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Abstract
Q-learning is one of the most fundamental rein-
forcement learning algorithms. It is widely be-
lieved that Q-learning with linear function ap-
proximation (i.e., linear Q-learning) suffers from
possible divergence until the recent work Meyn
(2024) which establishes the ultimate almost sure
boundedness of the iterates of linear Q-learning.
Building on this success, this paper further es-
tablishes the first L2 convergence rate of linear
Q-learning iterates (to a bounded set). Similar to
Meyn (2024), we do not make any modification
to the original linear Q-learning algorithm, do not
make any Bellman completeness assumption, and
do not make any near-optimality assumption on
the behavior policy. All we need is an ϵ-softmax
behavior policy with an adaptive temperature. The
key to our analysis is the general result of stochas-
tic approximations under Markovian noise with
fast-changing transition functions. As a side prod-
uct, we also use this general result to establish
the L2 convergence rate of tabular Q-learning
with an ϵ-softmax behavior policy, for which we
rely on a novel pseudo-contraction property of the
weighted Bellman optimality operator.

1. Introduction
Reinforcement learning (RL, Sutton & Barto (2018))
emerges as a powerful paradigm for training agents to make
decisions sequentially in complex environments. Among
various RL algorithms, Q-learning (Watkins, 1989; Watkins
& Dayan, 1992) stands out as one of the most celebrated
(Mnih et al., 2015). The original Q-learning in Watkins
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(1989) uses a look-up table for representing the action-value
function. To improve generalization and work with large
or even infinite state spaces, linear function approximation
is used to approximate the action value function, yielding
linear Q-learning.

Linear Q-learning is, however, widely believed to suffer
from possible divergence (Baird, 1995; Sutton & Barto,
2018). In other words, the weights of linear Q-learning can
possibly diverge to infinity as learning progresses. However,
Meyn (2024) recently proves that when an ϵ-softmax be-
havior policy with an adaptive temperature is used, linear
Q-learning does not diverge. Instead, the weights are even-
tually bounded almost surely. Or more specifically, let {wt}
be the weights of linear Q-learning. Meyn (2024) proves
that lim supt ∥wt∥ < C almost surely for some determinis-
tic constant C. Building on this success, we further provide
a nonasymptotic analysis of linear Q-learning by establish-
ing the first L2 convergence rate of linear Q-learning to
a bounded set. Specifically, we establish the rate at which
E[∥wt∥2] diminishes to a bounded set. Notably, this work
differs from many previous analyses of linear Q-learning
(prior to Meyn (2024)) in that, except for the aforemen-
tioned behavior policy, we do not make any modification
to the original linear Q-learning algorithm (e.g., no target
network, no weight projection, no experience replay, no i.i.d.
data, no regularization). We also use the weakest possible
assumptions (e.g., no Bellman completeness assumption, no
near-optimality assumption on the behavior policy). Table 1
summarizes the improvements.

Our L2 convergence rate is made possible by a novel result
concerning the convergence of stochastic approximations
under fast-changing time-inhomogeneous Markovian
noise, where the transition function of the Markovian noise
evolves as fast as the stochastic approximation weights,
i.e., there is only a single timescale. By contrast, Zhang
et al. (2022) obtain similar results only with a two-timescale
framework, where the transition function of the Markovian
noise evolves much slower than the stochastic approxima-
tion weights.

As a side product, we also use this general stochastic ap-
proximation result to establish the L2 convergence rate of
tabular Q-learning with an ϵ-softmax behavior policy. To
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Convergence Rates of Linear Q-Learning

Type Algorithm Modification Assumptions
Behavior

Policy Rate

��̄wt �B �Π ���∥wt∥ ���T Xw ��X
Melo et al. (2008) linear ✓ ✓ ✓ ✓ ✓ ✓ µ∗
Lee & He (2020) linear ✓ ✓ ✓ ✓ ✓ dµ
Chen et al. (2022) linear ✓ ✓ ✓ ✓ ✓ ✓ µ∗ ✓

Carvalho et al. (2020) linear ✓ ✓ ✓ ✓ dµ
Zhang et al. (2021) linear ✓ ✓ ✓ µϵ,softmax

