
How to Verify Generalization Capability of a

Neural Network with Formal Methods

Arthur Clavière, Dmitrii Kirov, and Darren Cofer

Collins Aerospace
name.lastname@collins.com

Abstract Generalization of a machine learning (ML) model is its ca-
pability to maintain desired performance on input data to which it was
not exposed during training. A bound on the model generalization error
can provide important evidence of the absence of unintended behavior of
the model, which is the key requirement for safety-critical systems and
software. Such bounds are typically estimated statistically and provide
a level of con�dence that the bound holds. In this paper, we show how
ML model generalization capability and bound can be assessed using
formal methods providing a rigorous mathematical guarantee. We focus
on applications that use neural networks to approximate a function with
a low-dimensional, well-de�ned and bounded input space. We propose
an iterative procedure that starts with partitioning the neural network
input space into regions using one or multiple resolutions. Within each
region, we formalize a property that the error made by the neural net-
work on any data point inside the region is below a given tolerance.
Proving such property provides a formal generalization guarantee for a
given region. We employ an abstract interpretation solver to verify these
properties over the entire input space partition. We iteratively re�ne the
regions in which the proof could not be achieved by sampling or gener-
ating new data, forming a new local partition with higher granularity.
This re�nement follows a heuristic that aims to minimize the amount of
new data to be produced. We demonstrate our methodology by proving
generalization capability of a neural network-based avionics function.

Keywords: Neural Networks · Veri�cation · Formal Methods.

1 Introduction

Machine Learning (ML) is an enabling technology in aviation. ML models, such
as neural networks (NNs), can be used to develop advanced avionics algorithms
for decision making, planning, and perception. They can also e�ciently ap-
proximate existing software, reducing its memory and computational costs [13].
Such ML-enabled components and systems are typically safety-critical. There-
fore, they must undergo rigorous design assurance and certi�cation processes to
be deployed onboard aircraft. Data-driven ML approaches are not fully amenable
to existing standards for assuring safety-critical software, such as DO-178C [19],

2 Arthur Clavière, Dmitrii Kirov, and Darren Cofer

due to several gaps [20]. Aviation industry together with global certi�cation au-
thorities has made signi�cant progress towards new ML-speci�c standard and
guidance that is expected to appear in the next few years [21]. This standard
will cover assurance objectives that are speci�c to ML.

One of the key ML assurance objectives is to provide evidence of the gen-

eralization capability of the ML model, i.e., its capability to maintain desired
performance on input data to which it was not exposed during training. Such
evidence must be provided over the entire Operational Design Domain (ODD),
i.e., space of inputs where the model is designed to operate. The concept of
generalization is not new in the ML community, and the widely accepted best
practice for assessing it is to measure the in-sample error of the ML model (also
called empirical risk) using a test dataset. While in-sample error can help to
detect over�tting problems, it does not provide knowledge on how the model
would perform on unseen data that may occur during operation. Such out-of-

sample inputs may be sources of unintended behavior of the model, which is not
acceptable in safety-critical aviation applications. The European Union Aviation
Safety Agency (EASA) in their AI Concept Paper [3] suggests statistical learn-
ing theory methods to estimate model generalization bounds. Similar objectives
appear in the upcoming ML assurance standard ARP6983 [21] jointly developed
by SAE G-34 and EUROCAE WG-114 working groups. The Federal Aviation
Administration (FAA) also requests to measure both the empirical error and the
level of con�dence that this error holds over the entire input domain [18].

While statistical methods can instrument generalization assessment, it is not
yet clear whether a probabilistic measure of the bound would be acceptable, es-
pecially in high-criticality ML applications. In this paper, we consider a di�erent
perspective by looking for more rigorous, formal generalization guarantees for
ML models. To provide a useful and tangible result, we focus on low-complexity
NN models (tens to thousands learnable parameters) with low-dimensional (in
the order of 10) well-de�ned and bounded input spaces. Such a class of NN
applications is very well represented in the aviation domain (ACAS-XU is one
example). We employ formal methods, which recently have been shown to be
e�ective in ML assurance [10], to de�ne and verify the NN generalization prop-
erty.

Our approach is an iterative procedure that starts with partitioning the NN
input space into regions using one or multiple resolutions. We call these regions
�hyperrectangles�. Their corners correspond to labeled data points from the ex-
isting dataset, which allows us to formalize a local property that the error made
by the NN on any data point inside the hyperrectangle is below a given tol-
erance. Proving such property provides a formal generalization guarantee for a
hyperrectangle, essentially representing a bound on the out-of-sample error. We
employ an abstract interpretation solver to verify these properties over the entire
input space partition. We iteratively re�ne hyperrectangles in which the proof
could not be achieved by sampling or generating new data, forming a new local
partition with higher granularity. This re�nement follows a heuristic that aims

How to Verify Generalization Capability of a NN with Formal Methods 3

to minimize the amount of new data to be produced.

Our contributions can be summarized as follows:

� We propose a mathematical formalization of the NN generalization property,
and a method to prove this property over the entire input domain using NN
veri�ers with abstract interpretation. We discuss the assumptions and the
limitations of the approach.

� We develop a veri�cation procedure that iteratively re�nes regions where the
property could not be proven valid (e.g., due to over-approximations used in
the veri�ers) to maximize the volume of the input space where generalization
proof could be obtained.

� We demonstrate our approach by assessing generalization of a NN-based
advisory system for pilots, which is a safety-critical avionics function.

