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Abstract 1 

Public participation, the process of 2 

voluntary engagement of citizens in urban 3 

decision-making, requires a significant 4 

amount of time and human resources. 5 

Therefore, automatization of the evaluation 6 

is essential. Classification of the citizens’ 7 

proposals is one of the prevalent analytical 8 

tasks. Through the years many studies have 9 

worked on automatization techniques of 10 

this procedure and Natural Language 11 

Processing (NLP) methods are among the 12 

most effective ones. Nevertheless, most 13 

developed techniques despite promising 14 

results are optimized for the English 15 

language. Moreover, the NLP pre-trained 16 

models such as BERT have limitations in 17 

the length of the texts they can process. 18 

Hence, this paper focuses on the abstractive 19 

summarization of the public proposal in 20 

German and considers two different 21 

shortening techniques (truncation and 22 

summarization). The main aim is to explore 23 

how pre-trained models such as the BERT 24 

perform in the classification of summarized 25 

German language contributions. For this 26 

purpose, the German BERT model, which 27 

is fine-tuned on the MLSUM DE dataset, 28 

and the multilingual BART model are 29 

considered for text summarization. The 30 

results revealed that applying shortening 31 

techniques on long contributions reduces 32 

the model development time by an average 33 

of 48% on CPU and 36% on GPU while 34 

improving performance. Moreover, the 35 

multilingual BART model works slightly 36 

better than the BERT model fine-tuned on 37 

the MLSUM DE dataset. 38 

1 Introduction 39 

Public participation, an attractive topic for 40 

academics, regulators, and governments, is one of 41 

the key instruments of democracy. Public 42 

contribution helps citizens’ concerns and thoughts 43 

to be heard and avoids elitism (Rowe and Frewer, 44 

2004). Even though consideration of the public 45 

voice provides more information to the authorities, 46 

it requires a longer processing time (Lee and Kim, 47 

2014). Indeed, processing and analyzing the 48 

collected data is among the key challenges that 49 

policy-makers in the public voice consideration 50 

face (Romberg and Escher, 2023, Simonofski, 51 

Fink, and Burnay, 2021, Arana-Catania et al., 52 

2021). To protect the ultimate goals of public 53 

participation and the core standards of a democratic 54 

society, all contributions should be treated equally. 55 

This emphasizes the requests for specific analytical 56 

methods to ease inferring meaningful information 57 

from an overwhelming collection of public 58 

statements (Lee and Kim, 2014, Romberg, Mark, 59 

and Escher, 2022, Romberg and Escher, 2022). 60 

Previous experiences have demonstrated that 61 

when the amount of data is manageable, manual 62 

processing despite its inefficiency is preferred 63 

(Simonofski, Fink, and Burnay, 2021). However, 64 

the advances in technology especially in Artificial 65 

Intelligence (AI) and particularly Natural 66 

Language Processing (NLP) have made a huge 67 

difference (Romberg and Escher, 2023). NLP 68 

analyses linguistic data and enables computers to 69 

understand, interpret, and generate human 70 

language (Egger and Gokce, 2022). Despite 71 

notable advances in NLP techniques, such as the 72 

rise of Pre-trained Language Models (PLMs), 73 

Romberg and Escher (2023) in a review of methods 74 

for computational text analysis remark that public 75 

contribution texts exhibit distinct characteristics 76 

compared to other domains such as news or social 77 

media contents (Romberg and Escher, 2023). 78 

Another significant gap in the study of public 79 

contributions is language. The majority of the 80 

existing research is limited to English, with only a 81 
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few addressing non-English public proposal texts 82 