Gopalan & Thoppe (2022) linear ✓ ✓ ✓ ✓ ✓ ✓ dµϵ,arg max

Chen et al. (2023) linear ✓ ✓ ✓ ✓ µ ✓

Han-Dong & Donghwan (2024) linear ✓ ✓ ✓ ✓ ✓ dµ
Meyn (2024) linear ✓ ✓ ✓ ✓ ✓ ✓ µϵ,softmax

Fan et al. (2020) neural ✓ ✓ ✓ dµ ✓

Xu & Gu (2020) neural ✓ ✓ ✓ ✓ ✓ µ∗ ✓

Cai et al. (2023) neural ✓ ✓ ✓ ✓ ✓ dµ∗ ✓

Zhang et al. (2023b) neural ✓ ✓ ✓ ✓ µϵ,argmax ✓

Theorem 1 linear ✓ ✓ ✓ ✓ ✓ ✓ µϵ,softmax ✓

Table 1. Summary of notable analyses of linear Q-learning. We additionally include Q-learning with neural networks for completeness.
The exact definitions of the terminologies used in the columns and a more detailed exposition of the table are in Section 4. “��̄wt” is checked
if target network is not used. “�B” is checked if experience replay is not used. “�Π” is checked if weight projection is not used. “���∥wt∥” is
checked if no additional regularization is used. “���T Xw” is checked if Bellman completeness assumption is not used. “��X” is checked if no
restrictive assumptions on the features are used. “Rate” is checked if a convergence rate is provided. For the “Behavior Policy” column,
“µ” indicates that a fixed behavior policy is used. “µ∗” indicates that a fixed behavior policy is used and some strong near-optimality
assumption of the behaivor policy is made. “µϵ,argmax” indicates that an ϵ-greedy policy is used, “µϵ,softmax” indicates that an ϵ-softmax
policy is used. Let µ0 ∈ {µ, µ∗, µϵ,argmax, µϵ,softmax} be any type of the aforementioned behavior policy. Then dµ0 indicates that i.i.d.
samples from the stationary distribution of µ0 is provided directly instead of obtaining Markovian samples by executing µ0.

(((((αν(St,At,t)
Behavior

Policy Rate

Watkins (1989); Watkins & Dayan (1992); Jaakkola et al. (1993)
Tsitsiklis (1994); Littman & Szepesvári (1996) any

Szepesvári (1997) dµ ✓

Even-Dar et al. (2003) any ✓

Lee & He (2020) ✓ dµ
Devraj & Meyn (2022) ✓ µ

Chen et al. (2021); Li et al. (2024); Zhang & Xie (2024) ✓ µ ✓

Theorem 2 ✓ µϵ,softmax ✓

Table 2. Summary of notable analyses of tabular Q-learning. The exact definitions of the terminologies used in the columns and a more
detailed exposition of the table are in Section 4. “(((((αν(St,At,t)” is checked if count based learning rate is not required. Notably, analyses of
the synchronous variant of tabular Q-learning is not surveyed in this paper.

our knowledge, this is the first time that such convergence
rate is established. The key to this success is the identi-
fication of a novel pseudo-contraction property of the
weighted Bellman optimality operator. Table 2 summa-
rizes the improvements over previous works.

2. Background
Notations. We use ⟨x, y⟩ .

= x⊤y to denote the standard
inner product in Euclidean spaces. A function f is said to

be L-smooth (w.r.t. some norm ∥·∥s) if ∀w,w′,

f(w′) ≤ f(w) + ⟨∇f(w), w′ − w⟩+ L
2 ∥w

′ − w∥2s. (1)

Since all norms in finite dimensional spaces are equivalent,
when we say a function is smooth in this paper, it means it
is smooth w.r.t. any norm (with L depending on the choice
of the norm). In particular, to simplify notations, we in this
paper use ∥·∥ to denote an arbitrary vector norm such that
its square ∥·∥2 is smooth. We abuse ∥·∥ to also denote the
corresponding induced matrix norm. We use ∥·∥∗ to denote
the dual norm of ∥·∥. We use ∥·∥2 and ∥·∥∞ to denote
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Convergence Rates of Linear Q-Learning

the ℓ2 and infinity norm. We use functions and vectors
exchangeably when it does not confuse. For example, f
can denote both a function S → R and a vector in R|S|

simultaneously.