Our method is currently applicable to NNs with low-dimensional input spaces
(indicatively, number of inputs in the order of 10). Such NNs have a lot of
applications in safety-critical aviation, as well as other domains. We assess the
computational complexity of our algorithm in the paper, and discuss several
performance improvements to enhance scalability.

2 Background

2.1 Neural Network Generalization Assessment

The purpose of generalization assessment is to see how well the NN performs
on the data that it was not exposed to during training. Traditional practice
suggests using a test (holdout) dataset to measure the generalization capability
of the model. Test dataset allows to measure a so-called empirical risk, i.e., to
understand the performance of the NN using the examples (test points) available
in the dataset. Emerging aviation guidance, such as EASA AI Concept Paper [3],
goes beyond this and prescribes an analytical bound on the generalization error
to be estimated. The goal is to estimate a worst-case error that the NN (more
generally, the ML model) could make on any unseen data within its ODD. It
is called the out-of-sample error (or theoretical risk), while the empirical risk
on the test dataset is called the in-sample error. The di�erence between the
two is the generalization gap [9]. Statistical bounds are typically used to assess
generalization of ML models, while this paper proposes an alternative approach
using formal methods.

2.2 Neural Network Formal Veri�cation

Formal analysis of NNs is focused mainly on robustness veri�cation i.e., checking
that a perturbation of an input yields a bounded deviation of the outputs [10].
To verify such properties, several formal veri�cation approaches and solvers

4 Arthur Clavière, Dmitrii Kirov, and Darren Cofer

were introduced. These approaches can be roughly split into complete meth-
ods (e.g., see [23,11,25]) and incomplete methods (e.g., see [26,12,22,24]). The
former provide sound and complete veri�cation, i.e., can always prove or dis-
prove the property, but incur higher computational complexity. The latter rely
on sound over-approximations and trade completeness (i.e., can return Unknown

answers) with higher performance. Improvements in state-of-the-art NN veri�ers
can be observed from the results of the annual Veri�cation of NNs Competition
(VNNComp) [5], where we also submitted several benchmark problems over the
recent years [14,15].

3 Veri�cation Method

Our proposed method applies to regression problems i.e., when the NN outputs
values in R. In the remainder of this section, for the sake of simplicity, we consider
a NN with a single output (Remark 1 explains how the method can be generalized
to multiple outputs).

We adopt the following notation:

� I = ×i=1,...,N [li, ui] is the Operational Design Domain (ODD) of the NN,
captured as a Cartesian product of admissible ranges along the input dimen-
sions, where li and ui are, respectively, the lower and the upper bound of
the i-th dimension (feature), and N is the dimensionality of I;

� N : I → R is the NN to be veri�ed;
� f : I → R is the ground truth function, i.e., the target function to be
approximated with N ;

� H = (H1, . . . ,HQ) is a set of hyperrectangles that form a partition of I;
� Hj = ×i=1,...,N [li,j , ui,j] is the jth hyperrectangle in H;
� N (Hj) = [lN ,j , uN ,j] is the range of outputs of N corresponding to input
points contained in Hj ;

� f(Hj) = [lf,j , uf,j] is the range of outputs of f corresponding to input points
contained in Hj ;

� D = (X,Y) is a dataset where X = {xl}l=1,...,L is a list of inputs and
Y = {yl}l=1,...,L is the list of corresponding outputs (labels), i.e., ∀l : 1 ≤
l ≤ L, yl = f(xl);

� e(x) = |f(x)−N (x)| is the error made by N on input x ∈ I;
� τ ∈ R is the error tolerance of N .

3.1 Prerequisites and Assumptions

Prerequisite 1 The ODD of the NN can be represented as a hyperrectangle

I = ×i=1,...,N [li, ui].

This is a reasonable prerequisite for NNs that model processes grounded in
physical principles. The lower and upper bounds (li, ui) on each input dimension
can be derived from sensor saturations or from the limitations due to physics
(e.g., an aircraft has a limited set of operating conditions, including limited range
for speed and altitude).

How to Verify Generalization Capability of a NN with Formal Methods 5

Prerequisite 2 The dataset D is such that the inputs X constitute a grid cov-

ering the entire ODD. Formally

� Each input dimension i is sampled with ki values Si = {xi,1, . . . , xi,ki
} where

xi,1 = li ≤ xi,2 ≤ . . . ≤ xi,ki
= ui;

� The list of inputs X is the combination of all the possible sampled values

along every input dimension:

X = {(x1,l . . . xN,l) | ∀i = 1, . . . , N, xi,l ∈ Si} (1)

Same as Prerequisite 1, this is reasonable when the NN is used to model a
physical process. The ground truth f is often computable for every input in the
grid X, e.g., through a physics-based simulation model. Moreover, the sampled
values along input dimensions can be obtained with sensitivity analysis.

Informally, Prerequisites 1 and 2 prescribe that the input domain of N is
well de�ned, and the admissible range of each feature can be explicitly de�ned.
Additionally, we specify the following assumption:

Assumption 1 The ground truth function f has a known variation in between

the points of the dataset D. For instance, f can monotonic or K-Lipschitz be-

tween the points of D, i.e., its slope can be bounded by a constant K ∈ R.

