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Abstract

Neural networks are notoriously data-hungry.001
This represents an issue in cases where data are002
scarce such as in low-resource languages. Data003
augmentation is a technique that is commonly004
used in computer vision to provide neural net-005
works with more data and for increasing their006
generalization power. When dealing with data007
augmentation for natural language, however,008
simple data augmentation techniques similar009
to the ones used in computer vision such as010
rotation and cropping cannot be employed be-011
cause they would generate ungrammatical texts.012
Thus, data augmentation needs a specific de-013
sign in the case of neural data-to-text systems,014
especially for a structurally rich input format015
such as the ones used for meaning represen-016
tation. This is the case of the neural natural017
language generation for Discourse Representa-018
tion Structures (DRS-to-Text), where the log-019
ical nature of DRS needs a specific design of020
data augmentation. In this paper, we adopt a021
novel approach in DRS-to-Text to selectively022
augment a training set with new data by adding023
and varying two specific lexical categories, i.e.024
proper and common nouns. In particular, we025
propose to use WordNet supersenses for pro-026
ducing new training sentences using both in-027
and-out context nouns. We present a number028
of experiments for evaluating the role played029
by augmented lexical information. The exper-030
imental results prove the effectiveness of our031
approach for data augmentation in DRS-to-Text032
generation.033

1 Introduction034

Data augmentation is a systematic way of increas-035

ing data examples by altering the original data with036

controlled variations (Feng et al., 2021). It is a037

prevalent technique in computer vision (CV) for in-038

creasing dataset size by introducing slightly differ-039

ent and contextually similar examples (Yang et al.,040

2022).041

Augmentation approaches are also becoming 042

popular in many Natural Language Processing 043

(NLP) applications as well. The most commonly 044

used approaches to augment textual data are based 045

on random swapping, random insertion, random 046

deletions, synonyms replacement, back translation, 047

and using generative models to get new context- 048

aware data (Feng et al., 2021; Shorten and Khosh- 049

goftaar, 2019). Notice that data augmentation in 050

NLP is a very challenging task due to the constraint 051

of producing a grammatical augmented text (Hou 052

et al., 2018). Moreover, given the continuous na- 053

ture of images, in CV the augmented version of an 054

image rarely is pragmatically incorrect. In contrast, 055

in NLP, preserving the contextual meaning of the 056

sentence is, usually, a hard constraint. Indeed, bad 057

model performance can be the consequence of aug- 058

mented textual data that is grammatically incorrect 059

or out-of-scope (Dong et al., 2017). 060

Recently, researchers working on text gener- 061

ation from meaning representations, i.e., graph- 062

based Abstract Meaning Representation (AMR) 063

(Banarescu et al., 2013; Flanigan et al., 2016) or 064

Discourse Representation Structure (DRS) (Noord, 065

2019; van Noord et al., 2018; Basile and Bos, 2011; 066

Wang et al., 2021; Amin et al., 2022), have put 067

their efforts into generating text from logical rep- 068

resentations, and vice-versa, using transformers 069

and encoder-decoder-based neural models (Noord, 070

2019; van Noord et al., 2018; Wang et al., 2021; 071

Amin et al., 2022). In this paper, we consider the 072

specific problem of augmenting data in the context 073

of neural DRS-to-Text generation task. DRS rep- 074

resents textual information in the form of events, 075

concepts, and entities, i.e., names as discourse ref- 076

erents usually represented as variables in DRS, 077

and logical relations between these entities i.e., 078

quantifiers, conjunctions, negations, disjunctions, 079

etc. (Bos, 2021; Kamp and Reyle, 1993; Jaszczolt, 080

2023). In Fig. 1 a graphical representation of DRS 081

in box format (on the left), its flattened version i.e., 082
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clausal format (on the right), and its corresponding083

textual representation (on the bottom) is displayed.084

Figure 1: Box format and Clausal format of DRS along
with their textual representation.

