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Meta-Learning in Self-Play Regret Minimization

Anonymous Authors1

Abstract

Regret minimization is a general approach to on-
line optimization which plays a crucial role in
many algorithms for approximating Nash equi-
libria in two-player zero-sum games. The litera-
ture mainly focuses on solving individual games
in isolation. However, in practice, players often
encounter a distribution of similar but distinct
games. For example, when trading correlated as-
sets on the stock market, or when refining the
strategy in subgames of a much larger game. Re-
cently, offline meta-learning was used to acceler-
ate one-sided equilibrium finding on such distri-
butions. We build upon this, extending the frame-
work to the more challenging self-play setting,
which is the basis for most state-of-the-art equi-
librium approximation algorithms for domains at
scale. When selecting the strategy, our method
uniquely integrates information across all deci-
sion states, promoting global communication as
opposed to the traditional local regret decomposi-
tion. Empirical evaluation on normal-form games
and river poker subgames shows our meta-learned
algorithms considerably outperform other state-
of-the-art regret minimization algorithms.

1. Introduction
Regret minimization has become a widely adapted approach
for finding equilibria in imperfect-information games. Usu-
ally, each player is cast as an independent online learner.
This learner interacts repeatedly with the game, which is
represented by a black-box environment and encompasses
the strategies of all other players or the game’s inherent ran-
domness. When all the learners employ a regret minimizer,
their average strategy converges to a coarse correlated equi-
librium (Hannan, 1957; Hart & Mas-Colell, 2000). Further-
more, in two-player zero-sum games, the average strategy
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converges to a Nash equilibrium (Nisan et al., 2007). Regret
minimization has become the key building block of many
algorithms for finding Nash equilibria in two-player zero-
sum imperfect-information games (Bowling et al., 2015;
Moravčı́k et al., 2017; Brown & Sandholm, 2018; Brown
et al., 2020; Brown & Sandholm, 2019a; Schmid et al.,
2023).

While regret minimization algorithms have convergence
guarantees regardless of the environment they interact with,
they typically work significantly better in the self-play set-
ting. In self-play, all players use a regret minimizer, rather
than employing some adversarial strategy. The strategies
used in self-play typically change much less than in an
adversarial setting, resulting in smoother and faster empir-
ical convergence to the equilibrium. This makes self-play
a core component of many major recent successes in the
field, which combine self-play and search with learned value
functions (Moravčı́k et al., 2017; Schmid et al., 2023).

The literature on equilibrium finding mainly focuses on
isolated games or their repeated play, with a few recent ex-
ceptions (Xu et al., 2022; Harris et al., 2022; Sychrovský
et al., 2024). However, numerous real-world scenarios fea-
ture playing similar, but not identical games, such as playing
poker with different public cards or trading correlated assets
on the stock market. As these similar games feature similar
equilibria, it is possible to further accelerate equilibrium
finding (Harris et al., 2022).

An immediate application of a fast, domain-adapted regret
minimization algorithm is online search (Moravčı́k et al.,
2017; Brown & Sandholm, 2018; Schmid et al., 2023). In
practice, an agent playing a game has limited time to make
a decision. One thus seeks algorithms which can minimize
regret quickly in the game tree. The computational time
typically correlates well with the number of iterations, as
evaluating the strategy at the leafs is often expensive. This
is particularly true when a neural network is used to ap-
proximate the value function (Moravčı́k et al., 2017). Our
approach allows one to trade time offline to meta-learn an
algorithm which converges fast online.

Typically, established benchmarks are used to evaluate al-
gorithms across a given field. Much of the literature about
equilibrium finding focuses on finding algorithms with su-
perior performance on these benchmarks. This is often done
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by altering the previous state-of-the-art algorithms (Black-
well et al., 1956; Zinkevich et al., 2007; Tammelin, 2014;
Farina et al., 2021; 2023). In this paper, we rather explore an
adaptive approach, which finds a tailored algorithm for a do-
main at hand. Specifically, we use a variant of the ‘learning
not to regret’ framework (Sychrovský et al., 2024), which
we extend to the self-play setting. In this meta-learning
framework, one learns the optimization algorithm itself.
Our approach, in contrast to (Sychrovský et al., 2024), is
a sound way to meta-learn regret minimizers in self-play,
and significantly outperforms the previous state-of-the-art
algorithms – on the very games they were designed to excel
at.

