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Abstract

We study the node classification problem on feature-decorated graphs in the sparse
setting, i.e., when the expected degree of a node is O(1) in the number of nodes, in
the fixed-dimensional asymptotic regime, i.e., the dimension of the feature data is
fixed while the number of nodes is large. Such graphs are typically known to be
locally tree-like. We introduce a notion of Bayes optimality for node classification
tasks, called asymptotic local Bayes optimality, and compute the optimal classifier
according to this criterion for a fairly general statistical data model with arbitrary
distributions of the node features and edge connectivity. The optimal classifier is
implementable using a message-passing graph neural network architecture. We
then compute the generalization error of this classifier and compare its performance
against existing learning methods theoretically on a well-studied statistical model
with naturally identifiable signal-to-noise ratios (SNRs) in the data. We find that
the optimal message-passing architecture interpolates between a standard MLP
in the regime of low graph signal and a typical convolution in the regime of high
graph signal. Furthermore, we prove a corresponding non-asymptotic result.

1 Introduction

Graph Neural Networks (GNNs) have rapidly emerged as a powerful tool for learning on graph-
structured data, where along with features of the entities, there also exists a relational structure
among them. They have found numerous applications to a wide range of domains such as social
networks [Backstrom and Leskovec, 2011], recommendation systems [Ying et al., 2018, Hao et al.,
2020], chip design [Mirhoseini et al., 2021], bioinformatics [Scarselli et al., 2009, Zhang et al.,
2021], computer vision [Monti et al., 2017], quantum chemistry [Gilmer et al., 2017], statistical
physics [Battaglia et al., 2016, Bapst et al., 2020], and financial forensics [Zhang et al., 2017, Weber
et al., 2019]. Most of the success with these applications has been possible due to the advent of the
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message-passing paradigm in GNNs, however, designing optimal GNN architectures for such a wide
variety of applications still remains a challenging task.

In this work, we are interested in the node classification problem on very sparse feature-decorated
graphs that are locally tree-like. We focus on the regime where the dimension of the node features
is fixed and the number of nodes is large. Our motivation for considering this regime is that many
major benchmark datasets for node classification appear to scale in this fashion. For example,
in the popular Open Graph Benchmark collection [Hu et al., 2020], the medium and large-scale
node-property prediction datasets have roughly 106 nodes (ogbn-products, ogbn-mag) to about
108 nodes (ogbn-papers100M), each with roughly 102 features. Graphs with such properties exist
naturally in social, informational and biological networks; for motivational examples, see Stelzl et al.
[2005], Adcock et al. [2013]. We present a precise definition of optimality for node classification
tasks on locally tree-like graphs in this scaling regime and compute the optimal classifier according
to this definition, for a multi-class statistical data model where node features can have arbitrary
continuous or discrete distributions. Subsequently, we show that a message-passing GNN architecture
is able to realize the optimal classifier. Furthermore, we provide a theoretical analysis, comparing
the generalization error of the optimal classifier with other architectures like GCN and simple MLPs.
Our results support a recent work [Veličković, 2022] in the context of classification on sparse graphs.
In particular, we show that when node features are accompanied by sparse graphical side information,
message-passing graph neural networks are able to realize the optimal classification scheme, and as
such, there does not exist a better architecture beyond the message-passing paradigm.

Related Work. There has been a tremendous amount of work on GNN architecture design, where
the most popular designs are based on a convolutional architecture, with each layer of the neural
network performing a weighted convolution (averaging) operation with immediate neighbours, e.g.,
graph convolutional networks (GCN) [Kipf and Welling, 2017, Chen et al., 2020] or graph attention
networks (GAT) [Veličković et al., 2018]. These architectures are known to have several limitations
regarding their expressive power (see, for e.g., Li et al. [2018], Oono and Suzuki [2020], Balcilar
et al. [2021], Xu et al. [2021], Keriven [2022]).

An interesting line of research consists of both theoretical and empirical works that attempt to
address these limitations by developing an understanding of GNN architectures within the scope
of message-passing [Rong et al., 2020, Liu et al., 2022, Maskey et al., 2022], as well as beyond it
[Maron et al., 2019, Murphy et al., 2019, Chen et al., 2019]. For example, Xu et al. [2018] propose
an architecture with a technique called skip-connections, that flexibly leverages different ranges of
neighbourhoods for each node to enable structure-awareness in node representations, Chen et al.
[2020] propose a modification of the vanilla GCN with an initial residual that effectively relieves the
problem of oversmoothing [Oono and Suzuki, 2020], and Keriven et al. [2021] study the universality
of structural GNNs in the large random graph limit. However, this area of research still lacks a clear
understanding of optimality in the context of graph learning problems, making it hard to design
architectures for which a well-defined notion of optimality can be theoretically justified.

Several works have studied traditional message-passing GNN architectures like GCN and GAT using
the binary contextual stochastic block model, see for example, Baranwal et al. [2021], Chien et al.
[2022], Fountoulakis et al. [2022a,b], Javaloy et al. [2022], Baranwal et al. [2023]. These analyses
rely heavily on two assumptions: first, the graph is not too sparse, i.e., for a graph with n nodes,
the expected degree of a node is Ωn(log

2 n/n), and second, the node features are modelled as a
Gaussian mixture. The work by Wei et al. [2022] is of particular interest to us, where the authors take
a Bayesian inference perspective to investigate the functions of non-linearity in GNNs for binary node
classification. They characterize the max-a-posterior estimation of a node label given the features of
itself and its immediate neighbours. A similar perspective to that of Wei et al. [2022] is discussed in
Gosch et al. [2023], where the latter authors derive insights into the robustness-accuracy trade-off
in GNNs for node classification. In contrast to these inspiring works, we study the highly sparse
regime where the expected degree of a node is On(1) and consider nodes beyond the immediate
neighbours, at any fixed distance. (In fact, our non-asymptotic results allow distances of order c log n
for small enough c > 0, see Section 3.5 below.) Furthermore, our main result holds for a general
multi-class statistical model with arbitrary continuous or discrete feature distributions and arbitrary
edge-connectivity probabilities between all pairs of classes.

2



Our Contributions. In this paper, we use a multi-class statistical model with arbitrary node features
and edge-connectivity profiles among all pairs of classes to study the node classification problem in
the regime where the graph component of the data is very sparse, i.e., the expected degree is O(1).
The data model is described in Section 3.2. We state the following main results and findings:

1. We introduce a family of graph neural network architectures that are asymptotically (in the
number of nodes n → ∞) Bayes optimal in a local sense for a general multi-class data
model with arbitrary feature distributions. The optimality is stated precisely in Theorem 1.

2. We analyze the architecture in the simpler two-class setting with Gaussian features, explicitly
characterizing the generalization error in terms of the natural signal-to-noise ratio (SNR) in
the data, and perform a comparative study against other learning methods analyzed using
the same statistical model (Theorems 2 and 3). We find two key insights:

• When the graph SNR is very low, the architecture reduces to a simple MLP that
does not consider the graph, while if it is very high, our architecture reduces to a
typical convolutional network that averages information from all nodes in the local
neighbourhood. In the regime between the low and high SNRs, the architecture
interpolates and performs better than both a simple MLP and a typical GCN.

• If the information in the graph is larger than a threshold, then a simple convolution is
able to perform better than all methods that do not utilize the graph. Not surprisingly,
this threshold aligns with the Kesten-Stigum weak-recovery threshold for community
detection in sparse networks [Massoulié, 2014, Mossel et al., 2018].

3. In the non-asymptotic setting with a fixed number of nodes, we show that even for a
logarithmic depth, the neighbourhoods of an overwhelming fraction of nodes are tree-
like with high probability. Subsequently, we show that the optimal classifier in the non-
asymptotic setting obtains an error that is close to that incurred by the optimal classifier in
the asymptotic setting. This is formalized in Theorem 4.

Let us end this section by reiterating that we work in the fixed-dimensional regime. It is natural to
wonder as to the performance of this architecture as compared to optimal algorithms in the high-
dimensional setting. We present a numerical comparison of our work to the AMP-BP algorithm from
Deshpande et al. [2018] in low and high-dimensional settings in Appendix B.

2 Architecture

This section explains the design of our GNN architecture for node classification. We perform two
modifications to existing message-passing architectures. First, we decouple the layers in the neural
network from the neighbourhood radius in the message-passing framework. This style of decoupled
architecture has previously been studied, see for example, Nikolentzos et al. [2020], Feng et al. [2022],
Baranwal et al. [2023]. Second, we introduce a learnable parameter that models edge connectivity
between each pair of classes and helps construct the messages to propagate. In the following, for any
matrix M , we denote row i of M by Mi,: and column i of M by M:,i.