Neural DRS-to-Text generation is a type of data-085

to-text generation task that takes the logical repre-086

sentation of a sentence as input and generates text087

as output (Wang et al., 2021; Amin et al., 2022).088

This is an application of text generation from struc-089

tured input data similar to knowledge graphs (Flani-090

gan et al., 2016), RDF triplets data (Gardent et al.,091

2017), and tables (Parikh et al., 2020). Note that,092

in contrast to tables and graphs, the ability to rep-093

resent the structured logical nature of the input as094

a DRS generation allows for a more fine-grained095

investigation of the relation between input and out-096

put in DRS-to-Text. In other words “changing the097

meaning of a DRS in a controlled way, the robust-098

ness of systems can be monitored in detail and as-099

sessed accordingly” (Wang et al., 2021). However,100

this robustness property discourages the applica-101

tion of large language models (LLMs) for augment-102

ing data because LLMs would generate noise in103

the augmented data (Feng et al., 2021; Hou et al.,104

2018; Dong et al., 2017) – see also Section 4.105

In this paper, we exploit the robustness property106

of neural DRS-to-Text generation by designing and107

evaluating data augmentation for the specific cate-108

gories of (i) proper nouns and (ii) common nouns.109

In particular, we have designed and evaluated a pro-110

cedure for augmenting a DRS training dataset by111

adding context-aware new sentences that are pro-112

duced by varying the proper and common nouns in113

the original sentences. We consider different strate-114

gies and propose to use Supersenses Tagging (SST)115

for creating new training sentences using both in-116

and-out context nouns. In this way, we want to117

analyze the role played by lexical information in118

the performance of a neural DRS-to-Text system.119

The research questions and contributions ad-120

dressed in this paper are: 121

• Is it possible to augment a logical data repre- 122

sentation such as DRS? 123

• How to generate new data that is contextually 124

similar to the original one? 125

• What is the role played by the in-and- 126

out contextual vocabulary for char-level and 127

word-level decoder models? And what is 128

the role of grammatical-semantic-pragmatic- 129

world knowledge in learning? 130

• Does augmentation result in an increase or 131

decrease in model performance? 132

• What is the behavior of the state-of-the-art 133

large language models i.e., ChatGPT, while 134

analyzing DRS structures? 135

To the best of our knowledge, apart from the pre- 136

liminary work on augmentation of verbs presented 137

in (Amin et al., 2022), this is the first on data aug- 138

mentation in DRS-to-Text generation analyzing its 139

impact on model performance. 140

Notice that our augmentation techniques could 141

generate factually incorrect texts (e.g., starting 142

from “at dawn, the sun rises”, “at night, the sun 143

rises” could be generated. However, since humans 144

can generate texts that are not factually correct 145

(consider, for example, a sci-fi story), preventing 146

this situation would actually be not beneficial, but 147

detrimental for the system. 148

The statistical nature of the neural networks does 149

not allow for an easy analysis of the kind of knowl- 150

edge really learned by the system. When we pro- 151

vide a specific example as Brad Pitt is an actor, 152

the network is learning that the verb follows the 153

subject (e.g. grammatical competence), and/or that 154

a man can be an actor (semantic and pragmatic 155

knowledge), and/or that a specific man is an actor 156

(world knowledge)? How can we exploit this multi- 157

level nature of neural learning? A side effect of 158

our study on data augmentation is to investigate on 159

these theoretical questions as well. 160

The paper is structured as follows: in Section 2, 161

we describe the procedure adopted for noun aug- 162

mentation; in Section 3, we give architectural in- 163

sights on the neural DRS-to-Text pipeline; in Sec- 164

tion 4, we describe the experimental results of DRS- 165

to-text generation that uses (1) automatic metrics 166

on a standard test set, (2) a reduced test set com- 167

paring the neural system with two general LLMs, 168
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Figure 2: Graphical representation of the DRS transformation as a proper noun (in blue) and common noun (in
green). The DRS on the left generates the sentence Brad Pitt is an actor., while the DRS on the right generates
Louis Olivia is a performer.

and (3) applying both automatic and human eval-169

uation metrics. Finally, in Section 5, we conclude170

the paper.171

2 Logical Data Augmentation with Nouns172

Data augmentation is a relatively complex task in173

the case of neural DRS-to-Text: each augmented174

example in the training set consists of a pair of a175

new DRS structure together with a new correspond-176

ing sentence. While applying systematic transfor-177

mations on training data, it is essential to keep track178

of both types of data representations as they are179

treated as input value pairs in the neural model. So,180

data transformations should be identical and sym-181

metrical on both elements by considering the order182

of meaning representations and textual translations.183

In the DRS-to-Text generation task, we applied184

different augmentation techniques for augmenting185

proper nouns and common nouns. We have used186

the gold version of the Parallel Meaning Bank1187

(PMB) dataset, which is organized in the usual188

train-dev-test split.189

A graphical representation of transformation for190

proper (highlighted in blue) and common (high-191

lighted in green) nouns in DRS is shown in Fig. 2:192

the DRS on the left generates the sentence Brad Pitt193

is an actor, while the DRS on the right generates194

Louis Olivia is a performer (see Table 1).195

1The PMB is developed at the University of Groningen as
part of the NWO-VICI project "Lost in Translation – Found
in Meaning" (Project number 277-89-003), led by Johan Bos.