(Romberg and Escher, 2023, Romberg, 2023, Balta 83 

et al., 2019, Romberg and Conrad, 2021, Romberg, 84 

2022). Hence further studies are required to 85 

generate more robust and reliable models. 86 

Automatic Text Summarization (ATS) is 87 

another field of NLP, which despite its high 88 

potential has been left under-explored, especially in 89 

the study of non-English texts (Aruneshwari et al., 90 

2024, Alcantara et al., 2023). ATS is a method for 91 

generating a coherent shorter version of a text 92 

document while preserving the key information 93 

from the original text (Aruneshwari et al., 2024). 94 

ATS is classified into two categories. (1) The 95 

abstractive text summarization, in which the 96 

system tries to understand the text and provides a 97 

shorter novel narrative of the original text while 98 

preserving the key points (Alcantara et al., 2023). 99 

(2) The extractive summarization, which is more 100 

flexible where the system first identifies the key 101 

sentences (texts), then extracts, orders, and returns 102 

them in a condensed form (Alcantara et al., 2023, 103 

Verma and Verma, 2020, Talib, 2021). 104 

One of the main applications of text 105 

summarization is in the classification of the texts. 106 

However, this area is in its early stages and the 107 

majority of the studies are still focused on the 108 

English language. (Scialom et al., 2020) mentions 109 

that the dominance of the English language, lack of 110 

multilingual data, and the use of pre-trained models 111 

on the pivot language (English) resulted in a 112 

significant gap in the performance of the 113 

classification studies. To the best of our knowledge, 114 

this is the first study in summarization of public 115 

participation in the German language. Our 116 

contribution is mainly on understanding how 117 

summarization affects the models’ performance in 118 

detecting argumentation structures. 119 

The rest of this paper is organized as follows. 120 

Section 2 highlights the importance of analyzing 121 

public participation and mentions the previously 122 

explored techniques. This section also briefly 123 

reviews the Automatic Summarization techniques 124 

and models. Section 3 introduces the dataset. 125 

Section 4 comprehensively explains the developed 126 

methods in this study. In Section 5, the obtained 127 

results are presented and are discussed in Section 128 

6. Finally, Section 7 summarizes the findings and 129 

mentions the topics for further studies. 130 

2 Literature Review 131 

2.1 Evaluation of Public Participation 132 

Public participation, alternatively called citizen 133 

participation, is the volunteer action of citizens to 134 

influence the decision-making processes 135 

(Schroeter et al., 2016). However, processing all 136 

the collected statements to infer meaningful 137 

information manually, while respecting the 138 

principles of democracy is a challenging task 139 

(Karic et al., 2024, Arana-Catania et al., 2021). 140 

Hence, to achieve this goal (Kwon et al., 2006), 141 

(Arguello et al., 2008), (Habernal & Gurevych, 142 

2016), and (Cardie et al., 2008) applied SVM 143 

models, (Konat et al., 2016) considered graph-144 

based analytics, and with the progress of AI-based 145 

technologies in recent years such as Natural 146 

Language Processing (NLP) techniques, (Fierro et 147 

al., 2017) considered fastText and Deep Averaging 148 

Networks (DAN) to automatically analyze or 149 

classify a large number of public comments and 150 

arguments on proposed regulations. (Liebeck et al., 151 

2016) is one of the few researchers in this domain 152 

who developed a new German corpus for argument 153 

mining and compared the performance of SVM, 154 

Random Forest (RF), and k-Nearest-Neighbor 155 

(kNN) classification models. (Romberg and 156 

Escher, 2022) studied in the domain of argument 157 

mining in German introduced a new dataset of 158 

German language arguments and (Romberg, Mark, 159 

and Escher, 2022) compared the performance of 160 

SVM, Maximum Entropy (MaxEnt), Naïve Bayes 161 

(NB), and BERT classifiers in single and multi-162 

label classification of contributions. 163 

2.2 Automated Text Summarization 164 

Text Summarization has been always an interesting 165 

topic for researchers. In 2010 with the introduction 166 

of neural networks and later the development of 167 

Sequence-to-Sequence (Seq2Seq), Bidirectional 168 

Encoder Representations from Transformers 169 

(BERT), and Generative Pre-trained Transformer 170 

(GPT) models, more attention was attracted to 171 

automatic text summarization (Khan et al., 2023). 172 

Pre-trained models have significantly improved 173 

NLP capabilities (Alcantara et al., 2023). BERT is 174 

one of the bidirectional models pre-trained over 175 

texts from Wikipedia and has shown relatively 176 

good performance in abstractive text 177 

summarization. Some other known encoder and 178 

decoder pre-trained models are BART developed 179 

by Facebook, GPT developed by OpenAI, and 180 
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RoBERTa and DistilBERT both as a refined 181 

version of BERT (Alcantara et al., 2023, Syed, 182 

Gaol, & Matsuo, 2021). Chen et al. (2021) by 183 

highlighting the huge size of famous pre-trained 184 

models such as GPT and their extensive 185 

computation cost, tried to save the training cost of 186 

large models by transferring the learned knowledge 187 

of the t smaller rained model to the large model 188 

(Chen et al., 2021). They called the model 189 

BERT2BERT. 190 

Pre-trained models despite significant 191 

performance have some limitations.  The majority 192 

of them such as BERT are trained over English 193 

language documents which leads to lower 194 

performance on non-English documents. In order 195 

to overcome this limitation, multilingual versions 196 

of some of the models are introduced. mBERT, the 197 

multilingual version of BERT, is trained for the top 198 

100 languages with the longest documents on 199 

Wikipedia (GitHub, 2022). This model supports 200 

the German language. German BERT2BERT fine-201 

tuned on MLSUM DE for summarization is 202 

another pre-trained BERT model for the German 203 

language trained on German Wikipedia, 204 

OpenLegalData, and news articles. The 205 

BERT2BERT model is specialized for text 206 

summarization and is accessible through the 207 

Hugging Face website API for pre-trained models. 208 

MLSUM is the first large-scale MultiLingual 209 

SUMmarization dataset introduced in 2020 210 

(Scialom et al., 2020). The dataset contains over 211 

1.5 million article/summary pairs in five languages, 212 

including German, and can be used to evaluate the 213 

summarization models (Scialom et al., 2020).  214 

2.3 Research Gap 215 

Many studies have sought to reduce the burden of 216 

analyzing public contributions through text-217 

processing techniques. However, most of these 218 

studies have focused on the English language, and 219 

there is a lack of exploration into the fine-tuning of 220 

transformer models (such as BERT) and the 221 

performance of other transformer architectures 222 

(Romberg, Mark, and Escher, 2022). This study 223 

aims to address these gaps and analyze the potential 224 

limitations of applying developed models to long 225 

texts. As a potential solution, automatic text 226 

summarization techniques, whose performances on 227 

argumentative data in the German language are 228 

largely unexplored (Alcantara et al., 2023), are 229 

tested and evaluated. The primary goal of this study 230 

is to assess how summarization impacts runtime 231 

and overall performance.  232 

3 Dataset 233 

The dataset considered for this study is a collection 234 

of public contributions from three different cities in 235 

Germany and has been used for automated topic 236 

classification (Romberg and Escher, 2022). The 237 

public participation processes, known as 238 

“Raddialoge”, were held by the municipalities of 239 

Bonn, Ehrenfeld, and Moers from September to 240 

October 2017. Detailed information on the 241 

collection of contributions and labeling can be 242 

found in (Romberg and Escher, 2022).  243 

The total number of collected contributions is 244 

3139 of which 2314 were received from Bonn, 366 245 

from Ehrenfeld, and 459 from Moers. Eight 246 

different categories for improving the citizens’ 247 

experience were proposed and each contribution 248 

was assigned to one or more of these categories. An 249 

overview of the dataset is given in Table 1. In total, 250 

there are 231 contributions from  Bonn, 46 251 

contributions from Moers, and 36 contributions 252 

from Ehrenfeld which belonged to two categories. 253 

Of the defined categories, “Cycling Traffic 254 

Management” and “Cycle Path Quality” have 255 

received the most contributions. As claimed by 256 

(Romberg and Escher, 2022), the variation in the 257 

distribution of contributions is affected by factors 258 

such as city size, local infrastructures, and 259 

participators' involvement.  260 

4 Experimental Setup 261 

In this section, we provide the applied techniques 262 

and classification algorithms. As is well known the 263 
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Bicycle parking 108 22 9 112 26 9 
Cycle path quality 449 58 111 519 71 118 

Cycling traffic 
management 1020 195 222 1056 204 229 

Lighting 37 1 10 47 2 15 
Misc 53 5 10 84 84 27 

Obstacles 319 35 31 364 45 33 
Signage 150 16 19 182 20 27 

Traffic lights 178 34 47 197 39 51 
Total 2314 366 459 2314 366 459 

Table 1: Distribution of the arguments across labels 

 

 

 Bonn Ehrenfeld Moers 
Mean 67.82 62.5 65.7 

Minimum 3 6 4 
Q1 34 28 33 
Q2 56 51 54 
Q3 89 82 89 

P90 132 119 123 
Maximum 247 231 238 

Table 2:  Basic statistics of the tokens’ distribution. 

