to fencing: sg-boxing
t ≜ (popp

t ,vopp
t ,phand

t − popp-target
t , ∥ct∥22, ∥c

opp
t ∥22) but without the197

bounding box information. The reward function and target body parts are also the same as fencing,198

though replacing the sword tip to the hands.199
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Soccer. The soccer environment includes one or more humanoids, a ball, two goal posts, and the field200

boundaries. The field measures 32m × 20m. We support three tasks: penalty kicks, 1v1, and 2v2.201

For penalty kicks, the humanoid is positioned 13 meters from the goal line, with the ball placed202

at a fixed spot 12 meters directly in front of the goal center. The objective is to kick the ball203

toward a randomly sampled target within the goal post. To achieve this, the controller is provided204

sg-kick
t ≜ (pball

t , q̇ball
t ,pgoal-post

t ,pgoal-target
t ), where pball

t ∈ R3 is the ball position, q̇ball
t ∈ R3 is the205

velocity and angular velocity, pgoal-post
t ∈ R4 is the bounding box of the goal, and pgoal-target

t ∈ R3 is206

the target location within the goal post. The reward is Rsoccer-kick(sp
t , s

g-kick
t ) ≜ wp2brp2b +wb2grb2g +207

wbv2grbv2g + wb2trb2t − cno-dribble
t . Various rewards are designed to guide the character towards a208

run-and-kick motion. The player-to-ball (rp2b) reward motivates the character to move towards the209

ball. The ball-to-goal reward (rb2g) reduces the distance between the ball and the target. The ball-210

velocity-to-goal (rbv2g) encourages a higher velocity of the ball toward the target. The ball-to-target211

(rb2t) reward encourages a smaller distance between the target and the predicted landing spot of the212

ball based on its current position and velocity. Finally, a negative reward (cno-dribble
t ) is applied if the213

character passes the spawn position of the ball, which discourages dribbling and encourages kicking.214

Beyond penalty kicks, we explore team-play dynamics, including 1v1 and 2v2. The controller is215

provided with a state defined as sg-soccer
t ≜ (pball

t , q̇ball
t ,pgoal-post

t ,pally-root
t ,popp-root

t ), where pally-root
t ∈216

R3 and popp-root
t ∈ R3 are the root positions of the ally and opponents (1 or 2). The controller is then217

trained using the following reward Rsoccer-match(sp
t , s

g-soccer
t ) ≜ wp2brp2b + wb2grb2g + wbv2grbv2g +218

wpointrpoint, where rp2b, rb2g and rbv2g are the same as in penalty kick. rb2g and rbv2g are zeroed out219

when the distance to the ball is greater than 0.5m. rpoint, the scoring a goal, provides a one-time bonus220

and or penalty for goals. Notice that this is a rudimentary reward design compared to prior art [8] and221

serves as a starting point for further development.222

Basketball. Our basketball environment is set up similarly to the soccer environment except for using223

the SMPL-X humanoid. The court measures 29m × 15m, with a 3m high hoop. We also introduce224

the task of free-throw, where the humanoid begins at a distance of 4.5 meters from the hoop with the225

ball initially positioned close to its hands. The objective is to successfully throw the basketball into226

the hoop. The goal state for this task is defined similarly to that of the soccer penalty kicks, with the227

distinction being the prohibition of foot-to-ball contact to maintain basketball rules.228

Competitive Self-play. In competitive sports environments, we implement a basic adversarial self-229

play mechanism where two policies, initialized randomly, compete against each other to optimize230

their rewards. We adopt an alternating optimization strategy from [27], where one policy is frozen231

while the other is trained. This encourages each policy to develop offensive and defensive strategies,232

contributing to more competitive behavior, as observed in boxing and fencing (supplement site).233

4.3 Acquiring Human Demonstration From Videos234

We utilize TRAM [26] for 3D motion reconstruction from Internet videos, providing robust global235

trajectory and pose estimation under dynamic camera movements, commonly found in sports broad-236

casting. Specifically, TRAM estimates SMPL parameters [9] which include global root translation,237

orientation, body poses, and shape parameters. We further apply PHC [11], a physics-based motion238

tracker, to imitate these estimated motions, ensuring physical plausibility. We find these corrected239

motions are significantly more effective as positive samples for adversarial learning compared to raw240

estimated results. More details and ablation are provided in the supplementary materials.241

5 Experiments242

Implementation Details. Simulation is conducted in Isaac Gym [14], where the policy runs at 30243

Hz and the simulation at 60 Hz. All task policies utilize three-layer MLPs with units [2048, 1024,244

512]. The SMPL humanoid models adhere to the SMPL kinematic structure, featuring 24 joints,245

23 of which are actuated, yielding an action space of R69. The SMPL-X humanoid has 52 joints,246
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Figure 3: Qualitative results for high jump, javelin, golf, and hurdling. PPO and AMP try to solve the task
using inhuman behavior, while PULSE can discover human-like behavior.