2.1 Proper Noun Augmentation 196

For proper nouns, we considered two specific name 197

entity (NE) categories, which are the proper name 198

of a person (PER) and of a place i.e., city, state, or 199

country (GPE). We have used spaCy NE recognizer 200

(https://spacy.io) to extract proper nouns from the 201

text. There are a total amount of 3773 proper noun 202

instances for PER and GPE. The proper nouns are 203

divided as follows: person names 57%, city names 204

30%, state names 6%, country names 6%, and 1% 205

other types as shown in Fig. 3.

Figure 3: Distribution of proper noun entities in Gold-
PMB dataset.

206
We have used two procedures for replacing 207

proper nouns to analyze the impact of adding ex- 208

ternal linguistic information to the dataset vocabu- 209
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Transf Type Original Text Transformed Augmented Text
Brad Pitt is an actor. Louis Olivia is an actor.
Alice and Bob work for this company. Maria and Tom work for this company.

Proper Noun Turin is a beautiful city. Venice is a beautiful city.
Indiana is a very famous state. Georgia is a very famous state.
China is one of the top 5 populous countries in the
world.

India is one of the top 5 populous countries in the
world.

Brad Pitt is an actor. Brad Pitt is a performer.
Alice and Bob work for this company. Alice and Bob work for this corporation.

Common Noun Turin is a beautiful city. Turin is a beautiful metropolis.
We painted the house green. We painted the building green.
The book rested on the table. The novel rested on the desk.
Brad Pitt is an actor. Louis Olivia is a performer.
The Mona Lisa hung above the antique table. The Leonardo da Vinci hung above the antique

desk.
Proper and Com-
mon Noun

Alice and Bob work for this company. Maria and Tom work for this corporation.

Noah and Sophia watched a movie at the local the-
ater.

Liam and Emma watched a film at the local cinema.

Oliver and Isabella enjoyed the view of the moun-
tains from the cabin.

Daniel and Lily enjoyed the view of the peaks from
the lodge.

Table 1: Different flavors of augmentation applied to the dataset as single and blended data transformations.

lary2. (1) Replacing them with other proper nouns210

inside the same dataset, i.e., inside context. (2) Re-211

placing them with proper nouns outside the dataset,212

i.e., outside context.213

For replacing proper nouns via outside context214

approach, we choose the person names based on215

the highest frequency of each name cited in the216

world. For the city, state, and country names, we217

replace them based on geographical distribution218

keeping in mind that the GPE names should not be219

in the dataset. Some examples listing proper noun220

augmentation are displayed in Table 1.221

2.2 Common Noun Augmentation222

Replacing a common noun without altering the con-223

textual information of the sentence is a challenging224

task. To tackle this challenge, we adopt a novel Su-225

persense Tagging (SST) approach to associate a cat-226

egory with the noun based on its contextual sense227

in the sentence. For the implementation of SST, we228

have used spaCy again. Based on data examples,229

we extracted 6193 common nouns belonging to the230

26 lexicographic categories of WordNet, includ-231

ing act, artifact, body, cognition, communication,232

event, feeling, food, group, and motion (Ciaramita233

and Johnson, 2003). A graphical distribution of234

SST-based common nouns is displayed in Fig. 4.235

In common noun augmentation, our approach236

considers two procedures: inside/outside dataset237

and preserving/not preserving SS, thus resulting238

in four of the following combinations: (1) Replac-239

ing a common noun with any other common noun240

2While extracting NE, no offensive information was found.