 

 Bonn Ehrenfeld Moers 
Mean 67.82 62.5 65.7 

Minimum 3 6 4 
Q1 34 28 33 
Q2 56 51 54 
Q3 89 82 89 

P90 132 119 123 
Maximum 247 231 238 

Table 3:  Basic statistics of the tokens’ distribution. 
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uneven distribution of the contributions over 264 

categories can potentially degrade the 265 

classification performance. Hence, weighting 266 

techniques are tested as a possible solution to 267 

improve the results. For the classification of the 268 

multi-label contributions, to improve the 269 

performance, in addition to the class weights, the 270 

Area Under Curve (AUC) score is used to evaluate 271 

the model’s performance across different 272 

thresholds. The thresholds are applied to the output 273 

of the model to determine the final decision on the 274 

predicted class of a contribution. Experiments are 275 

done using the Google Colab GPU (T4), Python 276 

programming language, and the software provided 277 

by Hugging Face, Inc. (Wolf et al., 2020). The 278 

Transformers library of Hugging Face eases the 279 

efforts for a variety of NLP tasks.  280 

4.1 BERT model 281 

The first applied classification model is based on 282 

the BERT model initialized with the case-sensitive 283 

gbert-base. BERT is a pre-trained model 284 

specialized for the tokenization and encoding of the 285 

German language. However, it is fundamentally an 286 

encoder-only model that cannot be directly used for 287 

classification tasks. Thus, 288 

BertForSequenceClassification which provides a 289 

classifier on top of the BERT model is used. 290 

BertForSequenceClassification is a class from the 291 

HuggingFace Transformers library and lets us fine-292 

tune the pre-trained BERT model on a specific 293 

sequence classification task. The results obtained 294 

from this stage are considered a baseline for this 295 

experiment. 296 

4.2 German BERT2BERT Fine-Tuned on 297 

MLSUM DE model 298 

This model is based on the German BERT, 299 

initialized with the bert-base-german-cased model 300 

and fine-tuned on the MLSUM DE dataset. It is 301 

specifically developed for German text 302 

summarization. After summarizing the citizens’ 303 

proposals, the BertForSequenceClassification is 304 

used for classification. 305 

4.3 BART Model 306 

BART is a transformer-based model that 307 

generalizes BERT (encoder) and GPT (decoder) 308 

models. It is pre-trained and combines 309 

Bidirectional and Auto-Regressive Transformers, 310 

and is particularly effective in text generation or 311 

text comprehension tasks (Lewis et al., 2020). In 312 

this study, the performance of the model 313 

specifically initialized for the German language 314 

(gbert-base) is compared to a multilingual model, 315 

“facebook/mbart-large-50”. This model is 316 

Sequence-to-Sequence and supports the German 317 

language. The summarized contributions are 318 

classified using the 319 

BertForSequenceClassification. 320 

4.4 Implementation 321 

Transformers, despite the notable improvements 322 

brought to the NLP world, experience a significant 323 

computational overhead due to their attention 324 

mechanism. Indeed, from the autoregressive nature 325 

of the attention mechanism, the complexity 326 

depends on the quadratic of the sequence size 327 

(𝑂(𝑇2)) (Cukier, 2024). This dependency forces a 328 

limit on the sequence length that can be passed to 329 

the models. On the other hand, the extended length 330 

of training sequences can result in training 331 

inefficiency. From the nature of transformer 332 

models, all the sequences of input texts need to be 333 

equal in length. This necessitates padding of the 334 

shorter documents while padding adds no 335 

meaningful information, and their processing 336 

wastes computational resources.  337 

The majority of the transformer-based models 338 

can handle up to 512 or 1024 tokens (Hugging 339 

Face, 2024). The maximum length that the BERT 340 

model supports is 512. Making decisions based on 341 

the maximum length can affect the classification 342 

model performance. Different studies have 343 

proposed different strategies to overcome this 344 

limitation. One of the naïve solutions is truncation 345 

of the longer sequences. However, studies have 346 

shown that different parts of texts carry different 347 

amounts of information. (Chi et al., 2019) in a 348 

study on English texts found that keeping the head 349 

and the tail of a text and dropping the middle part 350 

gives the best performance. In another study, 351 

Mutasodirin and Prasojo (2021) compared the 352 

performance of truncation and summarization 353 

techniques in the classification of texts from the 354 

Indonesian News Article dataset (IndoSum). They 355 

stated that using the first block of the tokens results 356 

in the best performance in comparison to the other 357 

truncation and summarization techniques 358 

(Mutasodirin and Prasojo, 2021).  359 

The motivation for this study specifically lies in 360 

the tokenization stage of the contributions. Table 2 361 

summarizes the statistics of the contribution 362 
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lengths after tokenization. The numbers show that 363 

