
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIRECTIONAL SHEAF HYPERGRAPH NETWORKS:
UNIFYING LEARNING ON DIRECTED AND UNDI-
RECTED HYPERGRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hypergraphs provide a natural way to represent higher-order interactions among
multiple entities. While undirected hypergraphs have been extensively studied,
the case of directed hypergraphs, which can model oriented group interactions,
remains largely under-explored despite its relevance for many applications. Re-
cent approaches in this direction often exhibit an implicit bias toward homophily,
which limits their effectiveness in heterophilic settings. Rooted in the algebraic
topology notion of Cellular Sheaves, Sheaf Neural Networks (SNNs) were intro-
duced as an effective solution to circumvent such a drawback. While a generaliza-
tion to hypergraphs is known, it is only suitable for undirected hypergraphs, fail-
ing to tackle the directed case. In this work, we introduce Directional Sheaf Hy-
pergraph Networks (DSHN), a framework integrating sheaf theory with a princi-
pled treatment of asymmetric relations within a hypergraph. From it, we construct
the Directed Sheaf Hypergraph Laplacian, a complex-valued operator by which
we unify and generalize many existing Laplacian matrices proposed in the graph-
and hypergraph-learning literature. Across 7 real-world datasets and against 13
baselines, DSHN achieves relative accuracy gains from 2% up to 20%, showing
how a principled treatment of directionality in hypergraphs, combined with the
expressive power of sheaves, can substantially improve performance.

1 INTRODUCTION

Learning from structured, non-Euclidean data has been dominated by Graph Neural Networks
(GNNs), which propagate and aggregate features along pairwise edges (Scarselli et al., 2009; Asif
et al., 2021). Sheaf Neural Networks (SNNs) (Hansen & Gebhart, 2020) extend GNNs by leverag-
ing the algebraic concept of a cellular sheaf. They assign vector spaces to nodes and edges, along
with learnable restriction maps propagating information between them. By operating in higher-
dimension feature spaces, SNNs naturally mitigate oversmoothing and improve performance on het-
erophilic graphs, where neighboring nodes may have dissimilar features (Bodnar et al., 2022).

While effective on graphs, both GNNs and SNNs are inherently limited to dyadic relations.
Many real-world systems such as social networks (Benson et al., 2016; 2018a), biological sys-
tems (Traversa et al., 2023), and protein interactions (Murgas et al., 2022) exhibit multi-way rela-
tionships that cannot be captured by pairwise links alone. Hypergraph Neural Networks (HGNNs)
address this limitation by modeling hyperedges as sets of nodes, enabling the learning of multi-entity
dependencies (Murgas et al., 2022; Chen et al., 2022). However, traditional HGNNs face two main
limitations. First, they inherit fundamental drawbacks from their graph-based counterparts: many
architectures assume homophily, which is often violated in heterophilic settings, and are prone to
oversmoothing, where deep message passing causes node representations to converge and lose dis-
criminative power (Li et al., 2025; Telyatnikov et al., 2025; Chen et al., 2022; Nguyen et al., 2023).
Second, most HGNNs are formulated for undirected hypergraphs, treating hyperedges symmetri-
cally and neglecting orientation even when such hyperedges encode asymmetric or causal relation-
ships such as chemical reactions, metabolic pathways, and causal multi-agent interactions (Mann &
Venkatasubramanian, 2023; Traversa et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Sheaf Hypergraph Networks (SHNs) (Duta et al., 2023) address the first of these challenges by ex-
tending the principles of SNNs to hypergraphs. They assign vector spaces to nodes and hyperedges
and propagate information via learnable restriction maps naturally mitigating the issues associated
with oversmoothing and heterophily while generalizing message passing to higher-order, multi-way
interactions, which provides a more expressive framework than traditional HGNNs.

Despite these advantages, SHNs have two key limitations. (i) They only model hyperedges as undi-
rected, limiting their ability to capture asymmetric directional relationships. Indeed, while direc-
tionality has been recently incorporated in GNNs via, e.g., specialized Laplacians such as the one
by Tong et al. (2020) and complex-valued operators (Zhang et al., 2021; Fiorini et al., 2023), exten-
sions to hypergraphs remain limited (Fiorini et al., 2024) and often task-specific (Gatta et al., 2023;
Zhao et al., 2024). To our knowledge, no SHN methods which can handle directed hypergraphs are
known. ii) Second (as we show in this paper), the Laplacian operator proposed in (Duta et al., 2023)
fails to satisfy the spectral properties required of a well-defined convolutional operator, such as posi-
tive semidefiniteness, contrarily to what the authors report (and claim to have proven) in their paper.

In this paper, we introduce Directional Sheaf Hypergraph Networks (DSHN), a principled extension
of SHNs to directed hypergraphs. Specifically, we define Directed Hypergraph Cellular Sheaves,
equipping hyperedges not only with the notion of tail and head sets (source and target nodes, respec-
tively) but also with asymmetric restriction maps that respect orientation within a hyperedge. From
this, we derive the Directed Sheaf Hypergraph Laplacian, a novel complex-valued Hermitian opera-
tor whose phase naturally encodes direction while preserving essential spectral properties, including
admitting a spectral decomposition with real-valued, nonnegative eigenvalues. We evaluate DSHN
on 7 real-world datasets, as well as on synthetic benchmarks specifically designed to test DSHN’s
ability to capture directional information within a hypergraph. Compared to 13 state-of-the-art base-
lines, our method achieves relative accuracy gains from 2% up to 20%, demonstrating that explicitly
modeling orientation via our proposed asymmetric and complex-valued restriction maps improves
predictive performance. Our contributions can be summarized as follows:

• We introduce the concept of Directed Hypergraph Cellular Sheaves, a framework that ex-
tends directed hypergraphs by providing a principled representation of directional interac-
tions. This is achieved by assigning complex-valued linear maps between nodes and hy-
peredges, capturing the node-to-hyperedge relationships within each directed hyperedge.

• We introduce the Directed Sheaf Hypergraph Laplacian, a novel complex-valued Hermi-
tian matrix that satisfies the key properties required of a well-defined spectral operator.
Our formulation generalizes existing graph and hypergraph Laplacians, providing a unified
framework for learning on hypergraphs with both directed and undirected hyperedges.

• We introduce Directional Sheaf Hypergraph Networks (DSHN), a model that combines
Sheaf theory with a principled treatment of directional information, enabling state-of-the-
art performance on directed hypergraph benchmarks.1

2 BACKGROUND AND PREVIOUS WORK

Sheaf Neural Networks and Sheaf Hypergraph Networks. Sheaf theory provides a principled
framework for modeling local information flow across structured domains. In algebraic topology, a
sheaf associates data to open sets together with restriction maps ensuring consistency (Curry, 2014).
Cellular sheaves adapt this idea to cell complexes by assigning vector spaces to cells with linear
maps along face relations. Building on this, Sheaf Neural Networks (SNNs) (Hansen & Gebhart,
2020; Bodnar et al., 2022) assign vector spaces to graph nodes and edges and learn restriction maps
for each node-edge incidence relationship, generalizing message passing. SNNs are particularly
effective in heterophilic settings and help mitigate oversmoothing, a common drawback of deep
GNNs. As described by Hansen & Ghrist (2021), attaching a cellular sheaf to a graph can be inter-
preted through the lens of opinion dynamics. Unlike traditional Graph Neural Networks (GNNs),
each node’s representation ”lives” in its own vector space, representing a private opinion, while the
restriction maps, linear transformations between node and edge vector spaces, govern how this opin-
ion is expressed along each incident edge. In this way, a node can maintain its own distinct repre-

1We provide the code to reproduce the results at https://anonymous.4open.science/r/
Directional-Sheaf-Hypergraphs-8010/.

2

https://anonymous.4open.science/r/Directional-Sheaf-Hypergraphs-8010/
https://anonymous.4open.science/r/Directional-Sheaf-Hypergraphs-8010/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

sentation while still having different “opinions” across the various edges they participate in, allow-
ing for more expressive and flexible representations compared to standard spectral-based methods,
where adjacent nodes typically end up having similar representations.

Expanding on this idea, Duta et al. (2023) extend SNNs to the hypergraph setting. However, as it will
be shown in this work, their formulation suffers from two key limitations. First, it does not capture
directionality in hypergraphs. Second, although the Sheaf Hypergraph Laplacian is presented as a
Laplacian operator, as shown in our paper, it fails to satisfy fundamental spectral properties expected
of such operators, most notably positive semidefiniteness.

Laplacian matrices for Directed Graphs Classical spectral methods define convolutional oper-
ators through the graph Laplacian (Biggs, 1993; Defferrard et al., 2016b; Kipf & Welling, 2017).
While effective, such methods require to either work on inherently undirected graphs or to sym-
metrize the graph’s adjacency matrix, thereby discarding edge directionality. Drawing inspiration
from the Magnetic Laplacian introduced by Lieb & Loss (1992) in the study of electromagnetic
fields, spectral-based methods have been extended to incorporate edge directionality. In particular,
Zhang et al. (2021); Fiorini et al. (2023) developed operators that encode orientation in the imagi-
nary part of complex-valued Hermitian matrices. This construction preserves the desirable spectral
properties required for a well-defined convolutional operator while embedding directional informa-
tion, enabling convolutional operators to faithfully capture the asymmetry of directed graphs.

Undirected and Directed Hypergraphs A hypergraph is an ordered pair H = (V,E), with n :=
|V | and m := |E|, where V is the set of vertices (or nodes) and E ⊆ 2V \ {} is the (nonempty)
set of hyperedges. The hyperedge weights are stored in the diagonal matrix W ∈ Rm×m. The
vertex and hyperedge degrees are defined as Du =

∑
e∈E:u∈e |we| for u ∈ V and δe = |e| for

e ∈ E. Hypergraphs where δe = k for some k ∈ N for all e ∈ E are called k-uniform. Graphs
are 2-uniform hypergraphs. Following Gallo et al. (1993), we define a directed hypergraph as a
hypergraph where each edge e ∈ E is partitioned in a tail set T (e) and a head set H(e). If H(e)
is empty, e is an undirected edge. Research on learning on directed hypergraphs remains limited,
with most existing works either constrained to task-specific scenarios (Luo et al., 2022; Gatta et al.,
2023) or restricted to 2-uniform directed hypergraphs (Zhao et al., 2024; Ma et al., 2024). This
gap has been recently addressed through the Generalized Directed Laplacian (Fiorini et al., 2024),
a complex Hermitian operator that unifies directed and undirected hypergraphs, and extends several
popular methods for directed graphs to the hypergraph domain. However, their method, while being
suitable for directed hypergraphs, is still implicitly biased towards homophilic settings and can be
prone to oversmoothing.

Notation Throughout the paper, we use uppercase bold letters to denote matrices and lowercase
bold letters to denote vectors. We denote F the cellular sheaf associated with the hypergraph, where
F⃗(u) for u ∈ V and F⃗(e) for e ∈ E denote the vector spaces attached to nodes and hyperedges,
respectively. For a node u and a hyperedge e, we write u ⊴ e to indicate incidence (i.e., u ∈ Γ(e),
where Γ(e) denotes the set of nodes belonging to the hyperedge). The corresponding restriction
maps are written as Fu⊴e; although these are matrices, we avoid boldface for readability and con-
sistency with prior work. Arrow notation is used to indicate directionality: Fu⊴e denotes a direc-
tionless restriction map, whereas F⃗u⊴e denotes a directed restriction map. This convention extends
to all analogous objects in the paper. We use † to denote the conjugate transpose while we denote
with ∥ · ∥ the Euclidean norm. Finally, we write A ∥B to indicate the concatenation of two objects
of matching shape.

3 DIRECTED SHEAF HYPERGRAPH LAPLACIAN

3.1 DIRECTED HYPERGRAPH CELLULAR SHEAF

In this work, we introduce the notion of Directed Hypergraph Cellular Sheaf, which assigns to a
directed hypergraph complex-valued restriction maps designed to capture and encode directional
information contained in the hypergraph’s underlying topology.
Definition 1. The Directed Hypergraph Cellular Sheaf of a directed hypergraph H = (V,E) is the
tuple

〈
S(q), {F⃗(u)}u∈V , {F⃗(e)}e∈E , {F⃗u⊴e}u∈Γ(e)

〉
, consisting of:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1. A complex-valued matrix S(q) ∈ Cm×n with q ∈ R, defined entry-wise for each hyperedge
e ∈ E and node u ∈ V as:

S(q)
u⊴e =


1 if u ∈ H(e) (head set)
e−2πiq if u ∈ T (e) (tail set)
0 otherwise

2. A vector space F⃗(u) ∈ Cd associated with each node u ∈ V ;

3. A vector space F⃗(e) ∈ Cd associated with each hyperedge e ∈ E;

4. A restriction map F⃗u⊴e : F⃗(u) → F⃗(e) with F⃗u⊴e = S(q)
u⊴eFu⊴e ∈ Cd×d where Fu⊴e ∈

Rd×d is a real-valued, directionless, restriction map.

The idea is to associate to each node-hyperedge incidence relationship a linear restriction map
F⃗v⊴e which can either be real- or complex-valued, based on the directional matrix S(q), specifying
whether a node within a hyperedge belongs to the tail or to the head set. In line with Zhang et al.
(2021), although their work focuses on directed graphs and hence fails to model many-to-many
interactions, the parameter q associated with the matrix S(q) serves as a charge parameter that con-
trols the relevance of the hypergraph’s directional information. In fact, when q = 0, the restriction
maps are all real-valued independently of the hypergraph’s directions, and we come back to the def-
inition of a (Hypergraph) Cellular Sheaf as introduced in Duta et al. (2023). While prior work has
incorporated directional information in hypergraphs using complex-valued coefficients, these ap-
proaches typically rely on a fixed complex phase (Fiorini et al., 2024). In contrast, our formulation
introduces a tunable complex-valued coefficient, allowing the model to flexibly adjust the contri-
bution of directional information. Moreover, by equipping the topology of the hypergraph with
a Cellular Sheaf, our method provides a more expressive framework for representing hypergraph
structures than existing directed hypergraph neural networks. To visualize of a Directed Hyper-
graph Cellular Sheaf associated to a directed hyperedge, see Fig. 1.