We consider an infinite horizon Markov Decision Process
(MDP, Bellman (1957)) defined by a tuple (S,A, p, r, γ, p0),
where S is a finite set of states, A is a finite set of actions,
p : S × S × A → [0, 1] is the transition probability func-
tion, r : S × A → R is the reward function, γ ∈ [0, 1)
is the discount factor, and p0 : S → [0, 1] denotes the ini-
tial distribution. At the time step 0, an initial state S0 is
sampled from p0. At the time step t, an action At is sam-
pled according to some policy π : A × S → [0, 1], i.e.,
At ∼ π(·|St). A reward Rt+1

.
= r(St, At) is then emitted

and a successor state St+1 is sampled from p(·|St, At). We
use Pπ to denote the transition matrix between state action
pairs for an arbitrary policy π, i.e., Pπ[(s, a), (s

′, a′)] =
p(s′|s, a)π(a′|s′). We use qπ : S × A → R to denote
the action value function of a policy π, which is defined
as qπ(s, a)

.
= Eπ

[∑∞
i=0 γ

iRt+i+1|St = s,At = a
]
. One

fundamental task in RL is control, where the goal is to
find the optimal action value function, denoted as q∗, sat-
isfying q∗(s, a) ≥ qπ(s, a)∀π, s, a. It is well-known that
the q∗ is the unique fixed point of the Bellman optimality
operator T : R|S||A| → R|S||A| defined as (T q)(s, a)

.
=∑

s′ p(s
′|s, a) [r(s, a) + γmaxa′ q(s′, a′)].

Tabluar Q-Learning. Q-learning is the most celebrated
method to estimate q∗. In its simplest form, it uses a lookup
table q ∈ R|S||A| to store the estimate of q∗ and generates
the iterates {qt} as

At ∼ µqt(·|St), (tabular Q-learning)
δt = Rt+1 + γmaxa′ qt(St+1, a

′)− qt(St, At),

qt+1(St, At) = qt(St, At) + αtδt.

Here, {αt} are learning rates and µq is the behavior policy.
In this paper, we consider an ϵ-softmax behavior policy
defined as

µq(a|s)
.
= ϵ

|A| + (1− ϵ) exp(q(s,a))∑
b exp(q(s,b)) , (2)

where ϵ ∈ (0, 1] controls the degree of exploration.

Linear Q-Learning. To promote generalization or work
with large state spaces, Q-learning can be equipped with lin-
ear function approximation, where we approximate q∗(s, a)
with x(s, a)⊤w. Here x : S ×A → Rd is the feature func-
tion that maps a state action pair to a d-dimensional feature
and w ∈ Rd is the learnable weight. Linear Q-learning
generates the iterates {wt} as

At ∼ µwt(·|St), (linear Q-learning)

δt = Rt+1 + γmaxa′ x(St+1, a
′)⊤wt − x(St, At)

⊤wt,

wt+1 = wt + αtδtx(St, At).

Here we have abused µw to also denote the behavior policy
used in (linear Q-learning), which is defined as

µw(a|s) = ϵ
|A| + (1− ϵ)

exp(κwx(s,a)⊤w)∑
b exp(κwx(s,b)⊤w)

, (3)

where ϵ ∈ (0, 1] and the temperature parameter κw is de-
fined as

κw =

{
κ0

∥w∥2
∥w∥2 ≥ 1

κ0 otherwise
(4)

with κ0 > 0 being a constant. To our knowledge, this
behaivor policy is first used in Meyn (2024). The soft-
max approximation of the greedy operator ensures the
continuity of µw. The adaptive temperature κw further
ensures the Lipschitz continuity of the expected updates
of (linear Q-learning). Both are key to our finite sample
analysis and are discussed in details shortly in the proofs.

3. Main Results
Assumption 3.1. The Markov chain {St} induced by a uni-
formly random behavior policy is irreducible and aperiodic.

Notably, since ϵ is required to be strictly greater than 0,
Assumption 3.1 ensures that for any w and any q, the
Markov chain induced by µw and µq is also irreducible
and aperiodic. This is a common assumption to analyze
time-inhomogeneous Markovian noise (Zhang et al., 2022).