Before stating our architecture, we need the following additional notation and pre-processing. Let
ℓ ≥ 0 and L > 0 be fixed integers. Let C ≥ 2 be the number of classes. For given data (A,X) where
A ∈ Rn×n is the adjacency matrix of an unweighted undirected graph, and X ∈ Rn×d is the node
feature matrix, we perform a pre-computation on the graph to construct a tensor Ã as follows:

Ã(k) = f(Ak) ∧

(
¬f

(
k−1∑
m=0

Am

))
for k ∈ {1, . . . , ℓ},

where f(M) for a matrix M returns the entry-wise flattened matrix with f(M)ij = 1(Mij > 0), and
(∧,¬) denote the entry-wise bit-wise operators (‘and’, ‘negation’) respectively. Note here that Ã(k)

is an n× n binary matrix with Ã
(k)
uv = 1 if and only if v is present in the distance k neighbourhood

of u but not within the distance (k − 1) neighbourhood. The idea behind this pre-processing step is
the following: for each node u and each k ∈ [ℓ], we want to divide the radius ℓ neighbourhood of
u into ℓ groups of nodes, where each group k ∈ [ℓ] consists of nodes that are within discovered the
neighbourhood at each distance from a given node. Ã(k)

u,: models a non-backtracking walk of length
k that considers new nodes in the distance-k neighbourhood that were not discovered.
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We can now define the graph neural network architecture as follows.

Architecture 1. Given input data (A,X) where A ∈ {0, 1}n×n is the adjacency matrix and
X ∈ Rn×d is the node feature matrix, define:

H(0) = X, H(l) = σl(H
(l−1)W(l) + 1nb

(l)) for l ∈ [L],

Q = sigmoid(Z), M
(k)
u,i = max

j∈[C]

{
H

(L)
u,j + log(Qk

i,j)
}

for k ∈ [ℓ], u ∈ [n], i ∈ [C].

Then the predicted label is given by ŷ = {ŷu}u∈[n], where

ŷu = argmax
i∈[C]

(
H(L)

u,c +

ℓ∑
k=1

Ã(k)
u,:M

(k)
:,i

)
.

Let us pause here to comment on the interpretation of the terms arising in this architecture. Here, H(L)

is viewed as the output of a simple L-layer MLP with {σl}l∈[L] being a set of non-linear functions.
We have (W(l),b(l))l∈[L] as the learnable parameters of this MLP, with suitable dimensions so that
H(L) ∈ Rn×C . In addition, we introduce the learnable parameter Z ∈ RC×C which is used to model
edge connectivity among all pairs of classes. The quantity Ã

(k)
u,:M

(k)
:,i =

∑
v∈[n] Ã

(k)
u,vM

(k)
v,i is viewed

as the sum of messages M(k)
v,i passed by all distance k neighbours of node u.

Although Architecture 1 follows the style of convolutional architectures like GCN and GAT for
collecting messages within a local neighbourhood, the novelty lies in the construction of the messages
M. Intuitively, Q = sigmoid(Z) learns the probabilities of edge connectivity between all pairs of
classes so that Qk models the probability of observing a distance k path between a pair of nodes
in two classes. To predict the label of node u, the messages from other nodes v are constructed
based on their features Xv , their distance k from node u, and the path probabilities Qk. We show in
Theorem 1 that this architecture is in a sense (made precise in Definition 3.2) universally optimal
among all node-classification schemes for sparse graphs. Our result thus aligns with the observations
in Veličković [2022], showing that optimal neural network architectures for node classification on
sparse graphs are implementable using the message-passing paradigm.

3 Theoretical Analysis and Discussion

In this section, we present a theoretical analysis of the message-passing GNN given in Architecture 1.
We begin by defining a natural notion of optimality in our setting and show that among local learning
methods on graphs, Architecture 1 is optimal according to this definition on a very general statistical
model. We then compute the generalization error and compare the architecture to other well-studied
methods like a simple MLP and a GCN.

3.1 Asymptotic Local Bayes Optimality

For classification tasks, it is natural to use a notion of generalization error in a “per sample” or online
sense. Without graphical side information, the natural choice is the Bayes risk. With graphical
information, however, there is an important obstruction: the number of samples is equal to the size of
the corresponding graph. As such, a naive extension of the Bayes risk does not have this property.

A natural approach would be to consider the Bayes risk for estimators that take in the node, the
data set, and the graph, i.e., ŷv = ŷ(v, (X,G)). In this case, however, the risk necessarily implicitly
depends on the sample size, n, through G. One might try to remove this dependence by taking
the infinite sample size limit, but for a class of estimators this general, it is not clear that such a
limit is well defined. To circumvent this issue, we restrict attention to node classifiers that are only
allowed “local” information around the node. The large graph limit of the generalization error is then
naturally interpreted via local weak convergence. (For the convenience of the reader, we briefly recall
the notion of local weak convergence of sparse graphs in Appendix A.1. See also Ramanan [2021,
Chapter 1] or Bordenave [2016, Section 3] for more detailed expositions.) In this limit, one can then
interpret the generalization error as a per-sample error for the randomly rooted graph (G, u) where u
is a uniform random vertex in V (G). (Here and in the following a rooted graph is a pair of a graph G
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and a distinguished vertex, u, called the root.) With these observations, we are led to a natural notion
of Bayes optimality, namely asymptotic local Bayes optimality which we define presently.1

Before turning to this definition, we must first recall the notion of ℓ-local classifiers. For a node v in
a graph G, let ηk(v) = {u ∈ V (G) : d(u, v) ≤ k} denote the ball of radius k for the canonical graph
distance metric.
Definition 3.1 (ℓ-local classifier). Let G = (A,X) be a feature-decorated graph of n vertices with
d-dimensional features Xu for each vertex u. For a fixed radius ℓ > 0, an ℓ-local node-classifier is a
function f that takes as input a root vertex u ∈ [n], the adjacency matrix A and the features of all
nodes within the ℓ-neighbourhood of u, i.e., {Xv}v∈ηℓ(u)), and outputs a classification label for u.

Suppose now that we have a sequence of (random) feature decorated graphs (Xn, Gn) with |V (G)| =
n. Let un denote a uniform at random vertex in Gn. Suppose finally that the rooted feature-decorated
graphs (Xn, Gn, un) locally weakly converge to (X,G, u). We can then define the notion of
asymptotically ℓ-locally Bayes optimal classifiers for this sequence of problems.
Definition 3.2. We say that a classifier h∗ℓ ∈ Cℓ is asymptotically ℓ-locally Bayes optimal classifier
of the root for the sequence {(Xn, Gn, un)} if it minimizes the probability of misclassification of the
root of the local weak limit, (X,G, u), over the class Cℓ, i.e.,

h∗ℓ = argmin
h∈Cℓ

Pr
[
h(u, {Xv}v∈ηℓ(u,G)) ̸= yu

]
.

Before turning to our data model, we note here that the reader may ask whether or not the asymptoti-
cally ℓ-locally Bayes optimal classifier is in any sense the limit of optimal ℓ-local classifier of the
random root, un. We show this in an appropriate sense in Theorem 4.

3.2 Data Model

Let us now turn to the data model that we use for our analysis. We work with the general multi-class
contextual stochastic block model (CSBM) where each node belongs to one of C different classes
labelled 1, . . . , C, and the node features have arbitrary continuous or discrete distributions. This
model with C = 2, along with a specialization to Gaussian features has been extensively studied in
several works on (semi)-supervised node classification and unsupervised community detection, see,
for example, Deshpande et al. [2018], Lu and Sen [2020], Baranwal et al. [2021], Wei et al. [2022],
Fountoulakis et al. [2022b], Baranwal et al. [2023]. Informally, a CSBM consists of a coupling of a
stochastic block model (SBM) [Holland et al., 1983] with a mixture model where the components of
the mixture have arbitrary distributions and are associated with the blocks of the SBM.

More formally, let n, d be positive integers such that n denotes the number of nodes and d denotes the
dimension of the node features. Define y1, . . . , yn ∈ {1, . . . , C} as the latent variables (class labels)
to be inferred. We will assume that the latent variables have a uniform prior, i.e., yu ∼ Unif({[C]})
for all u. For the relational part of the data, we have an undirected unweighted graph of n nodes,
G = (V,E) with adjacency matrix A = (auv)u,v∈[n] ∼ SBM(n,Q), where Q = {qij} ∈ [0, 1]C×C

is the edge-probability matrix, meaning that

Pr(auv = 1 | yu = i, yv = j) = qij .

The node attributes, X ∈ Rn×d are sampled from a mixture of C arbitrary continuous or discrete
distributions, P = {Pi}i∈[C], where corresponding to the yu, we have Xu ∼ Pyu

for all u ∈ [n].