inside the dataset but not preserving SS: “inside 241

context without SS”. Here there is no guarantee of 242

sustaining the contextual sense of the sentence. (2) 243

Replacing a common noun with another common 244

noun having the same category of SS: “inside con- 245

text with SS”. (3) Replacing a common noun with 246

another common noun having the same category 247

of SS but outside the dataset “outside context with 248

SS”. (4) Replacing a common noun with another 249

common noun not having the same category of SS 250

but outside the dataset “outside context without 251

SS”. 252

Note that in this work we have not performed 253

other possible combinations for proper nouns, that 254

is: changing GPE without considering the same 255

class, i.e., changing city with state or country. The 256

motivation lies in the fact that these combinations 257

would radically change the semantics of the sen- 258

tence. In other words, we decided to follow a sort 259

of principle of minimum variation of the meaning 260

for choosing the augmentation strategy. 261

3 Neural DRS-to-Text Pipeline 262

DRS-to-Text generation is a complex data-to-text 263

generation task requiring computationally fast and 264

efficient neural models to transform logical repre- 265

sentations. In our implementation pipeline, we use 266

marianNMT: a Microsoft framework specifically 267

developed for machine translation tasks (Imamura 268

and Sumita, 2018; Junczys-Dowmunt et al., 2018). 269

The architecture of marianNMT is based on GRUs 270

utilized as building blocks of RNN with the ability 271

to process single and multiple encoders i.e., “s2s” 272
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Figure 4: Supersense tagging based categorical division of common noun entities in Gold-PMB dataset.

model and “multi-s2s” model. We further applied273

an attention layer to give more attention to certain274

relevant vector representations of encoded DRS275

(van Noord et al., 2019). Furthermore, we are using276

a bi-LSTM-based encoder (see Fig. 5) that takes277

input from a DRS and decoder to generate text as278

an output. Being a seq-to-seq model, it is mainly279

used in translating text from one language to an-280

other language but this architecture also provided281

promising results in the DRS-to-Text generation282

task (Wang et al., 2021; Amin et al., 2022). We are283

aware that the state-of-the-art DRS-to-text genera-284

tion uses sophisticated neural architectures based285

on treeLSTM (Liu et al., 2021). However, the goals286

of this paper are related to analyze the effects of287

data augmentation in the context of neural DRS-to-288

text generation rather than providing a system with289

the best performances.290

We implement both a character-level decoder291

and a word-level decoder (Wang et al., 2021; Amin292

et al., 2022). The fundamental differences between293

char-level and word-level models are based on in-294

put and output data representations3, i.e., charac-295

ters or words and their ability to handle out-of-296

vocabulary (OOV) words. The former deals with297

OOV words in a seamless way as it processes char-298

acter sequences, while the latter could struggle to299

handle OOV words as it is dependent on the size of300

the included vocabulary.301

For the experimental implementation, we have302

used GPU along with CUDA to boost our model303

performance4. The model architecture and hyper-304

3As our aim is to get a relatively straightforward baseline
NLG system, rather than exploring the full range of text rep-
resentation possibilities, e.g., sub-words, we considered just
two ways to represent text: character-based and word-based.

4On CPU, it will take more than 12 hours to run augmen-

Hyper-Parameters Values
Embedding Dimensions 300
Enc/Dec Cell LSTM
Enc/Dec Depth 2
Mini-batch 48
Normalization Rate 0.9
lr-decay 0.5
lr-decay-strategy Epoch
Optimizer Adam
Validation Metric Cross-Entropy
Cost-Type ce-mean
Beam Size 10
Learning Rate 0.002

Table 2: Hyper-parameter setting of neural model for
experimental implementation.

parameters used in our experiment are focused on 305

LSTM-based encryption decryption cells having 306

epochs-based learning decay strategy while using 307

Adam as an optimizer. We have used cross entropy 308

as the validation metric and ce-mean as the cost 309

type function. Other important hyper-parameters 310

are mentioned in Table 2. 311

We have used the English version of the Parallel 312

Meaning Bank (PMB) dataset. Among the different 313

dataset types, i.e., gold, silver, and bronze, we have 314

worked on the gold (fully manually annotated and 315

corrected version) dataset. Gold-PMB follows the 316

standard dataset division of training, development, 317

and testing files having 6620, 885, and 898 data 318

examples. In the process of augmenting the dataset, 319

we have adopted two types of approaches to trans- 320

form examples. (1) Apply one type of transforma- 321

tion and concatenate it with the original data exam- 322

ples. This approach will result in having more data 323

with one type of data transformation, e.g., proper 324

noun or common noun (indicated with the ‘+’ sign 325

tation experiment.
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Figure 5: Graphical representation of the implementation pipeline for our augmented DRS-to-Text generation
experiments.

