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Abstract

The variety and complexity of relations in real world data lead to Heterogeneous In-1

formation Networks (HINs). Capturing the semantics from such networks requires2

approaches capable of utilizing the full richness of the HINs. Existing methods for3

modeling HINs employ techniques originally designed for graph neural networks4

in combination with HIN decomposition analysis, especially using manually prede-5

fined metapaths. In this paper, we introduce a novel hypergraph learning approach6

for node classification in HINs. Using hypergraphs instead of graphs, our method7

captures higher-order relationships among heterogeneous nodes and extracts se-8

mantic information without relying on metapaths. Our method leverages the power9

of prototypes to improve the robustness of the hypergraph learning process, and we10

further discuss the advantages that our method can bring to scalability, which due to11

their expressiveness is an important issue for hypergraphs. Extensive experiments12

on three real-world HINs demonstrate the effectiveness of our method.13

1 introduction14

Many real-world data collections can be effectively formulated as HINs, where different types15

of nodes and edges embody multiple types of entities and relations. For example, as shown in16

Figure 1, an academic network has several types of nodes: Paper, Author, and Subject, as well as17

different types of relations, each associated with different semantics, such as Author writes−−−−→Paper,18

Paper
belongs to−−−−−−→Subject. These relations can be aggregated to give rise to higher-order semantic19

associations. Examples are the triadic (ternary) relationships Paper-Author-Paper representing a20

co-author relationship and Paper-Subject-Paper conveying a same topic connection. Modeling the21

relational and semantic richness of HINs requires the development of specialized models to provide22

effective analysis and interpretation.23

Recent years have brought a rapid development of Graph Neural Networks (GNNs) in pursuit of24

performance improvement in graph representation learning [24, 25]. GNNs are primarily designed25

for homogeneous graphs associated with a single type of nodes and edges, and follow a neighborhood26

aggregation scheme to capture the structural information of a graph [13, 21]. Thus, most GNNs are27

not well-equipped to deal with HINs, which also have rich semantic information induced by different28

types of nodes, as well as by varied structural information [20].29

Various Heterogeneous Graph Neural Networks (HGNNs) have been introduced as effective tools30

for the extraction and incorporation of semantic knowledge, yielding remarkable performance in31

representation learning for HINs [27, 22]. With regard to their approach to relation handling, these32

techniques can be broadly grouped into two categories: Metapath-based methods and Metapath-free33

methods. Metapath-based methodologies leverage metapath—sequential arrangements of node and34

edge types. Due to the semantic expressiveness of metapaths, many techniques initially extract35
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Figure 1: Comparison between conventional heterogeneous graphs (e.g., an academic network)
and their corresponding heterogeneous hypergraph. In a conventional heterogeneous graph,
different nodes are connected by different pairwise links and cannot explicitly capture the high-order
complex relation among those nodes. For example, in the academic network, the interactions are
not only among authors creating papers and papers belonging to a subject period but also high-order
information, e.g., several authors collaborated on a paper which spans multiple subjects.

various substructures from the original HINs, each possessing distinct semantic characteristics. This36

extraction process is guided by a set of predefined metapaths, which subsequently serve as the37

topology for representation learning on these substructures [5, 31, 23, 7]. Although Metapath-based38

methods have achieved state-of-the-art performance on plenty of tasks, they are usually limited in39

that (1) Metapaths have to be specified in advance, requiring domain-specific knowledge or even40

exhaustive enumeration of schemes, strategies often associated with prohibitively high manual and41

computational costs. (2) They primarily focus on pairwise connections, and it is hard to capture the42

complex higher-order interactions implicitly contained in HINs. Metapath-free methods are proposed43

to address the first limitation. They aggregate information from neighboring nodes by an attention44

mechanism or a usually relation-dependent graph transformer. This category of methods operates by45

using one-hop relations as input to the layers of a GNN and subsequently stacking multiple layers to46

facilitate the learning of multi-hop relations [29, 10, 16]. However, this strategy can be challenged by47

the intricacies inherent in capturing higher-order relations.48

To deal with the complexity of higher-order relations, in this paper, we present a hypergraph learning49

approach for node classification, which aims to preserve the high-order relations present in HINs50

and simultaneously capture the semantic information in them. Our model leverages the power of a51

hypergraph representation, a structure that generalizes graphs by allowing edges to connect more than52

two nodes. By representing higher-order relationships more explicitly, hypergraphs provide a natural53

framework for capturing complex dependencies and group information. Traditional hypergraph54

approaches simplify a hypergraph to a regular graph, e.g., by applying star or clique expansion [6, 26].55