We will view n as large and study the setting where d is fixed (does not grow with n). We note here
that in previous related works [Baranwal et al., 2021, Wei et al., 2022, Baranwal et al., 2023], crucial
assumptions have been made about the distribution of the node features and the sparsity of the graph,
i.e., qij = Ωn(log

2 n/n). In contrast, we work in the extremely sparse setting where qij = bij/n for
constants bij > 1, so we write Q = B/n where B = {bij}i,j∈[C]. Furthermore, the only assumption
we need about the distributions Pi is that Pi are absolutely continuous with respect to some base
measure, in which case their densities exist, denoted by ρi. For ease of reading, we encourage the

1It is also desirable for the empirical misclassification error to converge to the generalization error. If one
works with the stronger notion of local convergence in probability, then this will hold as well. This later mode
will hold in our examples but we leave this to future work.
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reader to consider the case where Pi are continuous or discrete, therefore, the base measure is simply
the Lebesgue measure on R or the counting measure on Z respectively.

For a feature-decorated graph G = (A,X) = ({auv}u,v∈[n], {Xu}u∈n) sampled from the model
described above, we say that G ∼ CSBM(n, d,P,Q) or G ∼ CSBM(n, d,P,B/n).

3.3 Optimal Classifier

We are now ready to state our first main result that characterizes the asymptotically ℓ-locally Bayes
optimal classifier on the CSBM data described in Section 3.2.
Theorem 1 (Bayes optimal message-passing). For any ℓ ≥ 1, the asymptotically ℓ-locally Bayes
optimal classifier of the root for the sequence (Gn, un) ∼ CSBM(n, d,P,Q) is

h∗ℓ (u, {Xv}v∈ηℓ(u)) = argmax
i∈[C]

{
log ρi(Xu) +

∑
v∈ηℓ(u)\{u}

Mi d(u,v)(Xv)
}
,

where {ρi}i∈[C] are the densities associated with the distributions Pi ∈ P, and

Mik(x) = max
j∈[C]

{
log ρj(x) + logQk

ij

}
.

Let us briefly discuss the meaning of Theorem 1. It states that universally among all ℓ-local classifiers,
h∗ℓ is asymptotically Bayes optimal for the sparse CSBM data. We view Mik(Xv) as the message
gathered from node v that is distance k away from node u. In particular, Mik(Xv) naturally
maximizes the likelihood of observing node v in class j at distance k from node u in class i, over
all j ∈ [C]. Furthermore, this optimal classifier is realizable using Architecture 1 (see for example,
Lu et al. [2017, Theorem 1], where it is shown that any Lebesgue measurable function can be
approximated arbitrarily closely by standard neural networks). Consequently, this result shows that in
the sparse setting, the message-passing paradigm can realize the optimal node classification scheme
irrespective of the distributions of the node features or the inter-class edge probabilities.

For an intuitive understanding of Theorem 1, it helps to consider two extreme cases. First, if
Q = pI for some p ∈ [0, 1], then the classifier reduces to a simple convolution, h∗ℓ (u) =

argmaxi∈[C]

{∑
v∈ηk(u)

log ρi(Xv)
}

. Second, if Q = p11⊤, then qij = p for all i, j ∈ [C],
meaning that the graph component of the data is Erdös-Rényi, and hence, completely uninfor-
mative for the purposes of node classification. In this case, the classifier reduces to h∗ℓ (u) =
argmaxi∈[C] {log ρi(Xu)}, i.e., it is optimal to look at only the features of node u to predict its label
since the neighbourhood does not provide any meaningful information. We formalize this intuition
later for a simpler case (see Theorem 3).

3.4 Comparative Study

In this section, we perform a theoretical analysis of the classifier in Theorem 1 using a well-studied
specialization of the CSBM data model described in Section 3.2. For ease of discussion, let us
restrict ourselves to the setting where there are two classes. Formally, we have C = 2, and without
loss of generality, the class labels yu ∈ {±1} for all u ∈ [n]. The distributions of the node
features are given by Xu ∼ Pyu

with corresponding density ρyu
. Furthermore, Q = {qij} is a

2 × 2 matrix with qii = p = a/n and qij = q = b/n with constants a > 1, b ≥ 0 for classes
i ̸= j. For a data sample G = (A,X) from this model, we write G ∼ CSBM(n, d, {P±},Q) or
G ∼ CSBM(n, d, {P±}, an ,

b
n ). We also recognize the quantity associated with the signal-to-noise

ratio (SNR) in the graph structure for this case, which is given by

Γ =
|p− q|
p+ q

=
|a− b|
a+ b

. (1)

Note that the quantity Γ has been recognized as the meaningful SNR in several related works where
the underlying random graph model is the binary symmetric stochastic block model, for example,
Baranwal et al. [2021], Fountoulakis et al. [2022b], Wei et al. [2022], Baranwal et al. [2023].

Let us now state Theorem 1 in the case of two classes. For given input x ∈ R and c > 0, let
φ(x, c) = min(max(x,−c), c) denote the value of x clipped between the range [−c, c].
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Corollary 1.1 (Optimal classifier for binary symmetric CSBM). For any ℓ ≥ 1, the asymptotically
ℓ-locally Bayes optimal classifier of the root for the sequence (Gn, un) ∼ CSBM(n, d,P, an ,

b
n ) is

h∗ℓ (u, {Xv}v∈ηℓ(u)) = sgn
(
ψ(Xu) +

∑
v∈ηℓ(u)\{u}

Md(u,v)(Xv)
)
,

where Mk(x) = sgn(a− b) · φ(ψ(x), ck) with ck = log
(

1+Γk

1−Γk

)
, and ψ(x) = log ρ+(x)

ρ−(x) .

In this simplified setting, we note that the messages propagated from nodes in the ℓ-local neighbour-
hood of node u are clipped proportional to a function of their distance k from node u. In particular,
the clip threshold ck can be expressed in terms of the graph SNR Γ from (1). It is interesting to
observe in Corollary 1.1 that ck decreases rapidly as k increases. Since Γ < 1, this means that to
predict the label of node u, the value of the message propagated from node v at distance k from u
decreases exponentially in k.

The above simplification helps us interpret the classifier in terms of the graph SNR Γ. We will
now impose an assumption on the distribution of node features. This will help us analyze the
generalization error in terms of the SNR in both the features and the graph, and enable us to compare
the performance with other learning methods that are well-studied in the same statistical settings.
We will resort to the setting where the features of the CSBM follow a Gaussian mixture. Note that
this specialized statistical model has been studied extensively in previous works for benchmarking
existing GNN architectures, see for example, Baranwal et al. [2021], Fountoulakis et al. [2022b], Wei
et al. [2022], Baranwal et al. [2023].

In principle, one could compute the generalization error of h∗ℓ for arbitrary distributions on the node
features (see Appendix A.3.2), however, we report the error for Gaussian features for expository
reasons. The generalization error is defined for a classifier h to be the probability of disagreement
between the true label yu and the output of the classifier hu for node u. We characterize the error for
h∗ℓ in the case where P−,P+ correspond to the Gaussian mixture with components N (−µ, σ2I) and
N (µ, σ2I) for fixed µ ∈ Rd and σ > 02.

In this case, a notion of the signal-to-noise ratio of the features naturally exists, i.e., γ = ∥µ∥2 /σ, a
quantity proportional to the ratio of the distance between the means of the mixture and the standard
deviation. The log-likelihood ratio in this setting is ψ(x) = log ρ+(x)

ρ−(x) =
2
σ2 ⟨x,µ⟩.

Consider a sequence {(Gn, un)}n≥1 with Gn = (V (Gn), E(Gn)) from this model where un ∼
Unif(V (Gn)). In this setting, in the absence of features, it is known that (Gn, un) converges locally
weakly to a Poisson Galton-Watson tree (see for example, Mossel et al. [2015, Section 4]). Here,
for every node, we additionally have features that are independent of the graph, and hence, as a
straightforward consequence of Mossel et al. [2015, Section 4], (Gn, un) in our case converges to a
feature-decorated Poisson Galton-Watson tree (G, u).

For the root node u, let αk and βk denote the number of children at generation k in class yu and −yu
respectively, where yu denotes the label of node u. Then {αk}k≥0 and {βk}k≥0 are characterized by

α0 = 1, β0 = 0,

αk ∼ Poi

(
aαk−1 + bβk−1

2

)
, βk ∼ Poi

(
aβk−1 + bαk−1

2

)
for k ∈ [ℓ]. (2)

For a classifier h acting on G, let E(h) denote the probability of misclassification of the root u in
G, i.e., E(h) = Pr(huyu < 0). Correspondingly, in the case of finite n, we denote by En(h) the
probability of misclassification of a uniform random node un in Gn. We are now ready to state the
generalization error of h∗ℓ .
Theorem 2 (Generalization error). For any ℓ ≥ 1, the generalization error of the asymptotically
ℓ-locally Bayes optimal classifier of the root for the sequence (Gn, un) ∼ CSBM(n, d,P,Q) with
Gaussian features is given by

E(h∗ℓ ) = Pr

g + 1

2γ

∑
k∈[ℓ]

 ∑
i∈[αk]

Z
(a)
k,i +

∑
i∈[βk]

Z
(b)
k,i

 > γ

 ,
2In principle, it is easy to analyze arbitrarily fixed means, say µ,ν instead of keeping them symmetric, i.e.,

±µ, with only minor changes in calculations.
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where αk, βk are as in (2), Z(a)
k,i = φ(−2γ2+2γgk,i, ck), Z

(b)
k,i = φ(2γ2+2γgk,i, ck), and g, {gk,i}

are mutually independent standard Gaussian random variables.