51 actuated, including 21 body joints and hands, resulting in an action space of R153. Body parts247

on our humanoid consist of primitives such as capsules and blocks. All models can be trained on a248

single Nvidia RTX 3090 GPU in 1-3 days. We limit all joint actuation forces to 500 Nm. For more249

implementation details, please refer to the supplement.250

Baselines. We benchmark our simulated sports using some of the state-of-the-art simulated humanoid251

control methods. While not a comprehensive list, it provides a baseline for the challenging environ-252

ments. Each task is trained using PPO [22], AMP [18], PULSE [10], and a combination of PULSE253

and AMP. AMP use a discriminator with the policy to provide an adversarial reward, using human254

demonstration data to deliver a “style" reward that reflects the human-likeness of humanoid motion.255

Both task and discriminator rewards are equally weighted at 0.5. PULSE extracts a 32-dimensional256

universal motion representation from AMASS data, surpassing previous methods [24, 19] in coverage257

of motor skills and applicability to downstream tasks. Compared to AMP, PULSE uses hierarchical258

RL and offers a learned action space that accelerates training and provides human-like motion prior259

(instead of a discriminative reward). PULSE and AMP can be combined effectively, where PULSE260

provides the action space and AMP provides task-specific style reward.261

Metrics. We provide quantitative evaluations for tasks with easily measurable metrics such as high262

jump, long jump, hurdling, javelin, golf, single-player tennis, table tennis, penalty kicks, and free263

throws. These metrics are detailed in the supplementary materials, where we also present qualitative264

assessments for tasks that are more challenging to quantify, such as boxing, fencing, and team soccer.265

Specifically, success rate (Suc Rate) determines whether an agent completes a sport according to set266

rules. Average distance (Avg Dis) indicates the extent an agent or object travels. For sports involving267

ball hits, such as tennis and table tennis, we record the average number of successful ball strikes (Avg268

Hits). Error distance (Error Dis) measures the distance between the intended target and the actual269

landing spot, applicable in sports like golf, tennis, and penalty kicks. Additionally, the hit rate in golf270

quantifies the success of striking the ball with the club. Evaluations are performed on 1000 trials.271

5.1 Benchmarking Popular Simulated Humanoid Algorithms272

In this section, we evaluate the performance of various control methods across our sports environments.273

We provide qualitative results in Fig. 3 and Fig. 4, and training curves in Fig. 5. To view extensive274

qualitative results, including human-like soccer kick, boxing, high jump, etc., please see supplement.275

Track & Field Sports (Without Video Data). We first evaluate track and field sports, including276

long jump, high jump, hurdling, and javelin throwing. For these sports, SOTA pose estimation277

methods fail to estimate coherent motion and global root trajectory as players and cameras are both278

fast-moving. Thus, we utilize a subset of the AMASS dataset containing locomotion data [21] as279
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Table 1: Evaluation on Long Jump, High Jump, Hurdling and Javelin. World records are in parentheses.
Long Jump (8.95m) High Jump (2.45m) Hurdling (12.8s) Javelin (104.8m)

Method Suc Rate ↑ Avg Dis ↑ Suc Rate (1m) ↑ Height (1m) ↑ Suc Rate (1.5m) ↑ Height (1.5m) ↑ Suc Rate ↑ Avg Dis ↑ Time ↓ Suc Rate ↑ Avg Dis ↑
PPO [22] 53.6% 19.42 100% 4.08 100% 4.11 57.6% 108.9 11.22 100% 44.5
AMP [18] 0% - 0% - 0% - 0% 13.24 - 0.31% 2.03
PULSE [10] 100% 5.105 100% 2.01 100% 1.98 100% 122.1 17.76 100% 9.63

Table 2: Evaluation on Golf, Tennis, Table Tennis, Penalty Kick and Free Throw

Golf Tennis Table Tennis Penalty Kick Free Throw

Method Hit Rate ↑ Error Dis ↓ Avg Hits ↑ Error Dis ↓ Avg Hits ↑ Error Dis ↓ Suc Rate ↑ Error Dis ↓ Suc Rate ↑
PPO [22] 0% - 2.76 1.92 1.01 0.06 0.0% - 0.0%
AMP [18] 100% 1.43 3.95 5.30 1.10 0.13 0.0% - 0.0%
PULSE [10] 99.9% 1.29 2.48 3.50 0.74 0.19 76.6% 0.25 87.5%
PULSE [10] + AMP [18] 99.9% 2.18 2.62 3.64 1.83 0.23 27.5% 0.27 30.6%

reference motions. Since PULSE is pretrained on AMASS, we exclude PULSE + AMP from these280

tests. Table 1 summarizes the quantitative results of different methods. In long jump, AMP fails281

entirely, often walking slowly to the jump line without a forward leap. This failure occurs because282

the policy prioritizes discriminator rewards over task completion. If the task is too hard, the policy283

will use simple motion (such as standing still) to maximize the discriminator reward instead of trying284

to complete the task. In contrast, PPO, while capable of jumping great distances, exhibits unnatural285

motions. PULSE successfully executes jumps with human-like motion, but lacks the specialized286

skills for top-tier records due to the absence of corresponding motion data in AMASS. The high287

jump displays similar patterns: PPO achieves impressive heights but with unnatural movements while288