Directed hyperedge Directed Cellular Sheaf

Figure 1: Visualization of sheaves over a directed hyperedge, illustrating the incidence relationship
between nodes and the hyperedge, together with the restriction maps F⃗v⊴e. The tail node v1 is
encoded via the e−2πiq coefficient which pre-multiplies the directionless restriction map Fv⊴e.

3.2 DIRECTED SHEAF HYPERGRAPH LAPLACIAN

Given a directed hypergraph and its corresponding Directed Hypergraph Cellular Sheaf F⃗ , let
B(q) ∈ Cmd×nd be a complex-valued incidence matrix which, for each pair e ∈ E and u ∈ V , reads:

B(q)
eu =

{
F⃗u⊴e = S(q)

u⊴eFu⊴e if u ∈ e

0 otherwise.

When factoring in, for each pair e ∈ E and u ∈ e, whether u belongs to the head or tail set of e, we
obtain:

B(q)
eu =


F⃗u⊴e = S(q)

u⊴eFu⊴e = Fu⊴e if u ∈ H(e) (head set)
F⃗u⊴e = S(q)

u⊴eFu⊴e = e−2πiqFu⊴e if u ∈ T (e) (tail set)
0 otherwise.

(1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We define the Directed Sheaf Hypergraph Laplacian LF⃗ associated with a Directed Hypergraph
Cellular Sheaf as follows:

LF⃗ := DV − QF⃗ with QF⃗ := B(q)†D−1
E B(q), (2)

where QF⃗ is the Directed Sheaf Hypergraph Signless Laplacian.

In the formula, DE is the block-diagonal hyperedge degree matrix DE := diag(δ1Id, . . . , δmId) ∈
Rmd×md, where δe := |e| is the degree of hyperedge e ∈ E, and DV ∈ Rnd×nd is the
block-diagonal node degree matrix defined as DV := diag (Du1 ,Du2 , . . . ,Dun) , with Dui :=∑

e∈E:u∈e F⃗
†
u⊴e F⃗u⊴e ∈ Rd×d, ui ∈ V .

To clarify how LF⃗ encodes the hypergraph structure, let us examine its entry corresponding to a pair
of vertices u, v ∈ V :

(LF⃗)uv =


Du −

∑
e:u∈e

1

δe
F⊤

u⊴eFu⊴e =
∑
e:u∈e

(1− 1

δe
)F⊤

u⊴eFu⊴e u = v

−
∑

e:u,v∈e

1

δe
F⃗†

u⊴eF⃗v⊴e = −
∑

e:u,v∈e

1

δe
(S(q)

u⊴e)
†(S(q)

v⊴e)F
⊤
u⊴eFv⊴e u ̸= v.

(3)

Note that the block-diagonal entries of LF⃗ are always real. In contrast, its off-block-diagonal entries
are complex-valued when the hypergraph is directed and q ̸= 0, and real-valued if the hypergraph is
undirected. By setting q = 0, the hypergraph directions are entirely disregarded and LF⃗ coincides
with the Laplacian matrix of its undirected counterpart. The off-diagonal products in LF⃗ strongly
depend on the interaction between the two components of the directional matrix S(q) associated
to the restriction maps. The product of these contributes to the real and imaginary parts of LF⃗ as
follows:

(S(q)
v⊴e)

†S(q)
u⊴e =


1 v, u ∈ T (e) (tail-tail),
1 v, u ∈ H(e) (head-head),
e+2πiq v ∈ T (e), u ∈ H(e) (tail-head) (equal to i if q = 1

4),
e−2πiq v ∈ H(e), u ∈ T (e) (head-tail) (equal to −i if q = 1

4).

(4)

We can expand Eq. (3) by considering the special case where q = 1
4 . In this case, each entry of LF⃗

can be expressed to explicitly highlight the impact of the directionality of each hyperedge:

(LF⃗)uv =



∑
e:u∈e

(
1− 1

δe

)
F⊤

u⊴eFu⊴e, u = v,

−
∑
e∈E

u,v∈H(e)
∨u,v∈T (e)

1

δe
F⊤

u⊴eFv⊴e − i


∑
e∈E

u∈T (e)
∧v∈H(e)

1

δe
F⊤

u⊴eFv⊴e −
∑
e∈E

u∈H(e)
∧v∈T (e)

1

δe
F⊤

u⊴eFv⊴e

 , u ̸= v.

(5)

The entry (LF⃗)uv is determined by all hyperedges e ∈ E that contain both nodes u and v. From the
second case in Eq. (5), whenever both u and v are both heads (u, v ∈ H(e)) or tails (u, v ∈ T (e)),
the contribution to the real part ℜ

(
(LF⃗)uv

)
is negative and given by the opposite of the normal-

ized weight − 1
δe

F⊤
u⊴eFv⊴e. In the undirected case, this is the only possible contribution, which

matches the expected behavior of undirected hypergraph Sheaf Laplacians, where u, v ∈ T (e) (or,
equivalently, u, v ∈ H(e)). Hyperedges where u, v take opposite roles contribute to the imaginary
part with their weight either negatively (if u ∈ T (e) and v ∈ H(e)) or positively (if u ∈ H(e) and
v ∈ T (e)). Due to this, in the special case where q = 1

4 , ℑ
(
(LF⃗)uv

)
depends on the net contribu-

tion of u and v across all the directed hyperedges that contain them. This is in line with the “net flow”
behavior observed in directed graphs (Fiorini et al., 2023) and hypergraphs (Fiorini et al., 2024).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

When interpreted as a linear operator acting on a complex signal x ∈ Cnd, LF⃗ reads:(
LF⃗ (x)

)
u
=

∑
e∈E:u∈e

1

δe
F⃗†

u⊴e

∑
v∈e:
v ̸=u

(
F⃗u⊴e xu − F⃗v⊴e xv

)
. (6)

We define the Normalized Directed Sheaf Hypergraph Laplacian LF⃗
N as:

LF⃗
N := D

− 1
2

V LF⃗D
− 1

2

V .

Using Eq. (2), this yields:

LF⃗
N = D

− 1
2

V (DV −QF⃗)︸ ︷︷ ︸
LF⃗

D
− 1

2

V = Ind −QF⃗
N , where QF⃗

N := D
− 1

2

V B(q)†D−1
E B(q)D

− 1
2

V . (7)

3.3 SPECTRAL PROPERTIES

We now establish that our proposed Normalized Directed Sheaf Hypergraph Laplacian LF⃗
N satisfies

all the spectral properties required for a principled convolutional operator. Specifically, we show
that LF⃗

N is diagonalizable, has real, nonnegative eigenvalues, is positive semidefinite, and has a
bounded spectrum. These ensure that the Fourier transform is well-defined and that polynomial
filters of LF⃗

N implement localized, stable convolutions, in direct analogy with classical spectral-
based approaches (Shuman et al., 2013; Kipf & Welling, 2017; Defferrard et al., 2016a). Failure to
preserve them can result in a complete breakdown of the connection between message passing, the
Fourier transform of a (hyper-)graph and its connection with signal theory. The proofs of the claims
in this and the next section are provided in Appendix A.

We begin by showing that LF⃗
N admits an eigenvalue decomposition with real eigenvalues:

Theorem 1. LF⃗
N is diagonalizable with real eigenvalues.

Next, we derive the formula of the Dirichlet energy function associated with LF⃗
N , which provides a

measure of the global smoothness of a signal x ∈ Cnd across the entire hypergraph:

Theorem 2. The Dirichlet energy induced by LF⃗
N for a signal x ∈ Cnd is:

EN (x) = x†LF⃗
Nx =

1

2

∑
e∈E

1

δe

∑
u,v∈e:
u̸=v

∥∥∥F⃗u⊴e D
− 1

2
u xu − F⃗v⊴e D

− 1
2

v xv

∥∥∥2
2
.

By leveraging the two previous theorems, we show that the spectrum of the Directed Sheaf Hyper-
graph Laplacian LF⃗

N only admits (real) non-negative eigenvalues:

Corollary 1. LF⃗
N is positive semidefinite.

Finally, we prove that the spectrum of LF⃗
N is upper bounded by 1:

Theorem 3. λmax(L
F⃗
N) ≤ 1.

3.4 GENERALIZATION PROPERTIES

Beyond its spectral properties, our Directed Sheaf Hypergraph Laplacian provides a unified defini-
tion of a Laplacian matrix that recovers and extends several existing Laplacian matrices.

First, we discuss the relationship between LF⃗ and the Sheaf Laplacian introduced by Hansen &
Gebhart (2020) and highlight its connection with the classical graph Laplacian defined as L := D−A
where A is the graph’s adjacency matrix and D its degree matrix (see (Biggs, 1993) for a reference)
for the undirected case:
Theorem 4. For a 2-uniform hypergraph without directions, the Laplacian operator LF⃗ reduces to
the Sheaf Laplacian (Hansen & Gebhart, 2020) (up to a scaling factor of 2) and, when considering
the case of a trivial Sheaf (where Fu⊴e = 1), it coincides with the classical graph Laplacian (up to
a scaling factor of 2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

With Theorem 5, we show that LF⃗ generalizes several Laplacians designed for directed graphs like
the Magnetic Laplacian (Zhang et al., 2021) and the Sign-Magnetic Laplacian (Fiorini et al., 2023):
Theorem 5. For a directed 2-uniform hypergraph with unitary edge weights (i.e., we = 1, e ∈
E) containing both directed and undirected edges, LF⃗ recovers, as a special case, the Magnetic
Laplacian (Zhang et al., 2021) for any q ∈ R and the Sign-Magnetic Laplacian (Fiorini et al., 2023)
when q = 1

4 .

In the context of hypergraphs, our operator naturally recovers existing hypergraph Laplacians. We
begin by showing that it recovers the undirected hypergraph Laplacian of Zhou et al. (2006):
Theorem 6. Given a hypergraph H (directed or undirected), the normalized Directed Hypergraph
Laplacian LF⃗

N recovers, as a special case, the undirected hypergraph Laplacian of Zhou et al. (2006).

We show that LF⃗ generalizes the Generalized Directed Laplacian proposed by Fiorini et al. (2024):
Theorem 7. Given a directed hypergraph H with unitary weights associated to each hyperedge (i.e.,
we = 1), the Normalized Directed Sheaf Hypergraph Laplacian LF⃗

N recovers, as a special case, the
Generalized Directed Laplacian L⃗N of Fiorini et al. (2024).

Crucially, our Laplacian operator does not recover the (linear) Sheaf Hypergraph Laplacian proposed
by Duta et al. (2023). This divergence is intentional: the formulation of Duta et al. (2023), defined
for any pair of nodes u, v ∈ V as:

(LF)uu =
∑
e:u∈e

1

δe
F⊤

u⊴eFu⊴e, (LF)uv = −
∑

e:u,v∈e
v ̸=u

1

δe
F⊤

u⊴eFv⊴e, (8)

fails to satisfy several key spectral properties required to construct a well-defined convolutional op-
erator, most notably positive semidefiniteness. Comparing this definition with Eq. (3), it is evident
that, for undirected hypergraphs or when q = 0, the two operators differ in the diagonal term: our
formulation introduces the factor (1− 1

δe
) rather than 1

δe
. Their definition suffices to guarantee such

properties only in the special case of 2-uniform hypergraphs (i.e, standard graphs), however this dis-
crepancy can produce negative eigenvalues for general cases, preventing the matrix from being in-
terpreted as a diffusion operator and precluding the definition of a stable Fourier transform. Conse-
quently, polynomial filters based on the Laplacian of Duta et al. (2023) cannot guarantee localized
and stable convolutions, limiting its general applicability. A more detailed analysis, including an ex-
ample that demonstrates this drawback, is presented in Appendix E.

Consequently, when either setting q = 0 or considering undirected hypergraphs, our operator enjoys
all the properties that are required of a principled Laplacian matrix and it provides (to the best of our
knowledge) the first definition of a Sheaf Hypergraph Laplacian suitable for undirected hypergraphs.

4 DIRECTIONAL SHEAF HYPERGRAPH NETWORK

In this section, we describe our proposed Directional Sheaf Hypergraph Network (DSHN). Inspired
by Hansen & Gebhart (2020), we define the sheaf diffusion process on a directed hypergraph H as an
extension of classical heat diffusion, which plays a central role in spectral-bases GNN convolution
operators (Kipf & Welling, 2017). Starting from the differential equation:

Ẋt = −LF⃗
NXt.

and applying a unit-step Euler discretization, we obtain:

Xt+1 = Xt − LF⃗
NXt = (Ind − LF⃗

N)Xt.

By introducing learnable parameters and a nonlinear activation function σ, this discrete diffusion
process leads to the following equation of the convolutional layer of DSHN:

Xt+1 = σ
(
(Ind − LF⃗

N) (In ⊗W1)Xt W2

)
= σ

(
QF⃗

N (In ⊗W1)Xt W2

)
∈ Cnd×f , (9)

where W1 ∈ Rd×d and W2 ∈ Rf×f are trainable weight matrices, and ⊗ denotes the Kronecker
product. X0 is obtained from the input matrix of node features of size n × f , to which a linear

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

projection is applied to produce an n× (df) matrix, which is then reshaped into a (nd)× f matrix
before applying the diffusion process. Finally, since the convolutional layer operates in the complex
domain, we transform the output of the final convolutional layer into a real-valued representation
right before feeding it to the classification head. Following Zhang et al. (2021); Fiorini et al. (2023),
we do so by applying an unwind operation, concatenating the real and imaginary components of the
complex features as follows:

unwind(X) = ℜ(X) ∥ℑ(X) ∈ Rn×2f .