Let us now understand how the error described in Theorem 2 behaves in terms of the two SNRs γ (for
the features), and Γ (for the graph). Note that E(h∗ℓ ) → 0 as γ → ∞, and E(h∗ℓ ) → 1/2 as γ → 0.
This means that if the signal in the features is large, the number of mistakes made by the classifier
vanishes, while if the signal is very small, then roughly half of the nodes are misclassified (equivalent
to making a uniform random guess for each node).

To see how Γ affects the error, we begin by looking at two extreme settings: first, where the graph is
complete noise, i.e., Γ = 0, and second, where the graph signal is very strong, i.e., Γ → 1, followed
by a discussion on how h∗ℓ interpolates between these extremes. Let ϕ± denote the Gaussian density
functions with means ±µ and variance σ2Id. Define the random variable

ξℓ = ξℓ(a, b) =
1 +

∑ℓ
k=1 |αk − βk|√

1 +
∑ℓ

k=1(αk + βk)
, (3)

where αk, βk follow (2). In the following, we denote the vanilla GCN classifier from Kipf and
Welling [2017] by hgcn. We then have the following result.

Theorem 3 (Extreme graph signals). Let h∗ℓ be the classifier from Corollary 1.1, h∗0(u) =
sgn(⟨Xu,µ⟩) be the Bayes optimal classifier given only the feature information of the root node u,
and hgcn be the one-layer vanilla GCN classifier. Then we have that for any fixed ℓ:

1. If Γ = 0 then E(h∗ℓ ) = E(h∗0) = Φ(−γ), where Φ is the standard Gaussian CDF.

2. If Γ → 1 then ξℓ ≥ 1 a.s. and E(h∗ℓ ) → Pr(g > γξℓ), where g ∼ N (0, 1).

3. E(hgcn) = Pr (g > γξ1).

Theorem 3 shows that in the regime of extremely low graph SNR, the optimal classifier h∗ℓ reduces
to a linear classifier h∗0(u) = sgn(⟨Xu,µ⟩), which can be realized by a simple MLP that does
not use the graph component of the data at all. On the other hand, in the regime of extremely
strong graph SNR, h∗ℓ reduces to a simple convolution over all nodes in the ℓ-neighbourhood and is
comparable to a typical GCN. Furthermore, we note that in the strong graph SNR regime Γ → 1,
E(h∗ℓ ) → Pr(g > γξℓ) ≤ Φ(−γ) since ξℓ ≥ 1. The clip operation during the propagation of
messages makes things interesting between these two extremes, where h∗ℓ interpolates between a
simple MLP and an ℓ-hop convolutional network. This interpolation is characterized by the graph
signal Γ, since the messages are clipped in the range [−ck, ck], where ck = log

(
1+Γk

1−Γk

)
.

In addition, Theorem 3 concludes that if ξ1(a, b) > 1, then a GCN can perform better than every
classifier that does not see the graph. On the other hand, if ξ1(a, b) < 1, then a GCN incurs more
errors on the data than the best methods that do not use the graph. Interestingly, but not surprisingly,
this result aligns with the Kesten-Stigum weak recovery threshold for the community-detection
problem on the sparse stochastic block model [Massoulié, 2014, Mossel et al., 2018], meaning that if
weak recovery is possible on the graph component of the data, then a GCN is able to exploit it to
perform better than methods that do not use the graph, e.g., a simple MLP.

We now demonstrate our results through experiments using pytorch and pytorch-geometric [Fey
and Lenssen, 2019]. The following simulations are for the setting n = 10000 and d = 4 for binary
classification on the CSBM. We implement Architecture 1 for the binary case, and perform full-batch
training on a graph sampled from the CSBM with certain signals (mentioned in the figures), followed
by an evaluation of the architecture on a new graph sampled from the same distribution.

In Fig. 1, we show that the accuracy obtained by the optimal classifier is higher than both a simple
MLP and a vanilla GCN [Kipf and Welling, 2017]. We plot the test accuracy of Architecture 1 against
the SNR in the node features, γ = ∥µ∥ /σ in Fig. 1a, and against the graph SNR Γ = |a− b|/(a+ b)
in Fig. 1b. We fix Γ = 0.42 and γ = 1 for the two plots, respectively. We chose these specific values
because they generate relatively clearer plots where the accuracy metrics for the three architectures
are easily visible and distinguished from each other. The results are similar for other values for Γ and
γ, i.e., the Bayes optimal architecture is superior to both MLP and GCN.
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(a) Varying γ with fixed Γ = 0.42.
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(b) Varying Γ with fixed γ = 1.

Figure 1: Comparison of Architecture 1 against an MLP and a vanilla GCN [Kipf and Welling, 2017].

Furthermore, Fig. 2 shows that as claimed in Theorem 3, when the graph signal is at the extremes,
i.e., Γ = 0 and Γ = 1, Architecture 1 behaves like a simple MLP and performs a typical convolution
(averaging) over all nodes in the ℓ-neighbourhood, respectively. In the regime of poor graph SNR,
i.e., Γ = 0, a GCN is worse than a simple MLP, as inferred from part three of Theorem 3.
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(a) Fixed graph signal Γ = 0.
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(b) Fixed graph signal Γ = 1.

Figure 2: Demonstration of Theorem 3 for extreme graph signals. In the case where Γ = 0, the
architecture reduces to an MLP (Fig. 2a), while if Γ = 1, it behaves the same as a GCN (Fig. 2b).

Finally, we observe that for the binary setting when the parameters of the architecture are initialized
uniformly at random, gradient descent converges and the neural network learns the right parameters
such that Architecture 1 realizes the optimal classifier in Corollary 1.1. This convergence, along with
a comparison of our architecture to the Approximate Message-passing Belief Propagation (AMP-BP)
algorithm from Deshpande et al. [2018] is presented in Appendix B.

3.5 Non-asymptotic Setting

We now turn to the non-asymptotic regime and argue that for fixed n, the classifier in Corollary 1.1 is
still in a formal sense, Bayes optimal for an overwhelming fraction of nodes. We begin by exploiting
the fact that for up to logarithmic depth neighbourhoods, a sparse CSBM graph is tree-like.

Proposition 3.1 (Tree neighbourhoods). Let G = (V,E) ∼ CSBM(n, d,P, an ,
b
n ) for constants

a, b > 1. Then for any ℓ = c log n such that c log((a+b)/2) < 1/4, with probability 1−O(1/ log2 n),
the number of nodes u ∈ V whose ℓ-neighbourhood is cycle-free is n(1− o(log4(n)/

√
n)).

In particular, Proposition 3.1 states that for ℓ = c log n for a suitable constant c, the ℓ-neighbourhood
of an overwhelming fraction of nodes is a tree. This implies that the classifier h∗ℓ is Bayes optimal for
roughly all of the nodes. Moreover, since the diameter of a sparse graph (as in our setting) is O(log n)
almost surely [Chung and Lu, 2001, Theorem 6], any learning mechanism can only look as far as
O(log n)-hops away from a node to gather new information. This shows that for such graphs, GNNs
that are not very deep and look at only up to logarithmic distance in the neighbourhood are sufficient.

Let us now turn to the misclassification error in the non-asymptotic setting. Recall that for a classifier
h ∈ Cℓ, we denote by En(h) and E(h) the misclassification error of h on the data model with n nodes,
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and on the limiting data model with n → ∞, respectively. Furthermore, recall from Corollary 1.1
that minh∈Cℓ

E(h) = E(h∗ℓ ). Our next result shows that the optimal misclassification error in the non-
asymptotic setting across all ℓ-local classifiers, i.e., minh∈Cℓ

En(h), is close to the misclassification
error obtained in the non-asymptotic setting by h∗ℓ . Moreover, minh∈Cℓ

En(h) is also close to E(h∗ℓ )
which is explicitly computed in Theorem 2.
Theorem 4 (Misclassification error for fixed n). For any 1 ≤ ℓ ≤ c log n such that the positive
constant c satisfies c log(a+b

2 ) < 1/4, we have that∣∣∣∣min
h∈Cℓ

En(h)− En(h∗ℓ )
∣∣∣∣ = O

(
1

log2 n

)
,

∣∣∣∣min
h∈Cℓ

En(h)− E(h∗ℓ )
∣∣∣∣ = O

(
1

log2 n

)
.

