
LEDEX: Training LLMs to Better Self-Debug and
Explain Code

Nan Jiang1∗ Xiaopeng Li2 Shiqi Wang2 Qiang Zhou2 Soneya Binta Hossain3∗

Baishakhi Ray2 Varun Kumar2 Xiaofei Ma2 Anoop Deoras2
1Purdue University 2AWS AI Labs 3University of Virginia

jiang719@purdue.edu
{xiaopel,wshiqi,zhouqia,rabaisha,kuvrun,xiaofeim,adeoras}@amazon.com

sh7hv@virginia.edu

Abstract

In the domain of code generation, self-debugging is crucial. It allows LLMs
to refine their generated code based on execution feedback. This is particularly
important because generating correct solutions in one attempt proves challenging
for complex tasks. Prior works on self-debugging mostly focus on prompting
methods by providing LLMs with few-shot examples, which work poorly on small
open-sourced LLMs. In this work, we propose LEDEX, a training framework
that significantly improves the self-debugging capability of LLMs. Intuitively, we
observe that a chain of explanations on the wrong code followed by code refinement
helps LLMs better analyze the wrong code and do refinement. We thus propose
an automated pipeline to collect a high-quality dataset for code explanation and
refinement by generating a number of explanations and refinement trajectories from
the LLM itself or a larger teacher model and filtering via execution verification. We
perform supervised fine-tuning (SFT) and further reinforcement learning (RL) on
both success and failure trajectories with a novel reward design considering code
explanation and refinement quality. SFT improves the pass@1 by up to 15.92%
and pass@10 by 9.30% over four benchmarks. RL training brings additional up to
3.54% improvement on pass@1 and 2.55% improvement on pass@10. The trained
LLMs show iterative refinement ability and can keep refining code continuously.
Lastly, our human evaluation shows that the LLMs trained with our framework
generate more useful code explanations and help developers better understand bugs
in source code.

1 Introduction

Code generation has become a crucial research task to automatically generate source code based
on natural language description [1–4]. Although the recent Large Language Models (LLMs) have
shown impressive capability in code generation, generating the correct code for a complex problem
in single attempt is still challenging [5–12]. This is expected because even for human developers,
completing a hard programming problem might need multiple rounds of trial-and-error debugging.
Self-debugging capability that allows LLMs to retrospect the incorrect code and make changes to
resolve the errors is becoming increasingly important besides their code generation ability.

Existing works [13, 14] investigate off-the-shelf LLMs in the scale of Codex (code-davinci-002) [1],
GPT-3.5 and GPT-4, and show that these LLMs can self-debug the wrong code they generated via
prompting methods in a pipeline of code generation and self-refinement as shown in Figure 1. The

∗Work done while interning at AWS AI Labs

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

def count_ways(n):
 if n == 0:
 return 1
 if n == 1:
 return 1
 if n == 2:
 return 3
 return count_ways(n-1)
 + count_ways(n-2)

Write a function to find
the number of ways to
fill it with 2 x 1
dominoes for the given 3
x n board.

Example:
count_ways(2) == 3
count_ways(8) == 153

The above function gets
the following error
message:
AssertionError:
assert count_ways(8) == 153,
but was 47.
Please fix it.

Task Description Generated Solutions Feedback
Pass

Code Refinement

Code
Generation

Execution
Fail

The above function gets the
following error message:
AssertionError:
assert count_ways(8) == 153,
but was 47.
Please explain why the above
code is wrong,
and fix it.

Code Refinement Code Explanation and Refinement

Figure 1: Pipeline of letting LLM generate code and self-debug.

user first queries the LLM for a solution for the given programming task and the initial solution from
the LLM is verified by executing them against the given unit tests. If the solution passes all the unit
tests, it is considered correct. Otherwise, the user collects the unit test feedback and forms a new
query to ask the LLM for a refinement. Such a process can iterate until the LLM generates a correct
solution or reaches the maximum number of iterations. There are different prompt designs when
asking for refinement [13]. Compared with directly asking for a refined solution (referred to as “Code
Refinement” in the feedback block), asking LLMs to provide an explanation of the wrong solution
and then refine it in a chain-of-thought manner (referred to as “Code Explanation and Refinement” in
the feedback block) helps it to better understand the unit test feedback and increases the success rate
of providing refined solutions (details in Appendix A.1).

However, how to improve LLMs’ self-debugging capability remains under-explored, especially given
the fact that open-sourced LLMs such as StarCoder [11] and CodeLlama [12] have limited self-
refinement performance. For example, the StarCoder-15B model is only able to refine 4.43% wrong
solutions for problems from the MBPP benchmark [3], in contrast, GPT-3.5-Turbo can refine 28.90%
under the same setting (details in Appendix A.1). Such limited self-refinement ability motivates
the need to better train LLMs to take feedback to explain and self-refine the wrong code. Although
important, an essential challenge of training LLMs to explain and refine wrong code is the lack of
training data, especially high-quality code explanation data. Previous work has explored Imitation
learning from Language Feedback (ILF) [15], which trains LLMs with human-annotated explanation,
yet, such an approach is not scalable and the LLMs also do not obtain the ability to explain code.

In this work, we propose LEDEX, an automated pipeline to collect a high-quality dataset for code
explanation and refinement by generating explanation and refinement trajectories, followed by filtering
through execution verification. LEDEX then leaverages the collected data, using supervised fine-
tuning (SFT) to significantly improve LLMs’ ability to explain and refine incorrect code. Additionally,
LEDEX applies reinforcement learning (RL) with a novel reward design that accounts for explanation
semantics and unit test success, leading to better code explanations and corrections. In summary, this
work contributes the following:

• We introduce LEDEX, a scalable framework comprising automated data collection, data validation,
supervised fine-tuning, and reinforcement learning with novel reward mechanisms to enhance
LLMs’ self-debugging capabilities, resulting in more accurate code refinements and insightful
code explanations.

• We experiment LEDEX on three backbones (StarCoder-15B, CodeLlama-7B, and CodeLlama-
13B) using code refinements and explanations, initially collected from GPT-3.5-Turbo. Supervised
fine-tuning notably boosts the models’ ability to diagnose and correct faulty code, achieving up to
a 15.92% improvement in pass@1 and a 9.30% increase in pass@10 across four benchmarks.

• LEDEX’s reinforcement learning on top of SFT, uses a novel reward function that incorporates
unit test outcomes and semantic analysis of incorrect code explanations. This further enhances
performance, with improvements of up to 3.54% in pass@1 and 2.55% in pass@10.

• LEDEX is model-agnostic; notably, CodeLlama-7B trained on data gathered from CodeLlama-
34B or even itself achieves up to 8.25% and 2.14% gains in pass@1 and pass@10, demonstrating
the generalizability of the approach without reliance on GPT-3.5-Turbo.

2 Approach

Figure 2 shows the overview of LEDEX, including the collection of high-quality code explanation and
refinement data, and the training methods. LEDEX first collects a code explanation and refinement

2

dataset by querying from pre-trained or instruct models and verifying its responses with execution
feedback to filter and obtain high-quality explanation and refinement data (steps 1 and 2 in Figure 2,
Section 2.1). Then the high-quality dataset is used for supervised fine-tuning (step 3 in Figure 2,
Section 2.2), which significantly improves the model’s performance in explaining the bug and refining
the code. Reinforcement learning with execution feedback is used to further guide the model to
generate higher quality responses and boost the model performance (step 4 in Figure 2, Section 2.3).

LLMsWrong
Solutions

Data Collection

,

Wrong
Solutions Expl. Refine.

Expl. Reward CodeBLEU Exec. Reward

Rewards

Supervised Fine-Tuning Reinforcement Learning Training

Querying

Expl. & Refine.
Ground-Truth Ground-Truth

Data Verification

Execution

Fail
Expl. & Refine. Correct Expl.

& Refine.

Wrong
Solutions

Expl. & Refine.

Refine.

Wrong
Solutions

,

,

Figure 2: Overview of LEDEX.

2.1 Data collection and verification

We use MBPP [3] (only use the 374 problems in the training set during training), APPS [4] (only
use the 5,000 problems in the training set) and CodeContests [2] as our base training datasets, which
contain programming problems and solutions collected from various platforms. While they are
helpful for training LLMs for code generation, they neither contain enough wrong solutions nor the
explanation and refinement of them. To collect more wrong solutions, we prompt the pre-trained
LLMs (i.e., StarCoder and CodeLlama) accordingly with 3-shot examples to sample 20 solutions
(temperature set to 1.0) per problem from MBPP’s training set, APPS’s training set, and CodeContests.
We then run these generations against test cases to select the wrong solutions that fail any test cases.

Table 1 shows the number of correct (passing all the unit tests) and wrong (failing any unit test)
solutions sampled for each dataset. For each wrong solution, we need an explanation of the wrong
code and a correct refinement to build the code explanation and refinement dataset. We prompt pre-
trained or instruction-LLMs with the problem description, wrong solution, and execution feedback
(either error message or failed test case) to ask for an explanation and refinement. We experimented
with GPT-3.5-Turbo, CodeLlama-34B, and CodeLlama-7B for data collection. We take GPT-3.5-
Turbo as the example in this section, and an example with it is shown in Appendix A.2. We study the
generalization of this data collection with different LLMs in Section 4.3.