This simplification facilitates learning hypergraph representations, but inherently leads to loss of56

information. Recently, there have been works on applying deep neural network message passing to57

propagate vertex-hyperedge-vertex information through the hypergraph. This allows direct learning58

from the hypergraph topology [2, 32, 8]. This way of learning avoids reducing the high-order relations59

into pairwise ones, hence no information loss, and provides a new way to model semantic information60

without relying on metapaths. In line with previous studies on HINs [23, 16], for practical reasons61

we specifically focus on utilizing symbolic relations. This means we do not incorporate node content62

similarity to define network structure.63

Modeling symbolic relations with current hypergraph models is known to be sensitive to noisy64

information in the nodes and hyperedges [2]. Hence, our method utilizes prototypes, representative65

nodes that summarize groups or similar entities in the data structure, in two ways to regularize the66

hypergraph learning process. First, we design a prototype-based hyperedge regularization method,67

where each hyperedge serves as a prototype and forces its nodes to be close to it in the embedding68

space to stabilize the optimization. Second, to further improve the robustness of our model for node69

classification against noise or small changes in the initial samples, we make the prototypes learnable70

and learn multiple prototypes to represent different classes.71

Our contributions are three-fold:72

1. We introduce a novel approach that uses the power of hypergraphs and prototypes for node73

classification in HINs. The hypergraphs allow for higher-order relationships among nodes74

to capture complex semantic dependencies and group information in the data.75
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2. We show how to use prototypes, being representative landmarks, to enhance the robustness76

of hypergraph model learning for HINs.77

3. We demonstrate the effectiveness of the proposed method through experiments conducted78

on two real-world HINs benchmarks.79

2 Related work80

In this section, we reflect on related work about heterogeneous information networks in Section 2.181

and hypergraph learning in Section 2.2.82

2.1 Heterogeneous Information Networks83

Different from homogeneous networks, heterogeneous networks consist of different types of nodes84

and edges. Most recent methods for analyzing heterogeneous graphs concentrate on decomposing the85

network into homogeneous sub-graphs and deploying GNNs. Metapath-based methods first extract86

substructures according to hand-crafted metapaths and then learn node representations based on87

these sub-structures. For instance, HAN is a representative method that applies hierarchical attention88

to aggregate information from metapath-based neighbors [23]. MAGNN [7] improves on that by89

simultaneously aggregating information from the intermediate nodes. In contrast, Metapath-free90

methods adhere to a different paradigm, aggregating messages from neighbors within the immediate91

one-hop vicinity akin to traditional GNNs, disregarding the specific node types involved. They92

augment this process with additional modules, such as attention mechanisms, to encode semantic93

information like node types and edge types into the propagated messages, thereby enriching the94

data representation. GTN [29] can discover valuable meta-paths automatically with the intuition95

that a metapath neighbor graph can be obtained by multiplying the adjacency matrices of several96

sub-graphs. However, GTN consumes a gigantic amount of time, and memory, e.g., 400 × time and97

120 × the memory of Graph Attention Networks (GATs) [17]. HGT [10] builds on the transformer to98

handle large academic heterogeneous graphs, focusing on web-scale graphs via a graph sampling99

strategy. HGB [16] instead uses a GAT network as the backbone, with the help of learnable edge-type100

attention, L2 normalization, and residual attention for node representation generation. All of the101

above methods focus on the pairwise relations in the network and ignore high-order relations in HINs,102

inherently leading to semantic information loss.103

2.2 Hypergraph Learning104

Hypergraph learning is related to graph learning since a hypergraph is a graph generalization that105

allows edges to connect 2 to n nodes, where n is the number of nodes/vertices. Hypergraph learning106

was first introduced in [33] and can be seen as a propagation process along the hypergraph structure107

in analyzing categorical data with complex relationships. In its original form it conducts transductive108

learning and aims to minimize the label difference among vertices having stronger connections in109

the hypergraph. Inspired by the immense success of deep learning, recently effective approaches110

to deep learning on hypergraphs have been proposed [9]. Hypergraph neural networks design a111

vertex-hyperedge-vertex information propagating pattern to iteratively learn the data representation,112

and some of them have the ability of inductive learning [6, 4, 11, 2, 32, 8]. Recently, there has been113

growing interest in utilizing hypergraphs to model structured data in HINs [15, 14]. However, the114

above hypergraph approaches for HINs necessitate predefined metapaths with domain knowledge115

as a foundation for constructing hyperedges. This reliance on metapaths introduces several chal-116

lenges, including the need for manual specification, making them less suitable for diverse datasets.117