Recall that Corollary 1.1 implies that h∗ℓ performs optimally on the limiting data model (asymptotic
setting) among the class of ℓ-local classifiers Cℓ, but it may not be optimal for the non-asymptotic
data model where we have a finite feature-decorated graph with n nodes. However, Theorem 4 helps
us conclude that even in the non-asymptotic setting, h∗ℓ performs almost as well as the actual optimal
classifier among Cℓ in this case, as long as we compare with classifiers that can only look at moderate
logarithmic depths in the local neighbourhood, i.e., ℓ ≤ c log n for a suitable c.

4 Conclusion and Future Work

In this work, we present a comprehensive theoretical characterization of the Bayes optimal node
classification architecture for sparse feature-decorated graphs and show that it can be realized using
the message-passing framework. Utilizing a well-established and well-studied statistical model, we
interpret its performance in terms of the SNR in the data and validate our findings through empirical
analysis of synthetic data. Additionally, we identify the following limitations as prospects for future
work: (1) We consider neighbourhoods up to distance ℓ = c log n for a small enough c. Extending
ℓ to the graph’s diameter (known to be O(log n) with high probability) by removing the restriction
on c poses challenges due to the presence of cycles. (2) More insights can be provided through
experiments on real data to benchmark the architecture in cases where we have a significant gap
between the theoretical assumptions (sparse and locally tree-like graph) and the real-world data.
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A Supplementary Discussion and Proofs

A.1 Local Weak Convergence

We briefly recall here the notion of local weak convergence of random rooted graphs. The notion of
local weak convergence of random, feature-decorated, rooted graphs is defined analogously.

Let us begin first with the case of rooted graphs. A rooted graph (G, u) = ((E, V ), u) is a graph G
with a distinguished vertex u called the root. We say that two rooted graphs (G1, u1) = ((E1, V1), u1),
(G2, u2) = ((E2, V2), u2) are isomorphic if there is a bijection ϕ : V1 → V2 such that ϕ(u) = v and
such that if (x, y) ∈ E1 then (ϕ(x), ϕ(y)) ∈ E2. In this case we write (G1, u1) ∼= (G2, u2). For a
rooted graph (G, u), we denote its isomorphism class as [(G, u)].

Let G∗ denote the set of isomorphism classes of (locally finite) rooted graphs. For a vertex v ∈ G we
let ηk(v) denote the collection of neighbours of v of distance at most k in the canonical edge distance
metric, and G[ηk(v)] denote the subgraph induced on this collection of vertices. We then have the
notion of local convergence in G∗.
Definition A.1 (Local convergence on G∗). We say that a sequence [(Gn, un)] ∈ G∗ converges
locally to [(G, u)] ∈ G∗ if for each k > 0, we have that G[ηk(un)] ∼= G[ηk(u)] eventually.

It can be shown [Bordenave, 2016, Lemma 3.4] that G∗ equipped with the topology of local conver-
gence is a Polish space. We are then in the position to define local weak convergence on G∗. In brief,
the topology of local weak convergence of random graphs is the topology of weak convergence of
measures on the space of probability measures on G∗, namely M1(G∗).
Definition A.2 (local weak convergence of rooted graphs). A sequence {[Gn, un]} of random rooted
graphs with corresponding laws {µn} ⊆ M1(G∗) is said to locally weakly converge to a random
rooted graph [G, u] with law µ ∈ M1(G∗) if µn → µ weakly.

We note here that it is common also to talk about the notion of local weak convergence of a sequence
of (finite) random graphs Gn. In this case Gn → G locally weakly if [(Gn, un)] → [(G, u)] locally
weakly where un ∼ Unif(V (Gn)).

A.2 Preliminary Results

In this section, we state two important preliminary results and a fact that are used to establish our
results in the paper.
Lemma A.1. [Dreier et al., 2018, Lemma 3]. Let G ∼ CSBM(n, d, {P−,P+}, an ,

b
n ) and r be a

fixed constant. Then the probability that there exists an r-neighbourhood in G with m more edges
than the number of vertices is bounded as follows:

Pr(∃ Gr ⊂ G s.t. |E(Gr)| ≥ |V (Gr)|+m) ≤ (2(r(m+ 1))2(a+ b))2r(m+1)+m

nm
.

Lemma A.2. [Massoulié, 2014, Lemma 4.2]. Assume ℓ = c log(n) with c log∆ < 1/4, where
∆ = (a+ b)/2. Then with high probability, no node i has more than one cycle in its ℓ-neighbourhood.
Moreover, for any m > 0, with probability at least 1 − O(1/m2) the number of nodes i whose
ℓ-neighbourhood contains at least one cycle is bounded by O(m log3(n)∆2ℓ).
Fact A.3. For any non-negative u, v, x, y such that x, y ≤ 1,

xu+ yv − 1

2
(xu+ yv)

2 ≤ 1− (1− x)
u
(1− y)

v ≤ xu+ yv.

A.3 Bayes Optimal Classifier

In this section, we compute the asymptotically ℓ-locally Bayes optimal classifier for the general
CSBM described in Section 3.2 and establish Theorem 1, followed by a proof of Corollary 1.1. Next,
we compute the generalization error for the two-class case with arbitrary node features.

A.3.1 Computing the Classifier

For the proofs, we introduce the notation Nk(u) for a given graph to mean the set of vertices that are
at a distance of exactly k from node u in the graph. Thus, ηk(u) = {u} ∪k

j=1 Nk(u).

14



Theorem (Restatement of Theorem 1). For any ℓ ≥ 1, the asymptotically ℓ-locally Bayes optimal
classifier of the root for the sequence (Gn, un) ∼ CSBM(n, d,P,Q) is

h∗ℓ (u, {Xv}v∈ηℓ(u)) = argmax
i∈[C]

{
log ρi(Xu) +

∑
v∈ηℓ(u)\{u}

Mi d(u,v)(Xv)
}
,

where {ρi}i∈[C] are the densities associated with the distributions Pi ∈ P, and

Mik(x) = max
j∈[C]

{
log ρj(x) + logQk

ij

}
.

Furthermore, there exists a choice of parameters for Architecture 1 such that it realizes h∗ℓ .

Proof. We begin by writing the MAP estimation for this problem. Note that the features Xv ∈ Rd

for every node v ∈ [n] follow the law Pi if yv = i ∈ [C]. In addition, recall that we have the
edge-probability matrix Q = {qij}i,j∈[C] with Pr((u, v) is an edge | yu = i, yv = j) = qij , where
qij = bij/n for absolute constants bij . Then we can write the likelihood of the ℓ-neighbourhood of
node u as the joint function:

f(u, {(Xv, yv)}v∈ηℓ(u), ηℓ(u)) = P{yv}v∈ηℓ(u)
ρyu(Xu)

∏
k∈[ℓ]

∏
v∈Nk(u)

ρyv (Xv)Q
k
yuyv

. (4)

In the above, Qk
ij denotes the i, j-th entry of the matrix Qk and quantifies the probability that a node

in class j is at a distance k from a node in class i; while P{yv}v∈ηℓ(u)
denotes the prior distribution of

the node labels, which by our assumption is uniform. Let us now compute the MAP estimator.

h∗ℓ (u, {Xv}v∈ηℓ(u)) = argmax
i∈[C]

max
{yv∈[C]}
v∈ηℓ(u)

f(u, {(Xv, yv)}v∈ηℓ(u), ηℓ(u))

= argmax
i∈[C]

ρi(Xu)
∏
k∈[ℓ]

∏
v∈Nk(u)

max
j∈[C]

ρj(Xv)Q
k
ij

= argmax
i∈[C]

log ρi(Xu) +
∑
k∈[ℓ]

∑
v∈Nk(u)

max
j∈[C]

{
log(ρj(Xv)) + log(Qk

ij)
}

= argmax
i∈[C]

log ρi(Xu) +
∑
k∈[ℓ]

∑
v∈Nk(u)

max
j∈[C]

Mik(Xv),

where Mik(Xv) = log(ρj(Xv)) + log(Qk
ij). Furthermore, note that an instance of Architecture 1

with L = 1, σ1 = {ρi}i∈[C], and Q for the edge-probabilities realizes the function h∗ℓ for a given
root node u and its ℓ-neighbourhood ηℓ(u), in the sense that ŷu = h∗ℓ (u, {Xv}v∈ηℓ(u)).

Next, we obtain a simpler version of the classifier for the two-class symmetric CSBM with an arbitrary
distribution of node features. Recall that ψ is the log of the likelihood ratio.