Assumption LR. The learning rate is αt =
α

(t+t0)ϵα
,

where ϵα ∈ (0.5, 1], α > 0, t0 > 0 are constants.
Theorem 1 (L2 Convergence Rate of Linear Q-Learning).
Let Assumptions 3.1 and LR hold. Then for sufficiently small
ϵ in (3), sufficiently large κ0 in (4), and sufficiently large
t0 in αt, there exist some constant t̄ such that the iterates
{wt} generated by (linear Q-learning) satisfy the following
statements ∀t ≥ t̄.
(1) When ϵα = 1, there exist some constants B1,1, B1,2, and
B1,3 such that

E
[
∥wt∥22

]
≤ B1,1

(t+t0)
B1,2α ∥w0∥22 +B1,3.

(2) When ϵα ∈ (0, 1), there exist some constants B1,4, B1,5

and B1,6 such that

E
[
∥wt∥22

]
≤ B1,4 exp

(
−B1,5α

1−ϵα
(t+ t0)

1−ϵα
)
∥w0∥22

+B1,6.

The proof of Theorem 1 is in Section 5.2. The precise
constraints on κ0 and ϵ are specified in Lemma 16 in Ap-
pendix. The constants B1,3 and B1,6 depend on γ, |S|, |A|,
maxs,a |r(s, a)|, and maxs,a ∥x(s, a)∥2, with the detailed
dependency specified in Section C.4. Theorem 1 confirms
the main claim of the work, with B1,3 and B1,6 correspond-
ing to the bounded set.
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Convergence Rates of Linear Q-Learning

Theorem 2 (L2 Convergence Rate of Tabular Q-Learning).
Let Assumptions 3.1 and LR hold. Then for sufficiently
large t0 in αt, there exist some constant t̄ such that the
iterates {wt} generated by (tabular Q-learning) satisfy the
following statements ∀t ≥ t̄.
(1) When ϵα = 1, there exist some constants B2,1, B2,2, and
B2,3 such that

E
[
∥qt − q∗∥2∞

]
≤ B2,1

(t+t0)
B2,2α ∥q0 − q∗∥2∞ +

B2,3 ln(t+t0)

(t+t0)
min (1,B2,2α) .

(2) When ϵα ∈ (0.5, 1), for any ϵ′α ∈ (0.5, ϵα), there exist
some constants B2,4, B2,5, and B2,6 such that

E
[
∥qt − q∗∥2∞

]
≤ B2,4 exp

(
−B2,5α

1−ϵα
(t+ t0)

1−ϵα
)
∥q0 − q∗∥2∞

+B2,6(t+ t0)
1−2ϵ′α .

The proof of Theorem 2 is in Section 5.3. The constants B2,4
and B2,6 depends on ϵα and ϵ′α. Comparing Theorems 1 & 2,
it is now clear that (tabular Q-learning) converges to the
optimal action value function while (linear Q-learning) con-
verges only to a bounded set, despite the (linear Q-learning)
adopts a more complicated behavior policy with an adap-
tive temperature. We note that the softmax function in (3)
and (2) can be replaced by any Lipschitz continuous func-
tion. We use the softmax function here because a softmax
policy is a commonly used approximation for the greedy
policy.

Stochastic Approximation. We now present a general
stochastic approximation result, which will be used to prove
Theorems 1 and 2. In particular, we consider a general
iterative update rule for a weight vector w ∈ Rd, driven by
a stochastic process {Yt} evolving in a finite space Y:

wt+1 = wt + αtH(wt, Yt+1), (SA)

where H : Rd × Y → Rd defines the incremental update.
The key difficulty in our analysis results from the fact that
we allow {Yt} to be a time-inhomogeneous Markov chain
with transition functions controlled by {wt}.

Assumption A1. There exists a family of parameterized
transition matrices ΛP

.
=
{
Pw ∈ R|Y|×|Y||w ∈ Rd

}
such

that Pr(Yt+1 | Yt) = Pwt
(Yt, Yt+1). Furthermore, let Λ̄P

denote the closure of ΛP . Then for any P ∈ Λ̄P , the time-
homogeneous Markov chain induced by P is irreducible
and aperiodic.

Assumption A1 is a standard uniform ergodicity condition
(cf. Marbach & Tsitsiklis (2001) and Assumption 3.2 in
Zhang et al. (2022)). It is readily satisfied in our frame-
work, and we provide its formal verification in Section 5.2

and 5.3. Specifically, our Assumption 3.1, combined with
the use of an ϵ-softmax behavior policy where ϵ > 0, en-
sures that any policy Pw ∈ ΛP induces an irreducible and
aperiodic Markov chain. Consequently, Assumption A1
ensures that for any w, the Markov chain induced by Pw

has a unique stationary distribution, which we denote as
dY,w. This allows us to define the expected update as
h(w)

.
= Ey∼dY,w

[H(w, y)]. One important implication
of uniform ergodicity is uniform mixing, which plays a key
role in our analysis in Section 5.1. We next present a few
assumptions about Lipschitz continuity.