Restriction Maps The expressive power of sheaf-theoretical approaches lies in their ability to
define a diffusion operator via a learnable d × d restriction map associated to each node–edge pair.
Following Bodnar et al. (2022), we learn each restriction map as a function of the corresponding
node and hyperedge features. In particular, for each hyperedge e ∈ E and each node u ∈ e, each
directionless restriction map Fv⊴e is parametrized as Fv⊴e = Φ(xu ∥xe) ∈ Rd×d, where xu is
the node feature and xe is the hyperedge feature and Φ is an MLP. If hyperedge features are not
explicitly provided, they are computed by aggregating the features of the hyperedge’s nodes via a
mean or a sum. Given that the node and the hyperedge features xv and xe are complex-valued due to
Eq. (9), we employ the unwind operation to map them into a form suitable for input to Φ. Activation
functions can be either sigmoid or tanh.

DSHNLight A key objective in our model design is to balance predictive performance with com-
putational efficiency. Constructing an nd × nd Laplacian matrix from d × d restriction maps in-
herently increases complexity, an issue already noted in the graph setting (Bodnar et al., 2022). To
mitigate this, we introduce DSHNLight, a variant of DSHN that achieves competitive, and in some
cases superior, results across several datasets (Tables 1 and 2) at a significantly lower computational
cost (see Appendix C.1). In it, we detach the gradient computation during the Laplacian’s construc-
tion: this way, the model continues to rely on the predicted restriction maps, but avoids costly gra-
dient propagation. In DSHNLight, the parameters of the MLP responsible for predicting the restric-
tion maps (which are encoded in Φ(·)) remain fixed throughout the training process. The model’s
adaptability arises from the initial projection layer, which embeds the inputs into a shared feature
space where they can be more effectively processed through these parameters (see Appendix C for
a better visualization). This phenomenon aligns with insights from the literature on overparameter-
ization (Jacot et al., 2018; Arora et al., 2019) and extreme learning machines (Huang et al., 2006),
where fixed random projections can still yield strong generalization due to the expressive power of
the input embeddings. Further details on the difference between the two approaches are discussed
in Appendix C.

Computational Complexity We provide an estimate of the asymptotic complexity of our model
at inference time. Let n denote the number of nodes, m the number of hyperedges, d the stalk
dimension, c the product of input and output feature dimensions in the linear transformation, ē the
average hyperedge size, and v̄ the average number of hyperedges a node participates in. Summing
the contributions from the feature transformation, message passing, learning of restriction maps, and
Laplacian assembly, the overall complexity is O(n(c2 + d) +m(ēd+ ē2(d+ c)+ v̄c)) for diagonal
maps, and O(n(c2 + d3)+m(ēd3 + ē2(d3 + dc)+ v̄d2c)) for non-diagonal maps, sharing the same
asymptotic complexity as SheafHyperGNN by Duta et al. (2023). For a comprehensive analysis of
the contributions leading to this asymptotic complexity, we refer the reader to Appendix C.1.

5 EXPERIMENTAL EVALUATION

We evaluate DSHN and DSHNLight against 13 baseline models from both the directed and undi-
rected hypergraph literature on real-world datasets (Section 5.1) as well as synthetic datasets (Sec-
tion 5.2) for the node classification task. From the undirected hypergraph-learning literature,
we include HGNN (Feng et al., 2019), HNHN (Dong et al., 2020), UniGCNII (Huang & Yang,
2021), LEGCN (Yang et al., 2022), HyperND (Tudisco et al., 2021), AllDeepSets and AllSetTrans-
former (Chien et al., 2022), ED-HNN (Wang et al., 2023a), SheafHyperGNN (Duta et al., 2023),
and PhenomNN (Wang et al., 2023b). From the directed hypergraph-learning literature, we consider
GeDi-HNN (Fiorini et al., 2024) and DHGNN (Ma et al., 2024), along with a variant, as baselines.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model performance is measured in terms of classification accuracy. Following the standard prac-
tice in the literature (Chien et al., 2022; Wang et al., 2023a; Fiorini et al., 2024), we adopt a
50%/25%/25% split for training, validation, and testing, respectively, and, for each model, we re-
port the average test accuracy and the standard deviation over 10 independent runs. Details on the
baselines, hyperparameter tuning, and the experimental setup are provided in Appendix D.

5.1 REAL-WORLD DATASETS

To evaluate our models on real-world datasets, we follow the pre-processing procedure intro-
duced by Tran & Tran (2022) and Fiorini et al. (2024), and apply it to a suite of publicly avail-
able directed graph benchmarks to obtain their directed hypergraph counterparts for performing
the node classification task (see Appendix D.5). The considered datasets are: Cora (Zhang et al.,
2022), email-Enron, email-EU (Benson et al., 2018b), Telegram (Bovet & Grindrod, 2020),
Chameleon, Squirrel, and Roman-empire. Due to space limitations, Table 1 includes only
the datasets that yield the most interesting insights. Additional results can be found in Table 4, while
additional informations on the datasets are provided in Appendix D.4.

Table 1: Mean accuracy ± standard deviation on node classification datasets. For each dataset, the
best result is shown in bold, and the second best is underlined.

Roman-empire Squirrel email-EU Telegram Chameleon email-Enron Cora
HGNN 38.44± 0.44 35.47± 1.44 48.91± 3.11 51.73± 3.38 39.98± 2.28 52.85± 7.27 87.25± 1.01
HNHN 46.07± 1.22 35.62± 1.30 29.68± 1.68 38.22± 6.95 35.81± 3.23 18.64± 6.90 78.16± 0.98
UniGCNII 78.89± 0.51 38.28± 2.56 44.98± 2.69 51.73± 5.05 39.85± 3.19 47.43± 7.47 87.53± 1.06
LEGCN 65.60± 0.41 39.18± 1.54 32.91± 1.83 45.38± 4.23 39.29± 2.04 37.03± 7.16 74.96± 0.94
HyperND 68.31± 0.69 40.13± 1.85 32.79± 2.90 44.62± 5.49 44.95± 3.20 38.11± 7.69 78.48± 1.02
AllDeepSets 81.79± 0.72 40.69± 1.90 37.37± 6.29 49.19± 6.73 42.97± 3.60 37.29± 7.90 86.86± 0.85
AllSetTransformer 83.53± 0.64 40.53± 1.33 38.26± 3.57 66.92± 4.36 43.85± 5.42 63.78± 3.66 86.73± 1.13
ED-HNN 83.82± 0.31 39.85± 1.79 68.91± 4.00 60.38± 3.86 44.67± 2.33 51.35± 6.04 86.94± 1.25
SheafHyperGNN 74.50± 0.57 42.01± 1.11 52.78± 9.13 70.00± 5.32 41.06± 4.94 63.51± 5.95 87.15± 0.64
PhenomNN 71.22± 0.45 43.62± 4.29 37.69± 4.40 47.69± 6.59 43.62± 4.29 47.02± 6.75 88.12± 0.86

GeDi-HNN 83.87± 0.63 43.02± 3.00 52.31± 2.84 77.12± 4.82 39.29± 2.04 50.54± 5.80 85.16± 0.94
DHGNN 77.58± 0.54 39.85± 1.79 32.35± 2.93 79.62± 5.78 44.08± 4.11 42.16± 8.04 83.16± 1.33
DHGNN (w/ emb.) 22.50± 0.81 40.33± 1.42 55.10± 3.48 80.58± 3.89 40.85± 2.76 58.38± 7.57 73.12± 1.04

DSHN OOM 43.55± 2.87 78.62± 2.50 88.65± 5.54 47.02± 4.35 75.68± 3.42 87.84± 0.90
DSHNLight 89.24± 0.57 44.09± 2.36 82.67± 1.29 81.15± 4.19 46.50± 4.09 76.76± 2.48 88.02± 1.11

DSHN, and its variant DSHNLight, which both leverage the theoretical advantages of associating
a Directed Cellular Sheaf to a directed hypergraph, consistently outperform the 13 baselines from
both the undirected and directed hypergraph learning literature on 6 out of 7 real-world datasets. The
largest relative gains are observed on the email-Enron and email-EU datasets, where DSHN
and DSHNLight improve over the best baseline by more than 20%. A substantial improvement is
also achieved on Telegram, confirming the importance of directional information in this bench-
mark where all directed methods perform strongly. More moderate but consistent improvements are
found on highly heterophilic datasets such as Roman-empire, Chameleon, and Squirrel,
while on highly homophilic datasets such as Cora performance is on par with the strongest base-
lines. As shown in Table 3, the charge parameter q selected by the hyperparameter-selection pro-
cedure for our models on highly homophilic datasets is consistently 0.0. This observation is in line
with the findings of Zhang et al. (2021), who report that, in such settings, directional information
behaves as noise for node classification.

A better visualization of the impact of the charge parameter q on the predictive performance of our
model can be found in Fig. 2, where we highlight the positive impact of directional information
on the Telegram dataset and how direction is detrimental on the Cora dataset. These results
not only demonstrate the effectiveness of our models in highly heterophilic settings, but also show
how integrating the concept of directionality in hypergraphs can substantially improve performance.
Moreover, unlike GeDi-HNN and DHGNN, which are based on Laplacian formulations that embed
directionality without any degree of freedom, in our models one can flexibly choose the relevance
of directional information by a suitable choice of the charge parameter q.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Mean accuracy ± standard deviation
on the synthetic datasets.

Method Io = 10 Io = 30 Io = 50

HGNN 47.12 ± 5.37 43.44 ± 6.63 37.76 ± 7.72

HNHN 20.40 ± 2.93 28.88 ± 9.45 19.76 ± 3.85

UniGNNII 21.44 ± 4.33 21.12 ± 2.95 19.84 ± 2.34

LEGCN 17.60 ± 2.43 20.72 ± 3.48 19.60 ± 2.82

HyperND 20.40 ± 2.93 21.12 ± 3.20 20.64 ± 1.92

AllDeepSets 44.40 ± 6.81 32.32 ± 4.82 31.70 ± 5.92

AllSetTransformer 21.12 ± 3.79 43.68 ± 8.72 31.84 ± 3.31

ED-HNN 34.00 ± 6.05 18.88 ± 2.56 32.48 ± 6.17

SheafHyperGNN 30.64 ± 5.39 27.28 ± 7.31 26.00 ± 9.59

PhenomNN 22.24 ± 4.73 22.08 ± 4.20 18.72 ± 3.22

GeDi-HNN 71.44 ± 3.14 71.84 ± 3.31 78.24 ± 5.64

DHGNN 40.72 ± 4.55 51.68 ± 3.97 35.76 ± 3.70

DHGNN (w/ emb.) 84.48 ± 3.22 85.28 ± 3.32 81.12 ± 3.22

DSHN 94.96 ± 1.75 97.84 ± 1.86 95.84 ± 2.17

DSHNLight 95.60 ± 2.15 97.04 ± 2.79 99.04 ± 0.86

Figure 2: Effect of the charge parameter q on
Telegram and Cora.

0 0.05 0.1 0.15 0.2 0.25

65

70

75

80

85

Charge q

A
cc

ur
ac

y
(%

)

Telegram dataset

0 0.05 0.1 0.15 0.2 0.25

84

85

86

Charge q

A
cc

ur
ac

y
(%

)

Cora dataset

5.2 SYNTHETIC DATASETS

We additionally evaluate our models on the synthetic datasets introduced by Fiorini et al. (2024),
built over n = 500 nodes and split into c = 5 classes. Each class contains 30 random intra-class
hyperedges, while inter-class directed hyperedges, consisting of multiple tail and head nodes, are
added between class pairs with sizes drawn uniformly from {3, . . . , 10}. By varying the number of
inter-class hyperedges Io ∈ {10, 30, 50}, we control the strength of directional connectivity. This
design provides a clean benchmark to test the models’ ability to capture directionality; further details
are given in Appendix D.4.

The results in Table 2 clearly demonstrate the advantage of our models DSHN and DSHNLight over
existing baselines. Classical undirected hypergraph methods are unable to capture the directional
structure that dominate these benchmarks, and as a result their performance is limited. Directed
methods such as GeDi-HNN and DHGNN achieve stronger results, confirming the importance of
explicitly incorporating directionality into the convolutional process. Yet, DSHN and DSHNLight,
which provide a principled and more expressive treatment of directional structure, yield consistent
improvements across all synthetic datasets, outperforming the best directed baselines by up to 18
percentage points and reaching 99.04% accuracy on the third synthetic dataset—this highlights the
expressive power that the notion of Directed Hypergraph Cellular Sheaves unlocks.

6 CONCLUSION AND FUTURE WORKS

In this work, we introduced the concept of Directed Hypergraph Cellular Sheaves for directed hy-
pergraphs and derived the corresponding Directed Sheaf Hypergraph Laplacian, which we inte-
grated into our proposed framework DSHN. By encoding hyperedge direction via a topology-aware
complex-valued inductive bias, our method naturally accommodates both directed and undirected
hypergraphs while also unifying and generalizing several operators from the graph and hypergraph
learning literature.

Across a broad set of benchmark datasets, DSHN consistently outperforms methods from both the
directed and undirected hypergraph learning literature. As future work, a natural step forward is to
evaluate our framework on larger and natively directed hypergraph datasets such as protein-protein
interaction networks to further test the scalability and expressivity of the method, possibly employ-
ing Language Models (LMs) to generate features. Finally, an intriguing direction is to make the
charge parameter q directly learnable, allowing each layer to adapt its diffusion process dynamically.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide all the necessary information to facilitate the reproducibility of our results. Our code
repository code can be found here. The README contains all that is needed to set up the Python
environment and run the experiments with the different configurations. Further details on the Ex-
perimental Setup can be found in Appendix D.

ETHICS STATEMENT

All datasets employed in this work are publicly available for research and contain no personally
identifiable information or harmful content (see Appendix D.4 for further details). The methods
introduced in this paper have a societal impact comparable to that of other graph neural networks.

LLM USAGE STATEMENT

All technical content presented in this paper is entirely our own work, with LLMs serving only as
an editorial tool. No scientific content or research findings were generated using an LLM.