Corollary (Restatement of Corollary 1.1). For any ℓ ≥ 1, the asymptotically ℓ-locally Bayes optimal
classifier of the root for the sequence (Gn, un) ∼ CSBM(n, d,P, an ,

b
n ) is

h∗ℓ (u, {Xv}v∈ηℓ(u)) = sgn
(
ψ(Xu) +

∑
v∈ηℓ(u)\{u}

Md(u,v)(Xv)
)
,

where Mk(x) = sgn(a− b) · φ(ψ(x), ck) with ck = log
(

1+Γk

1−Γk

)
, and ψ(x) = log ρ+(x)

ρ−(x) .

Proof. The proof follows directly from Theorem 1, by taking C = 2. In this two-class case,
the features Xv ∈ Rd for every node follow the law Pyv

where the class labels yv ∈ {∓1} are
Unif({−1,+1}). In addition, we have

Pr((u, v) is an edge) =
{
p yu = yv
q yu ̸= yv

,
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where p = a/n and q = b/n for absolute constants a > 1, b ≥ 0. Define the quantities pk, qk as
follows for k ∈ [ℓ]:

pk =

⌊k/2⌋∑
j=0

(
k

2j

)
pk−2jq2j , qk =

⌈k/2⌉∑
j=1

(
k

2j − 1

)
pk−2j+1q2j−1. (5)

Then we can simplify the likelihood of the ℓ-neighbourhood of node u from (4) as follows:

f({(Xv, yv)}v∈ηℓ(u)) = ρyu
(Xu)

∏
k∈[ℓ]

∏
v∈Nk(u)

(
ρyv (Xv)p

1+yuyv
2

k q
1−yuyv

2

k

)
.

Then maximizing the likelihood over possible class labels, we have

h∗ℓ (u, {Xv}v∈ηℓ(u)) = argmax
yu∈{±1}

max
{yv∈{±1}}
v∈ηℓ(u)

f({(Xv, yv)}v∈ηℓ(u))

= argmax
yu∈{±1}

max
{yv∈{±1}}
v∈ηℓ(u)

log f({(Xv, yv)}v∈ηℓ(u))

= argmax
yu∈{±1}

log ρyu
(Xu) + max

{yv∈{±1}}
v∈ηℓ(u)

∑
k∈[ℓ]

∑
v∈Nk(u)

log
(
ρyv

(Xv)p
1+yuyv

2

k q
1−yuyv

2

k

)
= sgn

log
ρ+(Xu)

ρ−(Xu)
+
∑
k∈[ℓ]

∑
v∈Nk(u)

Mk(Xv)

 ,

where Mk(x) = log(max(pkρ+(x), qkρ−(x)))− log(max(pkρ−(x), qkρ+(x))). Next, we observe
that for any w, x, y, z ∈ R,

log(max(wy, xz))− log(max(wz, xy)) = sgn(w−x) ·min
(
max

(
log

y

z
,−
∣∣∣log w

x

∣∣∣) , ∣∣∣log w
x

∣∣∣) .
Hence, Mk(Xv) is simply sgn(a− b) · φ(log ρ+(Xv)

ρ−(Xv)
, ck), i.e., the signed likelihood ratio clipped

between −ck and ck.

A.3.2 Generalization Error

Let us now compute the generalization error of h∗ℓ . Formally, given a data instance (u, {Xv}v∈ηℓ(u))
along with the neighbourhood ηℓ(u), h∗ℓ outputs a label ŷu ∈ {±1}, and the generalization error
is defined as the probability Pr(yuŷu < 1). For a simple calculation, let us assume that the latent
labels yi are uniformly distributed, i.e., Pr(yi = −1) = Pr(yi = 1) = 1

2 . It is straightforward to
generalize to unbalanced settings. Recall that the features in classes ±1 follow the law P±, and
denote by the log likelihood ratio by ψ(x) = log(ρ+(x)/ρ−(x)). Then we have that for a fixed u,

E(h∗ℓ ) = Pr

yu
log

ρ+(Xu)

ρ−(Xu)
+
∑
k∈[ℓ]

∑
v∈Nk(u)

Mk(Xv)

 < 0


=

1

2

Pr

ψ(Y(1)) +
∑
k∈[ℓ]

Z
(1)
k > 0

+Pr

ψ(Y(2)) +
∑
k∈[ℓ]

Z
(2)
k < 0

 ,
where Z

(1)
k =

∑
j∈[αk]

Mk(Y
(1)
k,j) +

∑
j∈[βk]

Mk(Y
(2)
k,j) and Z

(2)
k =

∑
j∈[αk]

Mk(Y
(2)
k,j) +∑

j∈[βk]
Mk(Y

(1)
k,j) are independent random variables with Y

(1)
k,j ∼ P− and Y

(2)
k,j ∼ P+.

The above expression is not particularly insightful. For this reason, we now specialize to the case of
Gaussian features and interpret the error in terms of the natural SNRs associated with the Gaussian
mixture and the graph, i.e., the quantities γ and Γ.
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A.4 Specialization to Gaussian Features

In this section, we look at the specialized setting where the node features are sampled from a
symmetric binary Gaussian mixture model. Let us begin with the generalization error in this case.

A.4.1 Generalization Error

Theorem (Restatement of Theorem 2). For any ℓ ≥ 1, the generalization error of the asymptotically
ℓ-locally Bayes optimal classifier of the root for the sequence (Gn, un) ∼ CSBM(n, d,P,Q) with
Gaussian features is given by

E(h∗ℓ ) = Pr

g + 1

2γ

∑
k∈[ℓ]

 ∑
i∈[αk]

Z
(a)
k,i +

∑
i∈[βk]

Z
(b)
k,i

 > γ

 ,
where αk, βk are as in (2), Z(a)

k,i = φ(−2γ2+2γgk,i, ck), Z
(b)
k,i = φ(2γ2+2γgk,i, ck), and g, {gk,i}

are mutually independent standard Gaussian random variables.

Proof. For the Gaussian mixture, the log of the likelihood ratio for a node u is given by 2
σ2 ⟨Xu,µ⟩

D
=

2yuγ
2 + 2γg, where g ∼ N (0, 1). Replacing every {Xi}i∈[n] as Xi = EXi + σgi = yiµ + σgi,

we obtain the expression in Theorem 2.

A.4.2 Extreme Graph SNRs

Let us now turn to the next result, where we analyze the generalization error in the cases where the
graph SNR Γ takes extreme values.
Theorem (Restatement of Theorem 3). Let h∗ℓ be the classifier from Corollary 1.1, h∗0(u) =
sgn(⟨Xu,µ⟩) be the Bayes optimal classifier given only the feature information of the root node u,
and hgcn be the one-layer vanilla GCN classifier. Then we have that for any fixed ℓ:

1. If Γ = 0 then E(h∗ℓ ) = E(h∗0) = Φ(−γ), where Φ is the standard Gaussian CDF.

2. If Γ → 1 then ξℓ ≥ 1 a.s. and E(h∗ℓ ) → Pr(g > γξℓ), where g ∼ N (0, 1).

3. E(hgcn) = Pr (g > γξ1).

Proof. Note that when Γ = 0, i.e., when a = b, then ak = bk for all k ∈ [ℓ], hence, ck =
log(ak/bk) = 0. This implies that all information from the k-hop neighbours is truncated to
0 for all k ∈ [ℓ]. Thus, the classifier reduces to h∗u = h∗ℓ (u, {Xv}v∈ηℓ(u)) = sgn (ψ(Xu)) =
sgn (g + yuγ) = h∗0(u, {Xu}). Thus, the probability that h∗uyu < 0 is

Pr(h∗uyu < 0) = Pr(yug + γ < 0) = Φ(−γ),

where Φ(·) is the standard Gaussian CDF.

For the other case where Γ → 1, we have two sub-cases: Either a → 0 with b ̸= 0, or a ̸= 0 with
b→ 0. In this case, ck → ∞ for all k, so the classifier takes the form

h∗ℓ (u, {Xv}v∈ηℓ(u)) = sgn

g + yuγ +
∑
k∈[ℓ]

∑
v∈Nk(u)

(gk,v + yvγ)

 .

Hence, the probability of making a mistake is

Pr(h∗uyu < 0) = Pr

yug + γ +
∑
k∈[ℓ]

∑
v∈Nk(u)

(yugk,v + yuyvγ) < 0


= Pr

g > γ
|η(a)ℓ − η

(b)
ℓ |√

η
(a)
ℓ + η

(b)
ℓ

 ,
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where η(a)ℓ , η
(b)
ℓ denote the total number of nodes in the ℓ-neighbourhood ηℓ(u) that are in the same

class as u and different class as u, respectively. The last equation is obtained by using the fact that
(g, {gk,v}) are i.i.d. standard Gaussians. Note that in this case since either b→ 0 or a→ 0 (but not
both), we have η(b)ℓ → 0 or η(a)ℓ → 0 using (2) for any fixed ℓ. Thus, ξℓ(a, b) > 1 a.s. Following a
similar analysis, one can find that E(hgcn) = Pr(g > γ · ξ1(a, b)).