1.1. Related Work

Meta-learning has a long history when used for optimiza-
tion (Schmidhuber, 1992; 1993; Thrun & Thrun, 1996;
Andrychowicz et al., 2016). This work rather consid-
ers meta-learning in the context of regret minimization.
Many prior works explored modifications of regret match-
ing (Blackwell et al., 1956) to speed-up its empirical perfor-
mance in games, such as CFR+ (Tammelin, 2014), LAZY-
CFR (Zhou et al., 2020), DCFR (Brown & Sandholm,
2019b), LINEAR CFR (Brown et al., 2019), ECFR (Li et al.,
2020), PCFR(+) (Farina et al., 2021), or SPCFR+ (Farina
et al., 2023).

It was recently shown that similar games have similar struc-
tures or even similar equilibria, justifying the use of meta-
learning in games to accelerate equilibrium finding (Harris
et al., 2022). A key difference between our and prior works
is that they primarily consider settings where the game util-
ities come from a distribution, rather than sampling the
games themselves. Thus, one of their requirements is that
the strategy space itself must be the same. Azizi et al. (2023)
consider bandits in Bayesian settings. Harris et al. (2022)
“warm start” the initial strategies from a previous game,
making the convergence provably faster. This approach is
“path-dependent” in that it depends on which games were
sampled in the past. Both works are fundamentally different
from ours, as they use meta-learning online, while we are
making meta-learning preparations offline, to be deployed
online.

An offline meta-learning framework, called ‘learning not
to regret’, was recently used to accelerate online play for a
distribution of black-box environments encompassing two-
player zero-sum games (Sychrovský et al., 2024). Their
motivation, similar to ours, was to make the agent more effi-
cient in online settings, where one has limited time to make
a decision. In this setting, they wanted to minimize the time
required to find a strategy with low one-sided exploitability,
i.e. low distance to a Nash equilibrium.

1.2. Main Contribution

We extend the learning not to regret framework to the self-
play setting (Sychrovský et al., 2024). First, we show that
when using the prior meta-loss, the meta-learning will fail
to convergence in the self-play setting. We formulate a new
objective tailored to the self-play domain, which takes into
account the strategies in the entire game. Our approach
allow us to meta-learn regret minimizer which work well in
an entire game, which enables their use in search. Search
techniques are the basis for most state-of-the-art equilibrium
approximation algorithms for domains at scale.

A unique feature of our method is we meta-learn the algo-
rithms for both players and all the decision states simulta-
neously. We thus facilitate global inter-infostate commu-
nication. This is in contrast to the classic counterfactual
regret decomposition, which works with local infostate re-
gret and provides a bound on the overall regret (Zinkevich
et al., 2007). We evaluate the algorithms on a distribution
of normal-form and extensive-form two-player zero-sum
games. We show that meta-learning can significantly im-
prove performance in both settings.

2. Preliminaries
We briefly introduce two-player zero-sum incomplete infor-
mation games. We then talk about regret minimization, a
general online convex optimization framework. Finally, we
discuss how regret minimization can be used to compute
Nash equilibria of two-player zero-sum games.

2.1. Games

We work within a formalism based on factored-observation
stochastic games (Kovařı́k et al., 2022).

Definition 2.1. A game is a tuple ⟨N ,W, wo,A, T , u,O⟩,
where

• N = {1, 2} is a player set. We use symbol i for a
player and -i for its opponent.

• W is a set of world states and w0 ∈ W is a designated
initial world state.

• A = A1 × A2 is a space of joint actions. A world
state with no legal actions is terminal. We use Z to
denote the set of terminal world states.

• After taking a (legal) joint action a at w, the transition
function T determines the next world state w′, drawn
from the probability distribution T (w, a) ∈ ∆(W).

• O = (O1,O2) is the observation function which
specifies the private and public information that i re-
ceives upon the state transition.