3.2 Property Formalization

In our approach, NN generalization capability is formalized by considering the
behavior of the NN on any possible input, i.e., any input within its the ODD.
More speci�cally, we consider a property P which states that the error made by
N on any input x shall be less than a given tolerance τ :

P : ∀x ∈ I, e(x) = |N (x)− f(x)| ≤ τ (2)

The property P states that the worst case error of N on any input within its
ODD I shall not exceed the tolerance τ . This tolerance represents a bound on
the out-of-sample error of the NN and can be allocated from NN performance
requirements.

P is a global property because it is imposed for the entire ODD of the NN. To
facilitate its veri�cation, we break it down into a collection of local properties.
This formalization relies on:

� A partition of the ODD into a set of hyperrectangles H = (H1, . . . ,HQ);
� A set of local properties P1, . . . ,PQ, where the property Pj states that the
error made by N in the hyperrectangle Hj shall not exceed τ :

Pj : ∀x ∈ Hj , e(x) = |N (x)− f(x)| ≤ τ (3)

Since the set H constitutes a partition of the ODD, then P1 ∧ . . .∧PQ ⇒ P.

6 Arthur Clavière, Dmitrii Kirov, and Darren Cofer

Remark 1. The formalization above can be extended to the case where N has
M > 1 outputs. A possible formulation is to specify a dedicated error tolerance
for each NN output. The formulation of P then becomes

P ′ : ∀m = 1, . . . ,M, e(x)m = |f(x)m −N (x)m| ≤ τm (4)

where e(x)m is the error made by N on its mth output and τm is the error
tolerance for the mth output of N .

3.3 Veri�cation Algorithm

To verify the properties formalized above, we propose an algorithm that consists
of four main steps, which are illustrated in Fig. 1 and described below.

Figure 1: Formal veri�cation algorithm for NN generalization assessment.

Step 1 (Partitioning) The �rst step is the partitioning of the ODD in a
set of hyperrectangles H = (H1, ...,HQ), the corners of which are the points
X = {xl}l=1,...,L of the dataset D. This step is made possible given that the
ODD can be represented by a hyperrectangle I (see Prerequisite 1) and that the
inputs X form a grid which covers the entire set I (see Prerequisite 2).

Step 2 (Hyperrectangle retrieval) The second step consists in retrieving
the bounds (li,j , ui,j) of a hyperrectangle Hj from H.

How to Verify Generalization Capability of a NN with Formal Methods 7

Figure 2: Over-approximation of f(Hj) when f is K-Lipschitz.

Step 3 (Computing the reachable outputs of f) This step computes a
sound approximation f(Hj) of the range of the reachable outputs of f from Hj

by:

1. Retrieving the expected outputs at the nj corners of the hyperrectangle Hj ,
denoted by y1,j , . . . , ynj ,j , which are by de�nition available in the dataset D;

2. Computing the range f(Hj) = [lf,j , uf,j] by leveraging Assumption 1 i.e.,
the knowledge available on the variation of the ground truth f in between
the corners of Hj . For instance:
� If f is monotonic inside Hj , then exact bounds can be computed: lf,j =
MIN := minl=1,...,nj

(yl,j) is the minimum values among of the expected
outputs at the corners and uf,j = MAX := maxl=1,...,nj

(yl,j) is the
maximum value;

� If f is K-Lipschitz inside Hj and K is known, then over-approximating
bounds (lf,j , uf,j) can be computed (see Figure 2):{

lf,j = MIN− δ
uf,j = MAX+ δ

(5)

where δ = MIN−MAX+K ·∆ and ∆ is the maximum distance between
two inputs in Hj i.e., ∆ = |(l1,j , . . . , lN,j) − (u1,j , . . . , uN,j)|, where li,j
is the lower bound of Hj along the ith dimension and ui,j is the upper
bound of Hj along the ith dimension.

Step 4 (Computing the reachable outputs of N) This step computes a
sound approximation N (Hj) of the range of the reachable outputs of N from
Hj . It can be computed, for example, based on abstract interpretation, i.e., by
relying on an abstract transformer N# that soundly approximates the semantics
of N :

N (Hj) = N#(Hj) (6)

8 Arthur Clavière, Dmitrii Kirov, and Darren Cofer

Remark 2. If N involves pre-processing and post-processing functions, they also
need to be handled by dedicated abstract transformers. Since pre-processing and
post-processing are often linear transformations that do not introduce any depen-
dency among input variables, they can be handled e�ciently with a transformer
based on interval abstract domain.

Figure 3: Computation of an upper bound on the error made by N in the hyper-
rectangle Hj .

Once the range N (Hj) is computed, it is compared to the range f(Hj) from
Step 3 to determine an upper bound on the error made by the NN in the hyper-
rectangle Hj i.e., a bound Ej ∈ R such that:

∀x ∈ Hj , e(x) = |f(x)−N (x)| ≤ Ej (7)

where e(x) is the error made by N on the input x ∈ Hj .

By de�nition, for all input x in Hj :{
f(x) ∈ f(Hj) = [lf,j , uf,j]
N (x) ∈ N (Hj) = [lN ,j , uN ,j]

(8)

Hence,

f(x)−N (x) ∈ [lf,j − uN ,j , uf,j − lN ,j]
⇒ |f(x)−N (x)| ≤ max(|lf,j − uN ,j |, |uf,j − lN ,j |)︸ ︷︷ ︸

Ej

(9)

Finally, it can be checked if the bound on the error Ej := max(|lf,j −
uN ,j |, |uf,j − lN ,j |) is less than the error tolerance τ . There are two possible
outcomes:

How to Verify Generalization Capability of a NN with Formal Methods 9

(a) Property valid (b) True negative (c) False negative

Figure 4: Examples of outcomes of Step 4 of the algorithm. The exact set of the
reachable outputs of N is represented in dark purple for illustrative purposes.