Table 1: Number of unique, correct, wrong solutions sampled from pre-trained LLMs, as well as the
number of correct refinement generated by GPT-3.5-Turbo and its refinement rate on each dataset.

Dataset #Unique Solutions #Correct Solutions #Wrong Solutions #Correct Refinement #Refinement Rate
MBPP Training (374) 9,500 4,706 4,794 2,203 45.95%
APPS Training (5,000) 44,108 27,736 16,372 6,419 39.21%
CodeContest (6,627) 51,134 31,520 19,614 5,113 26.07%

As LLMs may provide wrong explanations or refinements, we cannot blindly take them as training
data. Thus, we verify the refinements by running them against the test cases again, and only those
passing all the test cases are considered correct refinements. For explanation, we consider the
explanations along with the correct refinements as correct. Overall, for example with GPT-3.5-Turbo,
we get 13,735 correct explanations and refinements: 2,203 for MBPP, 6,419 for APPS, and 5,113 for
CodeContests. This verification step is crucial to guarantee the quality of the automatically collected
code explanation and refinement dataset.

2.2 Supervised fine-tuning

We form the fine-tuning data in an instruction-following format similar to StarChat [16], where the
user input is enclosed by <|user|> and <|end|>, while LLM’s answer is enclosed by <|assistant|>
and <|end|> in the chat history. Moreover, to alleviate the limited amount of data, we augment the

3

fine-tuning data by using two different instructions: providing the task description, the initial wrong
code, and execution feedback, asking for (1) a refinement directly, or (2) an explanation of the wrong
code and then a refinement in a chain-of-thought manner. Examples are given in Appendix A.2

During supervised fine-tuning, although we include the wrong solutions as LLM’s initial answer
in the chat history, we do not calculate the loss for this part since we do not want the LLM to
intentionally generate those wrong solutions. They are just provided as context for code explanation
and refinement if the LLM indeed makes mistakes in real use cases.

2.3 Reinforcement learning

Reinforcement learning is widely used to further improve the quality of LLM’s generated outputs [17–
20]. Through the RL framework, the LLM is optimized by using an algorithm to update the weights
using both success and failure trajectories and maximize the rewards of its outputs. To train the
fine-tuned LLMs to generate better code explanations and more correct code refinements, we design
the rewards considering both parts.

2.3.1 Refinement score

To train LLM to refine code, the correctness of the refinement is the main goal, which can be measured
by its code similarity to the ground truth, as well as the execution result. We use CodeBLEU score as
metrics for code similarity and unit test passing rate as metrics for execution results.

Given a wrong solution w, the set of correct and wrong (failed) refinements are notated by Rw
c and

Rw
w . For any refinement r, we calculate its CodeBLEU score and the unit test passing rate as follows:

Scb(r) =
1

|Rw
c |

∑
rc∈Rw

c

CodeBLEU(r, rc); Sut(r) =
|Tp(r)|
|T |

Scb is the average CodeBLEU score between a given refinement and all the correct refinements. Sut

is the fraction of the number of passed unit test cases (Tp) when running the refined code r, over the
total number of unit test cases (T) provided for this problem in the dataset.

In Figure 3, the x-axis is the scores of certain metrics, and the y-axis is the number of training data
with a certain score (same for other figures in Figure 3). Thus, Figure 3 (a) shows the frequency
distribution of each score of Scb, with blue bars referring to training data with correct refinements,
and orange bars referring to that with wrong refinements. The distribution of Sut is shown in Figure 3
(b) where the correct refinements definitely pass all the test cases and can be separated from the
wrong ones.

0 0.2 0.4 0.6 0.8 1.0
(a) CodeBLEU

0

2K

4K

6K

8K

Co
un

t

correct
wrong

0 0.2 0.4 0.6 0.8 1.0
(b) Unit Test Passing Rate

0
10K
20K
30K
40K
50K

correct
wrong

0.2 0.4 0.6 0.8 1.0
(c) Explanation Similarity

0
2K
4K
6K
8K

10K
12K

correct
wrong

-4 -2 0 2 4
(d) Code Reward

0

2K

4K

6K

8K correct
wrong

-4 -2 0 2 4
(e) Explain Reward

0
2K
4K
6K
8K

10K
12K

correct
wrong

Figure 3: The CodeBLEU scores, unit test cases passing rate, sentiment similarity of wrong code
explanations, final refinement code reward, and the explanation reward of the training data.

2.3.2 Explanation score

In our dataset, there are wrong code explanations along with code refinement, whose quality may
not be perfectly reflected by the code quality. A correct code explanation may also be followed
by incorrect refinement, thus, it is necessary to consider the explanation in the reward. The code
explanations followed by correct refinements are treated as ground truth, notated by Ew

c . We calculate
the average sentiment similarity [21, 22] between the explanation embedding e and corresponding
embeddings in ground truth as

Sex(e) =
1

|Ew
c |

∑
ec∈Ew

c

CosSim(RoBERTa(e),RoBERTa(ec))

4

The distribution of Sex(e) is shown in Figure 3 (c).

2.3.3 Reward design

Given a pair of explanation and refinement, i.e., (e, r), the reward of the generated code refinement
and the code explanation is designed as:

R(r) = 5 · (Scb(r) + Sut(r))− 5; R(e) =
50 · Sex(e)− 35

3

This code reward R(r) is the average of CodeBLEU score and the unit test passing rate, and since
both Scb(r) and Sut(r) are scored in the range of [0, 1], this equation makes the reward of code
refinement in the range of [-5, 5]. Figure 3 (d) shows the distribution of the code refinement reward
on the training dataset, which mitigates the overlap issue between correct and wrong outputs with
CodeBLEU score alone as illustrated in Figure 3 (a). It also makes the reward distribution continuous,
addressing the discreteness problem of only using unit test passing rate.

For the design of explanation reward R(e), We observe from Figure 3 (c) that the explanation
sentiment similarities of the training data mostly lie in the range of [0.4, 1.0], thus, we project the
range of [0.4, 1.0] to [-5, 5] and treat 0.7 as the borderline (projected to 0 correspondingly) of good
or bad explanations. Figure 3 (e) shows the distribution of the wrong code explanation reward on
the training dataset. The distribution shows that there could be a good or correct code explanation
followed by a wrong code refinement, where assigning a high or low reward to the entire output is
not reasonable. This leads to our PPO [23] algorithm with code refinement and explanation rewards
considered separately. Due to space limit, the PPO algorithm is shown in Appendix A.3.

3 Experimental setup

For supervised fine-tuning, we fine-tune three LLMs (StarCoder-15B, CodeLlama-7B, and
CodeLlama-13B) using the correct initial solutions and correct refinements collected from the
MBPP training set, APPS training set, and CodeContests. The model is fine-tuned for two epochs,
using a batch size of 128. The optimizer is AdamW [24] with learning rate set to 2e−5. The learning
rate is adjusted using a warmup of 500 steps and then decayed following a cosine scheduler.

We further train supervised fine-tuned LLMs with reinforcement learning using the PPO algorithm.
The reinforcement learning training data is all the initial solutions and collected refinement on the
MBPP and APPS training set. The learning rate is 2e−6, and the batch size is set to 64. We implement
reinforcement learning training based on the TRL [25] library. Both the supervised fine-tuning and
reinforcement learning are conducted on 8 NVIDIA A100 GPUs, each with 40GB of memory.

4 Result

To evaluate the effectiveness of LEDEX, we study the following research questions (RQs) regarding
code generation and code refinement capability, iterative refinement ability, approach generalizability,
and the quality of the generated code explanations.

4.1 RQ1: Code generation and refinement capability

We evaluate the models trained with LEDEX for their code explanation and refinement ability
using four benchmarks: MBPP [3], HumanEval [1], MBPP+ [26], and HumanEval+ [26]. We use
pass@k [1] and success refinement rate as the evaluation metric. For the generation of the initial
solutions, the models sample 100 solutions per task in the benchmarks (temperature set to 0.8), which
are run against the provided test cases. For every incorrect solution that fails any test case, we let the
models sample one refinement (and one explanation).

4.1.1 Pass@k

Table 2 presents the pass@k results across four benchmarks. Overall, fine-tuning the LLMs with
our curated dataset of code explanations and refinements leads to substantial improvements in both
pass@1 and pass@10 for all three model architectures. For StarCoder-15B and CodeLlama-13B,

5

Table 2: Pass@k of initial and refined solutions on four benchmarks. Each backbone’s best perfor-
mance on every benchmark is bolded.