Assumption A2. There exists a constant CA2 such that

∥H(w1, y)−H(w2, y)∥ ≤ CA2∥w1 − w2∥ ∀w1, w2, y.

Assumption A3. There exists a constant CA3 such that

∥Pw1 − Pw2∥ ≤ CA3
1+∥w1∥+∥w2∥∥w1 − w2∥,

∥h(w1)− h(w2)∥ ≤CA3∥w1 − w2∥ ∀w1, w2.

Assumption A3′. For any given w0, there exists a constant
UA3′ such that the iterates {wt} generated by (SA) satisfy

sup
t

∥wt∥ < UA3′ a.s.

Furthermore, there exist a constant CA3′ such that

∥Pw1 − Pw2∥ ≤ CA3′∥w1 − w2∥ ∀w1, w2,

and for any w1, w2 satisfying max {∥w1∥, ∥w2∥} ≤ UA3′ ,

∥h(w1)− h(w2)∥ ≤ CA3′∥w1 − w2∥.

Notably, Assumption A3 uses a stronger Lipschitz condition
for Pw than Assumption A3′. Moreover, Assumption A3
requires h(w) to be Lipschitz continuous on Rd while As-
sumption A3′ requires h(w) to be Lipschitz continuous only
on compact subsets. The price that Assumption A3′ pays to
weaken Assumption A3 is an additional assumption that the
iterates are bounded by a constant almost surely. The partic-
ular multiplier 1/(1+∥w1∥+∥w2∥) is inspired by Assump-
tion 5.1(3) of Konda (2002) for analyzing actor critic algo-
rithms. We will use Assumption A3 for (linear Q-learning)
and Assumption A3′ for (tabular Q-learning). Let wref be
any fixed vector in Rd. We now introduce

L(w) = 1
2∥w − wref∥2 (5)

to present our general results regarding {wt} in (SA).

Theorem 3. Let Assumptions A1, A2, and LR hold. Let at
least one of Assumptions A3 and A3′ hold. Then there exist
some constant t̄ and some function f(t) = O

(
ln2(t+t0+1)
(t+t0)2ϵα

)
such that the iterates {wt} generated by (SA) satisfy ∀t ≥ t̄,

E[L(wt+1)]

≤(1 + f(t))E[L(wt)] + αtE[⟨∇L(wt), h(wt)⟩] + f(t).
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Convergence Rates of Linear Q-Learning

The proof of Theorem 3 is in Section 5.1. Theorem 3
gives a recursive bound of L(wt). We will realize
wref differently and bound ⟨∇L(wt), h(wt)⟩ differently
for (linear Q-learning) and (tabular Q-learning).

4. Related Works
Previous analyses of (linear Q-learning) typically involve
different modifications to the algorithm. The first is
a target network (Mnih et al., 2015), where a slowly
changing copy of {wt} is stored. This copy is called
the target network and is referred to as {w̄t}. Then
the TD error δt in (linear Q-learning) is computed us-
ing maxa′ x(St+1, a

′)w̄t instead of maxa′ x(St+1, a
′)wt.

The second is a replay buffer (Lin, 1992). After ob-
taining the tuple (St, At, Rt+1, St+1), intead of apply-
ing (linear Q-learning) directly, they store the tuple into
a buffer, sample some previous tuple (s, a, r, s′) from the
buffer, and then apply the update based on the sampled
tuple. The third is projection, where the update to wt is
modified as wt+1 = Π(wt + αtδtx(St, At)). Here Π is a
projection operator that projects the weights into some com-
pact set to make sure {wt} is always bounded. The fourth
is regularization. One example is to change the update to
wt as wt+1 = wt + αtδtx(St, At)− αt∇∥wt∥22, where the
last term corresponds to ridge regularization. Such regu-
larization is also used to facilitate boundedness of {wt}.
Besides the algorithmic modification, strong assumptions
on the features X are also sometimes made. For exam-
ple, Lee & He (2020) assume all column vectors of X are
orthogonal to each other and and each elements of X is
either 0 or 1. Finally, different assumptions on the data
are also used to facilitate analysis. For example, Lee &
He (2020); Carvalho et al. (2020); Han-Dong & Donghwan
(2024) assume that (St, At, Rt+1, St+1) is sampled in an
i.i.d. manner from a fixed distribution. Gopalan & Thoppe
(2022) further assume that (St, At, Rt+1, St+1) is sampled
from the stationary distribution of the current ϵ-greedy pol-
icy, i.e., not only the samples are i.i.d., but also the sampling
distribution changes every time step. Melo et al. (2008);
Chen et al. (2022) make strong assumptions on the behavior
policy. Melo et al. (2008) use a special matrix condition as-
suming Σµ − γ2Σ∗