� If Ej ≤ τ , the property Pj is proven valid i.e., the error made by N in Hj

is e�ectively less than the error tolerance τ (see Figure 4a);
� If Ej > τ , no conclusion can be drawn on the validity of the property Pj

which remains Unknown. Indeed, two cases are possible:
1. True negative: the property Pj is invalid and there exist a counterexam-

ple i.e., an input x∗ ∈ Hj such that e(x∗) > τ (see Figure 4b);
2. False negative: the property Pj is valid, yet, due to the approximation

of the reachable outputs of either f or N , the bound Ej on the error is
too conservative and does not allow to prove Pj valid (see Figure 4c).

In the latter case where Ej > τ , to decide whether this is a true negative or a
false negative, a simple counterexample search can be performed. The error can
be computed for every corner of the hyperrectangle Hj , for which the expected
outputs y1,j , . . . , ynj ,j are available in the dataset. If there exists a corner where
the error is greater than τ then this is a counterexample which disproves that
the property Pj holds. Otherwise, a re�nement of the hyperrectangle Hj can be
performed, as explained in Section 4.

Steps 2, 3 and 4 are repeated until all the hyperrectangles composing the set H
are analyzed. Once the analysis is complete, one can:

� Determine the ratio of the volume of the ODD where the generalization
property is valid;

� Record the list Hunknown of all the hyperrectangles of H where the validity
of the property Pj remains unknown.

The latter output can be used to design a monitor that during operation can
detect whether the incoming input belongs to one of the unproven hyperrectan-
gles, in which case the NN is not activated (e.g., a backup algorithm can be used
instead or a warning can be shown). This can ensure a safe usage of the NN.

Remark 3. While we employ abstract interpretation to compute NN reachable
outputs at Step 4, other approaches can also be used, such as SMT solvers, if the
NN has piecewise linear activation functions. One can express the existence of a

10 Arthur Clavière, Dmitrii Kirov, and Darren Cofer

counterexample as the existence of an x in Hj such that the following disjunction
holds:

(N (x)− lf,j ≥ τ) ∨ (lf,j −N (x) ≥ τ) ∨ (uf,j −N (x) ≥ τ) ∨ (N (x)− uf,j ≥ τ)

The four clauses in this disjunction can be checked with SMT. If none of them
is satis�able, i.e., there exists no x such that they are satis�ed, then there exists
no counterexample and the property Pj can be concluded valid.

3.4 Implementation and Optimizations

The veri�cation method is currently implemented in MATLAB and the abstract
transformer N# of N relies on the MATLAB Deep Learning Toolbox Veri�ca-
tion Library [1] which implements the DeepPoly approach [22]. This approach
leverages a dedicated, polytope-based abstract domain for the analysis of NNs.
It o�ers a good balance between accuracy (i.e., tightness of the bounds of the
range N (Hj) of the reachable outputs of N) and cost of the analysis (time to
compute the range N (Hj) with N#). In addition, vectorization and sorting and

indexing, have been implemented to accelerate the execution of the method.
These optimizations are described below.

Vectorization Current hardware and software provide direct support for vec-
tor operations where a single instruction is applied to multiple data. This o�ers
a faster execution time compared to applying the instruction to a single data.
Therefore, Steps 2, 3 and 4 of the method are vectorized such that the corre-
sponding operations are applied not to a single hyperrectangle but to a batch

of hyperrectangles: Step 2 retrieves a batch Hj1 , . . . ,HjB of B hyperrectangles.
Then Steps 3 and 4 are applied to these B hyperrectangles to assess the validity
of the corresponding batch of properties Pj1 , . . . ,PjB .

Sorting and Indexing When the dataset D is large, searching D for the ex-
pected outputs at the corners of a speci�c hyperrectangle (as needed in Step 3)
is a costly operation, which may take signi�cant time compared to the computa-
tion of the reachable outputs of the NN with abstract interpretation. To mitigate
this, the dataset D can be sorted and the set H can be indexed. In our imple-
mentation, the dataset is sorted based on the values of the inputs: X is sorted in
ascending order of the value of the �rst input dimension, then where the value of
the �rst input dimension is identical, X is sorted in ascending order of the value
of the second input dimension, and this is repeated until last input dimension.
The list Y is then sorted such that its lth element is the expected output for the
lth input in the sorted list X. The indexing of the set of hyperrectangles is done
by considering that H is ordered in ascending order of the lower bound of the
�rst input dimension, then where the lower bound of the �rst input dimension
is identical, H is ordered in ascending order of the lower bound of the second
input dimension, and this is repeated until last input dimension:

How to Verify Generalization Capability of a NN with Formal Methods 11

H1 = [x1,1, x1,2]× . . .× [xN,1, xN,2]
H2 = [x1,1, x1,2]× . . .× [xN,2, xN,3]
H3 = [x1,1, x1,2]× . . .× [xN,3, xN,4]

...
HQ = [x1,k1−1, x1,k1

]× . . .× [xN,kN−1, xN,kN
]

(10)

where, as indicated in Prerequisite 2, the values xi,1, . . . , xi,ki
are the sampled

values along the ith input dimension, de�ning the inputs in X and thus the
corners of the hyperrectangles. The hyperrectangle Hj of index j is the jth

hyperrectangle in this ordered set. Considering this indexing ofH and the sorting
of the dataset D:

� At Step 1, the setH needs not to be stored: it can be represented simply with
the list (Qi)i=1,...,N where Qi is the number of hyperrectangles along the i

th

input dimension i.e., Qi = ki − 1, and the total number of hyperrectangles
Q =

∏
i=1,...,N Qi. The set H can be explored by iterating over the index j

between 1 and Q;

� At Step 2, the bounds of the hyperrectangle Hj of index j can be determined
based on the sampled values along each inputs dimension and an iterative
euclidean division of the index j by the values Qi;

� At Step 3, similarly as the retrieving of the bounds of Hj , the expected
outputs y1,j , . . . , ynj ,j at the corners of Hj can be retrieved by determining
their indices in the sorted listY with iterative euclidean divisions, alleviating
the cost of searching Y for the combination of the N input values de�ning
each corner of Hj .

3.5 Complexity

The computational complexity of the veri�cation method was computed, based
on the following considerations:

� The number of hyperretangles to be analyzed is in O(L) where L is the size
of the datasetD. Indeed, L =

∏
i=1,...,N ki where ki is the number of sampled

values along the ith input dimension and the number of hyperrectangles is
Q =

∏
i=1,...,N ki − 1;

� With sorting the data and indexing the hyperrectangle, the retrieval of the
N bounds of a hyperrectangle Hj from H is in O(N) where N is the number
of input dimensions. Moreover, the retrieval of the expected outputs at the
corners of a hyperrectangle is in O(2N) i.e., the number of corners of the
hyperrectangle;

� The complexity of the computation of the reachable outputs of N from a
hyperrectangle Hj with the DeepPoly approach is in O(n2

layers · n3
neurons)

where nlayers is the number of layers of N and nneurons is the maximum
number of neurons in one layer [22].

12 Arthur Clavière, Dmitrii Kirov, and Darren Cofer

Consequently, as the veri�cation consists in retrieving the bounds and ex-
pected outputs at the corners of the Q hyperrectangles, and apply the DeepPoly
approach on each of them, the total complexity is in O(L ·2N ·n2

layers ·n3
neurons).

The applicability of the method is thus limited by three factors being: (1) the
size of the dataset, (2) the number of input dimension and (2) the size of the
NN. In practice, the method is applicable for low dimensional input spaces (N
in the order of 10) and low-complexity NNs (number of learnable parameters in
the order of 100− 1000).

4 Veri�cation Work�ow

Figure 5: Iterative work�ow with veri�cation-driven re�nement.

The possibility of proving the property (3) depends on the size of the hy-
perrectangle. Larger intervals lead to coarser approximations during veri�cation
and increase the risk of not being able to prove the property, i.e., to get an Un-

known answer from the solver. A possible mitigation is to create a dataset with
very high resolution, so that the hyperrectangles are "small enough". This may
not be practical, for example, if running simulations to create data points are
expensive or data generation is owned by a third party. Therefore, it is highly
desirable to minimize the number of data points required to obtain the proof.

To this end, we propose a veri�cation work�ow that iteratively veri�es the
property and re�nes only those regions where the property could not be proven,

How to Verify Generalization Capability of a NN with Formal Methods 13

which we call veri�cation-driven data generation. This is implemented by a ded-
icated veri�cation work�ow, illustrated in Figure 5, which is composed of three
main blocks: a Veri�er, an Analyzer and a Generator. These three blocks are
executed sequentially, as follows:

1. The Veri�er implements the veri�cation method described in Section 3, par-
titioning the ODD into a set H of hyperrectangles and checking the local
property Pj in every of these hyperrectangles. It outputs the listHunknown of
the hyperrectangles where the validity of the property Pj remains unknown;

2. The Analyzer performs a re�nement that splits the hyperrectangles pertain-
ing to Hunknown into smaller hyperrectangles (see Figure 6). It outputs a list
of new inputsXnew, which are the corners of the smaller hyperrectangles, for
which the expected outputs need to be computed to apply the veri�cation
method;

3. The Generator computes the outputs Ynew = f(Xnew) for the corners of
re�ned hyperrectangles, i.e., it is a labeling procedure.

Figure 6: The Analyzer splits the hyperrectangles where the property is unknown,
with a hyperrectangles of size r′2 smaller than the original size r2.

These three steps are repeated iteratively, until a termination criteria is
reached. Such a criteria can be either:

1. The maximum resolution of inputs is reached;
2. Making further re�nements is too costly;
3. The results are acceptable e.g., the volume of the regions where the prop-

erty could not be proven is su�ciently small with respect to NN or system
requirements.

An important hyperparameter of this work�ow is the re�nement performed
by the Analyzer i.e., how every hyperrectangle dimension is split at each itera-
tion. To determine this re�nement, a hyperparameter tuning process is performed

14 Arthur Clavière, Dmitrii Kirov, and Darren Cofer

before running the veri�cation work�ow. This hyperparameter tuning relies on
a heuristic that aims to �nd the re�nement which maximizes the number of
properties Pj proven valid after a given number of iterations, while minimizing
the number of new data to be generated through the iterations. This heuristic
consists in (1) de�ning a set of candidate re�nements and (2) estimating the
e�ciency of these candidate re�nements. For (1), a grid search approach can be
followed e.g., consider the re�nements which bisect all possible combinations of
hyperrectangle dimensions. Expert knowledge about the ground truth or sensi-
tivity analysis may also be used to identify the hyperrectangle dimensions to be
split preferentially, and de�ne a set of candidate re�nements which split only
these speci�c hyperrectangle dimensions. For (2), every candidate re�nement is
evaluated by running a modi�ed version of the veri�cation work�ow, where the
Generator is replaced with linear interpolation. The use of linear interpolation
in this context allows estimating the e�ciency of the candidate re�nement i.e.,
the number of new data generated and the number of properties proven valid
after a given number of iterations. Moreover, it avoids the cost of computing the
ground truth function f for generating the new data.