Models Approaches MBPP Humanval MBPP+ HumanEval+

pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

Init. 37.70 69.60 30.34 63.21 34.90 60.85 26.16 56.77
Prompt. Refine 40.64 71.04 34.05 65.42 40.48 66.59 30.73 61.11

Expl. + Refine 40.37 71.60 33.96 67.20 39.23 64.67 30.09 60.72

Init. 47.41 70.27 35.05 66.93 43.28 62.48 30.01 59.77
StarCoder-15B LEDEX SFT Refine 56.66 75.78 47.32 77.06 53.53 71.55 43.16 71.74

Expl. + Refine 57.11 76.70 47.37 77.16 53.83 72.19 43.54 72.61

Init. 48.62 70.68 39.45 70.16 44.94 63.92 35.05 64.41
LEDEX RL Refine 58.00 78.12 52.25 80.80 54.13 71.71 46.11 74.07

Expl. + Refine 58.19 77.96 51.67 80.79 54.29 71.93 46.26 74.24

Init. 38.21 67.24 34.27 69.60 37.18 61.23 27.40 60.81
Prompt. Refine 43.98 71.94 39.20 74.14 42.97 66.89 31.84 65.08

Expl. + Refine 43.42 72.09 40.13 74.95 42.46 67.41 32.49 66.58

Init. 48.87 70.89 36.99 69.95 42.97 62.69 30.76 62.52
CodeLlama-7B LEDEX SFT Refine 58.07 77.34 52.65 80.71 51.64 71.04 46.61 74.43

Expl. + Refine 57.98 77.92 52.98 82.22 51.55 70.94 47.62 75.54

Init. 46.54 71.54 39.38 71.84 41.46 63.68 33.95 65.98
LEDEX RL Refine 57.35 78.12 54.41 82.55 52.11 71.88 48.73 77.17

Expl. + Refine 57.92 78.97 55.84 84.14 52.90 71.80 50.04 78.25

Init. 42.88 70.85 37.11 74.69 38.93 62.26 30.15 66.27
Prompt. Refine 49.68 75.85 45.78 81.07 46.22 70.14 37.62 72.68

Expl. + Refine 49.97 76.39 45.90 81.18 45.77 70.48 38.36 73.84

Init. 52.43 73.66 41.65 73.61 43.67 62.63 35.29 68.49
CodeLlama-13B LEDEX SFT Refine 61.78 79.96 58.41 83.47 55.58 73.41 51.35 77.84

Expl. + Refine 61.59 80.21 57.76 84.57 54.59 72.15 51.32 78.84

Init. 51.19 73.16 45.45 74.79 45.49 62.81 39.27 69.29
LEDEX RL Refine 61.98 79.95 61.71 84.58 57.89 73.48 56.68 80.89

Expl. + Refine 61.63 80.27 61.66 86.23 56.62 72.04 56.57 81.77

Table 3: Overall pass@k on MBPP & HumanEval and MBPP+ & HumanEval+. Blue or red numbers
show the improvement or deterioration: SFT is compared to prompting, and RL is compared to SFT.

StarCoder-15B MBPP & HumanEval MBPP+ & HumanEval+

LEDEX SFT LEDEX RL LEDEX SFT LEDEX RL

Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine
pass@1 54.35 +15.34 54.71 +15.92 56.78 +2.43 56.58 +1.87 49.31 +12.80 49.64 +14.13 50.87 +1.56 51.02 +1.38
pass@10 76.23 +6.58 76.81 +6.30 78.78 +2.55 78.66 +1.58 71.63 +7.27 72.36 +9.30 72.67 +1.04 72.87 +0.51

CodeLlama-7B MBPP & HumanEval MBPP+ & HumanEval+

LEDEX SFT LEDEX RL LEDEX SFT LEDEX RL

Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine
pass@1 57.21 +14.41 56.75 +14.14 56.62 -0.60 57.41 +0.66 49.59 +11.15 49.95 +11.55 50.73 +1.14 51.74 +1.79
pass@10 78.17 +5.69 78.98 +6.18 79.21 +1.04 80.25 +1.27 72.42 +6.27 71.81 +4.74 74.03 +1.61 74.42 +2.60

CodeLlama-13B MBPP & HumanEval MBPP+ & HumanEval+

LEDEX SFT LEDEX RL LEDEX SFT LEDEX RL

Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine
pass@1 60.95 +12.23 60.64 +11.68 61.91 +0.96 61.64 +1.00 53.86 +11.14 53.26 +10.51 57.40 +3.54 56.60 +3.34
pass@10 80.83 +3.69 81.29 +3.72 81.09 +0.26 81.74 +0.45 75.21 +4.04 74.87 +3.02 76.50 +1.29 76.00 +1.13

RL achieves the highest pass@1 and pass@10 scores (bolded) across all four benchmarks. For
CodeLlama-7B, RL achieves the best performance in seven out of eight cases, with SFT yielding the
highest pass@1 score on the MBPP benchmark.

For easier comparison, Table 3 summarizes the overall pass@k results on MBPP and HumanEval,
along with the improvements achieved through SFT and RL. The improvements from SFT are
compared to direct prompting, while the improvements from RL are relative to SFT.

On MBPP and HumanEval overall, SFT boosts StarCoder-15B’s pass@1 by 15.34% and pass@10
by 6.58% when directly generating code refinements. When incorporating code explanations in a
chain-of-thought format, SFT further enhances StarCoder-15B’s performance by 15.92% on pass@1
and 6.30% on pass@10. RL brings an additional 2.43% improvement in pass@1 and 2.55% in

6

pass@10 for direct refinements, and a further 1.87% pass@1 and 1.85% pass@10 increase when
generating both code explanations and refinements. Comparable improvements from SFT and RL are
observed across the CodeLlama-7B and CodeLlama-13B models as well.

On the MBPP+ and HumanEval+ benchmarks, which feature more rigorous test cases, respec-
tively [26], we observe even greater improvements from RL training on the CodeLlama models.
CodeLlama-7B achieves a 1.79% increase in pass@1 and a 2.60% increase in pass@10 for refined
solutions with code explanations. CodeLlama-13B shows a 3.54% improvement in pass@1 and a
1.29% improvement in pass@10 for directly generated refinements. These results demonstrate that
RL training enables LLMs to produce or refine solutions that are more robust and capable of passing
stricter test cases. Additional experiments and detailed case studies can be found in Appendix A.4.1,
A.5.1, A.5.2, and A.5.3.

4.1.2 Success refinement rate

Table 4 presents the refinement success rate for each model backbone across various approaches,
averaged over four benchmarks. For StarCoder-15B, the baseline prompting method struggles,
achieving only a 6.41% to 6.90% success rate in refining incorrect initial solutions. However, after
applying SFT with the high-quality dataset containing code explanations and refinement trajectories,
StarCoder-15B demonstrates a notable improvement, raising its refinement success to 16.27% to
16.56%. This increase represents a significant gain of 9.37% to 10.15% over the prompting baseline,
showcasing the effectiveness of SFT in enhancing code refinement capabilities by leveraging targeted
training data. With further RL, the refinement success for StarCoder-15B improves even more,
adding an additional 1.03% to 1.23% over the results from SFT. This final boost highlights the
complementary strengths of RL, particularly its capacity to fine-tune model behavior beyond what
supervised methods can achieve.

The improvement on CodeLlama-7B and CodeLlama-13B backbones is consistent with that on
StarCoder-15B, where RL training eventually achieves the highest success refinement rate with a
considerable boost of 1.81 – 3.62%.

Table 4: Success refinement rates over four benchmarks. Blue numbers show the improvement.

Models Refine (%) Explain + Refine (%)
Prompt. LEDEX SFT LEDEX RL Prompt. LEDEX SFT LEDEX RL

StarCoder-15B 6.90 16.27 +9.37 17.50 +1.23 6.41 16.56 +10.15 17.59 +1.03
CodeLlama-7B 8.65 18.14 +9.49 19.95 +1.81 8.10 17.60 +9.50 20.84 +3.24
CodeLlama-13B 11.64 18.96 +7.32 22.58 +3.62 11.97 20.06 +8.09 23.50 +3.44

4.2 RQ2: Iterative refinement ability

LLMs have the ability to iteratively self-debug until they arrive at correct solutions. Figure 4 illustrates
the overall pass@k of CodeLlama-7B across four benchmarks after up to three rounds of refinements.
To simplify the figure, we plot the higher pass@k from either the "Refine" or "Expl. + Refine"
approach at each refinement round for each model. Additional results on iterative refinement are
provided in Appendix A.4.2.

Figure 4: Pass@k of prompting, SFT, and RL CodeLlama-7B after three iterations of refinements.

Both SFT and RL consistently outperform prompting across all three refinement rounds. Even after
three rounds, the prompting approach fails to match the pass@k achieved by SFT after just the first

7

Table 5: Pass@k of CodeLlama-7B trained with CodeLlama-34B’s data.

Models Approaches MBPP Humanval MBPP+ HumanEval+

pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

CodeLlama-7B

Init. 47.01 71.18 39.24 70.00 41.64 61.95 33.07 63.58
LEDEX SFT Refine 54.97 76.52 47.03 77.96 48.71 68.28 41.11 71.46

Expl. + Refine 55.05 76.63 47.34 78.11 49.15 68.35 41.49 71.76

Init. 46.45 70.41 39.63 71.02 42.34 60.84 34.15 63.19
LEDEX RL Refine 54.81 76.56 48.28 80.06 53.06 70.17 47.40 73.81

Expl. + Refine 55.32 76.74 48.52 79.14 53.17 69.36 48.59 75.80

Table 6: Overall pass@k on MBPP & HumanEval and MBPP+ & HumanEval+, trained with
CodeLlama-34B’s data. Blue numbers show the improvement.