It is interesting to note that we may not have ξ1(a, b) > 1 in general, meaning that a GCN is better
than methods that do not use a graph only in the case where ξ1(a, b) > 1.

A.5 Non-asymptotic Analysis

First, consider the case where ℓ, the total depth of the neighbourhood is a constant independent of n,
the number of nodes.

Putting m = 1 in Lemma A.1, we see that the probability is bounded by (8ℓ2(a + b))4ℓ+1/n =
O(1/n). Hence, we conclude that in the limit n → ∞, there are no cycles in any constant-depth
neighbourhoods in the graph. In particular, we obtain that the local weak limit (G, u) is a tree.

We now turn to the case where the depth of the neighbourhood is logarithmic in n.

Proposition (Restatement of Proposition 3.1). Let G = (V,E) ∼ CSBM(n, d,P, an ,
b
n ). Then for

any ℓ = c log n such that c log(a+b
2 ) < 1/4, with probability 1−O(1/ log2 n), the number of nodes

u ∈ V whose ℓ-neighbourhood is cycle-free is n
(
1− o( log

4(n)√
n

)
)

.

Proof. In Lemma A.2, observe that since c log∆ < 1/4, we have ℓ < logn
4 log∆ = 1

4 log∆ n. Thus,
putting m = log n, we find that with probability at least 1 − O(1/ log2 n), the number of nodes
whose ℓ-neighbourhood contains at least one cycle is bounded by O(log4(n)∆2ℓ) = o(log4(n)

√
n).

Hence, the fraction of nodes whose ℓ-neighbourhood is cycle-free is 1− o( log
4 n√
n

).

For a fixed node u ∈ [n], let us denote the number of nodes at distance k (respectively ≤ k) from u
with class label ±yu by U±

k (u) (respectively, U±
≤k(u)). Also let n± denote the number of nodes with

class label ±yu, so that n = n+ + n−. Note that U+
0 (u) = 1, U−

0 (u) = 0, and conditionally on the
sigma-field Fk−1 = σ(U±

t (u), t ≤ k − 1), we have

U+
k (u) ∼ Bin

(
n+ − U+

≤k−1, 1− (1− a/n)U
+
k−1(1− b/n)U

−
k−1

)
, (6)

U−
k (u) ∼ Bin

(
n− − U−

≤k−1, 1− (1− a/n)U
−
k−1(1− b/n)U

+
k−1

)
. (7)

Define Sk(u) = U+
k (u) +U−

k (u) to be the number of nodes at distance exactly k from u, and denote
∆ = a+b

2 to be the expected degree of a node. Correspondingly, recall from (2) that we have

α0 = 1, β0 = 0,

αk ∼ Poi

(
aαk−1 + bβk−1

2

)
, βk ∼ Poi

(
aβk−1 + bαk−1

2

)
for k ∈ [ℓ]. (8)

Let us now state a useful high-probability bound on Sk(u) = U+
k (u) + U−

k (u).

Lemma A.4. [Massoulié, 2014, Theorem 2.3]. For any ℓ = c log n with c log∆ < 1/4, there exist
constants C, ϵ > 0 such that with probability at least 1 − O(n−ϵ), Sk(u) ≤ C∆k log(n) for all
u ∈ [n] and all k ∈ [ℓ].

We now obtain a total variation bound between the sequences {U±
k }k≥0 and {αk, βk}k≥0.

Lemma A.5. Let u ∈ [n] be fixed with label yu ∈ {±1}. Let ℓ = c log n with c log∆ < 1/4.
Then the total variation distance between the collections of variables {U+

k (u), U−
k (u)}k≤ℓ and

{αk(u), βk(u)}k≤ℓ is bounded by O(log3 n/n1/4).
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Proof. Define the following events for C as in Lemma A.4:

Ωk = {Sk ≤ C∆k log n}, 1 ≤ k ≤ ℓ. (9)

Conditionally on the sigma-field Fk−1 = σ(U±
t (u), t ≤ k − 1) and the event Ωk−1, we compute the

total variation distance between the variables (U+
k (u), U−

k (u)) and (αk(u), βk(u)). Since u is fixed,
we omit it from the notation for brevity. Define the following random variables:

W+
k ∼ Poi

(
aU+

k−1 + bU−
k−1

2

)
, W−

k ∼ Poi

(
aU−

k−1 + bU+
k−1

2

)
.

We now apply the Stein-Chen method to bound dTV(U
±
k ,W

±
k ). For more details on this technique,

we refer to Stein [1972], Chen [1975], Barbour and Chen [2005]. In particular, we use the fact that for
X1 ∼ Bin(n, λ/n), X2 ∼ Poi(λ) and X3 ∼ Poi(λ′), dTV(X1, X2) ≤ λ/n and dTV(X2, X3) ≤
|λ− λ′|. Let us focus on dTV(U

+
k ,W

+
k ) as the other case for dTV(U

−
k ,W

−
k ) is similar. Construct

an intermediate random variable based on the distributions of U±
k as in Eqs. (6) and (7),

Vk ∼ Poi
(
(n+ − U+

≤k−1)
(
1− (1− a/n)U

+
k−1(1− b/n)U

−
k−1

))
.

Denote Tt = 1−
(
1− a

n

)U+
t
(
1− b

n

)U−
t for brevity. Note that using triangle inequality,

dTV(Vk,W
+
k ) ≤

∣∣∣∣∣(n+ − U+
≤k−1)Tk−1 −

aU+
k−1 + bU−

k−1

2

∣∣∣∣∣
≤
∣∣∣(n+ − U+

≤k−1 −
n

2

)
Tk−1

∣∣∣+ ∣∣∣∣∣aU+
k−1 + bU−

k−1 − nTk−1

2

∣∣∣∣∣
=
∣∣∣(n+ − U+

≤k−1 −
n

2

)
Tk−1

∣∣∣+ n

2

∣∣∣∣∣aU+
k−1 + bU−

k−1

n
− Tk−1

∣∣∣∣∣
≤
∣∣∣(n+ − U+

≤k−1 −
n

2

)
Tk−1

∣∣∣+ 1

4n

(
aU+

k−1 + bU−
k−1

)2
,

where in the last inequality we used Fact A.3. Then we obtain the variation distance:

dTV(U
+
k ,W

+
k ) ≤ dTV(U

+
k , Vk) + dTV(Vk,W

+
k )

≤ Tk−1 +
∣∣∣(n+ − U+

≤k−1 −
n

2

)
Tk−1

∣∣∣+ 1

4n

(
aU+

k−1 + bU−
k−1

)2
= Tk−1

(
1 +

∣∣∣n+ − U+
≤k−1 −

n

2

∣∣∣)+ 1

4n

(
aU+

k−1 + bU−
k−1

)2
.

Consider now a choice of c such that c log∆ < 1/4. We have ℓ = c log n < 1
4 log∆ n, implying

that ∆ℓ ≤ n1/4. Recalling (9) corresponding to Lemma A.4, we have that under the event Ωk−1 for
k ≤ ℓ, the number of nodes at distance k − 1 is

Sk−1 = U+
k−1 + U−

k−1 ≤ C∆k−1 log n ≤ C∆ℓ log n ≤ Cn1/4 log n. (10)

Observe now that from Fact A.3, Tk−1 ≤ aU+
k−1+bU−

k−1

n . Recalling that yu have a uniform prior, by
the Chernoff bound [Vershynin, 2018, Theorem 2.3.1] on n+, we have |n+ − n

2 | = O(
√
n log n)

with probability at least 1− 1/poly(n). Thus, we obtain that under this event,

dTV(U
+
k ,W

+
k ) ≤ O

(
|U+

≤k−1|
n

+
log n√
n

)
·
(
aU+

k−1 + bU−
k−1

)
+

1

4n

(
aU+

k−1 + bU−
k−1

)2
≤ O

(
log n√
n

)
·max(a, b)Sk−1 +

max(a, b)2

4n
S2
k−1 = O

(
log2 n

n1/4

)
,

where in the last step we used the bound from (10). Now recall that the variables {U±
k , αk, βk}k∈[ℓ]

are defined as in Eqs. (6) to (8) for all k ≤ ℓ. For a fixed u ∈ [n], we have the base casesU+
0 = α0 = 1
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andU−
0 = β0 = 0. Then following an induction argument with a union bound over all k ∈ {1, . . . , ℓ},

we have that the variation distance between the sequences {U+
k , U

−
k }k≤ℓ and {αk, βk}k≤ℓ is upper

bounded by O
(

log3 n
n1/4

)
.