5 Evaluation

5.1 Pilot Advisory System Case Study

The veri�cation work�ow presented in Section 4 is evaluated against an advisory
system used onboard aircraft to provide the pilot with the optimal altitude.
This advisory system takes as inputs a candidate optimal altitude as well as
several variables describing the current state of the aircraft (weight, speed) and
the weather conditions (wind, temperature). It outputs the cost of �ying at
the candidate altitude given the current state of the aircraft and the weather
conditions.

This advisory system is implemented as a NN with ReLU activation functions
and two hidden layers of 13 neurons each. This NN aims to approximate a tra-
ditional implementation of the advisory system while o�ering reduced execution
time and memory footprint. Regarding generalization capabilities, it is expected
that, for any input in the ODD, the relative error made by the NN is less than
5% compared to the traditional implementation. Formally, if N denotes the NN
implementing the advisory system, f the traditional implementation and I the
ODD, the desired property is:

P5% : ∀x ∈ I, e(x) = |f(x)−N (x)| ≤ 5% · |f(x)| (11)

where the tolerance on the error made by N on input x i.e., the quantity 5% ·
|f(x)|, depends on the value of the input x. As one can note, this is slightly
di�erent from the property P addressed by our veri�cation method, where the
tolerance on the error is a �xed value τ ∈ R (see Equation 2). This di�erence
was handled by reformulating each local property Pj as:

How to Verify Generalization Capability of a NN with Formal Methods 15

Pj,5% : ∀x ∈ Hj , e(x) = |f(x)−N (x)| ≤ τj,5% (12)

where τj is such that:

∀x ∈ Hj , τj,5% ≤ 0.05 · |f(x)| (13)

To satisfy this condition, τj,5% was taken equal to 5% of the minimum of
|f(x)| in Hj i.e. τj,5% := lf,j where lf,j is the lower bound on the reachable
outputs of f from Hj . Indeed, minx∈Hj

|f(x)| = minx∈Hj
f(x) = lf,j since f(x)

is a cost, assumed to take positive values only.

5.2 Experiments

The veri�cation of the advisory system was performed with a datasetD = (X,Y)
containing 4 million points. As required by Prerequisite 2, this dataset D consti-
tutes a grid which covers the entire ODD of the advisory system. In addition, the
variation of the traditional implementation f is known (monotonic) in between
the points of this dataset D, satisfying Assumption 1.

Table 1: Results of the generalization assessment of the advisory system with 3
iterations of the veri�cation work�ow, run on Windows machine and NVIDIA
RTX A6000 GPU with 48GB memory.

Iteration 1 Iteration 2 Iteration 3

Number of Data 4M 66M 171M
Number of Hyperrectangles 2M 48M 164M

Ratio of volume proven valid 0% 59% 91%
Ratio of volume proven invalid 4% 2% 2%
Ratio of volume unknown 96% 39% 7%

Time elapseda 3 minute 15 minutes 35 minutes

a This time includes only the time to run the Veri�er and the Analyzer, excluding
the time to run the Generator which computes the new outputs by executing the
traditional implementation f .

The generalization assessment of the advisory system was performed with
the following choice of hyperparameters:

� A number of 3 iterations of the veri�cation work�ow i.e., three executions of
the Veri�er, Analyzer and Generator;

� A batch size B of 1 million hyperrectangles for the vectorization of the
operations involved in the Veri�er and the Analyzer;

16 Arthur Clavière, Dmitrii Kirov, and Darren Cofer

� A re�nement (i.e., how the Analyzer re�nes the unknown hyperrectangles at
each iteration) determined with the heuristic described in Section 4: several
candidate re�nements were de�ned, based on expert knowledge and sensi-
tivity analysis, and tested by running 3 iterations of the work�ow and using
linear interpolation to generate the new data instead of the ground truth.

The results of the generalization assessment are given in Table 1, which shows,
for each iteration of the work�ow:

� Amount of data generated since �rst iteration. At iteration 1, this number
is the size of dataset D while at iteration 2, it is the size of D plus the
number of data generated to re�ne the unknown hyperrectangles Hunknown

in iteration 1;
� Number of hyperrectangles analyzed since �rst iteration;
� Ratio of the volume of the Operational Design Domain I where the desired
property Pj,5% is proven valid i.e., the ratio between (i) the sum of the
volumes of the hyperrectangles Hj where Pj,5% is proven valid and (ii) the
total volume of the ODD;

� Ratio of the volume of the ODD I where the desired property Pj,5% is
proven invalid (through counterexamples found at one corner of the invalid
hyperrectangles);

� Ratio of the volume of the ODD I where the validity of the desired property
Pj,5% remains unknown;

� Time elapsed since the �rst iteration (excluding the time to run the Gener-
ator which computes new outputs with f).