CodeLlama-7B MBPP & HumanEval MBPP+ & HumanEval+

LEDEX SFT LEDEX RL LEDEX SFT LEDEX RL

Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine
pass@1 50.01 +7.21 53.15 +10.54 53.20 +0.05 53.64 +0.49 45.62 +7.18 46.03 +7.63 50.76 +5.14 51.31 +5.28
pass@10 76.88 +4.40 77.00 +4.20 77.42 +0.42 77.33 +0.33 69.57 +3.42 69.74 +2.67 71.65 +2.08 71.98 +2.24

round (e.g., 47.53% vs. 56.75% in Figure 4 (a)). These results demonstrate that LLMs trained with
our pipeline possess strong iterative refinement capabilities, enabling them to achieve progressively
higher pass@k with each additional round of refinement.

4.3 RQ3: Generalizability of approach

4.3.1 Data collection using open source LLM

To demonstrate the generalizability of LEDEX, particularly the independence of our data collection
process from GPT-3.5-Turbo, we substitute GPT-3.5-Turbo with CodeLlama-34B for data collection.
As CodeLlama-34B is a pre-trained model, we incorporate few-shot examples in the prompts to guide
the generation of incorrect code explanations and refinements. All other processes remain unchanged.

Table 5 presents the pass@k results for CodeLlama-7B trained on data collected from CodeLlama-34B,
with Table 6 providing an overall comparison. Although SFT achieves slightly smaller improvements
(around 1–3% lower than with GPT-3.5-Turbo data), it still yields notable gains in overall pass@1 and
pass@10. Additionally, we observe that RL training further enhances performance on the MBPP+

and HumanEval+ benchmarks, with pass@1 improving by 5.28% and pass@10 by 2.24%. These
results demonstrate the generalizability of LEDEX and further suggest that collecting data from a
more powerful LLM can lead to better training outcomes within our framework. Additional results
can be found in Appendix A.4.3.

4.3.2 Data Collection Using Self-Bootstrap

We also investigate the feasibility of using an LLM to self-bootstrap its training data, specifically by
using CodeLlama-7B to generate the data that is then used for its own SFT and RL training.

Table 7 presents the pass@k results of CodeLlama-7B trained with self-bootstrapped data, with
Table 8 showing the overall comparison. Compared to prompting, SFT with self-bootstrapped
data still delivers up to 8.25% and 2.14% improvements in pass@1 and pass@10 on MBPP and
HumanEval, and up to 5.33% and 0.55% improvements on pass@1 and pass@10 on MBPP+ and
HumanEval+. Additionally, RL training using the self-bootstrapped data results in a further 0.71%
improvement on MBPP and HumanEval, and up to a 0.78% increase on MBPP+ and HumanEval+.
These findings suggest that while self-bootstrapped data enables SFT to provide substantial gains
over prompting, RL training offers less improvement compared to using data from stronger LLMs,
such as CodeLlama-34B or GPT-3.5-Turbo.

4.4 RQ4: Quality of generated explanation

We assess whether explanations for incorrect code are useful for developers in understanding their
bugs. To do this, we randomly sample 50 problems with initial incorrect solutions from the MBPP
and HumanEval benchmarks and use different LLMs to generate explanations for the wrong code.

8

Table 7: Pass@k of CodeLlama-7B trained with self-bootstrapped data.

Models Approaches MBPP Humanval MBPP+ HumanEval+

pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

CodeLlama-7B

Init. 45.83 69.24 39.85 68.83 41.78 61.77 33.25 61.50
LEDEX SFT Refine 52.37 74.63 47.04 74.58 46.26 66.39 40.15 67.15

Expl. + Refine 51.80 74.99 45.70 74.72 45.94 65.77 39.10 67.33

Init. 46.28 68.87 39.90 69.49 41.61 61.29 33.66 62.17
LEDEX RL Refine 52.84 74.46 48.37 75.54 46.28 65.86 41.54 68.14

Expl. + Refine 52.34 74.60 46.90 75.70 46.10 65.99 40.79 68.50

Table 8: Overall pass@k on MBPP & HumanEval and MBPP+ & HumanEval+, trained with self-
bootstrapped data. Blue or red numbers show the improvement or deterioration.

CodeLlama-7B MBPP & HumanEval MBPP+ & HumanEval+

LEDEX SFT LEDEX RL LEDEX SFT LEDEX RL

Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine
pass@1 51.05 +8.25 50.29 +7.68 51.74 +0.69 51.00 +0.71 43.77 +5.33 43.16 +4.76 44.35 +0.58 43.94 +0.78
pass@10 74.62 +2.14 74.92 +2.12 74.73 +0.11 74.87 -0.05 66.70 +0.55 66.40 -0.67 66.79 +0.09 67.01 +0.61

Each explanation is scored on a scale from 1 to 5, based on its correctness and helpfulness, where 1
indicates a completely incorrect or misleading explanation, and 5 denotes a correct explanation that
also provides a detailed hint on how to fix the code. Both GPT-4 and human developers are used
as evaluators. For GPT-4, we follow prior work [27] and prompt it to score each explanation. The
results are presented in Table 9. Both SFT and RL lead to improved explanation quality compared to
prompting, with GPT-4 assigning higher scores to models trained using our approach. Notably, the
gap between GPT-3.5-Turbo and the trained LLMs significantly narrows after fine-tuning.

Given the time required for human evaluation, we only asked developers to rate explanations from
StarCoder models and GPT-3.5-Turbo. Each explanation is scored by two developers, and their
ratings are averaged. The human evaluations align with GPT-4’s, confirming that SFT improves
explanation quality over prompting, while RL further enhances explanations by incorporating code
explanation semantics into the reward design. Detailed rubrics and examples of human evaluations
can be found in Appendix A.6.

5 Limitation

One potential limitation of our study is the reliance on specific large language models (LLMs) from
which we collect code explanation and refinement data. Our automated framework is designed to
be independent of any specific LLM, and for this study, we use GPT-3.5, CodeLlama-34B, and
CodeLlama-7B itself to collect training data, and both bring significant improvement through SFT
and RL. However, for future work, it would be interesting to explore the use of other LLMs, including
smaller models or a mix of diverse LLMs, to gather explanation and refinement data.

Additionally, our current experiments only use two types of prompts for enabling LLMs to self-debug:
one that directly asks for refinement and another that first asks for an explanation of the wrong code
followed by refinement. While these prompt designs have shown effectiveness, there might be better
prompt strategies for self-debugging that we have not explored due to resource constraints. Exploring
a broader range of prompt designs could potentially enhance the performance of our framework.
Nonetheless, our proposed training framework is flexible and should be generalizable to different
types of data and prompts, paving the way for future innovations in this area.

6 Related work

6.1 Large language models for code

Large language models (LLMs) have been widely explored across a variety of code-related tasks,
including code generation [5, 8, 6, 7, 10, 9, 12, 28–34], bug fixing [35–38], program testing [39, 40]
and fuzzing [41] and so on. These models have demonstrated impressive capabilities in these domains,
largely due to their strong understanding and generation abilities acquired through extensive pre-

9

Table 9: Average scores of code explanations rated by GPT-4 and developers. SC for StarCoder and
CL for CodeLlama. “-” refers to not applied.

Raters Prompt. SFT RL Prompt. SFT RL Prompt. SFT RL Prompt.
SC-15B SC-15B SC-15B CL-7B CL-7B CL-7B CL-13B CL-13B CL-13B GPT-3.5-Turbo

GPT-4 1.90 2.92 3.18 2.00 3.00 3.10 2.54 2.62 3.24 3.60
Developers 1.73 2.60 2.76 - - - - - - 3.21

training on vast datasets. This pre-training allows them to recognize patterns, understand context, and
generate coherent and contextually relevant code snippets.

However, most existing works in this area focus primarily on improving LLMs to provide the expected
output in a single round of generation. The emphasis has been on enhancing the initial output quality,
minimizing the need for further modifications or iterations. This one-shot generation approach,
while useful, overlooks the potential of iterative refinement, which is a crucial aspect of real-world
programming where initial drafts often require multiple rounds of revision and debugging.

6.2 Self-debugging and self-refinement

Existing techniques have studied the possibility of using LLMs to refine their generations. Yet,
most techniques are prompting LLMs with execution results [13, 14, 42–48] for the refinement.
Such prompting approaches bring limited improvement to smaller open-sourced LLMs compared
to GPT-3.5. Other techniques train LLMs to self-debug. ILF [49] uses human-annotated feedback
information and thus is unscalable, CYCLE [50] and Self-Edit [51] use SFT to fine-tune LLM to
generate the refinement only based on the unit test execution feedback. OpenCodeInterpreter [52]
and EURUS [53] construct high-quality multi-turn interaction datasets using GPT-3.5-Turbo and
GPT-4 to fine-tune LLM for self-refinement.

This work has four differences compared with others that train LLMs: (1) we train LLMs to generate
code explanation followed by refinement, which provides additional information to users, (2) we do
not require human-annotated training data but propose a scalable pipeline to automatically collect and
verify data from another LLM, (3) our data collection pipeline can be generalized to open-sourced
LLM or even the same LLM itself, and (4) we design novel reward functions in the RL training stage,
considering both the code and explanation quality, which beings extra improvement.