the distribution of the contribution lengths among 364 

the cities is very close. Moreover, almost 90% of 365 

the contributions in all of the cities have less than 366 

128 tokens. This number is half of the maximum 367 

length applied by (Romberg and Escher, 2022) as 368 

the hyper-parameters of the BERT model. 369 

Choosing 256 as the maximum length while the 370 

longest contribution has 247 tokens positively 371 

avoids truncation and losing information. 372 

However, more than 90% of the texts get padded to 373 

at least twice their length. This can potentially 374 

decrease the classification performance and 375 

increase the run time unnecessarily. In the 376 

following experiments, the performance of 377 

truncated and summarized texts is compared. 378 

In the first experiment, in order to have a 379 

baseline for the rest of the experiments, the full-text 380 

contributions are classified using the 381 

BertForSequenceClassification classifier, and the 382 

BERT model is initialized with the case-sensitive 383 

‘gbert-base’ model. In the tokenization stage of the 384 

BERT model, the maximum length is set to 256 and 385 

the rest of the hyper-parameters of the model are 386 

kept unchanged.  387 

In order to make the results more reliable, a 5-388 

fold cross-validation is conducted. Thus, after the 389 

preparation step, a new set of stratified 5 folds is 390 

generated to ensure the same label distribution in 391 

both the training and testing data. However, for the 392 

city of Ehrenfeld, since the number of contributions 393 

for the category of “lighting” is only 1, stratified 394 

sampling fails. To overcome this limitation, we 395 

applied synonym replacement, an NLP data 396 

augmentation technique, and generated 4 new 397 

contributions by randomly replacing some of the 398 

words from the original contribution (Ma, 2019). 399 

For synonym replacement, a BERT pre-trained 400 

model initialized with ‘deepset/gbert-base’ is 401 

chosen. Reported results in the following sections 402 

are averaged across all folds.  403 

The issue of unbalanced label distribution in the 404 

dataset was addressed in Section 3. For instance, in 405 

Bonn, the number of proposals under the category 406 

of “cycling traffic management” is 27 times more 407 

than the lightning proposals. This condition exists 408 

also in the other two cities and among the other 409 

categories. Although such a distribution of the 410 

labels in the analysis of argument data is expected, 411 

it can negatively affect the performance of the 412 

model in the prediction of the minority classes or 413 

lower its generalization. One of the solutions is 414 

using class weights. In the second experiment, 415 

𝑊𝑖 = 1
𝑁𝑖

/ ∑ 1
𝑁𝑖

𝐶
𝑖=1   weighting strategy is applied. In 416 

this formula, 𝑁𝑖 is the number of samples under the 417 

𝑖-th category, 𝑤𝑖 is the assigned weight to the 𝑖-th 418 

category, and 𝐶 is the total number of classes. The 419 

weights are applied to the loss function to penalize 420 

the model for the misclassification of the minority 421 

class.  422 

The third and fourth experiments are a repetition 423 

of the baseline while in the tokenization stage of 424 

the BERT model, the maximum length is set to 128 425 

and the weighting strategy is applied, respectively. 426 

The fifth experiment tests the abstractive 427 

summarized texts generated using the multilingual 428 

BART (mBART) initialized with “facebook/mbart-429 

large-50” model. Since any form of document 430 

shortening results in the loss of information, only 431 

the citizens’ contributions with more than 128 432 

tokens (based on white-space tokenization) are 433 

summarized. From the hyper-parameters, the 434 

minimum and maximum lengths are set to 50 and 435 

120, respectively. The decision on the minimum 436 

and maximum lengths is based on the statistics 437 

from Table 2 to balance the need for reducing the 438 

size while keeping the summary concise. From 439 

Bonn, approximately 11% (250), from Ehrenfeld 440 

9% (34) of contributions, and from Moers 9% (43) 441 

of the contributions are summarized. The average 442 

length of the summarized contributions is 64 for 443 

Bonn, 65 for Ehrenfeld, and 63 for Moers.  444 

The sixth experiment is the repletion of the fifth 445 

experiment with class weights applied. The seventh 446 

experiment compares the performance of the 447 

German BERT2BERT summarization model in 448 

text classification against the multilingual mBART 449 

summarization model. The BERT2BERT model is 450 

initialized with mrm8488/bert2bert_shared-451 

german-finetuned-summarization, using the earlier 452 

mentioned hyper-parameters, and is only applied 453 

on texts with more than 128 tokens. The average 454 

length of the summarized texts for Bonn, 455 

Ehrenfeld, and Moers are 39, 53, and 55, 456 

 Bonn Ehrenfeld Moers 
Mean 67.82 62.5 65.7 

Minimum 3 6 4 
Q1 34 28 33 
Q2 56 51 54 
Q3 89 82 89 

P90 132 119 123 
Maximum 247 231 238 

Table 2: Basic statistics of the tokens' distribution 
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respectively. It should be noted that although the 457 