Additionally, capturing high-order information directly from the data can be challenging within this118

metapath-centric paradigm.119

3 Methodology120

Here, we present our methodology closely following Figure 2. We start by providing some general121

notation.122

Notations In this work, we focus on the heterogeneity of nodes. A heterogeneous hypergraph is123

represented as G = {V, E , T⊑}, where V = {v1, v2, ..., vn} is the node set, E = {e1, e2, ..., em}124
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Figure 2: An illustration of prototype-enhanced hypergraph learning model. First, linear layers
map heterogeneous nodes with varying embedding lengths into a shared space. Then, high-order
message passing occurs among different nodes based on the topology of the hyperedges. Hyperedge
prototype regularization constrains node embeddings based on their proximity to their respective
hyperedges. Finally, nodes are classified by learnable prototype-based classifiers according to their
representations.

represents the set of hyperedges, and T is the set of node types. Each hyperedge has 2 or more nodes.125

When |T | ≥ 2, the hypergraph is heterogeneous. The relationship between nodes and hyperedges126

can be represented by an incidence matrix I ∈ R|V|×|E|, with entries defined as:127

I(v, e) =

{
1, if v ∈ e

0, otherwise

Let De ∈ R|E|×|E| denotes the diagonal matrices containing hyperedge degrees, where128

De(i, i) =
∑

u∈V I(u, i). The hyperedge degree is a valuable parameter for normalization purposes.129

130

Problem Statement. In the context of HIN, we capture and retain their implicit high-order relations,131

effectively forming a heterogeneous hypergraph denoted as G. Then we aim to learn a low dimensional132

representations f ∈ Rd for nodes in G with d ≪ |v| while fully considering both the high-order133

relations and heterogeneity implied in G. This representation can be used for downstream predictive134

applications such as node classification.135

136

3.1 Feature Preprocessing137

Due to the heterogeneity of nodes, different types of nodes are originally represented in different138

semantic/feature spaces associated with their specific probability distributions. Therefore, for each139

node type ti, we design a learnable type-specific transformation matrix Oti to project the heteroge-140

neous nodes with varying embedding lengths into a space with the same dimensions. This allows141

for messages to be passed among them in a common space throughout the training process. The142

projection process can be represented as follows:143

fi = Oti · xi (1)

where fi and xi are the projected and original features of node vi, respectively. With the learnable144

type-specific projection operation, we address the network heterogeneity introduced by the node type.145

Following this transformation, projected features of all nodes are unified to have the same dimensions,146

facilitating the subsequent aggregation process in the next model component.147
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3.2 Hypergraph Attention Layer148

To capture the heterogeneous high-order context information of a hypergraph, we employ node and149

hyperedge attention mechanisms. For layer l0, we define node representation F 0 = {f l01 , f l02 , ..., f l0n }150

and incidence matrix I ∈ Rn×m. The target of the heterogeneous hypergraph layer l is to update151

node representations through hypergraph message passing by calculating hypergraph attention.152

Node-level Attention hl
j = AGGRl−1

node

({
f l−1
k | ∀vk ∈ ej

})
. In this step, we calculate hyperedge153

representation H l = {hl
1,h

l
2, ...,h

l
m} given node embedding F l−1 ∈ Rn×d154

hl
j = σ

 ∑
vk∈ej

αjkWhf
l−1
k

 , (2)

where σ is a nonlinearity, in our case LeakyReLU, and Wh is a trainable matrix. αjk is a coefficient155

to control how much information is contributed from node vk to hyperedge ej , which can be computed156

by:157

αjk =
exp

(
aT1 uk

)∑
vp∈ej

exp
(
aT1 up

) ,
uk = LeakyReLU

(
Whf

l−1
k

)
,

(3)