7 Conclusion

This work highlights the importance of training open-source LLMs to self-debug and introduces a
scalable framework that includes automated data collection, verification, supervised fine-tuning, and
reinforcement learning with novel reward designs to enhance LLMs’ self-debugging capabilities.
Our data collection process is model-agnostic, as demonstrated by the improvements achieved with
both GPT-3.5-Turbo and CodeLlama. The data verification ensures high quality of code explanations
and refinements. Fine-tuning on this data significantly boosts the LLMs’ self-debugging abilities,
yielding up to a 15.92% increase in pass@1, a 9.30% increase in pass@10, and a 10.15% increase in
successful refinements. Reinforcement learning, utilizing our novel reward design, further enhances
performance, with additional gains of up to 3.54% in pass@1, 2.55% in pass@10, and 3.62% in
successful refinement rates. Comprehensive analytical experiments confirm the generalizability of
our approach and demonstrate the iterative refinement capabilities of the trained models. Moreover,
human evaluations indicate that the LLMs trained with our framework produce higher-quality
explanations, effectively aiding developers in understanding and resolving bugs in source code.

References
[1] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,

Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,

10

William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

[2] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. arXiv preprint arXiv:2203.07814, 2022.

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
with large language models, 2021.

[4] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding
challenge competence with apps. NeurIPS, 2021.

[5] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In EMNLP, pages
8696–8708. Association for Computational Linguistics, 2021.

[6] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. A conversational paradigm for program synthesis. arXiv preprint, 2022.

[7] Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Codegen2:
Lessons for training llms on programming and natural languages. arXiv preprint, 2023.

[8] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D.Q. Bui, Junnan Li, and Steven C. H.
Hoi. Codet5+: Open code large language models for code understanding and generation. arXiv
preprint, 2023.

[9] Fried Daniel, Aghajanyan Armen, Lin Jessy, Wang Sida, Wallace Eric, Shi Freda, Zhong Ruiqi,
Yih Wen-tau, Zettlemoyer Luke, and Lewis Mike. Incoder: A generative model for code infilling
and synthesis, 2023.

[10] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual evaluations on humaneval-x. In KDD, 2023.

[11] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha
Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav
Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
Starcoder: may the source be with you! 2023.

[12] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2023.

11

[13] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug, 2023.

[14] Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Demystifying gpt self-repair for code generation, 2023.

[15] Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun Shern Chan,
Samuel R. Bowman, Kyunghyun Cho, and Ethan Perez. Improving code generation by training
with natural language feedback, 2023.

[16] Lewis Tunstall, Nathan Lambert, Nazneen Rajani, Edward Beeching, Teven Le Scao, Leandro
von Werra, Sheon Han, Philipp Schmid, and Alexander Rush. Creating a coding assistant with
starcoder. Hugging Face Blog, 2023. https://huggingface.co/blog/starchat.

[17] Rafailov Rafael, Sharma Archit, Mitchell Eric, D Manning Christopher, Ermon Stefano, and
Finn Chelsea. Direct preference optimization: Your language model is secretly a reward model.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[18] Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code
generation using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023.

[19] Le Hung, Wang Yue, Deepak Gotmare Akhilesh, Savarese Silvio, and C.H. Hoi Steven. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. arXiv
preprint, abs/2207.01780, 2022.

[20] Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. Rltf:
Reinforcement learning from unit test feedback, 2023.

[21] all-roberta-large-v1, 2024.

[22] Nils Reimers and Iryna Gurevych. Making monolingual sentence embeddings multilingual
using knowledge distillation. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 11 2020.

[23] Schulman John, Wolski Filip, Dhariwal Prafulla, Radford Alec, and Klimov Oleg. Proximal
policy optimization algorithms, 2017.

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

[25] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. Trl: Transformer reinforcement learning, 2020.

[26] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. GPT really correct?
rigorous evaluation of large language models for code generation. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

[27] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

[28] DeepSeek. Deepseek coder: Let the code write itself, 2023.

[29] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

[30] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mixtral of experts, 2024.

12

[31] Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization
in mixture-of-experts language models, 2024.

[32] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian,
Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,
Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,
Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan
Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang,
Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra,
Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu,
Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane
Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and
Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024.

[33] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source
code is all you need, 2023.

[34] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct, 2023.

[35] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of code language models on
automated program repair. In Proceedings of the 45th International Conference on Software
Engineering, ICSE ’23, page 1430–1442. IEEE Press, 2023.

[36] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 1482–1494, 2023.

[37] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin,
and Sameena Shah. How effective are neural networks for fixing security vulnerabilities. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2023, page 1282–1294, New York, NY, USA, 2023. Association for Computing
Machinery.

[38] Soneya Binta Hossain, Nan Jiang, Qiang Zhou, Xiaopeng Li, Wen-Hao Chiang, Yingjun Lyu,
Hoan Nguyen, and Omer Tripp. A deep dive into large language models for automated bug
localization and repair. arXiv preprint arXiv:2404.11595, 2024.

[39] Sungmin Kang, Juyeon Yoon, and Shin Yoo. Large language models are few-shot testers: Ex-
ploring llm-based general bug reproduction. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), pages 2312–2323. IEEE, 2023.

[40] Soneya Binta Hossain and Matthew Dwyer. Togll: Correct and strong test oracle generation
with llms. arXiv preprint arXiv:2405.03786, 2024.

[41] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large
language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language
models. In Proceedings of the 32nd ACM SIGSOFT international symposium on software
testing and analysis, pages 423–435, 2023.

[42] Dong Huang, Qingwen Bu, Jie M. Zhang, Michael Luck, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation, 2024.

[43] Lily Zhong, Zilong Wang, and Jingbo Shang. Ldb: A large language model debugger via
verifying runtime execution step-by-step, 2024.

[44] Hanbin Wang, Zhenghao Liu, Shuo Wang, Ganqu Cui, Ning Ding, Zhiyuan Liu, and Ge Yu.
Intervenor: Prompting the coding ability of large language models with the interactive chain of
repair, 2024.

13

[45] Xueyu Hu, Kun Kuang, Jiankai Sun, Hongxia Yang, and Fei Wu. Leveraging print debugging
to improve code generation in large language models, 2024.

[46] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt,
2024.

[47] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe,
Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad
Majumder, Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback, 2023.

[48] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

[49] Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen,
Kyunghyun Cho, and Ethan Perez. Training language models with language feedback at
scale, 2023.

[50] Yangruibo Ding, Marcus J. Min, Gail Kaiser, and Baishakhi Ray. Cycle: Learning to self-refine
the code generation. Proc. ACM Program. Lang., 8(OOPSLA1), April 2024.

[51] Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code
generation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 769–787, Toronto, Canada, 2023. Association for Computational Linguistics.

[52] Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. OpenCodeInterpreter: Integrating code generation with execution and refinement.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association for
Computational Linguistics ACL 2024, pages 12834–12859, Bangkok, Thailand and virtual
meeting, August 2024. Association for Computational Linguistics.

[53] Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and
Maosong Sun. Advancing llm reasoning generalists with preference trees, 2024.

[54] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1):79 – 86, 1951.

A Appendix

A.1 Limited refinement ability of open-sourced LLMs

We evaluate two prompting strategies for querying LLMs to perform code refinement: one where the
LLMs directly generate the refinement (Figure 5 (3.1)), and another where they first explain why the
code is incorrect before generating the refinement (Figure 5 (3.2)). Table 10 reports the success rates
of refinements generated by StarCoder-15B, CodeLlama-7B, CodeLlama-13B, and GPT-3.5 using
greedy decoding. Generally, LLMs that first explain the incorrect code are more likely to generate
accurate refinements. However, despite these efforts, all three open-source LLMs exhibit limited
refinement capabilities. For example, StarCoder-15B successfully refines only 4.43% to 5.10% of
incorrect code, underscoring the need for training open-source LLMs to enhance their ability to
explain and refine code.

Table 10: The success rate of self-refinement using greedy decoding.

Models MBPP HumanEval
Refine Expl. + Refine Refine Expl. + Refine

StarCoder-15B 2.58 4.43 2.04 5.10
CodeLlama-7B 7.42 6.71 5.32 8.52

CodeLlama-13B 9.80 10.20 5.88 8.24
GPT-3.5 26.24 28.90 32.32 33.33

14

def surfacearea_sphere(radius):
 return 4 * math.pi * radius ** 2

Write a function to find the surface area of a sphere.
Example:
assert surfacearea_sphere(10) == 1256.637
assert surfacearea_sphere(15) == 2827.433

Running the above function returns the following error:
NameError: name 'math' is not defined
So the code does not pass the assertion.
Please explain why the above code is wrong, and fix it.
The error message "NameError: name 'math' is not defined" indicates that the code is trying
to use the math module, which provides mathematical functions, but it has not been imported.
Below is the fixed code.
import math
def surfacearea_sphere(radius):
 return 4 * math.pi * radius ** 2

Running the above function returns the following error:
NameError: name 'math' is not defined
So the code does not pass the assertion.
Please fix it.

import math
def surfacearea_sphere(radius):
 return 4 * math.pi * radius ** 2

NameError: name 'math' is not defined

(1) Task Description (2) Wrong Solution and Unit Test Feedback

(3.1) Ask LLM for Self-Refine (3.2) Ask LLM for Wrong Solution Explanation and Self-Refine

Figure 5: Two different prompts to ask LLM to self-refine: directly asking for refinement (left),
asking for an explanation of the wrong code, and then refining in chain-of-thought (right).

def sum_elements(nums):
 res = sum(nums)
 return res

Write a function to find the summation of tuple elements in the given tuple list.

def sum_elements(nums):
 res = sum([nums])
 return res

TypeError: unsupported operand type(s) for +: 'int' and 'tuple'

The wrong code uses the `sum()` function incorrectly. The `sum()` function expects an iterable as its
argument, but in this code, the `nums` variable is already a tuple. So when you pass `[nums]` to the
`sum()` function, it treats `nums` as a single element of the iterable, which is a tuple. Hence, it
tries to add the tuple to an integer, resulting in a `TypeError`.