minimum length hyperparameter of the models 458 

was set to 50, the best summaries may still be 459 

shorter depending on the influence of the other 460 

hyperparameters. More details on the distribution 461 

of the contributions’ length after summarization are 462 

provided in Appendix B. Finally, the eighth 463 

experiment measures the performance of the sixth 464 

model when class weighting is applied.  465 

At the end of the next section, all experiments 466 

are repeated to classify the multi-labeled 467 

contributions under two different scenarios. In the 468 

first scenario, the applied threshold on the models’ 469 

output is set to 0. In the second, however, the AUC 470 

score is used to evaluate the model’s performance 471 

across different thresholds. The threshold with the 472 

highest AUC score on the train data across all the 473 

folds of the cross-validation is considered as the 474 

best candidate. 475 

5 Results and Evaluation 476 

In this section obtained results for the earlier 477 

described cases are presented. Table 3 shows the 478 

category-wise performance of the trained models 479 

using the F-score. Reported results are the average 480 

of the outcome of testing the model on the test sets 481 

from the 5-fold cross-validation. The best model 482 

(with the highest micro F-score) for each city is 483 

highlighted.  484 

For the city of Bonn, the first model (the 485 

baseline) successfully classified 78% of the 486 

arguments. The best and worst performances were 487 

obtained for categorizing “Bicycle Parking” and 488 

“Misc” labels. Experiment 2 shows the significant 489 

effect of class weights in the classification of the 490 

imbalanced data. While the overall performance 491 

(Micro F-score) has decreased by less than 1%, the 492 

classification performance of the least frequent 493 

labels “Lightning” and “Misc” have improved by 494 

4% and 20%, respectively. Experiment 3 shows 495 

closely the same performance as the first two 496 

experiments. Nevertheless, since the contributions 497 

were truncated and only the first 128 tokens were 498 

considered, the main achievement is the 50% 499 

decrease in train time. Experiment 4 improved the 500 

performance of the third experiment, attained the 501 

best result, and the micro and macro f-scores 502 

surpassed the other experiments. Experiments 5 to 503 

8 show the performance of the summarized texts. 504 

As it can be seen from the results, summarized texts 505 

using the multilingual model (mBART) were more 506 

successful. The main reason is in the retained 507 

information. As noted earlier the average length of 508 

the summarized contributions using the 509 

BERT2BERT model is 39 for the city of Bonn. 510 

Undoubtedly this is a significant reduction in the 511 

contribution texts’ length and hence, loss of 512 

information. Moreover, experiments 6 and 8 513 

despite better performance in the classification of 514 

rare labels, because of decrements in the 515 

classification of frequent labels, show almost 516 

similar performance to experiments 5 and 7.  517 

For Ehrenfeld, the results are different. In the 518 

first experiment, the model failed to classify 519 

contributions under the “Signage” and “Misc” 520 

labels. The model in the third experiment which 521 

was trained on the truncated contributions failed to 522 

classify the contributions of half of the categories. 523 

Nevertheless, it showed a close performance to that 524 

of the first model. The main reason for the 525 
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1B 0.94 0.77 0.81 0.77 0.21 0.75 0.61 0.80 0.78 0.71 438 18480 

2B 0.93 0.76 0.80 0.81 0.42 0.73 0.59 0.80 0.77 0.73 435 18490 

3T 0.91 0.78 0.80 0.82 0.27 0.74 0.59 0.77 0.77 0.71 252 9185 

4T 0.92 0.77 0.81 0.79 0.52 0.75 0.63 0.81 0.78 0.75 236 9385 

5S 0.94 0.78 0.81 0.76 0.34 0.75 0.59 0.81 0.78 0.72 207 9140 

6S 0.92 0.76 0.80 0.81 0.47 0.75 0.61 0.79 0.77 0.74 213 9010 

7S 0.91 0.77 0.80 0.85 0.15 0.73 0.54 0.78 0.76 0.69 213 9010 

8S 0.90 0.77 0.79 0.80 0.40 0.72 0.60 0.78 0.76 0.72 221 9025 
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1B 0.87 0.45 0.78 0.80 0.00 0.56 0.00 0.10 0.68 0.45 71 2882 

2B 0.68 0.31 0.63 0.80 0.00 0.43 0.22 0.39 0.54 0.44 77 2941 

3T 0.83 0.51 0.77 0.00 0.00 0.52 0.00 0.00 0.67 0.33 52 1492 

4T 0.73 0.36 0.62 0.93 0.00 0.43 0.29 0.34 0.52 0.46 49 1497 

5S 0.80 0.56 0.80 0.40 0.00 0.56 0.00 0.16 0.70 0.41 51 1508 

6S 0.78 0.35 0.61 0.93 0.00 0.47 0.17 0.35 0.52 0.46 63 1502 

7S 0.87 0.53 0.78 0.40 0.00 0.59 0.00 0.05 0.69 0.40 47 1542 

8S 0.75 0.37 0.65 0.93 0.00 0.47 0.30 0.37 0.56 0.47 59 1545 
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1B 0.63 0.77 0.82 0.00 0.00 0.29 0.21 0.84 0.75 0.45 416 4004 

2B 0.63 0.66 0.70 0.00 0.00 0.36 0.33 0.78 0.65 0.43 433 4248 

3T 0.53 0.79 0.85 0.00 0.00 0.31 0.26 0.84 0.77 0.45 264 2000 

4T 0.92 0.75 0.82 0.13 0.00 0.47 0.43 0.80 0.76 0.54 233 1949 

5S 0.47 0.78 0.83 0.00 0.00 0.30 0.00 0.83 0.75 0.40 249 2010 

6S 0.83 0.75 0.78 0.26 0.00 0.34 0.30 0.76 0.72 0.50 244 1965 

7S 0.47 0.76 0.83 0.00 0.00 0.20 0.24 0.80 0.74 0.41 248 2070 

8S 0.81 0.75 0.80 0.00 0.00 0.31 0.44 0.73 0.73 0.48 255 2030 

Table 3: Performance of the developed classification 
models on single-labeled contributions. Subscripts of B, 
T, and S represent Baseline, Truncation, and 
Summarization, respectively. 
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insignificant effect of classification failures on the 526 