We now obtain a relationship between the misclassification error on the data model with finite n, i.e.,
En and the error on the limit of the model with n→ ∞, i.e., E .
Theorem (Restatement of Theorem 4). For any 1 ≤ ℓ ≤ c log n such that the positive constant c
satisfies c log(a+b

2 ) < 1/4, we have that∣∣∣∣min
h∈Cℓ

En(h)− En(h∗ℓ )
∣∣∣∣ = O

(
1

log2 n

)
,

∣∣∣∣min
h∈Cℓ

En(h)− E(h∗ℓ )
∣∣∣∣ = O

(
1

log2 n

)
.

Proof. Consider a random feature-decorated graph Gn ∼ CSBM(n, d, {P±}, a/n, b/n), where P±
correspond to the distributions N (±µ, σ2I) for the node features given by {Xu}u∈[n]. For a classifier
h ∈ Cℓ, the class of all ℓ-local classifiers, define En(h) to be the probability of misclassification for
a uniform at random node u ∈ [n], i.e., En(h) = Pr(yu · h(u, {Xv}v∈ηℓ(u), ηℓ(u)) < 0). Since it
is known that all classifiers in Cℓ operate on u given the information in its ℓ-neighbourhood ηℓ(u),
we will omit ηℓ(u) from the notation and say h(u) instead of h(u, {Xv}v∈ηℓ(u), ηℓ(u)) when it is
understood. Let P be the joint measure of the variables {U±

k }k≤ℓ from Eqs. (6) and (7), and P′

be the joint measure of the variables {αk, βk}k≤ℓ from Eq. (8). Then Lemma A.5 gives us that

dTV(P,P
′) ≤ O

(
log3 n
n1/4

)
= on(1).

Recall E(h∗ℓ ) computed in Theorem 2 for the limiting data model (G, u).

E(h∗ℓ ) = Pr

g + 1

2γ

∑
k∈[ℓ]

(
αk∑
i=1

Z
(a)
k,i +

βk∑
i=1

Z
(b)
k,i

)
> γ


=

∫
Pr

g + 1

2γ

∑
k∈[ℓ]

(
αk∑
i=1

Z
(a)
k,i +

βk∑
i=1

Z
(b)
k,i

)
> γ

∣∣∣∣∣∣ {αk, βk}k≤ℓ

 dP′.

Similarly, we have

En(h∗ℓ ) = Pr

g + 1

2γ

∑
k∈[ℓ]

U+
k∑

i=1

Z
(a)
k,i +

U−
k∑

i=1

Z
(b)
k,i

 > γ


=

∫
Pr

g + 1

2γ

∑
k∈[ℓ]

U+
k∑

i=1

Z
(a)
k,i +

U−
k∑

i=1

Z
(b)
k,i

 > γ

∣∣∣∣∣∣ {U±
k }k≤ℓ

 dP.
Thus, we obtain that

|En(h∗ℓ )− E(h∗ℓ )| ≤ dTV(P,P
′) ≤ O

(
log3 n

n1/4

)
= on(1), (11)

Let us now focus on the case with finite n. Let A denote the event from Proposition 3.1 where the
number of nodes with cycle-free ℓ-neighbourhoods is 1 − o( log

4 n√
n

). For a node u ∈ Gn, let Eu

denote the event that the subgraph induced by the ℓ-neighbourhood of u, ηℓ(u) is a tree. Then observe
that for a uniform random node u ∈ Gn,

min
h∈Cℓ

En(h) = Pr(yuh
∗
ℓ,n(u) < 0)

= Pr(Eu)Pr(yuh
∗
ℓ,n(u) < 0 | Eu) +Pr(Ec

u)Pr(yuh
∗
ℓ,n(u) < 0 | Ec

u)

= (1− on(1))Pr(yuh
∗
ℓ (u) < 0) + on(1)

= En(h∗ℓ )± on(1).
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In the above, we used from Proposition 3.1 that Pr(Eu) = Pr(Eu ∩ A) + Pr(Eu ∩ Ac) =
1−O( 1

log2 n
), and that En(h∗ℓ ) = minh∈Cℓ

Pr(yuh(u) < 0 | Eu). This establishes the first part:

|min
h∈Cℓ

En(h)− En(h∗ℓ )| = O

(
1

log2 n

)
.

Combining the above display with (11), we obtain the second part, i.e.,∣∣∣∣min
h∈Cℓ

En(h)− min
h∈Cℓ

E(h)
∣∣∣∣ = ∣∣∣∣min

h∈Cℓ

En(h)− E(h∗ℓ )
∣∣∣∣

=

∣∣∣∣min
h∈Cℓ

En(h)− En(h∗ℓ ) + En(h∗ℓ )− E(h∗ℓ )
∣∣∣∣

≤
∣∣∣∣min
h∈Cℓ

En(h)− En(h∗ℓ )
∣∣∣∣+ |En(h∗ℓ )− E(h∗ℓ )|

= O

(
1

log2 n

)
+O

(
log3 n

n1/4

)
= O

(
1

log2 n

)
.

B Additional Empirical Observations

B.1 Convergence of Parameters

We observe empirically that gradient descent (SGD and Adam implementations in the pytorch
library) converges in the binary setting. In this case, the neural network learns the right parameters
corresponding to the parameters of the CSBM, i.e., ρ and Q, such that Architecture 1 realizes the
optimal classifier in Corollary 1.1. In Fig. 3, the x-axis denotes the number of epochs elapsed since
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Figure 3: Convergence of parameters of Architecture 1.

the beginning of the training process. For the first plot, the y-axis denotes the cosine similarity
between the parameters θ1 ∈ Rd learned by the MLP H(L) in Architecture 1 and the ansatz µ that
realizes the optimal classifier; while in the second plot, the y-axis denotes the absolute difference
between the clip parameter θ2 ∈ R and the ansatz value log( 1+Γ

1−Γ ). These experiments are performed
in the same setting as Fig. 1b with fixed Γ = 0.2. We see that the parameters converge as the number
of training iterations increases. The reported metrics are averaged over 10 trials, and the standard
deviation is shown at each iteration using the translucent blue region.

21



B.2 Comparison with AMP-BP

We now perform a comparison of our architecture with ℓ = 5 against the AMP-BP algorithm from
[Deshpande et al., 2018] in two different settings. We set n = 1000 and work with two values of
d ∈ {5, 500}. The case d = 5 simulates the low-dimensional case where asymptotically d/n→ 0,
while d = 500 represents the high-dimensional case where d/n → c for a constant c. For the
AMP-BP algorithm, we choose two values for the number of iterations, t ∈ {5, 20}.

Tables 1 and 2 show the results for γ = 1 with varying values of Γ ∈ {0.3, 0.4, 0.5, 0.6}. We observe
that the classifier obtained after training Architecture 1 almost always outperforms AMP-BP for both
low-dimensional and high-dimensional cases.

Table 1: Accuracy metrics for Architecture 1 and AMP-BP for γ = 1 and d = 5.
Graph signal 5-local Bayes Optimal AMP, t = 5 AMP, t = 20

0.3 0.870 0.753 0.858
0.4 0.954 0.816 0.890
0.5 0.988 0.819 0.916
0.6 0.996 0.892 0.952

Table 2: Accuracy metrics for Architecture 1 and AMP-BP for γ = 1 and d = 500.
Graph signal 5-local Bayes Optimal AMP, t = 5 AMP, t = 20

0.3 0.916 0.554 0.848
0.4 0.995 0.558 0.877
0.5 0.998 0.626 0.920
0.6 0.998 0.657 0.940

Tables 3 and 4 show the results for γ = 0.2, i.e., for a weaker feature signal in the data. Here, we
observe that although Architecture 1 outperforms AMP-BP in the low-dimensional regime, it exhibits
worse performance than AMP-BP in the high-dimensional regime.

Table 3: Accuracy metrics for Architecture 1 and AMP-BP for γ = 0.2 and d = 5.
Graph signal 5-local Bayes Optimal AMP, t = 5 AMP, t = 20

0.3 0.554 0.520 0.579
0.4 0.587 0.528 0.584
0.5 0.823 0.604 0.756
0.6 0.997 0.637 0.880

Table 4: Accuracy metrics for Architecture 1 and AMP-BP for γ = 0.2 and d = 500.
Graph signal 5-local Bayes Optimal AMP, t = 5 AMP, t = 20

0.3 0.584 0.502 0.543
0.4 0.706 0.525 0.694
0.5 0.762 0.568 0.804
0.6 0.788 0.604 0.878

It is important to note, however, that this is an apples-to-oranges comparison because AMP-BP is
not a local algorithm, i.e., the whole graph is visible to the algorithm and all nodes contribute to the
classification of every other node. This is not true for Architecture 1, where only the nodes in the
ℓ-hop neighbourhood contribute to this decision. Our notion of optimality is among the class of local
algorithms. Furthermore, we observe that AMP-BP with 5 iterations does not converge and obtains a
much lower accuracy compared to 20 iterations.
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