It can be seen that after 3 iterations of the work�ow, the desired property can
be proven valid in 91% of the total volume of the ODD, requiring a total of 171
million data points to be generated and 35 minutes of veri�cation time. The iter-
ative re�nements of the unknown hyperrectangles provide a signi�cant increase
of the volume where the property is proven valid, from 0% at iteration 1, due to
the large size of the hyperrectangles de�ned by the initial dataset D, to 59% at
iteration 2 and 91% at iteration 3. In the remaining 9% of volume at iteration
3, 7% remains unknown and 2% is proven invalid. This ratio where the property
is proven invalid decreases along the iterations. This is due to the fact that in-
valid hyperrectangles are also re�ned along iterations: only some of the re�ned
hyperrectangles have invalid corners while the other re�ned hyperrectangles are
not invalid, hence the decreasing ratio of invalid areas.

Comparison with Statistical Methods As mentioned in the related work,
several statistical methods can also be applied to assess the property Pj,5% which
we veri�ed formally with our work�ow. These statistical methods were also ap-
plied to the advisory system [6]. To reach the desired con�dence level, statistical
methods required to generate 109 data, which is one order of magnitude above
the amount of data generated in our veri�cation, representing additional com-
putational cost. Moreover, one advantage of the formal veri�cation compared to

How to Verify Generalization Capability of a NN with Formal Methods 17

statistical methods is the possibility to identify the hyperrectangles where the
property cannot be proven valid. This information can be leveraged for instance
to design a real-time monitoring mechanism, such as a safety net [7], which
switches to the traditional implementation f when the input lies in one of these
areas.

Evaluation of Optimizations The acceleration of the veri�cation time due to
optimizations discussed in Section 3.4 was also measured. It was observed that
the vectorization of the operations with batches of 1 million hyperrectangles,
parallelized on a 48GB memory GPU, provides an acceleration by a factor in
the order of 104. Regarding the sorting and indexing of data and hyperrectangles,
it was observed that it provides an acceleration by a factor in the order of 102

to 103, depending on the size of the dataset and the number of hyperrectangles.

6 Related Work

Model generalization is an important topic in theoretical machine learning,
speci�cally in the �eld of statistical learning theory. The study of quantitative
generalization bounds has a rich history that started with seminal works, such
as VC-dimension and Rademacher complexity, and produced various forms of
bounds since then [9]. Many bounds are based on the Probably Approximately
Correct (PAC) Bayesian theory (e.g., see [17], [8]). Such bounds are often vacuous
and thus impractical for deep learning applications [16], but can be computed
su�ciently tight for low-complexity NNs, which are the focus of this work. Still,
to achieve high con�dence levels (e.g., 99.9% and beyond) that is required for as-
suring a safety-critical NN, very large sample may be needed, whereas producing
additional data points may incur high costs due to various reasons (expensive
to generate, data owned by a third party, etc.). In contrast to statistical meth-
ods, our generalization assessment approach is based on formal methods and
provides mathematical guarantees on the validity of the generalization property
(basically, a 100% con�dence). We have also shown that this approach requires
signi�cantly less data points for the analysis.

The use of formal methods for learning assurance of safety-critical ML appli-
cations in aviation is discussed in [10] and [2]. The report provides seminal ideas
for generalization assessment guarantees, but no practical solution, which is in-
stead materialized in this paper. Additionally, a similar approach for dividing
the NN input space into sub-regions (called "boxes") has been presented in [7].
However, their work focuses on veri�cation of the ACAS-XU system, which is
based on classi�cation NNs. Our current result has been produced for regression
NNs, however, the generalization property can be reformulated for classi�cation
networks as well, so that the method would apply to ACAS-XU and similar
problems. This merely depends on how the tolerance is de�ned in the property.
In [4], formal methods are used for NN generalization assessment: several NNs are
trained independently and formal methods are used to identify the NNs which
are in agreement across all inputs in a speci�c domain. This approach evaluates

18 Arthur Clavière, Dmitrii Kirov, and Darren Cofer

generalization by comparing several independently trained NNs, implying that
the NNs which are in agreement have learned decision rules that generalize well
to all inputs. However, our work focuses on verifying a NN against the ground
truth and providing a proof that the error made by the NN, compared to the
ground truth, is below a given tolerance.

Finally, it is worth noting that generalization capability is one of the key
ML assurance objectives in the emerging aviation guidance, including [3], [21]
and [18]. These documents may use di�erent terminology (for example, the FAA
does not explicitly speak about generalization, but rather refers to measuring
expected empirical error and level of con�dence that it corresponds to the true
error), but the expected evidence is the same. Our approach can complement
the anticipated means of compliance for generalization objectives with formal
methods-based approaches that have a clear bene�t of providing formal guaran-
tees rather than statistical. Even though analyzing deep learning models remains
a challenge for formal methods due to scalability barriers, this approach can
extensively support low-complexity NNs that �nd many applications in safety-
critical aviation systems.

7 Conclusion

We presented a mathematical formalization of the generalization property for
NNs, and a method to prove this property with formal analysis. We also pro-
posed a work�ow that limits the amount of data required for obtaining the proof
by combining the veri�cation method with an iterative re�nement of the regions
where the property could not be proven valid. We demonstrated the applicabil-
ity of the approach on a realistic case study of a safety-critical pilot advisory
system that uses a low-complexity regression NN. Our results provided formal

generalization guarantees for the signi�cant portion of the NN input space and
used orders of magnitude fewer data points compared to an existing statistical
method that was employed to verify this NN. Future work will focus on enhanc-
ing the choice of the work�ow hyperparameters, such as the choice of the optimal
re�nement strategy. We further plan to extend the work�ow to support NN im-
provements (e.g., �ne tuning). Finally, we also plan to assess the scalability of
the approach on higher complexity NNs to identify further optimizations.