micro f-score is due to the low number of samples 527 

under the failed categories. Furthermore, reducing 528 

the length of contributions by half has significantly 529 

decreased the train time. The best performance is 530 

achieved for the fifth experiment where the model 531 

is trained on the summarized texts from the 532 

multilingual model. The rest of the trained models 533 

show that applying weighting does not improve the 534 

overall performance of the models. In fact, 535 

weighting led to model confusion by affecting the 536 

decision boundaries and only enhanced the model’s 537 

performance in classifying “Signage” and “Traffic 538 

Lights” labels. Finally, it should be noted that the 539 

applied data augmentation technique in the 540 

“lighting” class was successful. However, the 541 

result should be considered carefully as all the 542 

samples have the same characteristics. 543 

Lastly, for Moers, the results show the same 544 

pattern as for the other two cities. Truncation and 545 

summarization significantly decreased train time 546 

while the former performed slightly better in the 547 

classification task. Weighting improved macro f-548 

scores by enhancing the model's performance in the 549 

classification of rare categories, while micro f-550 

scores decreased.  551 

Table 4 provides detailed information on the 552 

performance of the train models on the multi-553 

labeled contributions. The general behavior of the 554 

models is similar to the trained ones on the single-555 

labeled contributions, and the changes in the 556 

training time of the models are in line with the 557 

former findings. Shortening reduced the run time 558 

by almost 47% for experiments conducted using a 559 

CPU compared to 37% for on GPU experiments. 560 

In addition to the discussed metrics, as in the 561 

multi-label classification tasks, simultaneous 562 

prediction of multiple labels is probable; the 563 

Hamming Loss metric is typically used instead of 564 

accuracy. The hamming loss shows the percentage 565 

of the mislabeled arguments. For Bonn, 566 

experiments have labeled approximately 6% of the 567 

public contributions wrongly. For Ehrenfeld and 568 

Moers, however, the difference in the percentage of 569 

mislabeled contributions between the models with 570 

and without adjusted weights is significant. 571 

Weighting has lowered the models' performance 572 

under frequent classes in favor of less frequent 573 

ones. The results in Table 4 indicate that, aside 574 

from the failure of no-weighting models, the 575 

considered weighting technique also failed to 576 

enhance the models' performance in most 577 

experiments.  578 

In multi-label classification tasks, the outputs of 579 

models are usually referred to as logits which are 580 

raw values from the final layer of a neural network. 581 

Logits are converted into probabilities or binary 582 

decisions according to a threshold. Determination 583 

of the most appropriate threshold for every class 584 

will be critical since class predictions depend 585 

directly on it. Thus, in the following part, the Area 586 

Under the Curve (AUC) is used to find the optimal 587 

threshold and is computed for every training fold. 588 

The optimum solution is the threshold that yields 589 

the best performance over the folds. The results 590 

after detecting and applying the best thresholds are 591 

given in Table 4.  592 

As the results show, macro F-scores in the 593 

majority of the models have improved while micro 594 

F-scores have declined. This outcome is an 595 

indicator of the models’ better performance in the 596 
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G
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C
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B
on

n 

1B 0.77 0.69 6 384 17482 0.76 0.73 7 430 22606 
2B 0.75 0.71 6 383 18378 0.75 0.76 7 427 22126 
3T 0.77 0.69 6 219 9955 0.76 0.73 7 336 11529 
4T 0.75 0.71 6 221 8940 0.75 0.72 7 301 12300 
5S 0.77 0.69 6 220 9935 0.75 0.72 8 256 13814 
6S 0.75 0.71 7 225 9702 0.74 0.69 8 269 12743 
7S 0.76 0.67 6 234 9120 0.74 0.71 8 329 13791 
8S 0.74 0.69 7 233 10128 0.73 0.71 8 252 12164 

E
hr

en
fe

ld
 

1B 0.72 0.50 7 94 2782 0.63 0.44 11 71 3877 
2B 0.57 0.24 12 93 2930 0.40 0.30 28 71 4100 
3T 0.73 0.48 7 63 1635 0.64 0.44 10 45 2219 
4T 0.55 0.18 12 65 1669 0.36 0.30 29 48 2290 
5S 0.73 0.47 7 47 1750 0.63 0.41 11 44 1801 
6S 0.55 0.19 12 46 1534 0.40 0.31 26 46 1765 
7S 0.70 0.44 8 48 1517 0.63 0.43 10 50 2056 
8S 0.55 0.18 12 46 1619 0.41 0.33 28 52 1985 

M
oe

rs
 

1B 0.71 0.31 7 85 4406 0.67 0.48 9 85 5449 
2B 0.39 0.18 12 85 3730 0.50 0.39 16 87 4820 
3T 0.73 0.31 7 57 1987 0.67 0.49 1 54 2800 
4T 0.40 0.18 12 77 1837 0.47 0.42 20 55 2605 
5S 0.72 0.31 7 54 2099 0.66 0.52 10 60 2770 
6S 0.40 0.17 12 55 1730 0.56 0.41 14 65 2526 
7S 0.07 0.31 7 68 2170 0.68 0.48 9 58 2526 
8S 0.40 0.17 12 70 1870 0.50 0.38 18 50 2560 

Table 4: Results of the developed classification models 
on the multi-labeled contributions 
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classification of rare classes. This is an expected 597 