µ(w) is positive definite for any w. Here
Σµ is the feature covariance matrix induced by the fixed
behaivor policy and Σ∗

µ(w) is the feature covariance matrix
induced by the greedy policy w.r.t. w. Chen et al. (2022)
assume γ2E[maxa(ϕ(s, a)

⊤w)2] < E[(ϕ(s, a)⊤w)2]∀w.
Since those assumptions are made w.r.t. all possible w, for
them to hold, one typically needs to ensure that the behaivor
policy µ is close to the optimal policy in certain sense. See
Section 6 of Chen et al. (2022) for more discussion about
this. Similar strong assumptions are also later on used for
analyzing Q-learning with neural networks (Cai et al., 2023;
Xu & Gu, 2020). As can be seen in Table 1, this work is

the first L2 convergence rate of (linear Q-learning) without
making any algorithmic modification or strong assumptions
on the behavior policy. This setting is known to be compu-
tationally challenging. Kane et al. (2023) show that finding
the optimal policy is NP-hard even if q∗ is linear in the given
features. This inherent difficulty highlights the importance
of establishing convergence to a bounded set, as our work
does, especially under minimal assumptions. Despite that
Q-learning with neural network is also analyzed in previous
works, those work do not supercede our work since they
also need to make algorithmic modifications. Some of them
even need the Bellman completeness assumption, i.e., for
any w, the vector T Xw still lies in the column space of X .

There is a rich literature in analyzing (tabular Q-learning).
Early works (Watkins, 1989; Watkins & Dayan, 1992;
Jaakkola et al., 1993; Tsitsiklis, 1994; Littman & Szepesvári,
1996) implicitly or explicitly rely on the use of count-based
learning rates, where the αt in (tabular Q-learning) is re-
placed by αν(St,At,t). Here ν(s, a, t) counts the number of
visits to the state action pair (s, a) until time t. The count-
based learning rate allows them to work with a wide range
of behavior policies. Convergence rates are also later on
established by Szepesvári (1997); Even-Dar et al. (2003).
However, to our knowledge, such count based learning rate
is rarely used by practitioners. Recent works (Chen et al.,
2021; Li et al., 2024; Zhang & Xie, 2024) are able to re-
move the count based learning rate. They, however, need
to assume that a fixed behaivor policy is used. By contrast,
practitioners usually prefer an ϵ-greedy policy. In this work,
we use an ϵ-softmax policy to approximate the ϵ-greedy
policy and establish the L2 convergence rate, without using
count based learning rate.

Meyn (2024) is the closest to this work in terms of the
results. However, the underlying techniques are dramatically
different. Meyn (2024) uses the ODE based analysis that
connects the iterates with the trajectories of certain ODEs
(Benveniste et al., 1990; Kushner & Yin, 2003; Borkar,
2009; Borkar et al., 2025; Liu et al., 2025). This work relies
on bounding the norm of the iterates recursively (Zou et al.,
2019; Chen et al., 2021; Zhang et al., 2022).

Previously, Zhang et al. (2023a) demonstrate convergence
rates of linear SARSA (Rummery & Niranjan, 1994) to a
bounded set. Our analysis is also largely inspired by Zhang
et al. (2023a). However, our analysis is more challenging
in two aspects. First, Zhang et al. (2023a) use a projection
to ensure the weights are bounded while we do not. Sec-
ond, linear SARSA is an on-policy algorithm, but linear
Q-learning is an off-policy algorithm.