REFERENCES

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
conference on machine learning, pp. 322–332. PMLR, 2019.

Nurul A. Asif, Yeahia Sarker, Ripon K. Chakrabortty, Michael J. Ryan, Md. Hafiz Ahamed, Dip K.
Saha, Faisal R. Badal, Sajal K. Das, Md. Firoz Ali, Sumaya I. Moyeen, Md. Robiul Islam, and
Zinat Tasneem. Graph neural network: A comprehensive review on non-euclidean space. IEEE
Access, 9:60588–60606, 2021. doi: 10.1109/ACCESS.2021.3071274.

Jose Agustin Barrachina, Chengfang Ren, Gilles Vieillard, Christele Morisseau, and Jean-Philippe
Ovarlez. Theory and implementation of complex-valued neural networks, 2023. URL https:
//arxiv.org/abs/2302.08286.

Austin R. Benson, David F. Gleich, and Jure Leskovec. Higher-order organization of complex
networks. Science, 353(6295):163–166, July 2016. ISSN 1095-9203. doi: 10.1126/science.
aad9029. URL http://dx.doi.org/10.1126/science.aad9029.

Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Kleinberg. Simplicial
closure and higher-order link prediction. Proceedings of the National Academy of Sciences, 115
(48), November 2018a. ISSN 1091-6490. doi: 10.1073/pnas.1800683115. URL http://dx.
doi.org/10.1073/pnas.1800683115.

Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Kleinberg. Simplicial
closure and higher-order link prediction. Proceedings of the National Academy of Sciences, 115
(48):E11221–E11230, 2018b. doi: 10.1073/pnas.1800683115. URL https://www.pnas.
org/doi/abs/10.1073/pnas.1800683115.

Norman Biggs. Algebraic graph theory. Number 67. Cambridge university press, 1993.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lio, and Michael Bronstein.
Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns,
2022.

Alexandre Bovet and Peter Grindrod. The activity of the far right on telegram v2.11, 12 2020.

Guanzi Chen, Jiying Zhang, Xi Xiao, and Yang Li. Preventing over-smoothing for hypergraph neural
networks, 2022. URL https://arxiv.org/abs/2203.17159.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function
framework for hypergraph neural networks. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=hpBTIv2uy_E.

11

https://anonymous.4open.science/r/Directional-Sheaf-Hypergraphs-8010/
https://arxiv.org/abs/2302.08286
https://arxiv.org/abs/2302.08286
http://dx.doi.org/10.1126/science.aad9029
http://dx.doi.org/10.1073/pnas.1800683115
http://dx.doi.org/10.1073/pnas.1800683115
https://www.pnas.org/doi/abs/10.1073/pnas.1800683115
https://www.pnas.org/doi/abs/10.1073/pnas.1800683115
https://arxiv.org/abs/2203.17159
https://openreview.net/forum?id=hpBTIv2uy_E

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Justin Michael Curry. Sheaves, cosheaves and applications. University of Pennsylvania, 2014.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016a. URL https://proceedings.neurips.cc/paper_files/
paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems, NIPS’16, pp. 3844–3852, Red Hook, NY, USA,
2016b. Curran Associates Inc. ISBN 9781510838819.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge neurons.
ICML Graph Representation Learning and Beyond Workshop, 2020. URL https://arxiv.
org/abs/2006.12278.

Iulia Duta, Giulia Cassarà, Fabrizio Silvestri, and Pietro Lió. Sheaf hypergraph networks. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 12087–12099. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/27f243af2887d7f248f518d9b967a882-Paper-Conference.pdf.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In AAAI, 2019.

Stefano Fiorini, Stefano Coniglio, Michele Ciavotta, and Enza Messina. Sigmanet: One laplacian to
rule them all, 2023.

Stefano Fiorini, Stefano Coniglio, Michele Ciavotta, and Alessio Del Bue. Let there be direction
in hypergraph neural networks. Transactions on Machine Learning Research, 2024. ISSN 2835-
8856. URL https://openreview.net/forum?id=h48Ri6pmvi.

Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed hypergraphs and ap-
plications. Discrete Applied Mathematics, 42(2):177–201, 1993. ISSN 0166-218X. doi: https:
//doi.org/10.1016/0166-218X(93)90045-P. URL https://www.sciencedirect.com/
science/article/pii/0166218X9390045P.

Valerio La Gatta, Vincenzo Moscato, Mirko Pennone, Marco Postiglione, and Giancarlo Sperlı́.
Music recommendation via hypergraph embedding. IEEE Transactions on Neural Networks and
Learning Systems, 34(10):7887–7899, 2023. doi: 10.1109/TNNLS.2022.3146968.

Jakob Hansen and Thomas Gebhart. Sheaf neural networks, 2020. URL https://arxiv.org/
abs/2012.06333.

Jakob Hansen and Robert Ghrist. Opinion dynamics on discourse sheaves. SIAM Journal on Applied
Mathematics, 81(5):2033–2060, 2021. doi: 10.1137/20M1341088. URL https://doi.org/
10.1137/20M1341088.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory and
applications. Neurocomputing, 70(1-3):489–501, 2006.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-
21, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Steven M. Kearnes, Michael R. Maser, Michael Wleklinski, Anton Kast, Abigail G. Doyle,
Spencer D. Dreher, Joel M. Hawkins, Klavs F. Jensen, and Connor W. Coley. The open reaction
database. Journal of the American Chemical Society, 143(45):18820–18826, 2021. doi: 10.1021/
jacs.1c09820. URL https://doi.org/10.1021/jacs.1c09820. PMID: 34727496.

12

https://proceedings.neurips.cc/paper_files/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://arxiv.org/abs/2006.12278
https://arxiv.org/abs/2006.12278
https://proceedings.neurips.cc/paper_files/paper/2023/file/27f243af2887d7f248f518d9b967a882-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/27f243af2887d7f248f518d9b967a882-Paper-Conference.pdf
https://openreview.net/forum?id=h48Ri6pmvi
https://www.sciencedirect.com/science/article/pii/0166218X9390045P
https://www.sciencedirect.com/science/article/pii/0166218X9390045P
https://arxiv.org/abs/2012.06333
https://arxiv.org/abs/2012.06333
https://doi.org/10.1137/20M1341088
https://doi.org/10.1137/20M1341088
https://doi.org/10.1021/jacs.1c09820

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works, February 2017. URL http://arxiv.org/abs/1609.02907. arXiv:1609.02907
[cs, stat].

Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, 2014.

Ming Li, Yongchun Gu, Yi Wang, Yujie Fang, Lu Bai, Xiaosheng Zhuang, and Pietro Lio. When
hypergraph meets heterophily: New benchmark datasets and baseline. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 18377–18384, 2025.

Elliott Lieb and Michael Loss. Fluxes, laplacians and kasteleyn’s theorem, 1992. URL https:
//arxiv.org/abs/cond-mat/9209031.

Jose Lugo-Martinez, Daniel Zeiberg, Thomas Gaudelet, Noël Malod-Dognin, Natasa Przulj, and
Predrag Radivojac. Classification in biological networks with hypergraphlet kernels. Bioinfor-
matics, 37(7):1000–1007, 2021.

Xiaoyi Luo, Jiaheng Peng, and Jun Liang. Directed hypergraph attention network for traffic fore-
casting. IET Intelligent Transport Systems, 16(1):85–98, 2022. doi: https://doi.org/10.1049/itr2.
12130. URL https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.
1049/itr2.12130.

Zitong Ma, Wenbo Zhao, and Zhe Yang. Directed hypergraph representation learning for link
prediction. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), Proceedings of The
27th International Conference on Artificial Intelligence and Statistics, volume 238 of Proceed-
ings of Machine Learning Research, pp. 3268–3276. PMLR, 02–04 May 2024. URL https:
//proceedings.mlr.press/v238/ma24b.html.

Vipul Mann and Venkat Venkatasubramanian. Ai-driven hypergraph network of organic chemistry:
network statistics and applications in reaction classification. React. Chem. Eng., 8:619–635, 2023.
doi: 10.1039/D2RE00309K. URL http://dx.doi.org/10.1039/D2RE00309K.

Katarina A. Murgas, Emil Saucan, and Romeil Sandhu. Hypergraph geometry reflects higher-order
dynamics in protein interaction networks. Scientific Reports, 12(1):20879, 2022. doi: 10.1038/
s41598-022-24584-w. URL https://doi.org/10.1038/s41598-022-24584-w.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature, 2023.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=tJbbQfw-5wv.

Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community detection. Physical Re-
view E, 74(1), July 2006. ISSN 1550-2376. doi: 10.1103/physreve.74.016110. URL http:
//dx.doi.org/10.1103/PhysRevE.74.016110.

Brian J. Reizman, Ying M. Wang, Stephen L. Buchwald, and Klavs F. Jensen. Suzuki–miyaura
cross-coupling optimization enabled by automated feedback. Reaction Chemistry & Engineering,
1(6):658–666, December 2016. doi: 10.1039/c6re00153j.

Guillermo Restrepo. Spaces of mathematical chemistry. Theory in Biosciences, 143:237–251, 2024.
doi: 10.1007/s12064-024-00425-4.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of Chemical Infor-
mation and Modeling, 50(5):742–754, 2010. doi: 10.1021/ci100050t. URL http://dx.doi.
org/10.1021/ci100050t.

13

https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://arxiv.org/abs/cond-mat/9209031
https://arxiv.org/abs/cond-mat/9209031
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12130
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/itr2.12130
https://proceedings.mlr.press/v238/ma24b.html
https://proceedings.mlr.press/v238/ma24b.html
http://dx.doi.org/10.1039/D2RE00309K
https://doi.org/10.1038/s41598-022-24584-w
https://openreview.net/forum?id=tJbbQfw-5wv
https://openreview.net/forum?id=tJbbQfw-5wv
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1021/ci100050t
http://dx.doi.org/10.1021/ci100050t

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.
doi: 10.1109/TNN.2008.2005605.

David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013.
doi: 10.1109/MSP.2012.2235192.

Lev Telyatnikov, Maria Sofia Bucarelli, Guillermo Bernardez, Olga Zaghen, Simone Scardapane,
and Pietro Lio. Hypergraph neural networks through the lens of message passing: A common
perspective to homophily and architecture design. Transactions on Machine Learning Research,
2025. ISSN 2835-8856. URL https://openreview.net/forum?id=8rxtL0kZnX.

Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David S. Rosenblum, and Andrew Lim.
Digraph inception convolutional networks. NIPS ’20, Red Hook, NY, USA, 2020. Curran Asso-
ciates Inc. ISBN 9781713829546.

Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, Joao Felipe
Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christopher J Pal. Deep com-
plex networks. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=H1T2hmZAb.

Loc Hoang Tran and Linh Hoang Tran. Directed hypergraph neural network, 2022. URL https:
//arxiv.org/abs/2008.03626.

Pietro Traversa, Guilherme Ferraz de Arruda, Alexei Vazquez, and Yamir Moreno. Robustness and
complexity of directed and weighted metabolic hypergraphs, 2023.

Francesco Tudisco, Austin R. Benson, and Konstantin Prokopchik. Nonlinear higher-order label
spreading. In Proceedings of the Web Conference 2021, WWW ’21, pp. 2402–2413, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383127. doi: 10.1145/
3442381.3450035. URL https://doi.org/10.1145/3442381.3450035.

Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hypergraph
diffusion neural operators. In International Conference on Learning Representations (ICLR),
2023a.

Yuxin Wang, Quan Gan, Xipeng Qiu, Xuanjing Huang, and David Wipf. From hypergraph energy
functions to hypergraph neural networks, 2023b.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher. Semi-supervised hypergraph
node classification on hypergraph line expansion. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, CIKM ’22, pp. 2352–2361, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392365. doi: 10.1145/
3511808.3557447. URL https://doi.org/10.1145/3511808.3557447.

Jiying Zhang, Fuyang Li, Xi Xiao, Tingyang Xu, Yu Rong, Junzhou Huang, and Yatao Bian. Hyper-
graph convolutional networks via equivalency between hypergraphs and undirected graphs, 2022.
URL https://arxiv.org/abs/2203.16939.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet: A
neural network for directed graphs, 2021.

Wenbo Zhao, Zitong Ma, and Zhe Yang. DHMConv: Directed hypergraph momentum convolution
framework. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), Proceedings of The
27th International Conference on Artificial Intelligence and Statistics, volume 238 of Proceedings
of Machine Learning Research, pp. 3385–3393. PMLR, 02–04 May 2024. URL https://
proceedings.mlr.press/v238/zhao24c.html.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs:
Clustering, classification, and embedding. In B. Schölkopf, J. Platt, and T. Hoff-
man (eds.), Advances in Neural Information Processing Systems, volume 19. MIT Press,
2006. URL https://proceedings.neurips.cc/paper_files/paper/2006/
file/dff8e9c2ac33381546d96deea9922999-Paper.pdf.

14

https://openreview.net/forum?id=8rxtL0kZnX
https://openreview.net/forum?id=H1T2hmZAb
https://openreview.net/forum?id=H1T2hmZAb
https://arxiv.org/abs/2008.03626
https://arxiv.org/abs/2008.03626
https://doi.org/10.1145/3442381.3450035
https://doi.org/10.1145/3511808.3557447
https://arxiv.org/abs/2203.16939
https://proceedings.mlr.press/v238/zhao24c.html
https://proceedings.mlr.press/v238/zhao24c.html
https://proceedings.neurips.cc/paper_files/paper/2006/file/dff8e9c2ac33381546d96deea9922999-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/dff8e9c2ac33381546d96deea9922999-Paper.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THEORETICAL RESULTS

A.1 SPECTRAL PROPERTIES

The following Lemma (which we state for clarity even if it is not reported in the paper as a lemma)
derives the expression of our proposed Laplacian matrix LF⃗ when applied as a linear operator on a
signal:

Lemma 1. Let x ∈ Cnd be a complex-valued signal. Component-wise, the application of LF⃗ to it
and to its normalized counterpart reads:(

LF⃗ (x)
)
u
=

∑
e:u∈e

1

δe
F⃗†

u⊴e

∑
v∈e
v ̸=u

(
F⃗u⊴e xu − F⃗v⊴e xv

)
.