Problem
Description

Wrong
Solution

Feedback

Wrong Code
Explanation

Code
Refinement

Explanation of wrong code

Correct code

I have a Python programming task to solve, but my solution got some error messages. Can you explain
why my solution is wrong, and propose the correct code for me?
Task

My wrong code

Error message

You must follow this format:
Explanation of wrong code
<your explanation to the wrong code>
Correct code
<your correct code>

Figure 6: Prompt used for code explanation and refinement data collection.

A.2 Data collection and data format for training

Figure 6 provides an example of the prompt we used to collect code explanation and refinement
training data from GPT-3.5 (the same approach was used for CodeLlama-34B). We set the temperature
to 0.8, allowing GPT-3.5 to generate 10 code explanations and refinements per prompt. The collected
data includes both the explanation of the incorrect code and the corresponding refinement. From this,
we construct two formats of instruction-tuning data for supervised fine-tuning (SFT).

Figure 7 (left) shows an instruction that asks LLMs to provide only the code refinement, where the
instruction includes the task description, the incorrect initial solution, and execution feedback. The
LLMs are trained to generate the refined solution based on this input. Figure 7 (right) presents a
different instruction that asks for both the code explanation and the refinement. By incorporating both
types of instruction data during training, we increase the diversity of the training set and improve the
LLMs’ robustness across different prompts.

A.3 PPO algorithm with separate rewards in RL

We modify the standard PPO algorithm to optimize the explanation and refinement generation based
on their reward separately. Given an LLM (already supervise-fine-tuned) π as the policy model, a
prompt x, a generation y consists of a code explanation and a refinement:

y = [e, r] = {y1, y2, . . . , y|e|, y|e|+1, y|e|+2, . . . , y|e|+|r|}

{yi}|e|i=1 is the explanation of the wrong code, and {yi}|e|+|r|
i=|e| is the refinement. We then define the

advantage A in the PPO algorithm as:

15

<|user|> Write a function to find the
summation of tuple elements in the given
tuple list. <|end|>

<|assistant|>
def sum_elements(nums):
 res = sum([nums])
 return res
<|end|>

<|user|> Running the above code returns the
following error message:
TypeError: unsupported operand type(s) for
+: 'int' and 'tuple'
So the code does not pass the assertion.
Please fix it.
<|end|>

<|assistant|>
def sum_elements(nums):
 res = sum(nums)
 return res
<|end|>

<|user|> Write a function to find the summation of tuple
elements in the given tuple list. <|end|>
<|assistant|>
def sum_elements(nums):
 res = sum([nums])
 return res
<|end|>
<|user|> Running the above code returns the following error
message:
TypeError: unsupported operand type(s) for +: 'int' and
'tuple'
So the code does not pass the assertion. Please:
1. Explain why the above code is wrong.
2. Propose the correct code.
<|end|>

<|assistant|>
The wrong code is using the `sum()` function incorrectly.
The `sum()` function expects an iterable as its argument,
but in this code, the `nums` variable is already a tuple...
def sum_elements(nums):
 res = sum(nums)
 return res
<|end|>

Problem
Instruction

Initial
Solution

Feedback

Refinement

Instruction only asking for code refinement Instruction asking for code explanation and code refinement

Input
Instruction

Output

Figure 7: Two types of instruction tuning data used in SFT and RL.

At = δt + γδt+1 + . . .+ γT −tδT , δt = Rt − V (y<t, x, π) + γV (y<t+1, x, π)

At is the advantage at decoding timestamp t, T = |e|+ |r| is the total length of generation output,
and γ is the discount rate (a hyper-parameter set to 0.99 in our experiment). V (y<t, x, π) is the state
value at generation step t given input x, which is learned and calculated by a linear layer on top of
the policy model π. Rt is the reward at decoding timestamp t, which is calculated as follow:

Rt =

R(r)−KLt(π, π

′) , t = T
R(e)−KLt(π, π

′) , t = |e|

KLt(π, π
′) ≈ log

P(yt|yt−1, x, π)

P(yt|yt−1, x, π′)
, otherwise

where KL is the Kullback–Leibler divergence [54] between the action distribution given by the
updated policy model π and the old policy model π′ before the update.

Instead of assigning both the code and explanation rewards to the entire output, we separate them by
only assigning the explanation reward to the explanation portion. This avoids the issue that a low
reward is assigned to a correct explanation followed by a wrong refinement, and the LLM learns
to keep the correctly generated explanation part and focus on improving the incorrect refinement
portion. For data where only code refinement but no explanation is generated, we use the standard
design to assign the code reward to the code refinement.

Following existing works, the loss of the PPO algorithm training is:

L = −E

[T∑
t=1

log P(yt|y<t, x, π)

log P(yt|y<t, x, π′)
At

]
+ αE

[T∑
t=1

(
V (y<t, x, π)−

(
At + V (y<t, x, π

′)
))2

]

By minimizing this loss, the policy model π (the LLM under PPO training) is trained to generate
explanations and refinements with higher reward but also constrained by not being distracted too
much far away from the supervised-fine-tuned LLM π′.

A.4 Additional results

A.4.1 Comparison with SFT on code generation

Table 11 shows the comparison between CodeLlama-7B trained with LEDEX, and the CodeLlama-7B
trained with code generation data only. Although training with code generation enables LLMs to get
comparable (or even higher pass@k on HumanEval) pass@k on one round of code generation, the

16

LLMs cannot obtain strong self-debugging ability from code generation data. The LLM trained with
code generation data can only improve the pass@k very little after self-debugging. By contrast, the
LLM trained with the full collected data (code generation, code explanation, and code refinement
data) gets significantly higher pass@k after refinement, showing its strong self-debugging ability.

Table 11: Pass@k on MBPP and HumanEval by CodeLlama-7B trained on code generation only, and
that trained with our collected code explanation and refinement data.

Models Approaches MBPP Humanval MBPP+ HumanEval+

pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

Init. 46.18 70.56 40.14 70.37 41.23 60.58 34.22 63.34
Only Code Generation Data Refine 49.18 72.78 42.91 74.57 43.13 61.81 36.12 65.77

Expl. + Refine 49.58 73.07 43.88 75.19 43.58 61.69 36.37 66.24

Init. 48.87 70.89 36.99 69.95 42.97 62.69 30.76 62.52
LEDEX’s Full Data Refine 58.07 77.34 52.65 80.71 51.64 71.04 46.61 74.43

Expl. + Refine 57.98 77.92 52.98 82.22 51.55 70.94 47.62 75.54

A.4.2 Iterative refinement

Figure 8 illustrates the pass@k metric when employing trained CodeLlama-13B for iterative code
refinement. The findings align with those depicted in Figure 4, that both SFT and RL consistently
outperform the prompting approach in each round of refinement. Notably, even after three rounds of
refinement, the prompting method fails to achieve a higher pass@k than what SFT and RL models
attain after just one round. This highlights the substantial advantage of SFT and RL methods in
enhancing code quality. Moreover, the SFT and RL CodeLlama-13B models demonstrate robust
continuous refinement capabilities, maintaining their superior performance across multiple iterations.
This consistent outperformance underscores the effectiveness of SFT and RL strategies in refining
and improving code, suggesting their potential for more efficient and reliable coding practices in
iterative development scenarios.

Figure 8: Pass@k of prompting, SFT, and RL CodeLlama-13B after three iterations of refinements.

A.4.3 Generalizability

The pass@k of CodeLlama-13B trained with data collected from CodeLlama-34B are shown in
Table 12, where RL achieves the highest pass@1 and pass@10 in all the benchmarks. The overall
results are shown in Table 13, and SFT improves the pass@1 by up to 9.14% and pass@10 by 3.47%
on the overall of MBPP and HumanEval, and improves the pass@1 by up to 8.68% and pass@10
by 3.92% on MBPP+ and HumanEval+. Further RL training improves the pass@1 by up to 0.61%
and pass@10 by 0.86%. The improvement brought by RL is significantly larger on MBPP+ and
HumanEval+ (up to 6.80% higher pass@1 and 2.28% higher pass@10), which is consistent with our
finding when using GPT-3.5-Turbo’s training data that RL brings more considerable improvement on
harder benchmarks.