• ui(z) = −u-i(z) is the utility player i receives when
a terminal state z ∈ Z is reached.
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The space Si of all action-observation sequences can be
viewed as the infostate tree of player i. A strategy profile is
a tuple σ = (σ1,σ2), where each strategy σi : si ∈ Si 7→
σi(si) ∈ ∆|Ai(si)| specifies the probability distribution
from which player i draws their next action conditional on
having information si.

The expected reward (in the whole game) is ui(σ) =
Ez∼σ ui(z). The best-response to the other player’s strat-
egy σ-i is br (σ-i) ∈ argmaxσi

ui(σi, σ-i). Finally, ex-
ploitability of a strategy σ is the sum of rewards each
player can get by best-responding to his opponent

expl(σ) =
1

|N |
X

i∈N
ui(br (σ-i),σ-i).

A strategy profile σ∗ is a Nash equilibrium if it has zero
exploitability.1

2.2. Regret Minimization and Nash Equilibra

An online algorithm m for the regret minimization task
repeatedly interacts with an environment through available
actions Ai. The goal of regret minimization algorithm is
to maximize its hindsight performance (i.e., to minimize
regret). For reasons discussed in the following section, we
will describe the formalism from the point of view of player
i acting at an infostate s ∈ Si.

Formally, at each step t ≤ T , the algorithm submits a
strategy σt

i(s) ∈ ∆|Ai(s)|. Subsequently, it observes the
expected reward xt

i ∈ R|Ai(s)| at the state s for each of the
actions from the environment, which depends on the strategy
in the rest of the game. The difference in reward obtained un-
der σt

i(s) and any fixed action strategy is called the instan-
taneous regret ri(σ

t, s) = xt
i(σ

t) − ⟨σt
i(s),x

t
i(σ

t)⟩1.
The cumulative regret throughout time t is Rt

i(s) =Pt
τ=1 ri(σ

τ , s).

The goal of a regret minimization algorithm is to ensure
that the regret grows sublinearly for any sequence of re-
wards. One way to do that is for m to select σt+1

i (s) pro-
portionally to the positive parts of Rt

i(s), known as regret
matching (Blackwell et al., 1956).

2.3. Connection Between Games and Regret
Minimization

In two-player zero-sum games, if the external regret
Rext,T

i = maxa∈Ai
RT

i grows as O(T δ), δ < 1 for both
players, then the average strategy σT = 1

T

PT
t=1 σ

t con-
verges to a Nash equilibrium as O(T δ−1) (Nisan et al.,
2007).

In extensive-form games, in order to obtain the external

1This is because then the individual strategies are mutual best-
responses.

Algorithm 1 Neural Online Algorithm
(Sychrovský et al., 2024)

1: R0 ← 0 ∈ R|A|

2: function NextStrategy(s)
3: es ← embedding of the infostate s
4: σt ← m(rt, Rt, es | θ)
5: function ObserveReward(xt)
6: Rt ← Rt−1 + r(σt, xt)

Algorithm 2 Neural Predictive Regret Matching
(Sychrovský et al., 2024)

1: R0 ← 0 ∈ R|A|, x0 ← 0 ∈ R|A|

2: function NEXTSTRATEGY()
3: ξt ← [Rt−1 + pt ]+

4: if ∥ξt∥1 > 0

5: return σt ← ξt

∥ξt∥1
6: else
7: return σt ← arbitrary point in ∆|A|

8: function OBSERVEREWARD(xt, s)
9: es ← embedding of the infostate s

10: rt ← r(σt,xt)
11: Rt ← Rt−1 + rt

12: pt+1 ← rt + π(rt, Rt, es | θ)

regret, one would need to convert the game to normal-form.
However, the size of this representation is exponential in
the size extensive-form representation. Thankfully, one
can upper-bound the normal-form regret by individual per-
infostate counterfactual regrets (Zinkevich et al., 2007)

X

i∈N
Rext,T

i ≤
X

i∈N

X

s∈Si

max
�

RT

i (s)



∞ , 0

	
. (1)

The counterfactual regret is defined with respect to the coun-
terfactual reward. At an infostate s ∈ Si, the counterfac-
tual rewards measure the expected utility the player would
obtain in the whole game when playing to reach s. In other
words, it is the expected utility of i at s, multiplied by
the opponent’s and chance’s contribution to the probability
of reaching s. We can treat each infostate as a separate
environment, and minimize their counterfactual regrets in-
dependently. This approach again converges to a Nash
equilibrium (Zinkevich et al., 2007).