(
LF⃗
N (x)

)
u
=

∑
e:u∈e

1

δe

(
D

− 1
2

u F⃗†
u⊴e

)∑
v∈e
v ̸=u

(
F⃗u⊴e D

− 1
2

u xu − F⃗v⊴e D
− 1

2
u xv

)
.

Proof. We start by applying the definition of the LF⃗ component-wise as in Eq. (3):(
LF⃗ (x)

)
u

=
∑
v∈V

(LF⃗)uv xv

=
∑
e:u∈e

(
1− 1

δe

)
F⃗†

u⊴eF⃗u⊴e xu −
∑
e:u∈e

∑
v∈e
v ̸=u

1

δe
F⃗†

u⊴eF⃗v⊴e xv

=
∑
e:u∈e

1

δe

(δe − 1) F⃗†
u⊴eF⃗u⊴e xu −

∑
v∈e
v ̸=u

F⃗†
u⊴eF⃗v⊴e xv


=

∑
e:u∈e

1

δe
F⃗†

u⊴e

(δe − 1) F⃗u⊴e xu −
∑
v∈e
v ̸=u

F⃗v⊴e xv

 .

Finally, notice that the coefficient δe−1 is exactly the number of vertices in e different from u. Thus,
the term (δe − 1) F⃗u⊴e xu can be written as a sum of F⃗u⊴e xu over all v ∈ e, v ̸= u. Substituting
this back, we obtain:

∑
e:u∈e

1

δe
F⃗†

u⊴e

∑
v∈e
v ̸=u

F⃗u⊴e xu −
∑
v∈e
v ̸=u

F⃗v⊴e xv


=

∑
e:u∈e

1

δe
F⃗†

u⊴e

∑
v∈e
v ̸=u

(
F⃗u⊴e xu − F⃗v⊴e xv

)
.

The linear expression for the normalized case can be derived analogously.

In the remainder of this section, we report a proof for each of the theorems we stated in the paper.

Theorem 1. LF⃗
N is diagonalizable with real eigenvalues.

Proof. The claim follows rather directly since, as it is not hard to see, LF⃗
N is Hermitian by construc-

tion.

Theorem 2. The Dirichlet energy induced by LF⃗
N for a signal x ∈ Cnd is:

EN (x) = x†LF⃗
Nx =

1

2

∑
e∈E

1

δe

∑
u,v∈e:
u̸=v

∥∥∥F⃗u⊴e D
− 1

2
u xu − F⃗v⊴e D

− 1
2

v xv

∥∥∥2
2
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. By definition of the Dirichlet energy as the quadratic form associated with LF⃗
N , we have:

EN (x) = x†LF⃗
Nx =

∑
u∈V

x†
u

(
LF⃗
N (x)

)
u
.

By substituting for (LF⃗
N (x))u (see the previous lemma), we have:

EN (x) =
∑
u∈V

∑
e:u∈e

1

δe

∑
v∈e
v ̸=u

(
F⃗u⊴eD

− 1
2

u xu

)† (F⃗u⊴e D
− 1

2
u xu − F⃗v⊴e D

− 1
2

v xv

)
.

Distributing the product, we obtain:

EN (x) =
∑
e∈E

1

δe

∑
u∈e

∑
v∈e
v ̸=u

(
F⃗u⊴eD

− 1
2

u xu

)†F⃗u⊴eD
− 1

2
u xu −

∑
e∈E

1

δe

∑
u,v∈e
u̸=v

(
F⃗u⊴eD

− 1
2

u xu

)†F⃗v⊴eD
− 1

2
v xv

=
∑
e∈E

1

δe

∑
u∈e

∑
v∈e
v ̸=u

∥∥F⃗u⊴eD
− 1

2
u xu

∥∥2
2
−

∑
u,v∈e
u ̸=v

(
F⃗u⊴eD

− 1
2

u xu

)†F⃗v⊴eD
− 1

2
v xv

 .

Since LF⃗
N is Hermitian, the second inner summation can be rewritten as:

−
∑
u,v∈e
u̸=v

(
F⃗u⊴eD

− 1
2

u xu

)†F⃗v⊴eD
− 1

2
v xv =

−
∑
u,v∈e
u<v

(
(F⃗u⊴eD

− 1
2

u xu

)†F⃗v⊴eD
− 1

2
v xv +

(
F⃗v⊴eD

− 1
2

v xv

)†F⃗u⊴eD
− 1

2
u xu

)
=

−
∑
u,v∈e
u<v

2ℜ
[(
F⃗u⊴eD

− 1
2

u xu

)†F⃗v⊴eD
− 1

2
v xv

]
=

−
∑
u,v∈e
u̸=v

ℜ
[(
F⃗u⊴eD

− 1
2

u xu

)†F⃗v⊴eD
− 1

2
v xv

]
.

Substituting back and doubling both terms of the summation, we obtain:

EN (x) =
1

2

∑
e∈E

1

δe

∑
u,v∈e
u ̸=v

(
∥F⃗u⊴eD

− 1
2

u xu∥22 + ∥F⃗v⊴eD
− 1

2
v xv∥22 − 2ℜ

[(
F⃗u⊴eD

− 1
2

u xu

)†F⃗v⊴eD
− 1

2
v xv

])
.

Thanks to the identity ∥a− b∥2 = ∥a∥2 + ∥b∥2 − 2ℜ(a†b), we conclude:

EN (x) =
1

2

∑
e∈E

1

δe

∑
u,v∈e
u̸=v

∥∥∥F⃗u⊴eD
− 1

2
u xu − F⃗v⊴eD

− 1
2

v xv

∥∥∥2
2
.

Notice that the constraint u ̸= v can be dropped from the inner summation w.l.o.g..

Corollary 1. LF⃗
N is positive semidefinite.

Proof. This follows directly from the previous theorem.

Theorem 3. λmax(L
F⃗
N) ≤ 1.

Proof. By definition, we have LF⃗
N := Ind −QF⃗

N , with QF⃗
N := D

− 1
2

V B(q)†D−1
E B(q)D

− 1
2

V .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

QF⃗
N can be factored as

QF⃗
N =

(
D

− 1
2

V B(q)†D
− 1

2

E

)(
D

− 1
2

E B(q)D
− 1

2

V

)
=

(
D

− 1
2

E B(q)D
− 1

2

V

)† (
D

− 1
2

E B(q)D
− 1

2

V

)
.

It follows that
QF⃗

N = ||D− 1
2

E B(q)D
− 1

2

V ||2 ≥ 0,

which implies that its spectrum is nonnegative.

Since LF⃗
N := Ind−QF⃗

N , it follows that the spectrum of LF⃗
N is upper-bounded by 1, which concludes

the proof.

A.2 GENERALIZATION PROPERTIES

Theorem 4. For a 2-uniform hypergraph without directions, the Laplacian operator LF⃗ reduces to
the Sheaf Laplacian (Hansen & Gebhart, 2020) (up to a scaling factor of 2) and, when considering
the case of a trivial Sheaf (where Fu⊴e = 1), it coincides with the classical graph Laplacian (up to
a scaling factor of 2).

Proof. In the 2-uniform case, every hyperedge e contains exactly two nodes (i.e., δe = 2). Consider
the general expression of the unnormalized Laplacian given in Eq. (3). Since the graph has no
directions, S(0)

u⊴e = 1 for all u ∈ V, e ∈ E, and for any choice of the charge parameter q. As a result,

the off-diagonal terms of LF⃗ are real-valued (the diagonal ones always are).

In particular, when δe = 2 for all e ∈ E, LF⃗ reads:

(LF⃗)uv =


1
2

∑
e:u∈e

F⊤
u⊴eFu⊴e ∈ Rd×d, u = v,

− 1
2

∑
e:u,v∈e

F⊤
u⊴eFv⊴e ∈ Rd×d, u ̸= v.

Thus, LF⃗ precisely coincides with the Sheaf Laplacian of Hansen & Gebhart (2020) up to the
multiplicative constant 1

2 .

When considering the case of a trivial Sheaf (i.e., when Fv⊴e = 1), LF⃗ coincides with the definition
of the classical graph Laplacian L = D − A, where A is the adjacency matrix and D is the node
degree matrix.

Let us note that, in both cases, this constant factor is immaterial in practice, as it can be absorbed by
the learnable parameters of the associated neural model.

Theorem 5. For a directed 2-uniform hypergraph with unitary edge weights (i.e., we = 1, e ∈
E) containing both directed and undirected edges, LF⃗ recovers, as a special case, the Magnetic
Laplacian (Zhang et al., 2021) for any q ∈ R and the Sign-Magnetic Laplacian (Fiorini et al., 2023)
when q = 1

4 .

Proof. The Magnetic Laplacian proposed by Zhang et al. (2021) is defined as

L(q) := Ds −H(q) = Ds −As ⊙ exp
(
iΘ(q)

)
,

where Θ(q) denotes the phase matrix defined as

Θ(q) := exp
(
2πq (A−A⊤)

)
and As is the symmetrized adjacency matrix defined as

As :=
1
2 (A+A⊤)

and Ds is a diagonal matrix defined as

(Ds)uu :=
∑
v∈V

(As)uv for all u ∈ V .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Entry-wise, H(q) can be written as:

H(q)
uv =


1
2e

2πiq (u, v) ∈ E
1
2e

− 2πiq (v, u) ∈ E

1 {u, v} ∈ E

0 otherwise.

In the directed, 2-uniform case, every hyperedge e contains exactly two nodes (δe = 2). For every
e ∈ E, the product (S(q)

u⊴e)
†S(q)

v⊴e can take one of the following three values:

1. Undirected edge e = {u, v}:

S(q)
u⊴e = S(q)

v⊴e = 1 =⇒
(
S(q)
u⊴e

)†S(q)
v⊴e = 1.

2. Directed edge e = (u, v):

S(q)
u⊴e = e−2πiq, S(q)

v⊴e = 1 =⇒
(
S(q)
u⊴e

)†S(q)
v⊴e = e+2πiq.

3. Directed edge e = (v, u):

S(q)
u⊴e = 1, S(q)

v⊴e = e−2πiq =⇒
(
S(q)
u⊴e

)†S(q)
v⊴e = e−2πiq.

Letting (w.l.o.g., as the restriction maps are learnable){
Fv⊴e :=

√
2, Fu⊴e :=

√
2 if e = {u, v},

Fv⊴e := 1, Fu⊴e = 1 if e = (u, v) or e = (v, u).

we have:

(QF⃗)uv =



1

2
F⃗†

u⊴e F⃗v⊴e =
1

2
e+2πiq F⊤

u⊴eFv⊴e =
1

2
e+2πiq, if e = (u, v),

1

2
F⃗†

u⊴e F⃗v⊴e =
1

2
e− 2πiq F⊤

u⊴eFv⊴e =
1

2
e− 2πiq, if e = (v, u),

1

2
F⃗†

u⊴e F⃗v⊴e =
1

2
F⊤

u⊴eFv⊴e = 1, if e = {u, v}.

Hence, by construction, we have:

QF⃗ = B(q)† D−1
E B(q) = H(q), with DV = Ds.

This implies:
LF⃗ = Ds −H(q) = L(q).

Lastly, noticing that, by construction, the Sign-Magnetic Laplacian proposed in Fiorini et al. (2023)
coincides with the Magnetic Laplacian when q = 1

4 , we conclude that our operator also generalizes
the former.

Theorem 6. Given a hypergraph H (directed or undirected), the normalized Directed Hypergraph
Laplacian LF⃗

N recovers, as a special case, the undirected hypergraph Laplacian of Zhou et al. (2006).

Proof. In the unit-weight case, the Laplacian matrix proposed by Zhou et al. (2006) for undirected
hypergraphs is defined as follows:

∆ := I−QN with QN := D
− 1

2

V BD−1
E B⊤D

− 1
2

V .

Since any undirected hypergraph be regarded as a special case of a directed hypergraph in which
every hyperedge consists solely of tail nodes (or, equivalently, solely of head nodes), as shown in
Eq. (4), in our proposed Laplacian matrix LF⃗

N each product of two restriction maps reduces to a real
weight of 1, therefore contributing only to the real part of the operator. In particular, for a trivial
sheaf where Fv⊴e = 1, the incidence matrix B(q) in Eq. (1) reduces to the transpose of binary
incidence matrix B of Zhou et al. (2006).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Theorem 7. Given a directed hypergraph H with unitary weights associated to each hyperedge (i.e.,
we = 1), the Normalized Directed Sheaf Hypergraph Laplacian LF⃗

N recovers, as a special case, the
Generalized Directed Laplacian L⃗N of Fiorini et al. (2024).

Proof. Let’s consider a special case of a trivial sheaf (i.e. Fu⊴e = 1). By setting q = 1
4 we have:

S
(0.25)
u⊴e =


1 if u ∈ H(e) (head set)
−i if u ∈ T (e) (tail set)
0 otherwise

Now, for each pair u, v belonging to the same hyperedge e:

F⃗†
u⊴eF⃗v⊴e =

(
S
(0.25)
u⊴e

)†
S
(0.25)
v⊴e

Whose contribution, according to the four cases in Eq. (4), is given by:

F⃗†
u⊴eF⃗v⊴e =


1, u, v ∈ H(e),

1, u, v ∈ T (e),

i, u ∈ T (e), v ∈ H(e),

−i, u ∈ H(e), v ∈ T (e).

Our Normalized Directed Sheaf Hypergraph Laplacian LF⃗
N , component-wise reads:

(LF⃗
N)uv =


Id −D−1

u

∑
e:u∈e

1

δe
F⊤

u⊴eFu⊴e u = v

−D
− 1

2
u

(∑
e:u,v∈e

1

δe
F⃗†

u⊴eF⃗v⊴e

)
D

− 1
2

v u ̸= v.