The key technical challenge of this work lies in the time-
inhomogeneous nature of the Markovian noise. Previously,
this is often tackled in a two-timescale framework, where the
transition function of the Markovian noise is controlled by
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Convergence Rates of Linear Q-Learning

a secondary weight, say {θt}, and θt evolves much slower
than wt (Konda & Tsitsiklis, 1999; Wu et al., 2020; Zhang
et al., 2020; 2022). This is recently improved by Olshevsky
& Gharesifard (2023); Chen & Zhao (2023) to allow θt and
wt to evolve in the same timescale. Our analysis is more
challenging in that we actually have θt ≡ wt. This setting
is also previously considered in Zou et al. (2019); Zhang
et al. (2023a) but they all rely on a projection operator. By
contrast, our (SA) does not have any projection.

5. Proofs of the Main Results
5.1. Proof of Theorem 3

Proof. We start by recalling that we use ∥·∥ to denote an
arbitrary norm where ∥·∥2 is smooth. In particular, 1

2∥·∥
2

is smooth w.r.t. ∥·∥ for some L. In (1), identifying f(w) as
L(w), w′ as wt+1, and w as wt yields

L(wt+1) ≤L(wt) + αt⟨∇L(wt), H(wt, Yt+1)⟩

+
Lα2

t

2 ∥H(wt, Yt+1)∥2

=L(wt) + αt⟨∇L(wt), h(wt)⟩
+ αt⟨∇L(wt), H(wt, Yt+1)− h(wt)⟩

+
Lα2

t

2 ∥H(wt, Yt+1)∥2. (6)

We now proceed to bounding the noise term including
H(wt, Yt+1)−h(wt). To this end, we notice that according
to Lemma 1 of Zhang et al. (2022), Assumption A1 implies
that the Markov chains in ΛP mix both geometrically and
uniformly. In other words, there exist constants C0 > 0 and
τ ∈ (0, 1), such that

supw,y

∑
y′ |Pn

w(y, y
′)− dY,w(y

′)| ≤ C0τ
n. (7)

We then define

τα
.
= min{n ≥ 0 | C0τ

n ≤ α} (8)

to denote the number of steps that the Markov chain needs
to mix to an accuracy α. This allows us to decompose the
noise term as

⟨∇L(wt), H(wt, Yt+1)− h(wt)⟩ (9)
= ⟨∇L(wt)−∇L(wt−ταt

), H(wt, Yt+1)− h(wt)⟩︸ ︷︷ ︸
T1

+ ⟨∇L(wt−ταt
), H(wt, Yt+1)−H(wt−ταt

, Yt+1)

+h(wt−ταt
)− h(wt)⟩︸ ︷︷ ︸

T2

+ ⟨∇L(wt−ταt
), H(wt−ταt

, Yt+1)− h(wt−ταt
)⟩︸ ︷︷ ︸

T3

.

Both T1 and T2 can be bounded with Lipschitz conti-
nuity. To bound T3, we introduce an auxiliary Markov

chain {Ỹt} akin to Zou et al. (2019). The chain {Ỹt}
is constructed to be identical to {Yt} up to time step
t − ταt , after which it evolves independently according
to the fixed transition matrix Pwt−ταt

. By contrast, {Yt}
continues to evolve according to the changing transition
matrix Pwt−ταt

, Pwt−ταt+1
, · · · . This choice of ταt

ensures
that the discrepancy between the two chains is sufficiently
small. We now further decompose T3 with this auxiliary
chain as

⟨∇L(wt−ταt
), H(wt−ταt

, Yt+1)− h(wt−ταt
)⟩ (10)

= ⟨∇L(wt−ταt
), H(wt−ταt

, Ỹt+1)− h(wt−ταt
)⟩︸ ︷︷ ︸

T31

+ ⟨∇L(wt−ταt
), H(wt−ταt

, Yt+1)−H(wt−ταt
, Ỹt+1)⟩︸ ︷︷ ︸

T32

.

We now bound the terms one by one.

Lemma 1. There exists a constant C1 such that

T1 ≤ C1αt−ταt ,t−1(L(wt) + 1).

The proof is in Section B.1.

Lemma 2. There exists a constant C2 such that

T2 ≤ C2αt−ταt ,t−1(L(wt) + 1).

The proof is in Section B.2.

Lemma 3. There exists a constant C3 such that

E[T31] ≤ C3αt(E[L(wt)] + 1).

The proof is in Section B.3.