where aT1 is a trainable weight vector.158

Hyperedge-level Attention f li = AGGRl
hyperedge

(
f l−1
i ,

{
hl
k | ∀ek ∈ ∫i

})
. Then with all hyperedge159

representations {hl
j | ∀ej ∈ ∫i}, where ∫i is the set of associated hyperedges given vertex vi, we160

update node representation F l = {f l1, f l2, ..., f ln} based on updated hyperedge representations H l.161

f li = LeakyReLU

 ∑
ek∈∫i

βikWeh
l
k

 ,

βik =
exp

(
aT2 vk

)∑
vq∈ei

exp
(
aT2 vq

) ,
vk = LeakyReLU(

[
Whf

l−1
i ∥Weh

l
k

]
),

(4)

where fi is the update representation to node vi and We is a weight matrix. βik denotes the attention162

coefficient of hyperedge hk to node fi. aT2 is another weight vector measuring the importance of the163

hyperedges. || here is the concatenation operation.164

We extend hypergraph attention (HAT) into multi-head hypergraph attention(MH-HAT) by concate-165

nating multiple HATs together to expand the model’s representation ability.166

MH-HAT(F, I) =
Kn

i=1

σ(HATi(F, I)). (5)

By harnessing the MH-HAT structure, we effectively capture the high-order relationship and semantic167

information present in a HIN.168

3.3 Learnable Prototype Classifier169

To enhance the robustness of hypergraph message passing, we replace the softmax layer used in170

conventional neural networks. Instead, we utilize a node classification approach rooted in learnable171

prototypes. Here, we assume each class has an equal number of k prototypes, and this assumption can172

be effortlessly relaxed in other use cases. The prototypes are denoted as mij where i ∈ {1, 2, ..., c}173
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represents the index of the category and j ∈ {1, 2, ..., k} represents the index of the prototypes in174

each category.175

In the prediction phase, utilizing the feature vector f generated by the heterogeneous message passing176

module, we first employ a linear layer to integrate node representations, represented as g(f l; θ).177

Then, we measure the distance of an input pattern to all prototypes and classify it into the category178

associated with the nearest prototype.179

ŷ = arg min
i∈c,j∈k

∥mij − z∥ ,

z = g(f ; θ).
(6)

We use distance-based cross-entropy loss (DCE) [28] to measure the similarity between the samples180

and the prototypes. Thus, for a sample characterized by feature x and category y, the probability of181

(x, y) belonging to the prototype mij can be measured by the distance between them:182

p(y|z) = p (z ∈ mij | z) = −∥z−mij∥22 . (7)

Based on the probability of x, we can define the cross entropy (CE) in our framework as:183

LDCE = l((z, y); θ,M) = − log p(y|z) (8)

3.4 Hyperedge Regularizated Training184

Hypergraph modeling has been observed to exhibit heightened sensitivity to noise [2], and the185

presence of heterogeneity further amplifies this sensitivity. To mitigate the destabilizing impact of186

noisy nodes, we introduce a novel hyperedge-based regularization technique, tailored to enhance187

training stability. In this regularization scheme, each hyperedge assumes the role of a prototype,188

imposing constraints that compel its associated nodes to maintain a defined proximity (could be189

incidence matrix I or a learned attention map) in the embedding space. This strategic approach aims190

to curtail the influence of noise on the message-passing dynamics along the hypergraph topology.191

As mentioned in Notations, we use incidence matrix I ∈ Rn×m to denote the presence of nodes192

in different hyperedges. Hence, I indicates the relations between nodes and hyperedges. Before193

applying hypergraph message passing, we can get the hyperedge representation H ∈ Rm×d by node194

representation F ∈ Rn×d and incidence matrix I , respectively. Then, we define our regularization195

normalized by inverse hyperedge degree D−1
e ∈ Rm as:196

Lθ = I − FHTD−1
e .