3. Meta-Learning Framework
We aim to find an online algorithm mθ with some param-
eterization θ that works “efficiently” on a distribution of
regret minimization tasks G. However, what does it mean
for a regret minimizer to be good at minimizing regret on
G?

3
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Figure 1: Computational graphs of NOA(+) (left) and NPCFR(+) (right). The gradient ∂L/∂θ originates in the collection
of maximal instantaneous regrets



r1...Ti




∞ and propagates through the strategies σ1...T (the predictions p1...T

i for
NPCFR(+)), the rewards x1...T

i (σ1...T (θ)) coming from the rest of the game, the cumulative regret R0...T−1
i , and hidden

states h0...T−1
i .

The simplest answer is to have the final external regret
Rext,T

i as small as possible for both players in expectation
over G. However, minimizing it only forces the final average
strategy σT

θ to be close to a Nash equilibrium.2 Rather, we
want the regret minimizer to choose strategies close to an
equilibrium along all the points of the trajectory σ1

θ , . . .σ
T
θ ,

without putting too much emphasis on the horizon T . This
is analogous to minimizing

PT
t=1 f(x

t) rather than f(xT )
as in (Andrychowicz et al., 2016), where the authors meta-
learned a function optimizer.

Consequently, we define the loss as the expectation over the
maximum instantaneous counterfactual regret experienced
at each step in all infostates of the game, i.e.

L(θ) = E
g∈G


X

i∈N

X

si∈Si(g)

TX

t=1



ri(σt
θ(si),x

t(si|θ))



∞




(2)

≥ E
g∈G


X

i∈N

X

si∈Si(g)



RT
i (si|θ)




∞


 ≥ E

g∈G

"X

i∈N
Rext,T

i (θ)

#
,

where the first inequality follows from convexity of the ∥·∥∞
norm, and the second from the full regret decomposition
into individual counterfactual regrets (1).

Note that the loss (2) does not correspond to any kind of re-

2Empirically, the current strategy σt
θ chosen by the regret min-

imizer remains quite far from the equilibrium and only the average
strategy σT

θ approaches the Nash equilibrium when
P

i∈N Rext,T
i

is minimized.

gret that one can hope to minimize in an arbitrary black-box
environment. However, it bounds the cumulative regret of
both players, allowing us to indirectly minimize exploitabil-
ity.

Another candidate for the meta-loss is the average external
counterfactual regret along the trajectory

E
g∈G


X

i∈N

X

si∈Si(g)

TX

t=1



Rt
i(si|θ)




∞


 . (3)

A telescopic argument shows that the minimum of both
losses, assuming that θ has enough capacity, is the same.
However, we found (3) harder to optimize, see Appendix A
for further discussion.

The meta-loss (2) differs from the one used in (Sychrovský
et al., 2024) in that the environment is not considered obliv-
ious. This allows us to propagate the gradient thought the
rewards xt(si|θ), and influence the opponent’s strategy. In
fact, when treating the environment as oblivious, (2) reduces
to policy gradient (Sychrovský et al., 2024). The gradient
would thus point towards the best-response to the current
strategy of the opponent. While this approach does con-
verge in an adversarial setting, such as when playing against
a best-responder, it can cycle in self-play (Blackwell et al.,
1956), see also Appendix A for further discussion.

Instead, our meta-loss takes the change in opponent’s
strategy into account. The difference can be ob-
served even in a normal-form setting, where we getP

i∈N ∥ri(σt,xt)∥∞ =
P

i∈N ∥xt
i∥∞ = expl(σt). Thus,

4
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minimizing (2) is equivalent to minimizing the expected
exploitability of the selected strategy along the trajectory.
Or in other words, σt

i minimizes the best-response value
∥xt

-i∥∞ of the opponent. In extensive-form, the immediate
counterfactual regret ri(σt

θ(si),x
t(si|θ)) reflects the struc-

ture of the game, and combines the strategies from different
infostates in a non-trivial way.