Table 14 presents the success refinement rates achieved by CodeLlama-13B when trained on data
collected from CodeLlama-34B, averaged across four benchmarks. SFT refines 15.60% to 16.83% of
incorrect solutions, outperforming the prompting approach by 3.96% to 4.86%. RL training further
boosts the refinement rate, improving it by 4.78% to 7.14% over SFT. Notably, the improvement from
SFT is somewhat smaller when using CodeLlama-34B’s data compared to GPT-3.5-Turbo’s data,
likely due to the slightly lower quality of explanations and refinements generated by CodeLlama-34B.
However, RL training raises the refinement rate to levels comparable to those achieved with GPT-3.5-

17

Table 12: Pass@k on MBPP and HumanEval by LLMs trained with CodeLlama-34B’s data.

Models Approaches MBPP Humanval MBPP+ HumanEval+

pass@1 pass@10 pass@1 pass@10 pass@1 pass@10 pass@1 pass@10

Init. 42.88 70.85 37.11 74.69 38.93 62.26 30.15 66.27
Prompt. Refine 49.68 75.85 45.78 81.07 46.22 70.14 37.62 72.68

Expl. + Refine 49.97 76.39 45.90 81.18 45.77 70.48 38.36 73.84

Init. 50.61 73.14 44.96 76.85 44.66 63.15 37.98 69.59
CodeLlama-13B LEDEX SFT Refine 59.07 79.52 54.15 83.95 52.87 73.50 46.96 77.40

Expl. + Refine 59.11 79.56 55.04 84.75 53.97 73.66 47.73 78.17

Init. 50.50 73.26 45.62 78.14 44.72 63.40 38.79 71.98
LEDEX RL Refine 59.15 80.21 55.71 85.33 57.74 74.03 56.56 82.23

Expl. + Refine 59.57 80.18 56.08 85.40 56.60 73.17 56.24 82.39

Table 13: Overall pass@k on MBPP & HumanEval and MBPP+ & HumanEval+, trained with
CodeLlama-34B’s data. Blue numbers show the improvement.

CodeLlama-13B MBPP & HumanEval MBPP+ & HumanEval+

LEDEX SFT LEDEX RL LEDEX SFT LEDEX RL

Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine Refine Expl. + Refine
pass@1 57.85 +9.13 58.10 +9.14 58.30 +0.45 58.71 +0.61 50.46 +7.74 51.43 +8.68 57.26 +6.80 56.45 +5.02
pass@10 80.61 +3.47 80.84 +3.27 81.47 +0.86 81.47 +0.63 75.09 +3.92 75.5 +3.65 77.37 +2.28 76.92 +1.42

Turbo’s data, indicating that RL training can mitigate the quality differences between data generated
by open-source LLMs and commercial LLMs.

A.5 Case studies

A.5.1 Correct refinements generated by SFT LLMs

Figure 9 shows an example from the HumanEval benchmark for which the prompting approach fails
to generate correct refinement. The bug in the initial solution is that ‘nlargest‘ returns the largest
elements in descending order, but from the example provided, one can find out that the expected output
is in ascending order. The prompting approach does not work for this example, and the prompted
StarCoder generates a hallucinated explanation and simply repeats the wrong solution. Actually,
such simple repeats of wrong solutions are very common when using the prompting approach,
which supports our motivation to train LLM to self-debug. However, after SFT training, the trained
StarCoder can correctly figure out the reason for test failure and generate the correct refinement.

A.5.2 Correct refinements only generated by RL LLMs

Figure 10 shows an example from the MBPP benchmark for which only the StarCoder trained with
reinforcement learning explains the wrong code correctly, pointing out that the failing test case is be-
cause "this approach does not consider the case where multiple elements have the same
maximum count" (highlighted with green background), and generates the correct refinement. The
SFT StarCoder is unable to diagnose the wrong code correctly.

A.5.3 Robust refinements generated by RL LLMs

Figure 11 shows an example from HumanEval, for which both SFT and RL CodeLlama-13B generate
the correct refinements that pass all the test cases from the HumanEval benchmark. Yet, the refinement
from CodeLlama-13B is not fully correct, as “(x, y, z) == ((int)x, (int)y, (int)z)” is not
equivalent to checking if these numbers are integers. The refinement generated by SFT CodeLLama-
13B (left) fails the harder test cases in HumanEval+, i.e., AssertionError: expect any_int(3.0,

Table 14: Success refinement rate of different approaches over four benchmarks, trained with
CodeLlama-34B’s data. Blue numbers show the improvement.

Models Refine (%) Explain + Refine (%)
Prompt. LEDEX SFT LEDEX RL Prompt. LEDEX SFT LEDEX RL

CodeLlama-13B 11.64 15.60 +3.96 22.74 +7.14 11.97 16.83 +4.86 21.61 +4.78

18

<|user|> Running the above code returns the following error
message:
AssertionError: expect maximum([-3, -4, 5], 3) == [-4, -3, 5],
but was [5, -3, -4]
So the code does not pass the assertion. Please:
1. Explain why the above code is wrong.
2. Propose the correct code.
<|end|>

Correct Explanation and Refinement Generated by SFT
StarCoder

<|assistant|>
def maximum(arr, k):
 from heapq import nlargest
 return nlargest(k, arr)
<|end|>

<|assistant|>
The provided code for the maximum function uses the heapq
module to find the k largest elements in the array.
However, the heapq module only supports finding the k largest
elements in an array.
It doesn't support finding the k smallest elements in an
array.
To fix this issue, you need to use the nsmallest function from
the heapq module.
def maximum(arr, k):
 from heapq import nlargest
 return nlargest(k, arr)
<|end|>

<|user|>Given an array arr of integers and a positive integer
k, return a sorted list of length k with the maximum k numbers
in arr.
Example 1:
Input: arr = [-3, -4, 5], k = 3
Output: [-4, -3, 5]
...
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000,
1000].
3. 0 <= k <= len(arr)
<|end|>

Incorrect Explanation and Refinement Generated by Prompting
StarCoder

<|assistant|>
The wrong code is using the `nlargest` function from the
`heapq` module to find the k largest elements in the array.
However, the `nlargest` function returns the largest elements
in descending order, while we need the largest elements in
ascending order. This is why the output is reversed.

def maximum(arr, k):
 from heapq import nlargest
 return nlargest(k, arr)[::-1]
<|end|>

<|user|> Running the above code returns the following error
message:
AssertionError: expect maximum([-3, -4, 5], 3) == [-4, -3, 5],
but was [5, -3, -4]
So the code does not pass the assertion. Please:
1. Explain why the above code is wrong.
2. Propose the correct code.
<|end|>

<|assistant|>
def maximum(arr, k):
 from heapq import nlargest
 return nlargest(k, arr)
<|end|>

<|user|>Given an array arr of integers and a positive integer
k, return a sorted list of length k with the maximum k numbers
in arr.
Example 1:
Input: arr = [-3, -4, 5], k = 3
Output: [-4, -3, 5]
...
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000,
1000].
3. 0 <= k <= len(arr)
<|end|>

Figure 9: Example for which prompting StarCoder fails to but SFT StarCoder generates the correct
explanation and refinement.

4, 7) == False, but was True, since it fails to realize that 3.0 is not integer. By contrast, the
refinement generated by the RL CodeLlama-13B generates better refinement that passes all the test
cases from HumanEval+.

A.6 Human rating of code explanation

We let developers rate the explanations generated by different LLMs based on the following rubrics,
which consider both the correctness of the statements in the explanations and also helpfulness of the
explanation.

Table 15: Rubrics used for developer rating of LLMs’ generated explanations.

Rates 1 2 3 4 5

Correctness Totally wrong or
misleading

Mostly wrong but
with at least one mi-
nor correct point

Partially correct
explanation with
about 50% wrong

Partially correct ex-
planation with mi-
nor mistakes

Totally correct ex-
planation

Helpfulness Helpless statement
that repeats the er-
ror or is not related
to the bug

Not very helpful
but at least related
to the bug

Provides very
vague hints about
how to understand
the failed test case

Provides vague
hints about how to
fix the wrong code

Provides at least
one clear hints
about how to fix

Figure 12 shows an example of developer rating, where the prompting and SFT StarCoder are rated “1”
since their explanation is wrong and not informative. yet, the RL StarCoder’s explanation successfully
points out that the function should return ‘Not Matched!’ when there is no match.

Figure 13 shows another example, where the prompting StarCoder is rated “2”, as the developer
thinks the explanation is stating a correct fact. By contrast, SFT and RL StarCoder correctly point
out that the function should check if the array is empty or not.