result in the classification of unbalanced datasets. 598 

Moreover, contrary to the developed models on 599 

single-labeled texts, the base models have shown 600 

slightly better performance over multi-labeled data. 601 

This slightly lower performance of shortened texts 602 

is insignificant when compared to the reduction in 603 

train time. For Bonn, the variation in the F-scores 604 

is less significant. However, for Ehrenfeld and 605 

Moers, due to the presence of very rare classes, the 606 

combination of weighting and AUC has shown a 607 

significant improvement in both the micro and 608 

macro F-scores. More detailed information on the 609 

class-wise performance of the models can be found 610 

in Appendix 1.  611 

6 Discussion 612 

Based on the discussions in the previous section, 613 

we observed that the maximum length in the BERT 614 

models is an effective parameter. However, to 615 

provide the practitioners with a feasible argument 616 

data analytic system, limitations such as the ability 617 

to handle long texts, the requirement for less 618 

powerful systems, and the need for faster data 619 

analysis need to be addressed. Summarization is an 620 

effective technique for shortening the contributions 621 

and reducing the processing time while saving the 622 

key information. Based on the run-time values in 623 

Table 3, summarization reduces the train time using 624 

CPU by 50% on average without significantly 625 

affecting the performance. Reduction in time eases 626 

the use of models on systems without special 627 

specifications such as having a GPU. Moreover, the 628 

results from the trained models on the data of the 629 

city of Bonn showed that if a sufficient number of 630 

contributions is available under each label, 631 

truncation as a shortening technique performs close 632 

to the summarization technique. Thus, despite the 633 

removed parts of the texts, the model still has 634 

enough training instances to learn the 635 

distinguishing features of each class. On the 636 

contrary, if the number of contributions is limited, 637 

especially under each category, like in the case of 638 

Ehrenfeld, summarization preserves the text's key 639 

features and hence surpasses the performance of 640 

truncation in classification.  641 

Our findings confirmed that similar conclusions 642 

are valid in the classification of multi-labeled 643 

contributions. However, like other multi-label 644 

classification problems, deciding on the optimal 645 

value of the thresholds plays a significant role in 646 

the performance of the models. 647 

This study also compared the performance of 648 

two text summarization models for the German 649 

language on argument data which was left 650 

undiscovered. The summarized texts using the 651 

multilingual mBART model achieved around 2% 652 

higher performance in text classification against 653 

the BERT2BERT model which is specially fine-654 

tuned for summarization of the German language. 655 

One of the potential reasons for the lower 656 

performance of the BERT2BERT model is the 657 

shorter length of the summarized documents. 658 

Shorter texts mean more loss of information which 659 

could be informative for the model. Although the 660 

quality of the summarized argument texts is not 661 

measured in this study, the results follow the 662 

findings of (Alcantara et al., 2023) on Wikipedia 663 

articles which confirmed that the mBART model 664 

outperforms the BERT2BERT model in abstractive 665 

German text summarization.  666 

7 Conclusion and Future Work 667 

The objective of this study was to explore the effect 668 

of abstractive summarization models in analyzing 669 

the German language argument data. Limited 670 

studies have worked on this topic and most of the 671 

existing ones are focused on the English language. 672 

Hence, this study was an attempt to fill this gap. 673 

For this purpose, a BERT model fine-tuned in 674 

the German language (German BERT2BERT) and 675 

a BART model were considered. The German 676 

BERT2BERT fine-tuned on the MLSUM DE 677 

dataset was a reasonable candidate as it was 678 

specifically developed for German text 679 

summarization. The performance of the generated 680 

summarized texts using this model in the 681 

classification task was studied against the 682 

summarized texts from the BART model. Pre-683 

trained on a large number of texts from different 684 

languages made the BART model a good 685 

alternative to the German BERT2BERT model. 686 

The results proved that text summarization 687 

methods reduce the run-time of the model while 688 

keeping the classification quality almost the same. 689 

Additionally, our results suggest that the generated 690 

summarized texts using the German BERT2BERT 691 

model are briefer than the ones generated from the 692 

mBART model. Hence, the quality of the generated 693 

summarization is still open to be discovered. 694 

Moreover, in following the long-term goal of 695 

constructing a system for public contributions 696 

analysis, the need for developing a pre-trained 697 

model on the argument data is important.  698 
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Limitations 699 

One of the obstacles in the analysis of German texts 700 

despite being a high-resource language is the 701 

shortage of high-quality labeled data. This 702 

limitation can either result in lower accuracy of the 703 

trained models or over-fitting due to the fine-tuning 704 

of the model on a specific in-reach dataset. 705 

Regarding the analysis of argument data, only a 706 

few labeled datasets exist. In this study, one of the 707 

important steps is the evaluation of the generated 708 

summarized texts. The first German Text 709 

Summarization Challenge was held in 2019 at the 710 

SwissText conference in which 100,000 texts 711 

collected from Wikipedia along with their 712 

reference summaries were analyzed (SwissText, 713 

2019). However, to the best of our knowledge, this 714 

is the only available and suitable collection for the 715 

evaluation of summarization systems, in which 716 

each data is equipped with a referenced summary. 717 

Hence, for the summarization of argument texts, 718 

there is a lack of a developed dataset to evaluate the 719 

quality of models and generated summaries. This 720 

limitation also gets highlighted as there is a lack of 721 

benchmark studies in the summarization of 722 

German argument data. Finally, the size of 723 

available datasets is limited. The used dataset in 724 

this experiment consisted of 3139 contributions, 725 

while for some of the classes, the number of 726 

contributions is very low. A limited number of 727 

samples in a category compared to the other classes 728 

not only raises the challenges of unbalanced 729 

datasets but also negatively affects the model 730 

performance due to ineffective training.  731 
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language-specific techniques of parsing and 1016 

semantic analysis combined with Information 1017 

Retrieval (IR) and statistical methods.  1018 

 1019 

B Dataset Distribution 1020 

In deciding on the best document length, Figure 1 1021 

provides a clearer depiction of the contributions 1022 

length distribution. It can be observed that the 1023 

distributions are skewed to the left and the length 1024 

of the most of contributions is less than 128 tokens. 1025 

Figure 2 shows the distribution of the 1026 

summarized texts using the mBART model. It can 1027 

be seen that the lengths are more evenly 1028 

distributed.  1029 

Figure 3 illustrates the texts’ length distribution 1030 

after summarization using the BERT2BERT 1031 

model. In comparison with the mBART model, the 1032 

lengths are more skewed to the left. However, a 1033 

similar pattern is observed in the summarized texts’ 1034 

distribution. 1035 

C Class-wise performance of the multi-1036 

labeled models 1037 

Table 5 provides detailed information on the 1038 

performance of the trained models on the multi-1039 

labeled contributions. Table 6 shows the results 1040 

after detecting and applying the best thresholds. As 1041 

it can be observed, using AUC and finding the 1042 

optimal threshold has significantly improved the 1043 

performance of models, especially in classifying 1044 

contributions of less frequent classes. In Table 6 1045 

For Ehrenfeld, except for the lighting category, we 1046 

have an improvement in the F-scores, especially 1047 

when the weighting is applied.  1048 

 

Figure 1: Distribution of contributions length 
 

 

Figure 2: Distribution of the length of the 
contributions after summarizing texts using the 
multilingual mBART model 
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Figure 3: Distribution of the length of the 
contributions after summarizing texts using the 
BERT2BERT model 
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 C
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1B 0.921 0.777 0.809 0.833 0.044 0.769 0.56 0.824 0.774 0.692 0.059 383.8 17482 
2B 0.919 0.739 0.798 0.833 0.329 0.663 0.596 0.820 0.753 0.712 0.063 383.2 18378 
3T 0.909 0.771 0.814 0.804 0.084 0.767 0.571 0.821 0.774 0.693 0.059 218.8 9955 
4T 0.923 0.729 0.795 0.856 0.332 0.665 0.588 0.809 0.750 0.712 0.064 221.0 8940 
5S 0.904 0.769 0.816 0.829 0.063 0.765 0.553 0.817 0.773 0.689 0.059 219.8 9935 
6S 0.909 0.728 0.794 0.862 0.341 0.665 0.563 0.803 0.747 0.708 0.065 224.6 9702 
7S 0.898 0.768 0.799 0.800 0.043 0.746 0.515 0.806 0.759 0.672 0.063 233.8 9120 
8S 0.898 0.717 0.784 0.839 0.270 0.642 0.540 0.805 0.735 0.687 0.067 233.0 10128 