We train a recurrent neural network θ to minimize (2). By
utilizing a recurrent architecture we can also represent al-
gorithms that are history and time dependent. Furthermore,
this approach allows us to combine all infostates of the
game. This is different from standard applications of regret
minimization to games in which each infostate is optimized
separately (Zinkevich et al., 2007). The local information
strongly depends on the strategy selected at other infostates.
In our approach, this can be sidestepped by directly access-
ing information from all infostates of the game tree, see
Section 4 and Appendix C. To our best knowledge, our ap-
proach is the first to use cross-infostate communication in
extensive-form games.

In the rest of this section, we briefly outline two meta-
learning algorithms introduced in (Sychrovský et al., 2024).
Their main difference is whether or not they enjoy regret
minimization guarantees.

3.1. Neural Online Algorithm (NOA)

The simplest approach is to directly parameterize the online
algorithm mθ to output strategy σt

θ. This setup is refered
to as neural online algorithm (NOA) (Sychrovský et al.,
2024), see Algorithm 1. The computational graph of NOA
is shown in Figure 1. While NOA can exhibit strong empiri-
cal performance on the domain it was trained on, there is no
guarantee it will minimize regret, similar to policy gradient
methods (Blackwell et al., 1956).

3.2. Neural Predictive Counterfactual Regret
Minimization (NPCFR)

In order to provide convergence guarantees, (Sychrovský
et al., 2024) introduced meta-learning within the predictive
counterfactual regret minimization (PCFR) framework (Fa-
rina et al., 2021). PCFR is an extension of counterfactual
regret minimization3 (CFR) (Zinkevich et al., 2007) which
uses an additional predictor about future regret. PCFR
converges faster for more accurate predictions, and (cru-
cially for us) enjoys O(1/

√
T ) convergence rate for arbi-

trary bounded predictions (Farina et al., 2021; Sychrovský
et al., 2024). The neural predictive counterfactual regret
minimization (NPCFR) is an extension of PCFR which
uses a predictor π parameterized by a neural network θ, see

3Here we refer to using regret matching at each infostate rather
than other regret minimization algorithm.

Algorithm 2. The resulting algorithm can be meta-learned
to the domain of interest, while keeping the regret minimiza-
tion guarantees. The computational graph of NPCFR is
shown in Figure 1.

Predictive regret matching4 was recently shown to be unsta-
ble in self-play when the cumulative regret is small. To rem-
edy this problem, Farina et al. (2023) proposed the smooth
predictive regret matching plus, which handles small cu-
mulative regrets a special way. The resulting algorithm
enjoys an O(1) bound on the external regret in self-play
on normal-form games. Moreover, it can be meta-learned
in the same way as NPCFR. However, we found the algo-
rithm after meta-learning the predictor empirically performs
nearly identically to NPCFR, see Appendix D.1 for more
details.

4. Experiments
We focus on the application of regret minimization in games.
We study two distributions of two-player zero-sum games,
see Appendix B for their detailed description. First, we mod-
ify a normal-form game by adding a random perturbation
to some of the utilities. For evaluation in extensive-form,
we use the river subgames of Texas Hold’em poker. For
all meta-learned algorithms, the neural network is based on
a two-layer LSTM and uses all infostates of the game to
produce σt

θ, see Appendix C for details.

In addition to the last-observed instantaneous regret rt and
the cumulative regret Rt, the networks also receives an en-
coding of the infostate es and keeps track of its hidden state
ht. The network is able to internally combine information
from all infostates of the game, allowing for global com-
munication between different infostates, see Appendix C.
Finally, we define NOA+ and NPCFR+ using the ‘plus’
modifications5 introduced in (Tammelin, 2014), and train
them analogously.

We minimize objective (2) for T = 32 iterations over 256
epochs using the Adam optimizer. Other hyperparameters
were found via a grid search. To prevent overfitting, we
employ entropy regularization which decays inversely with
the number of epochs. The meta-training can be completed
in ten minutes on a single CPU for the normal-form, and
ten hours for the extensive-form experiments.