Transformation Type Size Examples
Orig Training Examples x1 6620

Orig + P.N. Aug x2 13240
Orig + C.N. Aug x2 13240
Orig + P.N.-with-C.N. Aug x2 13240
Orig + P.N. + C.N. Aug x3 19860

Validation Examples 885
Test Examples 898

Table 3: Impact of dataset size concerning augmen-
tation applied in individual form (indicated as ‘+’) or
blended form (indicated as ‘-’).

in Table 3). We have applied data augmentation326

to training examples only. Development and test327

files are the original ones, without any augmenta-328

tion. (2) Apply multiple possible transformations329

(blend) on each example, e.g., apply proper noun330

and common noun augmentation on one example331

(indicated with the ‘-’ sign in Table 3). So, in this332

approach the training set size is smaller than in333

approach (1): in this way, we emphasize the role334

played by transformations rather than training set335

size.336

In Table 3, we have listed the individual and337

blended data transformation along with training338

examples size to have a clear understanding of all339

variants of data transformation for our experiments.340

341

4 Experimental Results342

Evaluation with automatic metrics. We have con-343

ducted a series of different experiments that focuses344

on analyzing the model performance based on sys-345

tematic alterations in lexical semantics-based input346

representations. We have listed both char-level (see347

Table 4) and word-level (see Table 5) experimental348

results with the BLEU, NIST, METEOR, ROUGE,349

and CIDEr-based automatic evaluation measures350

(Wang et al., 2021; Amin et al., 2022). In these 351

experiments, we have used the standard split of 352

PMB in train-dev-test sets. 353

Analyzing performance on char-level and word- 354

level models enlightens the role played by data 355

augmentation. As our implementation is also con- 356

cerned with possible data transformations, i.e., 357

proper and common nouns, we have analyzed the 358

architectural behavior for both char-level and word- 359

level input data representations. We have listed all 360

char-level results in Table 4 and word-level results 361

in Table 5. If we compare the overall performance 362

of char-level and word-level models, char-level al- 363

ways wins in all aspects of input data. This reflects 364

the fact that the char-level model with the ability 365

to handle OOV words is performing very well in 366

capturing micro-level aspects and data patterns of 367

input DRS. This also shows the effectiveness and 368

morphological accuracy of the char-level model in 369

generating correct output sequences. 370

In the proper noun augmentation, our experi- 371

ments are twofold: (1) inside context and (2) out- 372

side context as discussed in Section 2. Exp. 2− 3 373

(see Table 4) and 11 − 12 (see Table 5) list the 374

results obtained after performing two flavors of 375

proper noun augmentation in char-level and word- 376

level models respectively. 377

The experimental findings show that vocabulary 378

plays a vital role in the case of the char-level model 379

as this is more independent in sequence generation. 380

Therefore, we have the highest score in the char 381

level for the proper noun augmentation outside con- 382

text to the dataset (Exp. 3). On the other hand, 383

the word-level decoder is more focused on vocab- 384

ulary, therefore it has the highest scores in proper 385

noun augmentation inside context to the dataset 386

(Exp. 11). The latter represents the effectiveness 387

of word-level models in generating coherent and 388

grammatically correct output sequences while cap- 389
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Exp. Implementation Type BLEU NIST METEOR ROUGE CIDEr
01 Gold-PMB without Aug 47.72 7.68 39.42 72.59 4.84
02 Orig + P.N. (inside context) Aug 51.37 † 7.96 † 41.19 † 74.78 † 5.15 †
03 Orig + P.N. (outside context) Aug 53.16 † 8.11 † 42.00 † 75.30 † 5.27 †
04 Orig + C.N. (inside context with SS) Aug 50.28 † 7.94 40.90 † 74.24 † 5.02 †
05 Orig + C.N. (inside context without SS) Aug 49.99 † 7.91 40.14 † 74.06 † 4.96 †
06 Orig + C.N (outside context with SS) Aug 50.89 † 7.98 † 40.70 † 74.38 † 5.08
07 Orig + C.N (outside context without SS) Aug 50.63 † 7.93 † 40.39 † 74.33 † 5.06 †
08 Orig + P.N (outside context)-with-C.N (out-

side context with SS) Aug
52.51 † 8.06 † 41.23 † 75.28 † 5.24 †

09 Orig + P.N (outside context) + C.N (outside
context with SS) Aug

54.00 † 8.19 † 42.32 † 76.15 † 5.35

Table 4: Char-based individual and blended proper noun (P.N.) and common noun (C.N.) augmentation experiments.
† shows that the model is statistically significant using Wilcoxon Test wrt all evaluation metrics scores. All
experiments are an average of 5 runs.