19

<|user|> Running the above code returns the following error
message:
AssertionError: expect max_occurrences([1,2,6,7,0,1,0,1,0]) ==
(1,0), but was 0
So the code does not pass the assertion. Please:
1. Explain why the above code is wrong.
2. Propose the correct code.
<|end|>

Correct Explanation and Refinement Generated by RL
StarCoder

<|assistant|>
def max_occurrences(nums):
 result = max(set(nums), key = nums.count)
 return result
<|end|>

<|assistant|>
The wrong code is using the `max` function to find the item
with the maximum occurrences in the dictionary `d`. However,
the `max` function returns the key with the maximum value, not
the key-value pair itself. So, the code is returning just the
key instead of the key-value pair.
def max_occurrences(numbers):
 d = {}
 for n in numbers:
 if n in d:
 d[n] += 1
 else:
 d[n] = 1
 return max(d.items(), key=lambda x: x[1])
<|end|>

<|user|> Write a python function to find the item with maximum
occurrences in a given list.
Example: assert max_occurrences([1,2,3,1,2,3,12,4,2]) == 2
<|end|>

<|assistant|>
The wrong code uses the `max()` function with the `key`
parameter set to `items.count`. This means that it will find
the element in the set `items` that has the maximum count in
the original list. However, this approach does not consider
the case where multiple elements have the same maximum count.
In such cases, the `max()` function will return the first
element with the maximum count, which may not be the correct
answer.
def max_occurrences(numbers):
 d = {}
 for n in numbers:
 if n in d:
 d[n] += 1
 else:
 d[n] = 1
 max_count = max(d.values())
 max_nums = [num for num, count in count_dict.items()
 if count == max_count]
 if len(max_nums) == 1:
 return max_nums[0]
 else:
 return tuple(max_nums)
<|end|>

Incorrect Explanation and Refinement Generated by SFT
StarCoder

<|user|> Running the above code returns the following error
message:
AssertionError: expect max_occurrences([1,2,6,7,0,1,0,1,0]) ==
(1,0), but was 0
So the code does not pass the assertion. Please:
1. Explain why the above code is wrong.
2. Propose the correct code.
<|end|>

<|assistant|>
def max_occurrences(nums):
 result = max(set(nums), key = nums.count)
 return result
<|end|>

<|user|> Write a python function to find the item with maximum
occurrences in a given list.
Example: assert max_occurrences([1,2,3,1,2,3,12,4,2]) == 2
<|end|>

Figure 10: Example for which the RL LLM generates the correct explanation and refinement.

<|user|> Running the above code returns the following error
message:
AssertionError: expect any_int(1.5, 5, 3.5) == False, but was
True
So the code does not pass the assertion. Please:
1. Explain why the above code is wrong.
2. Propose the correct code.
<|end|>

Robust Refinement Generated by RL CodeLlama-13B

<|assistant|>
def any_int(x, y, z):
 if x + y == z or x + z == y or y + z == x:
 return True
 return False
<|end|>

<|assistant|>
The wrong code is not checking if all the numbers are
integers. It only checks if the sum of two numbers is equal to
the third number. However, the task requires checking if all
three numbers are integers.

def any_int(x, y, z):
 if (x, y, z) == (int(x), int(y), int(z)):
 if x + y == z or x + z == y or y + z == x:
 return True
 return False
<|end|>

<|user|>Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the
other two, and all numbers are integers. Returns false in any
other cases.
Examples
any_int(5, 2, 7) ➞ True
any_int(3, 2, 2) ➞ False
any_int(3, -2, 1) ➞ True
any_int(3.6, -2.2, 2) ➞ False
<|end|>

Non-robust Refinement Generated by Prompting SFT
CodeLlama-13B

<|assistant|>
The wrong code does not check if all the numbers are integers.
It only checks if one of the numbers is equal to the sum of
the other two. This is why the assertion `any_int(1.5, 5,
3.5)` returns True, which is incorrect.

def any_int(x, y, z):
 if x + y == z or x + z == y or y + z == x:
 if all(isinstance(num, int) for num in [x, y, z]):
 return True
 return False
<|end|>

<|user|> Running the above code returns the following error
message:
AssertionError: expect any_int(1.5, 5, 3.5) == False, but was
True
So the code does not pass the assertion. Please:
1. Explain why the above code is wrong.
2. Propose the correct code.
<|end|>

<|assistant|>
def any_int(x, y, z):
 if x + y == z or x + z == y or y + z == x:
 return True
 return False
<|end|>

<|user|>Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the
other two, and all numbers are integers. Returns false in any
other cases.
Examples
any_int(5, 2, 7) ➞ True
any_int(3, 2, 2) ➞ False
any_int(3, -2, 1) ➞ True
any_int(3.6, -2.2, 2) ➞ False
<|end|>

Figure 11: Example for which RL LLM generates more robust refinement.

20

<|user|> Running the above code returns the following error
message:
AssertionError: expect check_literals('The quick brown fox
jumps over the lazy dog.',['horse']) == 'Not Matched!', but
was 'Not matched!'
So the code does not pass the assertion. Please:
1. Explain why the above code is wrong.
2. Propose the correct code.
<|end|>

<|assistant|>
import re
def check_literals(text,literals):
 for literal in literals:
 if re.search(literal,text):
 return "Matched!"
 return "Not matched!"
<|end|>

"AssertionError: expect check_literals('The quick brown
fox jumps over the lazy dog.',['horse']) == 'Not
Matched!', but was 'Not matched!'" indicates that the
code is trying to check if the string 'horse' is in the
text, but the string 'horse' is not in the text.

<|user|>Write a function to search some literals strings in
a string by using regex.
Example:
assert check_literals('The quick brown fox jumps over the
lazy dog.', ['fox']) == 'Matched!'
<|end|>

The wrong code is not handling the case when there is no
match for any of the literals. It is returning 'Not
matched!' immediately when there is no match, instead of
checking all the literals.

The wrong code is not handling the case when there is no
match for any of the literals. It is returning 'Not
matched!' in such cases, but the assertion expects 'Not
Matched!'. This is causing the assertion error.

Task Description, Wrong Solution and Execution Feedback

Explanation by Prompting StarCoder (Rating: 1)

Explanation by SFT StarCoder (Rating: 1)

Explanation by RL StarCoder (Rating: 4)

Figure 12: Example of human rating, where RL StarCoder generates the best explanation.

<|user|> Running the above code returns the following error
message:
IndexError: list index out of range
So the code does not pass the assertion. Please:
1. Explain why the above code is wrong.
2. Propose the correct code.
<|end|>

<|assistant|>
def sort_array(array):
 if sum(array[0], array[-1]) % 2 == 0:
 return sorted(array, reverse=True)
 else:
 return sorted(array)
<|end|>

The error message "IndexError: list index out of range"
indicates that the code is trying to access an element in
the array that does not exist.

<|user|>Given an array of non-negative integers, return a
copy of the given array after sorting,
you will sort the given array in ascending order if the sum(
first index value, last index value) is odd,
or sort it in descending order if the sum(first index
value, last index value) is even.
Examples:
* sort_array([]) => []
* sort_array([5]) => [5]
* sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5]
<|end|> The error message "IndexError: list index out of range"

is occurring because the code is trying to access the
first and last elements of the array using array[0] and
array[-1], but if the array is empty, it will result in
an index out of range error.

The error message "IndexError: list index out of range"
occurs because the code is trying to access the first and
last elements of the array using `array[0]` and
`array[-1]`, but if the array is empty, it will result in
an index out of range error.

Task Description, Wrong Solution and Execution Feedback

Explanation by Prompting StarCoder (Rating: 2)

Explanation by SFT StarCoder (Rating: 4)

Explanation by RL StarCoder (Rating: 4)

Figure 13: Example of human rating, where both SFT and RL StarCoder generate good explanations.

A.7 Potential impact

Using LLMs to help coding is popular nowadays. This work proposes a technique to train LLMs to
explain and self-refine code, which aims to improve developers’ coding experience with LLMs. We
also call for training LLMs to take feedback beyond the prompting approach to improve the LLMs’
self-debugging ability. The technique is supposed to be on the same track as all the existing LLMs
for code generation. Thus, we think no special concerns about broader impact need to be highlighted
here.

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We describe our approach and main novelties, and summarize the main results at
the end of abstract and introduction section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have a limitation section (please refer to Section 5) in the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]

22

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the details of data collection (Section 2.1, Appendix A.2), as well as
experimental setup (Section 3) in the paper. These are enough to reproduce the results described
in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

23

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The datasets are described in Section 2.1 and Appendix A.2. The training details
are described in Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The improvement is considered significant across different models and datasets
with multiple runs. However, statistical significance test does not apply to the code genera-
tion/refinement task this paper studies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: The infrastructure we used to run the experiments are described in Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Code generation and code refinement are widely studied and explored, which aims
to improve developers’ coding experience with LLMs. There is no special concerns of ethics of
the technique.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We describe the potential societal impacts in Section A.7

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

25

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The LLMs and datasets used in this paper are open-sourced and we carefully cite
the original papers that produce them.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets

26

paperswithcode.com/datasets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

	Introduction
	Approach
	Data collection and verification
	Supervised fine-tuning
	Reinforcement learning
	Refinement score
	Explanation score
	Reward design

	Experimental setup
	Result
	RQ1: Code generation and refinement capability
	Pass@k
	Success refinement rate

	RQ2: Iterative refinement ability
	RQ3: Generalizability of approach
	Data collection using open source LLM
	Data Collection Using Self-Bootstrap

	RQ4: Quality of generated explanation

	Limitation
	Related work
	Large language models for code
	Self-debugging and self-refinement

	Conclusion
	Appendix
	Limited refinement ability of open-sourced LLMs
	Data collection and data format for training
	PPO algorithm with separate rewards in RL
	Additional results
	Comparison with SFT on code generation
	Iterative refinement
	Generalizability

	Case studies
	Correct refinements generated by SFT LLMs
	Correct refinements only generated by RL LLMs
	Robust refinements generated by RL LLMs

	Human rating of code explanation
	Potential impact