References

1. Deep learning toolbox veri�cation library. https://fr.mathworks.com/products/deep-
learning-veri�cation-library.html, accessed: 2025-04-29

2. Machine Learning in Certi�ed Systems. Tech. rep., DEEL Certi�cation Working
group (2020)

3. EASA Arti�cial Intelligence Concept Paper Issue 2: Guidance for Level 1&2 ma-
chine learning applications. Tech. rep., EASA (March 2024)

4. Amir, G., Maayan, O., Zelazny, T., Katz, G., Schapira, M.: Verifying Generalization
in Deep Learning. In: Computer Aided Veri�cation. pp. 438�455. Springer (2023).
https://doi.org/10.1007/978-3-031-37703-7_21

How to Verify Generalization Capability of a NN with Formal Methods 19

5. Brix, C., Bak, S., Johnson, T.T., Wu, H.: The Fifth International Veri�cation of
Neural Networks Competition (VNN-COMP 2024): Summary and Results. arXiv
preprint arXiv:2412.19985 (2024)

6. Collins Aerospace: Certi�cation Aspects of Collins Aerospace Recommended Cruise
Level Neural Network Development. Tech. rep. (2023)

7. Damour, M., De Grancey, F., Gabreau, C., Gau�riau, A., Ginestet, J.B., Hervieu,
A., Huraux, T., Pagetti, C., Ponsolle, L., Clavière, A.: Towards certi�cation of
a reduced footprint ACAS-XU system: A hybrid ML-based solution. In: Proc.
of SAFECOMP. pp. 34�48. Springer (2021). https://doi.org/10.1007/978-3-030-
83903-1_3

8. Dziugaite, G.K., Roy, D.M.: Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data.
arXiv:1703.11008 (2017)

9. EASA AI Task Force and Daedalean, AG: Concepts of Design Assurance for Neural
Networks (CoDANN). Tech. rep. (2020)

10. EASA and Collins Aerospace: Formal Methods use for Learning Assurance (For-
MuLA). Tech. rep. (April 2023)

11. Ehlers, R.: Formal veri�cation of piece-wise linear feed-forward neural networks.
In: Automated Technology for Veri�cation and Analysis (2017)

12. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI 2: Safety and robustness certi�cation of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 3�18
(2018). https://doi.org/10.1109/SP.2018.00058

13. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. Journal of Guidance, Control, and Dynam-
ics 42(3), 598�608 (2019). https://doi.org/10.2514/1.G003724

14. Kirov, D., Rollini, S.F.: Benchmark: remaining useful life predictor for air-
craft equipment. In: Proceedings of AISOLA. pp. 299�304. Springer (2023).
https://doi.org/10.1007/978-3-031-46002-9_18

15. Kirov, D., Rollini, S.F., Chandrahas, R., Chandupatla, S.R., Sawant, R.: Bench-
mark: Object detection for maritime search and rescue. In: Proceedings of AISOLA.
pp. 305�310. Springer (2023). https://doi.org/10.1007/978-3-031-46002-9_19

16. MLEAP Consortium: EASA Research � Machine Learning Application Approval
(MLEAP) �nal report. HORIZON Europe research and innovation programme
report, EASA (May 2024)

17. Pérez-Ortiz, M., Rivasplata, O., Shawe-Taylor, J., Szepesvári, C.: Tighter risk cer-
ti�cates for neural networks. Journal of Machine Learning Research 22(227), 1�40
(2021)

18. Pham, T.: Technical concept paper 1: Veri�cation of an arti�cial neural net model
developed through machine learning. Tech. rep., FAA (2024)

19. RTCA/DO-178C: Software Considerations in Airborne Systems and Equipment
Certi�cation (2011)

20. SAE G-34 Arti�cial Intelligence in Aviation: Arti�cial Intelligence in Aeronautical
Systems: Statement of Concerns (2021)

21. SAE G34 / EUROCAE WG-114: ARP6983 / ED-324: Process Standard for Devel-
opment and Certi�cation/Approval of Aeronautical Safety-Related Products Im-
plementing AI (DRAFT 6b) (2024)

22. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for
certifying neural networks. Proc. ACM Program. Lang. 3(POPL) (2019).
https://doi.org/10.1145/3290354

20 Arthur Clavière, Dmitrii Kirov, and Darren Cofer

23. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2019)

24. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.S.: Formal security analysis
of neural networks using symbolic intervals. In: USENIX Security Symposium.
USENIX Association (2018)

25. Wu, H., Ozdemir, A., Zelji¢, A., Julian, K., Irfan, A., Gopinath, D., Fouladi, S.,
Katz, G., Pasareanu, C., Barrett, C.: Parallelization techniques for verifying neural
networks. In: 2020 Formal Methods in Computer Aided Design (FMCAD). pp.
128�137. IEEE (2020). https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_20

26. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: E�cient neural net-
work robustness certi�cation with general activation functions. In: Proceedings of
the 32nd International Conference on Neural Information Processing Systems. pp.
4944�4953. NIPS'18, Curran Associates Inc. (2018)