= I − FFT ID−1
e

(9)

Then, the total loss function is defined as:197

Ls = LDCE + λLθ, (10)

Where λ denotes the weight to balance the above two tasks. Through the introduced regularization,198

we mitigate the influence of noise and further enhance the model’s robustness throughout the training199

process.200

Table 1: Statistics of HIN datasets
Dataset Node Node Type Hyperedges Target Class
ACM 10,942 paper, author, subject 3025 paper 3
DBLP 26,128 paper, author, venue, term 4057 author 4

4 Experimental Setup201

In this section, we introduce the datasets and evaluation metrics, followed by a detailed explanation202

of method implementations.203
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4.1 Datasets204

We perform experimental evaluations on two well-established heterogeneous academic structure205

datasets presented in Table 1. The datasets, DBLP and ACM, are obtained from the Heterogeneous206

Graph Benchmark (HGB) [16]. We adopt them here to facilitate comparison with a broader range of207

existing methods. We strategically connect target nodes (with labels to be classified) using pertinent208

relationships to construct hyperedges within the datasets. For instance, in the ACM dataset, the target209

nodes are research papers, and we form hyperedges by linking each paper to its respective authors,210

references, and venue. Similarly, within the DBLP dataset, authors are targets and connected to their211

associated papers, the venue, and their terms.212

4.2 Implementation Details213

Node classification in our experiments follows a transductive setting using the train/val/test split214

from the HGB benchmark [16]. We implement our method in PyTorch and optimize it using215

the Adam optimizer [12] with an initial learning rate of 0.001. Hyperparameter settings for all216

baselines are consistent with those reported in their original papers. Early stopping is applied with217

a patience rate of 60 and all reported scores are averages from 5 different random seeds. We use218

hidden dimension = 64, layer = 3, K = 1 to ACM and DBLP datasets. For λ value, we use 10−3219

for DBLP, and 10−6 for ACM. Our experiments reveal that the optimal λ value is contingent on the220

dataset’s heterogeneity. Specifically, datasets with a greater variety of node types tend to benefit from221

larger λ values.222

5 Experimental Results223

In this section, several experiments and their results are discussed to answer the following research224

questions:225

1. Is deep learning on heterogeneous hypergraphs effective in node classification for HINs?226

2. What are the benefits of the prototype classifier and prototype-based hyperedge regularization227

in node classification for HINs?228

3. Can prototypes facilitate the interpretation of HINs?229

5.1 Heterogeneous Hypergraph Modelling230

To answer whether heterogeneous hypergraphs are effective in node classification for HIN data, we231

conduct a transductive node classification experiment. Table 2 show the results of our methods on232

three datasets compared with the results of baselines, including metapath-based methods (RGCN [19],233

HetGNN [31], HAN [23], MAGNN [7]) and metapath free-based methods (GTN [29], HetSANN [34],234

HGT [10], He-GCN [13], He-GAT [21]). Our approach is the overall best performer. A nuanced235

picture emerges when we delve into the differences between Micro-F1 and Macro-F1 scores. While236

it undeniably outperforms alternative methods in terms of Micro-F1 scores, the advantages of our237

approach concerning the Macro-F1 measure are not as readily apparent. This observation implies238

potential challenges in effectively handling imbalanced data. Varying number of nodes in imbalanced239

datasets lead to imbalanced hyperedge density, which results in data sparsity issues, challenging240

learning meaningful patterns for the underrepresented class nodes.241

5.2 Learnable Prototype Classifier and Prototype Regularization for Hypergraph Modeling242

To understand the contribution of prototype regularization and the prototype classifier to the model’s243

overall performance, we performed an ablation study, where we trained our methods with and244

without the prototype classifier and prototype regularization. Results in Table 3 show that training245

a heterogeneous hypergraph model with prototype classifier and regularization can improve both246

the Macro-F1 and Micro-F1 performance of HIN modeling. The result also shows that a learnable247

prototype classifier contributes more to the performance than prototype regularization. For a more248

intuitive comparison, we learn the node embedding space on the proposed model and project the249

learned embedding into a 2-dimensional space by UMAP [18]. Figure 3 shows that there is a clearer250
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Table 2: Semi-supervised node classification task results on ACM and DBLP datasets. Bold
font denotes the best-performing results. Each model was run five runs, and we report the mean ±
standard deviation. Baseline performance metrics are extracted from the HGB benchmark [16], with
’Mph’ representing the metapath.