Which reduces, in the considered scalar special case to:

(LF⃗
N)uv =



1−
∑
e:u∈e

1

Du δe
, u = v,

−
∑
e∈E

u,v∈H(e)
∨ u,v∈T (e)

1

δe
− i


∑
e∈E

u∈T (e)
∧v∈H(e)

1

δe
−

∑
e∈E

u∈H(e)
∧v∈T (e)

1

δe

 1√
Du

√
Dv

, u ̸= v.
(10)

Such an expression coincides with the definition of the Generalized Directed Laplacian when con-
sidering W = I.

B EXTENDED EXPERIMENTAL EVALUATION

In this section, we include further experiments and details that did not make the cut in the main
paper due to space limits. This includes:

• The optimal value of the charge parameter q found for DSHN and DSHNLight during the
hyperparameters optimization process.

• The impact of the stalk dimension d and the number of layers on the method’s performance.
• The complete results on 12 real-world datasets.

B.1 IMPACT OF CHARGE PARAMETER

The charge parameter q controls how much each directed hyperedge contributes to the real and
imaginary parts of the Directed Sheaf Hypergraph Laplacian. Larger values of q place more direc-
tional information in the imaginary component, whereas smaller values reduce the directional con-
tribution, emphasizing orientation-agnostic interactions in the real part. Because the dataset differ

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

in how informative directionality is, the optimal q is inherently data-dependent. In practice, a care-
ful tuning of it is needed q to select the value that yields the best performance, allowing either a
partial or a full contribution of directional information to be encoded as needed. Table 3 reports the
values chosen by our hyperparameter tuning procedure. As one can seen, for most datasets the hy-
perparameter tuning procedure sets a relatively high importance to directional information for each
dataset, particularly for Telegram and Roman-empire. On the other hand, as observed in Zhang
et al. (2021), in highly homophilic networks such as Citeseer and Cora the direction of hyper-
edges impacts negatively on the performance. Synthetic datasets instead interestingly seem to see a
better performance with intermediate values of q, which could further explain the difference in per-
formance with other directed methods such as GeDi-HNN and DHGNN.

Table 3: Optimal q values for DSHN and DSHNLight across all real-world and synthetic datasets
found by hyperparameter tuning.

Method Roman-empire Squirrel email-EU Telegram Chameleon email-Enron
DSHN — 0.05 0.25 0.25 0.20 0.05
DSHNLight 0.20 0.05 0.20 0.20 0.15 0.15

Method Cornell Wisconsin Amazon-ratings Texas Citeseer Cora
DSHN 0.25 0.25 — 0.25 0.00 0.00
DSHNLight 0.15 0.25 0.00 0.15 0.00 0.00

Method Io = 10 Io = 30 Io = 50

DSHN 0.25 0.10 0.10
DSHNLight 0.10 0.10 0.10

B.2 IMPACT OF STALK DIMENSION AND NUMBER OF LAYERS

1 2 3 4 5 6 7

40

50

60

70

80

90

#Layers

A
cc

ur
ac

y
(%

)

DSHN
HGNN

(a) Accuracy of DSHN and HGNN as the number of
layers increases.

1 2 3 4 5 6 7 8
82
83
84
85
86
87
88
89
90

Dimension of stalk (d)

A
cc

ur
ac

y
(%

)

(b) Accuracy of DSHN as the stalk dimension d in-
creases.

Figure 3: Influence of architectural parameters on accuracy. (a) Effect of the number of layers on
DSHN and HGNN. (b) Effect of stalk dimension d on DSHN.

As noted in Section 1, standard HGNNs are prone to oversmoothing: as network depth increases,
node representations become indistinguishable and accuracy degrades. In Fig. 3, we study how depth
and the stalk dimension d affect the accuracy of DSHN. DSHN shows no signs of oversmoothing,
as accuracy improves as we add layers. Performance also increases with a higher stalk dimension
d, underscoring the additional expressive power associated to cellular sheaves. This stands in clear
contrast to HGNN, whose accuracy steadily deteriorates with depth. This is in line with the observa-
tions in Bodnar et al. (2022) for graphs: leveraging our Directed Sheaf Hypergraph Laplacian, built
with d× d restriction maps to transport features between nodes and hyperedges, enriches local vari-
ability rather than collapsing it. By projecting node features onto hyperedges (and back), the model
retains discriminative power across neighborhoods.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.3 EXTENDED RESULTS

In this subsection, we report the complete table of results for this work, which were not reported in
the main just due to space limitations. As one can observe from Table 4, DSHN and DSHNLight
consistently outperform the baselines taken from both the directed and undirected hypergraph learn-
ing literature on 10 out of 12 of the considered real-world datasets.

Table 4: Mean accuracy and standard deviation on node classification datasets (test accuracy ± std).
For each dataset, the best result is shown in bold, and the second-best is underlined.

Method Roman-empire Squirrel email-EU Telegram Chameleon email-Enron
HGNN 38.44± 0.44 35.47± 1.44 48.91± 3.11 51.73± 3.38 39.98± 2.28 52.85± 7.27
HNHN 46.07± 1.22 35.62± 1.30 29.68± 1.68 38.22± 6.95 35.81± 3.23 18.64± 6.90
UniGCNII 78.89± 0.51 38.28± 2.56 44.98± 2.69 51.73± 5.05 39.85± 3.19 47.43± 7.47
LEGCN 65.60± 0.41 39.18± 1.54 32.91± 1.83 45.38± 4.23 39.29± 2.04 37.03± 7.16
HyperND 68.31± 0.69 40.13± 1.85 32.79± 2.90 44.62± 5.49 44.95± 3.20 38.11± 7.69
AllDeepSets 81.79± 0.72 40.69± 1.90 37.37± 6.29 49.19± 6.73 42.97± 3.60 37.29± 7.90
AllSetTransformer 83.53± 0.64 40.53± 1.33 38.26± 3.57 66.92± 4.36 43.85± 5.42 63.78± 3.66
ED-HNN 83.82± 0.31 39.85± 1.79 68.91± 4.00 60.38± 3.86 44.67± 2.33 51.35± 6.04
SheafHyperGNN 74.50± 0.57 42.01± 1.11 52.78± 9.13 70.00± 5.32 41.06± 4.94 63.51± 5.95
PhenomNN 71.22± 0.45 43.62± 4.29 37.69± 4.40 47.69± 6.59 43.62± 4.29 47.02± 6.75

GeDi-HNN 83.87± 0.63 43.02± 3.00 52.31± 2.84 77.12± 4.82 39.29± 2.04 50.54± 5.80
DHGNN 77.58± 0.54 39.85± 1.79 32.35± 2.93 79.62± 5.78 44.08± 4.11 42.16± 8.04
DHGNN (w/ emb.) 22.50± 0.81 40.33± 1.42 55.10± 3.48 80.58± 3.89 40.85± 2.76 58.38± 7.57

DSHN OOM 43.55± 2.87 78.62± 2.50 88.65± 5.54 47.02± 4.35 75.68± 3.42
DSHNLight 89.24± 0.57 44.09± 2.36 82.67± 1.29 81.15± 4.19 46.50± 4.09 76.76± 2.48

Method Cornell Wisconsin Amazon-ratings Texas Citeseer Cora
HGNN 43.51± 6.44 51.56± 6.68 46.20± 0.45 52.77± 7.48 76.02± 0.81 87.25± 1.01
HNHN 43.51± 6.09 49.60± 4.96 42.29± 0.34 58.11± 3.87 71.24± 0.66 78.16± 0.98
UniGCNII 73.24± 5.19 86.86± 4.30 49.12± 0.46 81.35± 5.33 77.30± 1.15 87.53± 1.06
LEGCN 75.14± 5.51 84.71± 4.00 47.02± 0.59 81.35± 4.26 72.62± 1.09 74.96± 0.94
HyperND 75.14± 5.38 86.67± 5.02 47.33± 0.51 83.51± 5.19 75.21± 1.37 78.48± 1.02
AllDeepSets 77.83± 3.78 87.84± 3.69 51.91± 0.68 82.76± 5.74 75.78± 0.94 86.86± 0.85
AllSetTransformer 75.94± 2.97 86.27± 3.92 52.28± 0.67 82.76± 5.07 75.61± 1.44 86.73± 1.13
ED-HNN 76.49± 4.53 85.09± 4.89 51.58± 0.53 80.00± 5.05 74.95± 1.27 86.94± 1.25
SheafHyperGNN 74.59± 4.39 85.29± 4.74 48.90± 0.59 80.00± 2.48 77.21± 1.44 87.15± 0.64
PhenomNN 72.16± 4.19 80.58± 6.10 48.81± 0.37 81.49± 4.95 77.21± 1.32 88.12± 0.86

GeDi-HNN 78.37± 3.19 87.45± 3.41 49.30± 0.52 82.55± 4.64 75.94± 0.95 85.16± 0.94
DHGNN 77.30± 4.05 87.45± 3.84 52.48± 0.50 83.24± 5.64 74.67± 1.24 83.16± 1.33
DHGNN (w/ emb.) 51.08± 4.43 59.80± 5.63 53.64± 0.52 63.51± 9.84 56.78± 1.32 73.12± 1.04

DSHN 79.19± 4.37 88.63± 3.49 OOM 83.78± 5.13 77.39± 1.04 87.84± 0.90
DSHNLight 79.19± 3.20 87.25± 4.90 50.94± 0.68 82.43± 5.44 77.45± 0.74 88.02± 1.11

Additionally, we evaluate our method on two real-world directed hypergraph dataset for molecular
reaction reframed as a hyperedge classification task, results are provided in Table 5. These datasets
are the result of the merging of data from different sources such as Kearnes et al. (2021); Reizman
et al. (2016); Lugo-Martinez et al. (2021) and are built inspired by Restrepo (2024), which proposes
a novel way of modeling molecular reactions through directed hypergraphs. Dataset-1 contains
100523 nodes and 50016 hyperedges, with a total of 10 classes. Dataset-2 contains 956 nodes
and 3021 hyperedges to classify among 6 different classes. These datasets consist of inherently
directional hyperedges as they contain the molecular reactions expressed as set of reagents (the tail
set) and set of products (the head set) composing a molecular reaction. The nodes’ features are
built based on Morgan Fingerprints (Rogers & Hahn, 2010), which are one of the most widely used
molecular descriptors. We employ the F1-score metric since the data has an imbalanced amount of
samples for each class as shown in Appendix D.4.

As shown in Table 5, our method DSHN consistently outperforms all competing approaches from
both the undirected and directed hypergraph-learning literature across both datasets. On Dataset-1,
DSHNLight achieves an F1-score of 82.32%, representing a relative improvement of 1.98% over the
strongest baseline, GeDi-HNN (80.72%). On Dataset-2, DSHN attains 89.09%, exceeding AllSet-
Transformer (87.89%) by a relative margin of 1.37%.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 5: Mean F1-score and standard deviation for hyperedge classification on two molecular re-
action datasets (test F1-score ± std). The best score is shown in bold, and the second-best is
underlined.

Method Dataset-1 Dataset-2
HGNN 69.38 ± 0.48 81.40 ± 2.68
HNHN 32.27 ± 1.30 45.69 ± 7.48
UniGCNII 72.00 ± 0.59 85.61 ± 2.63
LEGCN OOM 84.75 ± 2.68
HyperND 44.16 ± 1.27 82.86 ± 3.17
AllDeepSets 79.17 ± 0.53 85.78 ± 3.01
AllSetTransformer 79.24 ± 1.08 87.89 ± 2.87
ED-HNN 66.37 ± 2.62 87.05 ± 1.96
SheafHyperGNN 57.99 ± 2.75 80.25 ± 2.20
PhenomNN 47.71 ± 2.90 86.27 ± 2.40
GeDi-HNN 80.72 ± 0.78 85.64 ± 2.42
DHGNN OOM 85.93 ± 3.49
DSHN OOM 89.09 ± 3.08
DSHNLight 82.32 ± 0.56 86.52 ± 2.68

C IMPLEMENTATION DETAILS

We provide additional details regarding the implementation of our models, with a particular empha-
sis on the computational complexity of DSHN and DSHNLight and the architectural choices that
contribute to their stability and expressiveness.

C.1 COMPUTATIONAL COMPLEXITY

Comparison between DSHN and DSHNLight Table 6 presents a comparative analysis of DSHN
and DSHNLight, across various datasets, measuring their performance in terms of average FLOPS
per epoch and average step time. The results are averaged over 10 runs. Over all the 12 datasets,
DSHNLight always appears to be more efficient, consistently requiring fewer computational re-
sources while maintaining faster processing times. By applying the aforementioned detachment op-
eration through backpropagation, DSHNLight achieves similar and sometimes better results, as can
be seen from Table 1.