AMP struggles to reconcile adversarial and task rewards. Surprisingly, as shown in Figure 3, PULSE289

successfully adopts a Fosbury flop approach without specific rewards to encourage this technique,290

likely leveraging breakdance skills. For hurdling, AMP completely fails, stopping before the first291

hurdle. PPO bounces energetically over each obstacle as shown in Figure 3, but sometimes falls and292

fails to complete the race, with an average success rate of just over 50% and an average distance293

of less than 110m. PULSE facilitates natural clearance of hurdles, and completes races in 17.76294

seconds, a competitive time compared to human standards. Javelin throwing poses similar challenges:295

PPO uses inhuman strategies, AMP struggles with balancing rewards, and PULSE adopts human-like296

strategies but lacks specific skills for record-setting performance.297

Sports With Video Data. For sports including golf, tennis, table tennis, and soccer penalty kick, we298

utilize processed motion from videos as demonstrations for AMP and PULSE+AMP. The results are299

reported in Table 2 and Fig. 4. In tennis, AMP demonstrates superior performance in terms of average300

hits; however, returned balls often land far from the intended targets. This is because prolonged301

rallies increase discriminator rewards, leading AMP to ignore task rewards. Notably, AMP exhibits302

inhuman motions at the moment of ball contact and reverts to natural movements when preparing for303

the next hit as shown in Fig. 4. This behavior underscores a reward conflict between balancing task304

and discriminator rewards. PPO plays tennis in an unnatural way, while PULSE and PULSE + AMP305

show similar performance. In table tennis, PPO achieves impressive error distances, but struggles306

with consistency and often fails to return second shots. We observe video data proves particularly307

beneficial for table tennis. PULSE+AMP records significantly higher hit averages with reasonable308

error distances. Table tennis requires quick reactions within a short time, which the pre-trained309

PULSE model supports by providing necessary motor skills, enhanced by video data that guide310

the learning of proper stroke techniques. For golf, penalty kicks, and free throws, the “initiating311

contact with an object" part makes them challenging. Here, only PULSE and PULSE+AMP manage312

to solve the three tasks effectively, leveraging PULSE’s latent space for effective exploration. The313

design of these tasks often results in a sparse exploration phase where triggering penalty rewards,314

such as cno-dribble
t for moving past the ball’s initial position. The AMP reward also negatively affects315

training penalty kick, as the human demonstration contains other soccer motions such as running and316

dribbling, and the policy finds them easier to learn and exploit.317

Curriculum learning. We find curriculum learning is an essential component in achieving better318

results for some tasks. In Table 3, we study variants of high jump and hurdling task with and without319
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Figure 4: Qualitative results for table tennis and tennis. PPO and AMP result in inhuman behavior; PULSE can
use human-like movement but PULSE + AMP result in behavior specific to the sport.
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Figure 5: Learning curves on various tasks.

Table 3: Evaluation on curriculum learning.
High Jump Hurdling

Method Suc Rate (1m) Suc Rate (1.5m) Suc Rate Avg Dis Time

w/o curriculum 100% 0% 0% 13.65 -
w/ curriculum 100% 100% 100% 122.1 17.76

the curriculum using PULSE. We can see that320

without curriculum, high jump and hurdling321

both fail to solve the task. This is due to the322

policy not being able to obtain any reward fac-323

ing challenging heights of bars and hurdles and the policy gets stuck in the local minima.324

6 Limitations, Conclusion and Future Work325

Limitations . While SMPLOlympics provides a large collection of simulated sports environments, it326

is far from being comprehensive. Certain sports are omitted due to simulation constraints (e.g., swim-327

ming, shooting, ice hockey, cycling) or their inherent complexity (e.g., 11-a-side soccer, equestrian328

events). Nevertheless, our framework is highly adaptable, allowing easy incorporation of additional329

sports like climbing, rugby, wrestling etc. Our initial design of rewards, though able to achieve330

sensible results, is also far from optimal. For competitive sports such as 2v2 soccer and basketball,331

our results also fall short of SOTA [8] which employs much more complex systems.332

Conclusion and Future Work. We introduce SMPLOlympics, a collection of sports environments333

for simulated humanoids. We provide carefully designed state and reward, and benchmark humanoid334

control algorithms and motion priors. We find that by combining simple reward design and powerful335

human motion prior, one can achieve human-like behavior for solving various challenging sports.336

Our humanoid’s compatibility with the SMPL family of models also provides an easy way to obtain337

additional data from video for training, which we demonstrate to be helpful in training some sports.338

These well-defined simulation environments could also serve as valuable platforms for frontier models339

[12] to gain physical understanding. We believe that SMPLOlympics provides a valuable starting340

point for the community to further explore physically simulated humanoids.341
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