E
hr

en
fe

ld
 

1B 0.762 0.631 0.854 0 0 0.573 0.194 0.657 0.722 0.459 0.073 93.8 2782 
2B 0.561 0 0.751 0 0 0 0.279 0.295 0.571 0.236 0.116 93.2 2930 
3T 0.779 0.629 0.859 0 0 0.568 0.313 0.697 0.734 0.481 0.070 62.6 1635 
4T 0.364 0 0.740 0 0 0 0.08 0.239 0.546 0.177 0.121 65.2 1669 
5S 0.780 0.632 0.855 0 0 0.542 0.247 0.685 0.727 0.467 0.072 47.2 1750 
6S 0.466 0 0.735 0 0 0 0.08 0.222 0.545 0.188 0.121 45.6 1534 
7S 0.669 0.546 0.847 0 0 0.512 0.293 0.666 0.701 0.441 0.079 47.6 1517 
8S 0.350 0 0.736 0 0 0 0.160 0.233 0.545 0.184 0.121 45.6 1619 

M
oe

rs
 

1B 0 0.810 0.813 0 0 0 0 0.829 0.713 0.306 0.068 85.2 4406 
2B 0.533 0.062 0.559 0 0 0 0 0.250 0.388 0.175 0.123 85.4 3730 
3T 0 0.828 0.831 0 0 0 0 0.832 0.727 0.311 0.066 56.8 1987 
4T 0.533 0.048 0.582 0 0 0 0 0.258 0.404 0.177 0.121 76.8 1837 
5S 0 0.799 0.815 0 0 0 0 0.861 0.716 0.309 0.069 53.8 2099 
6S 0.533 0.016 0.586 0 0 0 0 0.240 0.398 0.172 0.123 54.8 1730 
7S 0 0.796 0.806 0 0 0 0 0.849 0.071 0.306 0.070 67.6 2170 
8S 0.533 0.016 0.583 0 0 0 0 0.258 0.399 0.173 0.121 70.0 1870 

Table 5: Performance of the developed classification models on the multi-labeled contributions. 
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1B 0.901 0.779 0.825 0.855 0.349 0.733 0.607 0.780 0.761 0.729 0.071 430.0 22606 
2B 0.908 0.741 0.808 0.723 0.506 0.712 0.599 0.799 0.754 0.725 0.071 426.8 22126 
3T 0.913 0.778 0.823 0.879 0.383 0.718 0.581 0.754 0.760 0.729 0.072 336.0 11529 
4T 0.920 0.740 0.799 0.738 0.464 0.707 0.622 0.806 0.749 0.724 0.073 301.4 12300 
5S 0.917 0.766 0.818 0.829 0.354 0.725 0.550 0.780 0.750 0.717 0.075 256.2 13814 
6S 0.908 0.735 0.794 0.586 0.436 0.715 0.568 0.804 0.741 0.693 0.076 269.4 12743 
7S 0.900 0.762 0.812 0.856 0.306 0.710 0.537 0.777 0.739 0.708 0.080 329.4 13791 
8S 0.902 0.730 0.790 0.783 0.419 0.689 0.567 0.762 0.732 0.705 0.078 251.6 12164 

E
hr

en
fe

ld
 

1B 0.654 0.537 0.814 0 0.363 0.286 0.391 0.442 0.633 0.436 0.106 71.0 3877 
2B 0.426 0.319 0.641 0 0.449 0.36 0.094 0.148 0.403 0.304 0.279 71.4 4100 
3T 0.599 0.573 0.816 0 0.387 0.38 0.316 0.442 0.642 0.439 0.100 45.0 2219 
4T 0.463 0.266 0.552 0 0.398 0.338 0.219 0.153 0.362 0.299 0.291 47.6 2290 
5S 0.495 0.554 0.822 0 0.277 0.287 0.358 0.453 0.633 0.406 0.107 44.4 1801 
6S 0.355 0.246 0.626 0 0.59 0.306 0.199 0.116 0.398 0.305 0.257 46.4 1765 
7S 0.483 0.492 0.796 0 0.345 0.445 0.363 0.552 0.628 0.431 0.104 49.6 2056 
8S 0.473 0.307 0.646 0 0.44 0.299 0.147 0.290 0.409 0.325 0.283 52.0 1985 

M
oe

rs
 

1B 0.333 0.790 0.820 0.406 0.260 0.044 0.325 0.829 0.670 0.476 0.093 84.8 5449 
2B 0.533 0.469 0.699 0.180 0.230 0.165 0.217 0.597 0.504 0.386 0.165 87.2 4820 
3T 0.223 0.804 0.823 0.311 0.249 0.292 0.345 0.856 0.670 0.488 0.095 54.2 2800 
4T 0.333 0.612 0.636 0.179 0.179 0.190 0.337 0.875 0.468 0.418 0.197 54.6 2605 
5S 0.466 0.822 0.837 0.381 0.252 0.160 0.406 0.822 0.663 0.518 0.100 59.8 2770 
6S 0.333 0.488 0.708 0.196 0.338 0.140 0.233 0.820 0.555 0.407 0.142 65.4 2526 
7S 0.333 0.809 0.834 0.530 0.138 0.121 0.363 0.737 0.682 0.483 0.087 58.4 2526 
8S 0.333 0.490 0.683 0.215 0.298 0.134 0.243 0.627 0.495 0.378 0.183 50.4 2560 

Table 6: Performance of the developed classification models on the multi-labeled contributions. 
Thresholds are optimized using AUC. 
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