For evaluation, we compute exploitability of the strategies
up to 2T iterations to see whether our algorithms can gen-
eralize outside of the horizon T and continue reducing ex-
ploitability. Both regimes use the self-play setting, i.e. each
algorithm controls strategies of both players. We compare

4More precisely its ‘plus’ version (Tammelin, 2014).
5That includes (i) removing negative parts of the regret, (ii)

alternating updates, and (iii) linear averaging.

5
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Figure 2: Comparison of non-meta-learned algorithms (CFR(+), PCFR(+), DCFR, and SPCFR+) with meta-learned
algorithms (NOA(+) and NPCFR(+)) on rock paper scissors (left) and river poker (right). The figures show
exploitability of the average strategy σt. Vertical dashed lines separate the training (up to T = 32 steps) and the
generalization (from T to 2T steps) regimes. See Figure 6 for standard errors.

our meta-learned algorithms with an array of state-of-the-
art regret minimization algorithms. In particular, we use
CFR(+) (Blackwell et al., 1956; Tammelin et al., 2015),
PCFR(+) (Farina et al., 2021), DCFR6 (Brown & Sand-
holm, 2019b), and SPCFR+ (Farina et al., 2023).

4.1. Normal-Form Games

For evaluation in the normal-form setting, we use a modifica-
tion of the standard rock paper scissors, perturbing
two of its elements. Figure 2 shows our algorithms converge
very fast. In fact, all the meta-learned algorithms outper-
form their non-meta-learned counterpart throughout time
T , often by an order of magnitude. It continues to hold
this advantage beyond what it was trained for. The ‘plus’
meta-learned algorithms show better performance.

To further illustrate their differences, we plot the trajec-
tory of the average strategy σt selected by each algorithm
in Figure 3. The meta-learned algorithms exhibit much
smoother convergence, while choosing strategies which
are inside to the region of equilibria that are possible in
rock paper scissors.7 In contrast, the non-meta-
learned algorithms visit large portions of the strategy-space.
We analogously show the current strategy σt in Figure 5,
Appendix D.

4.2. Extensive-Form Games

We use Texas Hold’em poker to evaluate our algorithms in
the sequential decision making. Specifically, we use the
river subgame, which begins after the last public card is
revealed. We fix the stack of each player to nine-times blind,
which translates to 24, 696 infostates.8 To generate a dis-
tribution, we sample beliefs over cards at the root of the
subgame as in (Moravčı́k et al., 2017). We refer to the re-
sulting distribution as river poker. The meta-learned al-
gorithms can utilize additional contextual information about
the infostate it is operating at. In our case, this encoding
includes two-hot encoding of the private cards, five-hot en-
coding of the public cards, and the beliefs over cards in the
root.

We compare the exploitability of the strategy found by the
meta-learned algorithms to their non-meta-learned counter-
parts in Figure 2, see also Figure 7 in Appendix D for the
comparison of external regret. The meta-learned algorithms
exhibit superior performance, which manifests itself in the
reduced number of iterations needed to achieve a given
solution quality, see Table 1. While all meta-learned algo-
rithms exhibit fast convergence initially, the generalization
of NOA(+) is considerably worse than those of NPCFR(+).
We hypothesize that, since NOA(+) are not regret minimiz-
ers, the strategy in a subset of infostates can remain poor,

6We use the default parameters α = 3/2,β = 0, and γ =
2 (Brown & Sandholm, 2019b).

7Thanks to the alternating updates, the strategy of the ‘plus’
versions of each algorithm is uniform at t = 1.

8We use the fold, check, pot-bet, and all-in (FCPA) betting
abstraction (Gilpin et al., 2008).
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Figure 3: Comparison of the convergence in average strategy σt on a sample of rock paper scissors over 2T = 64
steps. The red crosses show the per-player equilibria of the sampled game. The quadrilaterals show the region of
equilibria (Bok & Hladı́k, 2015). We use blue for the first player and green for the second. The trajectories start in dark
colors and get brighter for later steps. See Figure 5 in Appendix D for current strategy convergence.

hindering the exploitability in the whole game.

As was observed before, the ‘plus’ version of the non-
meta-learned algorithms tend to perform better on this do-
main (Tammelin, 2014). Surprisingly, this is not the case
for the meta-learned algorithms, in particular for NOA+.
We believe that the discrete operations introduced by the
‘plus’ interfere with the gradient of the meta-loss, causing
the training to be unstable.