Table 6: DSHN vs DSHNLight– FLOPS and Step Time (in ms) Analysis Across Different Datasets
(Mean ± Standard Deviation)

Avg FLOPs/epoch(↓) Avg step time (↓)
Dataset DSHN DSHNLight DSHN DSHNLight

Cora 267,070,765,386 ± 0 196,828,716,921 ± 3,250 2635.02 ± 112.51 973.18 ± 164.18
Citeseer 415,705,637,192 ± 0 310,747,699,339 ± 5,239 2631.83 ± 146.54 958.34 ± 159.00
email-Enron 962,025,184 ± 172 696,069,022 ± 364 2559.10 ± 115.97 932.18 ± 152.09
email-EU 35,930,593,693 ± 1,176 25,798,032,763 ± 1,183 4170.54 ± 105.64 1018.13 ± 155.71
Telegram 2,628,033,910 ± 0 1,858,200,422 ± 0 2702.33 ± 150.89 965.40 ± 161.12
Cornell 2,201,584,340 ± 220 1,851,871,460 ± 220 2467.84 ± 132.16 886.07 ± 164.73
Texas 2,228,554,459 ± 0 1,876,832,187 ± 0 2480.09 ± 130.18 888.02 ± 164.15
Wisconsin 3,684,554,183 ± 201 3,035,436,853 ± 454 2547.95 ± 116.24 923.18 ± 161.33
Chameleon 34,986,115,734 ± 123 27,033,570,342 ± 123 2629.45 ± 132.52 959.08 ± 155.75
Squirrel 189,607,210,489 ± 5,694 140,531,198,787 ± 3,557 3870.93 ± 119.79 1046.00 ± 169.09
Roman-empire OOM 12,898,147,996,391 ± 43,606 OOM 1050.30 ± 152.04
Amazon-ratings OOM 15,061,770,374,298 ± 0 OOM 1080.26 ± 159.91

Comparison between DSHN and other models Fig. 4 reports the average test accuracy of five
representative models under approximately the same parameter budget. The results indicate that
model size alone does not explain the performance of DSHN. For instance, although SheafHyper-
GNN and ED-HNN have a comparable number of parameters, their accuracy is significantly lower,
being these undirected methods. In contrast, DSHN achieves an improvement of about 8% over the
strongest directed baselines, despite having the same number of parameters thanks to the expressive

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

DSHN GeDi
DHGNN

SheafHyperGNN
ED-HNN

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Figure 4: Comparison between models under the same number of parameters (∼ 80k) on the Tele-
gram dataset.

power associated to complex-valued and directional restriction maps. On the other hand, Table 7
shows a comparison of DSHNLight with other models. Both DSHNLight and SheafHyperGNN
generally incur higher computational costs than traditional hypergraph neural networks, although
achieving, at least in the case of DSHNLight, a better substantially better accuracy. This overhead
stems directly from the requirement to learn and apply restriction maps at every node-hyperedge in-
cidence as detailed in the next paragraph.

Table 7: FLOPs and Parameter Count Across Datasets and Methods.

Dataset ED-HNN SheafHyperGNN DHGNN DSHNLight

FLOPs #Params FLOPs #Params FLOPs #Params FLOPs #Params

Cora 3× 109 125,959 2× 1011 404,576 7× 1010 4,077,051 2.0× 1011 437,447
Citeseer 5× 109 271,174 3× 1011 985,440 3× 1011 12,751,318 3.1× 1011 1,018,502
email-Enron 4× 108 34,311 6× 108 37,984 2× 107 13,334 7.0× 108 70,855
email-EU 5× 109 34,506 3× 1010 38,752 5× 108 14,372 2.6× 1010 71,050
Telegram 1× 109 34,116 2× 109 37,216 4× 107 13,241 1.9× 109 70,660
Cornell 2× 108 143,109 1× 109 473,184 6× 108 542,566 1.9× 109 506,437
Texas 2× 108 143,109 1× 109 473,184 6× 108 542,566 1.9× 109 506,437
Wisconsin 3× 108 143,109 2× 109 473,184 1× 109 658,370 3.0× 109 506,437
Chameleon 2× 109 182,917 2× 1010 632,416 1× 1010 2,379,783 2.7× 1010 632,416
Squirrel 9× 109 167,813 1× 1011 572,000 7× 1010 4,924,172 1.3× 1011 605,253
Roman-empire 2× 1010 54,162 1× 1013 117,344 1× 1012 6,850,778 1.3× 1013 117,344
Amazon-ratings 3× 1010 53,317 2× 1013 114,016 1× 1012 7,398,933 1.5× 1013 114,016

Asymptotic Complexity We provide an estimate of the asymptotic complexity of our model at
inference time.

1. Linear Transformation. The feature transformation is defined as

X′ = (In ⊗W1)XW2

where W1 ∈ Rd×d and W2 ∈ Rf×f . The resulting complexity is O(n(d2f + df2)) =
O(n(cd+ cf)) = O(nc2), where c = df .

2. Message Passing. Once the Laplacian operator has been assembled, message passing re-
duces to a sparse-dense matrix multiplication of the form

QF⃗
NX′.

The sparsity pattern of QF⃗
N comes directly from the incidence matrix: each hyperedge of

size |e| induces |e|2 nonzero blocks through the outer product B(q)(e, :)†B(q)(e, :). Sum-
ming across all hyperedges gives a total of S2 =

∑
e∈E |e|2 = O

(
mē2) nonzero blocks,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

where ē is the average hyperedge size2. Applying the Laplacian then requires O(mē2c) for
diagonal maps and O(mē2dc) with non-diagonal maps,

3. Learning the Sheaf. Restriction maps are predicted as

Φ(xv,xe) = σ
(
V
(
xv ∥xe

))
where V is a learnable transformation and σ a nonlinearity. The resulting f -dimensional
vector is then used as input to V for every node-edge incidence. Indicating with v̄ the
average number of partecipations of a node to an hyperedge, the computational complexity
is O(v̄mc) in the diagonal case, and O(v̄md2c) in the non-diagonal case.

4. Constructing the Laplacian. In the hypergraph setting we assemble

QF⃗
N = D

− 1
2

V B(q)†D−1
E B(q)D

− 1
2

V .

The work naturally splits into two steps:
(a) Degree normalization. This involves computing the node and hyperedge degree ma-

trices, D
− 1

2
V and D−1

E . For vertex degree normalization each node requires aggregat-
ing contributions from its incident hyperedges, giving O(mēd) operations in the diag-
onal case and O(mēd3) in the non-diagonal case (since each block is d× d), to which
it must be added the cost of inverting the block-diagonal matrices, adding to the com-
plexity O

(
nd) in the diagonal case and O

(
nd3) in the non-diagonal case while since

D−1
E is obtained by expanding to matrix for the scalar hyperedge degrees δe this cost

adds a trascurable term to the asymptotic complexity.
(b) Sparse product. Forming the term

QF⃗
N = D

− 1
2

V B(q)†D−1
E B(q)D

− 1
2

V .

requires, for each hyperedge e, generating block interactions among all pairs of nodes
it contains. This gives a total of S2 =

∑
e∈E |e|2 block products. The cost is O(S2d)

in the diagonal case and O(S2d
3) in the non-diagonal case. Since the normalization

terms D
− 1

2
V are block-diagonal operations they do not contribute substantially in the

overall complexity. Since S2 = O
(
mē2

)
, the dominant cost becomes O(mē2d) for

diagonal maps and O(mē2d3) for non-diagonal maps.

By summing the overall contributions we get: O
(
n (c2 + d) + m (ēd+ ē2(d+ c) + v̄ c)

)
in the

diagonal case and O
(
n (c2 + d3) +m (ēd3 + ē2(d3 + dc) + v̄ d2c)

)
in the non-diagonal case.

Considerations on the Asymptotic Complexity The leading cost arises from the Laplacian as-
sembly step, which scales as O(mē2d) in the diagonal case and O(mē2d3) in the non-diagonal case.
This quadratic dependence on the average hyperedge size ē2 makes the method particularly sensi-
tive to hypergraphs with densely populated hyperedges. In practice, this means that even when the
number of nodes and hyperedges are moderate, the presence of densely populated hyperedges can
dominate the computational cost.

C.2 ARCHITECTURAL CHOICES

Layer Normalization We apply layer normalization to the learnable parameters W1 ∈ Rd×d

and W2 ∈ Rf×f . Since the input signal to each convolutional layer is complex-valued, we adopt
a complex normalization strategy as proposed in Trabelsi et al. (2018); Barrachina et al. (2023),
where each complex feature is treated as a two-dimensional real vector (ℜ(x),ℑ(x)). Specifically,
we compute the full 2× 2 covariance matrix:

Σ =

[
σrr σri

σri σii

]
, x̃ = Σ− 1

2 (x− µ),

2One could also upper bound the S2 term with O
(
mn2), however, that approximation would be highly

pessimistic, considering a fully-dense representation of the hypergraph, where each hyperedge connects all
nodes.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

where µ = (µr, µi) is the mean vector of the real and imaginary parts. The whitening transform
Σ− 1

2 ensures that the two components are jointly normalized and decorrelated. To enhance flexibil-
ity, we apply an optional learnable affine transformation in the complex plane:

xo = γx̃+ β,

with trainable parameters γ ∈ R2×2 and β ∈ R2. These are initialized as γ = 1√
2
I2 and β =

0, thereby preserving the norm of unit-modulus inputs while maintaining the identity mapping at
initialization.

Residual Connections Following observations from Bodnar et al. (2022), we include residual
connections in our convolutional layers, which we found to help the architecture in certain datasets.
The use of residuals is treated as a tunable hyperparameter (see Appendix D.3). With this addition,
a convolutional layer takes the form:

Xt+1 = σ
(
QF⃗

N (In ⊗W1)Xt W2 +Xt

)
∈ Cnd×f .

Activation Function For the activation function, we adopt the complex ReLU commonly em-
ployed in related works (Zhang et al., 2021; Fiorini et al., 2023; 2024). It is defined as:

ReLU(x) =

{
x, if ℜ(x) > 0,

0, otherwise.

DSHNLight The architecture of DSHNLight is illustrated in Fig. 5. The model takes as input a
node feature matrix Xinput, which is projected into a higher-dimensional stalk space via a learnable
linear transformation. This representation is then used both in the message-passing pipeline and as
input to the MLP that predicts the restriction maps F⃗v⊴e. Unlike DSHN, the Laplacian operator
is built outside the computational graph, so the MLP parameters are not updated during training.
Nevertheless, the initial projection layer remains trainable, which allows the model to indirectly
influence the restriction maps: by shaping the input embeddings, the network can still control the
outputs of the MLP. In this way, even though the restriction map MLPs are frozen, the model is
still able to predict good values of embeddings and restriction maps, as confirmed by the empirical
results in Tables 2 and 4.

Stalk Dimension
Projection

Prediction of
Restriction Maps

Building the Laplacian
(detached) Classifier

(receives no gradient during training)

...

(Repeat message passing for N layers)

Figure 5: Illustration of the DSHNLight architecture. The Laplacian construction is detached from
the computational graph, but the initial stalk projection layer remains trainable, allowing the model
to indirectly influence the restriction maps.

D EXPERIMENTAL SETUP

D.1 HARDWARE DETAILS

All experiments are carried out on two different workstations: one equipped with two NVIDIA
RTX 4090 GPUs (24 GB each) and an AMD Ryzen 9 7950X 6-core processor, and another fea-
turing an Intel Core i9-10940X 14-core CPU (3.3 GHz), 256 GB of RAM, and a single NVIDIA
RTX A6000 GPU with 48 GB of VRAM. We utilized the WandB platform to monitor training pro-
cedures and to carry out hyperparameter tuning for each model.

D.2 SELECTED BASELINES

We compare our models against twelve state-of-the-art methods from the hypergraph learning lit-
erature. From the undirected hypergraph-learning literature we include HGNN (Feng et al., 2019),

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

HNHN (Dong et al., 2020), UniGCNII (Huang & Yang, 2021), LEGCN (Yang et al., 2022),
HyperND (Tudisco et al., 2021), AllDeepSets and AllSetTransformer (Chien et al., 2022), ED-
HNN (Wang et al., 2023a), SheafHyperGNN (Duta et al., 2023) and PhenomNN (Wang et al.,
2023b). From the directed hypergraph-learning literature, we consider GeDi-HNN (Fiorini et al.,
2024) and DHGNN (Ma et al., 2024) as our baselines. DHGNN was originally designed for link pre-
diction on directed graph datasets and relies on a learnable embedding table to represent node fea-
tures. In our evaluation, we report the model’s performance using both this original embedding ap-
proach and an alternative setup with explicit node features. We adapted their implementation of the
approximate Laplacian operator as it was originally tailored for directed graphs, despite their defi-
nition in principle working also for directed hypergraphs. Among the baselines present in the litera-
ture, we also examined DHMConv (Zhao et al., 2024), which is introduced as a spatial convolution
for directed hypergraphs. In practice, though, its implementation is designed for directed 2-uniform
hypergraphs (i.e. standard graphs). Unlike spectral approaches such as DHGNN, which leverage a
Laplacian construction, spatial methods such as DHMConv rely on edge-wise indexing mechanisms
that are inherently tied to a graph structure and cannot be meaningfully applied to the directed hy-
pergraph setting considered in our work, where each hyperedge can contain multiple nodes and are
not restricted to pair-wise relations.

D.3 HYPERPARAMETER TUNING

For tuning all the models, we employ a Bayesian optimization method. All models are trained for
up to 500 epochs with early stopping set to 200 epochs. We employ Adam (Kingma & Ba, 2017)
for optimizing the model parameters with lr ∈ {0.02, 0.01, 0.005, 0.001}, wd ∈ {0, 5× 10−5, 5×
10−4}. For all the models, we adopt a dropout ∈ {0.1, 0.2, . . . , 0.9}, and for each model that has
a selectable number of layers for the final classifier we fix it to 2. For each baseline, we select a
range of parameters consistent with those investigated in their respective original works. Additional
details are available in the code from the Supplementary Material.

• AllDeepSets, ED-HNN: basic blocks {2, 4, 8}; MLPs per block {1, 2}; MLP hidden width
{64, 128, 256, 512}; classifier width {64, 128, 256}.

• AllSetTransformer: basic blocks {2, 4, 8}; MLPs per block {1, 2}; hidden MLP width
{64, 128, 256, 512}; classifier width {64, 128, 256}; heads {1, 4, 8}.

• UniGCNII, HGNN, HNHN, LEGCN: basic blocks {2, 4, 8}; MLP hidden width
{64, 128, 256, 512}.

• HyperND: classifier width {64,128,256}.

• PhenomNN: basic blocks {2, 4, 8}; hidden width {64, 128, 256, 512}; λ0 ∈ {0.1, 0, 1};
λ1 ∈ {0.1, 50, 1, 20}; propagation steps {8, 16}.

• GeDi-HNN: convolutional layers {1, 2, 3}; MLP hidden width {64, 128, 256, 512}; classi-
fier width {64, 128, 256}.