Exp. Implementation Type BLEU NIST METEOR ROUGE CIDEr
10 Gold-PMB without Augmentation 32.91 5.80 29.99 61.39 3.49
11 Orig + P.N. (inside context) Aug 44.37 ‡ 7.37 ‡ 36.56 ‡ 69.54 ‡ 4.38 ‡
12 Orig + P.N. (outside context) Aug 42.70 ‡ 7.16 ‡ 35.39 ‡ 67.69 ‡ 4.18
13 Orig + C.N. (inside context with SS) Aug 44.41 ‡ 7.28 ‡ 36.22 ‡ 68.78 ‡ 4.34 ‡
14 Orig + C.N. (inside context without SS) Aug 42.94 ‡ 7.14 ‡ 35.11 ‡ 67.56 ‡ 4.19
15 Orig + C.N. (outside context with SS) Aug 41.84 ‡ 6.97 ‡ 34.25 ‡ 66.38 ‡ 4.05
16 Orig + C.N. (outside context without SS) Aug 42.41 ‡ 7.13 ‡ 35.01 ‡ 67.47 ‡ 4.16 ‡
17 Orig + P.N. (inside context)-with-C.N (inside

context with SS) Aug
43.78 ‡ 7.21 ‡ 35.87 ‡ 68.52 ‡ 4.27 ‡

18 Orig + P.N. (inside context) + C.N (inside
context with SS) Aug

44.39 ‡ 7.36 ‡ 36.63 ‡ 69.53 ‡ 4.29 ‡

Table 5: Evaluation of word-based individual and blended proper noun (P.N.) and common noun (C.N.) augmentation
experiments with baselines. ‡ shows that the model is statistically significant using Wilcoxon Test wrt all evaluation
metrics scores. All experiments are an average of 5 runs.

turing correct syntax and semantic meanings of390

input DRS.391

For common noun augmentation, our experi-392

ments are fourfold: (1) inside context with SS, (2)393

inside context without SS, (3) outside context with394

SS, and (4) outside context without SS: Exp. 4− 7395

(see Table 4) and 13−16 (see Table 5) regard these396

four different flavors of common noun augmenta-397

tion of two models respectively.398

We believe that the important role played by the399

vocabulary holds for common nouns as well, with400

the highest scores of char-level decoder for outside401

context with SS (Exp. 6) and best word-level score402

for inside context with SS (Exp. 13).403

In Exp. 8 − 9 (see Table 4) and 17 − 18 (see404

Table 5), we have applied the best augmentation405

techniques of proper and common nouns (i.e., out-406

side context for char-level model and inside context407

for word-level models) as blended and individual 408

data examples. In Exp. 8 and 17, the augmenta- 409

tion techniques have been applied simultaneously 410

to each input data example (i.e., as we are applying 411

2 data transformations on one example, we name it 412

blended, see proper and common noun example in 413

Table 1). Here dataset examples are concatenated 414

as (original + P.N.-with-C.N.). While in Exp. 9 415

and 18, these augmentation techniques have been 416

applied separately and concatenated as (original 417

+ P.N + C.N) augmentation data examples. Com- 418

paring all experimental results, we achieved the 419

highest scores for char-level and word-level mod- 420

els while applying the best augmentation flavors of 421

P.N and C.N concatenated as separate individual 422

training examples (see Exp. 9 and 18). 423

We tested statistical significance of the results 424

with a Wilcoxon Signed Rank Test (Dror et al., 425
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Model BLEU NIST MET. ROU. CIDEr
Gold-
PMB

45.42 6.43 38.42 71.70 4.75

ChatGPT 9.82 2.63 27.91 39.80 1.59
Claude 11.33 3.05 29.39 42.43 1.69
C.N. Aug 48.70 6.70 39.67 73.38 5.03
P.N. Aug 50.64 6.69 40.67 74.22 5.22
P.N. + C.N.
Aug

51.71 6.79 40.95 74.88 5.30

Table 6: Evaluation of DRS-to-Text by LLMs reporting
scores for the baseline (without augmentation), Chat-
GPT 3.5, Claude 2.0, and our best (augmented) model.