The PCFR algorithm guarantees that more accurate predic-
tions lead to lower external regret and faster convergence.
We can thus ask if the meta-learned algorithms use such
accurate predictions. Surprisingly, this turns out not to be
the case, see Figure 8 in Appendix D. We speculate that the
reason is that regret matching is not an injective mapping.

Indeed, any prediction which results in [Rt−1 + pt] being
proportional will lead to the same σt being selected.

4.2.1. COMPUTATION TIME REDUCTION

Using a neural network in the meta-learned algorithms in-
troduces a non-trivial amount of computational overhead.
In our implementation, when using a single CPU, the non-
meta-learned algorithms require roughly 10 ms to complete
a regret minimization step in the tree of river poker. In
contrast, the meta-learned algorithms are about three-times
slower. Therefore, despite requiring less iterations to reach
given exploitability, the computation using the meta-learned
algorithms is more expensive.

This is because, in the ‘full’ subgame, we are able to com-
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expl CFR CFR+ PCFR PCFR+ DCFR SPCFR+ NOA NOA+ NPCFR NPCFR+

1 4 5 4 7 5 5 1 1 2 2
0.5 11 10 9 14 14 10 3 > 512 4 4
0.1 70 33 40 41 44 40 35 > 512 21 19
0.05 162 54 77 71 73 71 > 512 > 512 44 50

Table 1: The number of steps each algorithm needs to reach a given exploitability threshold on river poker in expectation.

pute the terminal utilities relatively fast as they are just hand
strength comparisons. However, this is no longer the case
when doing search, where the utility at the leaves of the
truncated subgame tree are typically neural network approx-
imations of the remaining value of the game. Typically,
the value function is represented by a large neural network,
introducing computational overhead (Moravčı́k et al., 2017).
Depending on the network, this could be 10− 100 ms even
when using specialized hardware accelerators, making our
approach which significantly reduces the number of itera-
tions required much more competitive. We show several
examples in Figure 12 in Appendix D. Finally, looking be-
yond poker, each terminal evaluation required for the regret
minimization step can be expensive in other ways. For
example, it can involve obtaining the terminal values in-
volves querying humans (Ouyang et al., 2024), or running
expensive simulations (Degrave et al., 2022).

4.3. Out-of-Distribution Convergence

To reinforce the fact that the meta-learned algorithms are tai-
lored to the training domain G, we evaluate the algorithms
out-of-distribution, see Figure 9 in Appendix D. We use the
regret minimizers trained on rock paper scissors,
see Section 4.1. We freeze the network parameters θ
and evaluate them on the uniform matrix game, see
Appendix B. The performance of all meta-learned algo-
rithms deteriorates significantly. NOA(+) shows the worst
performance, seemingly failing to converge all together.
NPCFR(+) are regret minimizers and are thus guaranteed
to converge, albeit slower than the general-purpose non-
meta-learned algorithms.

5. Conclusion
We’ve extended the ‘learning not to regret’ (Sychrovský
et al., 2024), a meta-learning regret minimization frame-
work, to the self-play setting of two-player zero-sum games.
We evaluated the meta-learned algorithms and compared
them to state-of-the-art on normal-form, and extensive-form
two-player zero-sum games. The meta-learned algorithms
considerably outperformed the prior algorithms in terms of
the number of regret minimization steps. These gains can
be particularly impactful in search, where each regret mini-

mization step includes evaluating a value function, which
typically dominates the computational cost.

Future Work. We find that, in extensive-form, there is
typically a large gap between our meta-loss and the ex-
ploitability of the strategy. Exploring other losses which
tighten this gap could improve performance. While the
meta-learning scales well, it can be impractical when ap-
plied to larger games or longer horizons. Training on an
abstraction of a particular game of interest might open the
door to scaling it further. This approach also allows one
to compare different abstractions, and uncover important
features of a class of games. Our framework can also be
directly used within other algorithms utilizing search. In
particular within the Student of Games (Schmid et al., 2023),
in place of CFR+ to drastically reduce the number of sub-
game interactions needed for resolving on the subgame of
interest.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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