• DHGNN, DHGNN (w/ emb.), basic blocks {2, 4, 8}; hidden width {64, 128, 256, 512},
classifier width {64,128,256}.

• SheafHyperGNN, DSHN, DSHNLight:

– sheaf dropout ∈ {false,true}
– convolutional layers ∈ {1, . . . , 5}
– MLP hidden width {64, 128, 256, 512}
– classifier width {64,128,256}
– d ∈ {1, . . . , 6}
– sheaf actvation ∈ {sigmoid,tanh,none}
– left projection ∈ {false,true}
– residual ∈ {false,true}
– dynamic sheaf ∈ {false,true}
– q ∈ {0.00, 0.05, 0.10, 0.15, 0.20, 0.25} (for DSHN & DSHNLight only)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.4 DATASETS DESCRIPTION

We follow the data splits proposed by Zhang et al. (2021) for the Telegram, Texas, Wisconsin,
Cornell. For Chameleon and Squirrelm we adopt the splits proposed by Platonov et al.
(2023). For Roman-empire and Amazon-Ratings we adopt the splits proposed by Platonov
et al. (2023) and adopt the splits of Chien et al. (2022) for the remaining ones. In all cases,
the datasets are partitioned into 50% training, 25% validation, and 25% test samples. For the
email-Enron and email-EU datasets and for all synthetic datasets, node attributes are not avail-
able. In these cases, we resort to structural features, representing each node by its degree. The statis-
tics of the 12 real-world datasets as well as synthetic ones are provided in Table 8. The datasets used
for the experiments are:

• Cora, Citeseer Standard citation benchmarks in which vertices represent research pa-
pers and directed edges encode citation links. Node attributes are constructed from text us-
ing bag-of-words representations of the documents.

• email-Enron, email-EU A corporate email communication network built from En-
ron’s message logs. Nodes correspond to email accounts and edges record sender inter-
actions. As ground-truth labels are unavailable, we derive node classes via the Spinglass
community detection method Reichardt & Bornholdt (2006).

• Texas, Wisconsin, Cornell WebKB datasets collected from university computer
science departments. Each node is a webpage, hyperlinks are edges, and features are bag-
of-words over page content. Pages are annotated into five categories: student, project,
course, staff, and faculty.

• Telegram An interaction network extracted from Telegram, capturing exchanges among
users who propagate political content.

• Squirrel, Chameleon The Squirrel and Chameleon datasets consist of articles from
the English Wikipedia (December 2018). Nodes represent articles, and edges represent
mutual links between them. Node features indicate the presence of specific nouns in the
articles. Nodes are grouped into five categories based on the original regression targets.

• Roman-empire The dataset is based on the Roman Empire article from English
Wikipedia, which was selected since it is one of the longest articles on Wikipedia and it
follows the construction proposed by Platonov et al. (2023). Each node in the graph corre-
sponds to one (non-unique) word in the text.

• Amazon-ratings The dataset, as proposed by Platonov et al. (2023), is based on the
Amazon product co-purchasing network metadata dataset from SNAP Datasets Leskovec
& Krevl (2014). Nodes are products (books, music CDs, DVDs, VHS video tapes), and
edges connect products that are frequently bought together.

• Synthetic Introduced in Fiorini et al. (2024) by following the methodology adopted
in Zhang et al. (2021), these datasets are built as follows: a vertex set V is partitioned
into c equally sized classes C1, . . . , Cc. For each class Ci, we sample Ii intra-class hy-
peredges that are undirected. The cardinality of each hyperedge is drawn uniformly from
{hmin, . . . , hmax}, and its nodes are sampled uniformly from Ci. For each ordered pair of
distinct classes (Ci, Cj) with i < j, we create Io inter-class directed hyperedges. For every
such hyperedge e, the tail set T (e) is sampled from Ci and the head set H(e) from Cj ; the
sizes |T (e)| and |H(e)| are drawn uniformly from {hmin, . . . , hmax}. This induces a direc-
tional flow from Ci to Cj only when i < j. Using this procedure, we generate three datasets
with n = 500 nodes, c = 5 classes, hmin = 3, hmax = 10, Ii = 30 intra-class hyperedges
per class, and an increasing number of inter-class directed hyperedges Io ∈ {10, 30, 50}.

D.5 DIRECTED HYPERGRAPH FROM A DIRECTED GRAPH

Given a directed graph G = (V,E), let the out-neighborhood of v ∈ V be
Nout(v) = {w ∈ V | (v, w) ∈ E }.

We build a directed hypergraph H = (V, E) by creating one hyperedge ev for each node with its
outgoing edges and setting

T (ev) = {v}, H(ev) = Nout(v).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 8: Statistics of the datasets used in our experiments. Reported are the number of nodes,
features, hyperedges, and classes, as well as the average hyperedge size (|e|), the average node
degree (|v|), and the clique-expansion (CE) homophily computed as in Wang et al. (2023a).

Dataset # Nodes # Features # Hyperedges # Classes avg |e| avg |v| CE homophily
Roman-empire 22,662 300 22,662 18 2.73 2.73 0.2363
Squirrel 2,223 2,089 2,060 5 23.81 22.07 0.2448
email-EU 986 – 787 10 43.36 34.61 0.2608
Telegram 245 1 183 4 49.70 37.12 0.2854
Chameleon 890 2,325 797 5 12.11 10.84 0.3221
email-Enron 143 – 139 7 19.58 19.03 0.3251
Cornell 183 1,703 96 5 4.07 2.14 0.4200
Wisconsin 251 1,703 170 5 3.94 2.67 0.4398
Amazon-ratings 24,492 300 24,456 5 5.63 5.62 0.4460
Texas 183 1,703 110 5 3.81 2.29 0.5049
Citeseer 3,312 3,703 1,951 6 3.35 1.98 0.7947
Cora 2,708 1,433 1,565 7 4.47 2.58 0.8035

Io = 10 500 – 250 5 9.05 4.53 0.6233
Io = 30 500 – 450 5 10.79 9.71 0.5020
Io = 50 500 – 650 5 11.63 15.12 0.4528

Transform

Figure 6: Example of the creation of a directed hyperedge from the out-neighborhood of a node.
Suppose we have a graph where node v1 connects to nodes v2, v3, and v4, so that (v1, v2), (v1, v3),
and (v1, v4) belong to E. The construction procedure yields a directed hyperedge e1 with tail set
T (e1) = {n1} and head set H(e1) = {v2, v3, v4}.

Thus every hyperedge has a tail consisting of a single node and a head set containing all nodes
belonging to the neighborhood of that tail. A clear example of this construction procedure can be
visualized in Fig. 6.

This formulation preserves the source-target semantics of the original graph by expressing them
as a higher-order relation. Such hyperedges are often referred to as forward directed hyperedges
(Gallo et al., 1993). When every hyperedge is forward directed, the structure is a forward directed
hypergraph, which is the case for all real-world datasets considered in this work.

Hyperedge Classification for Molecular Reaction In Table 9 and Table 10 we show the distri-
bution of labels for the directed molecular reaction prediction datasets employed for the hyperedge
classification task. As mentioned in Appendix B.3, we evaluate all models on additional real-world
molecular prediction datasets (see Table 5) from the perspective of a hyperedge classification task.
To do so, before feeding the output of the last convolutional layer to the classifier, we perform an
aggregation (sum) of all node representations belonging to a given hyperedge. Specifically, if Xnode
is the final feature matrix of shape N × F , where N is the number of nodes and F is the feature
dimension, we can compute hyperedge-level representations using a (real-valued and binary) inci-
dence matrix H of shape N × E as follows:

H⊤Xnode = Xedge ∈ RE×F .

The resulting matrix Xedge is then fed to the classifier which will output a matrix of shape E × C,
where C is the number of classes.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Class Number of Hyperedges Percentage (%)
0 15151 30.29
1 11896 23.78
2 5662 11.32
3 909 1.82
4 672 1.34
5 8237 16.47
6 4614 9.23
7 811 1.62
8 1834 3.67
9 230 0.46

Table 9: Dataset 1 label distribution.

Class Number of Hyperedges Percentage (%)
0 960 31.78
1 1536 50.84
2 213 7.05
3 54 1.79
4 226 7.48
5 32 1.06

Table 10: Dataset 2 label distribution.

E ON PREVIOUS PROPOSALS OF THE SHEAF HYPERGRAPH LAPLACIAN

In this section, we revisit the definition of the Sheaf Hypergraph Laplacian proposed in Duta et al.
(2023), noting that it fails to satisfy basic spectral properties expected of a Laplacian operator, most
notably positive semidefiniteness. This shortcoming motivates our formulation, which, as discussed
in Section 3.4, constitutes (to our knowledge) the first definition of a Sheaf Hypergraph Laplacian
that is fully consistent with the spectral requirements of a convolutional operator also in the undi-
rected setting. The (called linear in the paper—the nonlinear one is, in essence, the Laplacian of a
2-uniform hypergraph) Laplacian of Duta et al. (2023) is defined as follows:

Definition 2. Let H = (V,E) be a hypergraph with hyperedge degrees δe and let Fv⊴e : Rd → Rd

be linear restriction maps from node v to hyperedge e. The Laplacian LF ∈ Rnd×nd has d × d
blocks indexed by u, v ∈ V :

(LF)uu =
∑
e:u∈e

1

δe
F⊤

u⊴eFu⊴e, (LF)uv = −
∑

e:u,v∈e
v ̸=u

1

δe
F⊤

u⊴eFv⊴e

Definition 2 essentially coincides with a Signless Hypergraph Laplacian, except for the fact that the
off-diagonal entries are flipped from positive to negative.3 Such a sign-flip suffices to build a positive
semidefinite Laplacian matrix exclusively in the 2-uniform case, where the Laplacian operator for
a graph can be obtained by assigning an arbitrary orientation to each edge. Notice that, in the
undirected case, our Laplacian differs from theirs due to featuring a coefficient of (1 − 1

δe
) in the

diagonal term, rather than 1
δe

.

3This is consistent with their implementation.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Considering the proposed definition, we can compute the equation of the Laplacian seen as a linear
operator for a signal x ∈ Rnd as follows:

(
LF (x)

)
u
=

∑
v∈V

(LF)uv xv

=
∑
e:u∈e

1

δe
F⊤

u⊴eFu⊴e xu −
∑
e:u∈e

∑
v∈e
v ̸=u

1

δe
F⊤

u⊴eFv⊴e xv

=
∑
e:u∈e

1

δe

F⊤
u⊴eFu⊴e xu −

∑
v∈e
v ̸=u

F⊤
u⊴eFv⊴e xv


=

∑
e:u∈e

1

δe
F⊤

u⊴e

Fu⊴e xu −
∑
v∈e
v ̸=u

Fv⊴e xv

 .

Which substantially differs from the expression reported in their respective work, which reads:

(
LF (x)

)
u
=

∑
e:u∈e

1

δe
F⊤

u⊴e

∑
v∈e
v ̸=u

(Fu⊴e xu −Fv⊴e xv) .

Crucially, the latter is the expression that is obtained with our operator in the undirected case, as
reported in Eq. (6).

Let us illustrate the issue with a numerical example. Let us consider a hypergraph with node set
V = {v1, v2, v3, v4} and E = {e1, e2} with hyperedges e1 = {v1, v2, v3}, e2 = {v2, v3, v4}, in the
case of a trivial Sheaf (i.e. Fv⊴e = 1). Let δe denote the hyperedge size and let Fu⊴e ∈ R be the
(scalar) restriction on incidence (u, e).

By Definition 2, the entries of the Laplacian are:

(LF)v1v1 = 1
δe1

F⊤
v1⊴e1Fv1⊴e1 ,

(LF)v2v2 = 1
δe1

F⊤
v2⊴e1Fv2⊴e1 +

1
δe2

F⊤
v2⊴e2Fv2⊴e2 ,

(LF)v3v3 = 1
δe1

F⊤
v3⊴e1Fv3⊴e1 +

1
δe2

F⊤
v3⊴e2Fv3⊴e2 ,

(LF)v4v4 = 1
δe2

F⊤
v4⊴e2Fv4⊴e2 ,

(LF)v1v2 = − 1
δe1

F⊤
v1⊴e1Fv2⊴e1 ,

(LF)v1v3 = − 1
δe1

F⊤
v1⊴e1Fv3⊴e1 ,

(LF)v1v4 = 0,

(LF)v2v3 = − 1
δe1

F⊤
v2⊴e1Fv3⊴e1 − 1

δe2
F⊤

v2⊴e2Fv3⊴e2 ,

(LF)v2v4 = − 1
δe2

F⊤
v2⊴e2Fv4⊴e2 ,

(LF)v3v4 = − 1
δe2

F⊤
v3⊴e2Fv4⊴e2 .

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Numerically, we have: 
1
3 − 1

3 − 1
3 0

− 1
3

2
3 − 2

3 − 1
3

− 1
3 − 2

3
2
3 − 1

3

0 − 1
3 − 1

3
1
3

 .

The spectrum of the above Laplacian is:

eig
(
LF)

=
{
−2, 2

3 ,
4
3 , 2

}
.

Since a negative eigenvalue appears, LF is not positive semidefinite in this example.

31

	Introduction
	Background and Previous Work
	Directed Sheaf Hypergraph Laplacian
	Directed Hypergraph Cellular Sheaf
	Directed Sheaf Hypergraph Laplacian
	Spectral Properties
	Generalization Properties

	Directional Sheaf Hypergraph Network
	Experimental Evaluation
	Real-World Datasets
	Synthetic Datasets

	Conclusion and Future Works
	Theoretical Results
	Spectral Properties
	Generalization Properties

	Extended experimental evaluation
	Impact of charge parameter
	Impact of stalk dimension and number of layers
	Extended Results

	Implementation details
	Computational Complexity
	Architectural Choices

	Experimental Setup
	Hardware Details
	Selected Baselines
	Hyperparameter tuning
	Datasets Description
	Directed Hypergraph from a Directed Graph

	On previous proposals of the Sheaf Hypergraph Laplacian