2018).426

Comparing neural DRS-to-Text and LLMs.427

We compare the quality of the generated text428

of our neural DRS-to-Text system with two recent429

general LLMs, ChatGPT 3.5 (OpenAI, 2023) and430

Claude 2.0 (Turpin et al., 2023) in order to provide431

a preliminary insight in the performance of our432

approach with respect to a general LLM that was433

not fine-tuned on the task.434

To capture performance insights, we considered435

a sample of 215 sentences from the test set, both436

(1) on the best neural DRS-to-Text model (see Ta-437

ble 6), and (2) to the prompt of ChatGPT 3.5 and438

Claude 2.0 to get model-generated texts (see the439

exact prompts in the Appendix A). We evaluated440

the output with automatic evaluation metrics scores.441

All scores are listed in Table 6. The experimental442

evaluation clearly states that LLMs being general-443

purpose generative models do not perform well for444

the low-resource domain-specific task thus high-445

lighting the need for task-specific neural models446

for DRS-to-Text generation task.447

Expert Evaluation. Our final evaluation is448

based on the human evaluation of one expert, who449

evaluated the generated text and produced a ROSE450

(Robust Overall Semantic Evaluation) score. As451

defined in (Wang et al., 2021), the ROSE score452

is the conjunction of three 0-1 evaluation scores:453

(1) a Boolean Semantic measure that checks if the454

generated text preserves the true meaning w.r.t. to455

the gold reference; (2) a Boolean Grammatical456

measure that checks if the generated text is not con-457

taining any spelling or grammatical errors; (3) a458

Boolean Phenomenon measure that checks if in the459

generated text the “phenomenon of control is gen-460

erated at all” w.r.t. to the gold reference (Wang461

et al., 2021). If the text passes all these three462

Implementation
Type

Sem. Gram. Phen. ROSE

Gold-PMB 54% 60% 70% 52%
ChatGPT 28% 86% 46% 24%
Claude 34% 86% 44% 34%
C.N. Aug 58% 68% 62% 58%
P.N. Aug 62% 66% 68% 58%
P.N + C.N. Aug 64% 72% 72% 62%

Table 7: Expert Evaluation based on Semantics, Gram-
matical Structure, and Phenomenon for the baseline
(without augmentation), ChatGPT 3.5, Claude 2.0, and
our best (augmented) model.

scores (conjunction), it gets a 1 score, otherwise, 463

it gets a 0 score. In Table 7, we have reported the 464

ROSE scores on a sample of 50 sentences from 465

the test set.This evaluation confirms the quality of 466

our best augmentation model in producing good- 467

quality texts, showing the best results in the ROSE 468

measure too. 469

5 Conclusion 470

In this paper, we have performed a series of ex- 471

periments on data augmentation for neural DRS- 472

to-Text generation. Using the PMB dataset, we 473

adopted a novel approach to augment lexical in- 474

formation in DRS for proper and common nouns 475

along with different in-and-out context transforma- 476

tions. Experimental results reflect both individual 477

and blended implementation scores for our seq-to- 478

seq model. The significantly improved results for 479

the char- and word-level models prove the effec- 480

tiveness and reliability of our proposed approach. 481

Limitations 482

As PMB is a multilingual dataset, we have not ex- 483

panded our implementation on other low-resource 484

languages like Italian, Dutch, and French. As our 485

goal was to study the impact of noun augmentation 486

in the DRS-to-Text generation task, based on litera- 487

ture insights (Noord, 2019; van Noord et al., 2018; 488

Wang et al., 2021; Amin et al., 2022), we experi- 489

mented only with the bi-LSTM-based seq-to-seq 490

model. We have not tried any Transformers-based 491

models yet. 492
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A LLM Prompts for DRS to Text609