ACM DBLP

Micro-F1 Macro-F1 Micro-F1 Macro-F1

w/ Mph

RGCN 91.41±0.75 91.55±0.74 92.07±0.50 91.52±0.50
HetGNN 86.05±0.25 85.91±0.25 92.33±0.41 91.76±0.43

HAN 90.79±0.43 90.89±0.43 92.05±0.62 91.67±0.49
MAGNN 90.77±0.65 90.88±0.64 93.76±0.45 93.28±0.51

w/o Mph

GTN 91.20±0.71 91.31±0.70 93.97±0.54 93.52±0.55
RSHN 90.32±1.54 90.50±1.51 93.81±0.55 93.34±0.58

HetSANN 89.91±0.37 90.02±0.35 80.56±1.50 78.55±2.42
HGT 91.00±0.76 91.12±0.76 93.49±0.25 93.01±0.23

He-GCN 92.12±0.23 92.17±0.24 91.47±0.34 90.84±0.32
He-GAT 92.19±0.93 92.26±0.94 93.39±0.30 93.83± 0.27

Ours 93.30± 0.59 93.49± 0.56 94.12± 0.65 93.09±0.44

Table 3: Performance comparison between the model with/without Prototype Regularization
and Prototype Classifier. The

√
indicates the model with our proposed modules. The × indicates

the model with a standard softmax classifier and no regularization.
Module ACM

P-Regularization P-Classifier Micro-F1 Macro-F1

× × 90.42±1.36 90.61±1.30√
× 91.04±0.67 91.21±0.68

×
√

93.05±0.22 93.15±0.23√ √
93.30± 0.59 93.49± 0.56

inter-class decision boundary for classes with learnable prototype classifiers and regularization, and251

intra-class clusters are also more compact.252
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Figure 3: UMAP representation vectors of nodes on ACM dataset. Sub-figures (a) and (b) indicate
paper representations learned without and with prototypes. The color represents paper class. We
observe that when using prototype-enhanced learning, the distribution of the node representations is
more clustered for paper class.

5.3 Prototype for Interpreting HINs253

To explore the interpretative capabilities of prototype components within Heterogeneous Information254

Networks (HINs), we visualized the embedding space of sample subjects and areas. In Figure 4, we255

illustrate the neighboring subjects associated with each class prototype. Notably, in the embedding256

space, we observe greater diversity among the Paper classes that have a more interdisciplinary257
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Figure 4: Qualitative analysis of three learned area prototypes. Examining three area prototypes,
we observe that nearby segmented subject. Triangle means the class prototype and circle distance
means the distance that covers 70% of papers for each class. We observe that although the target
nodes to be classified are papers, the subjects associated with these papers closely align with their
respective class categories. For instance, we find that data communication is closely linked to Wireless
Communication, while Data Files exhibits a proximity to the Database class.

nature, such as Data Mining, as opposed to those like Wireless Communication. Furthermore, certain258

topics that span multiple classes tend to reside on the boundaries between different paper classes.259

Consequently, our prototypes serve as a valuable tool for revealing instances of academic HINs,260

thereby reaffirming the interconnectedness of these academic subjects within ACM.261

6 Further Impact on Scalability262

Scalability is crucial for real-world network analysis. In the case of citation networks, for example,263

answering the questions of relevance for business disciplines frequently requires the ability to process264

practically all publications from a given domain, thus millions of author, paper, and institution nodes.265

So far, very limited progress has been made towards facilitating hypergraph learning at scale [1].266

With approaches ranging from straightforward creation of mini-batches for large-scale training [30]267

and graph partitioning [3] as part of preprocessing to the approaches. Through the incorporation268

of learnable prototypes into our methodologies, we acquire a versatile instrument for designing269

hypergraph sampling to enhance scalability. This enables us to construct well-balanced mini-batches270

by sampling data from neighboring prototypes, or clusters by partitioning nodes based on prototypes.271

Hence, this can ensure diversity and the inclusion of information-rich training data.272

7 Conclusion273

We have introduced prototype-enhanced hypergraph learning, a novel framework for modeling274

heterogeneous information networks without the need to build metapaths. Our research demonstrates275

that it is possible to analyze heterogeneous information networks effectively without relying on276

metapaths, and enabling the capture of high-order information within such networks. We also277

demonstrated the effectiveness of our method, by numerical and qualitative experiments on several278

representative heterogeneous datasets, showcasing its capabilities in capturing the rich relationships279

present in complex networks.280
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