generation task610

Prompt
Discourse Representation Structure (DRS) refers to a formal representation used to capture the meaning of a sentence or
a piece of text in a way that can be processed and analyzed by computational systems. Given a clausal format of DRS,
can you generate an English translation of the given DRS?
ChatGPT Response
Absolutely, I can assist you in generating English translations from a clausal format of Discourse Representation
Structure (DRS). Please provide me with the specific DRS you have in mind, and I’ll do my best to provide you with the
corresponding English translation.
Prompt
b2 REF s1
b2 Attribute x1 s1
b2 Value s1 "?"
b2 far "a.01" s1
b2 REF t1
b2 EQU t1 "now"
b2 Time s1 t1
b2 time "n.08" t1
b1 REF x1
b1 PRESUPPOSITION b2
b1 entity "n.01" x1
ChatGPT Response
The provided Discourse Representation Structure (DRS) corresponds to the following English sentence:
"Is it far now in time?"
Explanation:
The lines in the DRS represent the following:
b2 REF s1 introduces a reference to a situation "s1."
b2 Attribute x1 s1 attributes "x1" (later determined to be "it") to situation "s1."
b2 Value s1 "?" indicates that the value of situation "s1" is a question mark, implying an interrogative context.
b2 far "a.01" s1 specifies that situation "s1" is associated with being "far" (distant).
b2 REF t1 introduces a reference to a time "t1."
b2 EQU t1 "now" equates time "t1" with "now," indicating the present time.
b2 Time s1 t1 associates situation "s1" with time "t1."
b2 time "n.08" t1 relates the concept of time "t1" to the noun "time."
b1 REF x1 introduces a reference to an entity "x1."
b1 PRESUPPOSITION b2 establishes a presupposition relationship with "b2."
b1 entity "n.01" x1 indicates that "x1" is an entity, often referred to as "it."
Putting it all together, the English translation is "Is it far now in time?" This DRS representation and its translation
capture the structure and meaning of the given sentence.
Prompt
The translation should be without explanation. Just one line English sentence.
ChatGPT Response
My time is ?.
Actual Translation
How far is it?

Table 8: Example of a prompt and the related response
from ChatGPT 3.5 for DRS-to-Text generation.
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Prompt
Discourse Representation Structure (DRS) refers to a formal representation used to capture the meaning of a sentence or
a piece of text in a way that can be processed and analyzed by computational systems. Given a clausal format of DRS,
can you generate an english translation of the given DRS?
Claude Response
Sure, here is an example of generating an English translation from a clausal DRS format:
Given DRS:
x, y, e
book(x)
person(y)
own(e, y, x)
English translation:
"There is a book x and a person y such that y owns x."
The key aspects are:
The discourse referents x, y, e represent objects or events introduced in the DRS conditions.
The conditions like book(x) and person(y) provide information about these referents.
own(e, y, x) represents a relation between the referents.
These conditions can be translated into English by referring back to the introduced referents and expressing the relations
between them.
Additional discourse context like tense, temporal relations, modality etc. can also be represented in the DRS and
translated appropriately.
So in essence, I would analyze the DRS conditions and referents, identify the objects, events and relations they represent,
and generate corresponding English sentences to verbalize those meanings.
Let me know if you need any other examples of translating DRS representations into natural language!
Prompt
b2 REF s1
b2 Attribute x1 s1
b2 Value s1 "?"
b2 far "a.01" s1
b2 REF t1
b2 EQU t1 "now"
b2 Time s1 t1
b2 time "n.08" t1
b1 REF x1
b1 PRESUPPOSITION b2
b1 entity "n.01" x1
Claude Response
Here is my attempt at translating the given DRS into English:
There is a referent s1.
s1 has the attribute x1.
The value of s1 is "?".
s1 is far away "a.01".
There is a referent t1.
t1 is equated to "now".
s1 occurs at time t1.
t1 is the present time "n.08".
There is a referent x1.
x1 presupposes referent b2.
x1 is an entity "n.01".
In plain English:
There is something s1. It has some attribute x1 and its value is unknown (?). s1 is far away. There is a time t1 which is
the present. s1 occurs at this present time. There is something x1 which presupposes something else b2. x1 is an entity.
Let me know if this translation captures the meaning represented in the DRS or if you have any other feedback! I’m still
learning how to translate from DRS to natural language.
Prompt
The translation should be without explanation. Just one line English sentence.
Claude Response
Here is a one line English translation of the given DRS:
There is a far away entity with an unknown attribute occurring now which presupposes something else.
Actual Translation
How far is it?

Table 9: Example of a prompt and its related response from Claude 2.0 for DRS-to-Text generation.
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