Lemma 4. There exists a constant C4 such that

E[T32] ≤ C4αt−ταt ,t−1 ln(t+ t0 + 1)(E[L(wt)] + 1).

The proof is in Section B.4.

Remark 1. We prove Lemma 4 considering Assumption A3
or A3′ in two cases. Under Assumption A3′, our proof is
similar to those in Zou et al. (2019); Zhang et al. (2022).
The technical novelty here lies in the proof under Assump-
tion A3. The proof under Assumption A3 involves bounding
the term

∥∥Pwt − Pwt−αt

∥∥. In Zou et al. (2019), a sim-
ilar term is bounded by ∥wt − wt−αt

∥ via the standard
Lipschitz continuity of Pw (cf. Assumption A3′). Zou
et al. (2019) further rely on a projection operator to bound
∥wt − wt−αt

∥ directly. However, (SA) does not have such
a projection operator. In Zhang et al. (2022), a similar
term is bounded under the assumption that the transition

6
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matrix is controlled by another set of weights {θt}, which
involve much slower than {wt}. Their bound is made pos-
sible essentially because of this two-timescale setup. How-
ever, (SA) only has a single timescale where the transition
matrix evolves as fast as {wt}. We instead use a stronger
form of Lipschitz continuity in Assumption A3.

Assembling the bounds in the above lemmas to (9) and
further to (6), we complete the proof of Theorem 3. The
detailed steps are presented in Section B.5.

In the following sections, we first map the general up-
date (SA) to (linear Q-learning) and (tabular Q-learning)
by defining H(w, y), h(w), L(w), and the norm ∥·∥ prop-
erly. We then bound the remaining term ⟨∇L(wt), h(wt)⟩
in Theorem 3 separately to complete the proof.

5.2. Proof of Theorem 1

Proof. We first rewrite (linear Q-learning) in the form
of (SA). To this end, we define Yt+1

.
= (St, At, St+1),

which evolves in a finite space

Y .
= {(s ∈ S, a ∈ A, s′ ∈ S) | p(s′|s, a) > 0}.

We further define

H(w, y) (11)
.
=(r(s, a) + γmaxa′ x(s′, a′)⊤w − x(s, a)⊤w)x(s, a).

where we have used y
.
= (s, a, s′). We now proceed to

verify the assumptions of Theorem 3. We identify the norm
used in Theorem 3 as the ℓ2 norm ∥·∥2. For Assumption A1,
we define Pw as

Pw[(s0, a0, s
′
0), (s1, a1, s

′
1)]

.
=µw(a1|s1)p(s′1|s1, a1)Is′0=s1 ,

where I is the indicator funciton. Then it is easy to see that

Pr(Yt+1|Yt) =µwt
(At|St)p(St+1|St, At)

=Pwt
[(St−1, At−1, St), (St, At, St+1)]

=Pwt
[Yt, Yt+1].

Thanks to Assumption 3.1 and the fact ϵ > 0 in (3), it is
easy to see that for any P ∈ Λ̄P , P induces an irreducible
and aperiodic chain in Y . Assumption A1 is then verified.
Assumption A2 trivially holds according to the definition of
H(w, y) in (11) since max is Lipschitz and Y is finite.

For Assumption A3, the first half is trivially implied by the
following lemma.

Lemma 5. There exists a constant C5 such that

|µw1
(a|s)− µw2

(a|s)| ≤ C5∥w1−w2∥2

∥w1∥2+∥w2∥2+1 ∀w1, w2, s, a.

The proof is in Section C.1, where the adaptive temperature
κw plays a key role. For the second half of Assumption A3,
we use dµw ∈ R|S||A| to denote the stationary state-action
distribution induced by the policy µw. Then it is easy to
see that dY,w(s, a, s

′) = dµw
(s, a)p(s′|s, a). Then it can

be computed that

h(w) = Ey∼dY,w
[H(w, y)] = A(w)w + b(w), (12)

where

A(w)
.
= X⊤Dµw

(γPπw
− I)X, (13)

b(w)
.
= X⊤Dµw

r, (14)

Here, we use X ∈ R|S||A|×d to denote the feature matrix,
the (s, a)-indexed row of which is x(s, a)⊤. We use Dµw

∈
R|S||A|×|S||A| to denote a diagonal matrix whose diagonal
is dµw . We use πw to denote the greedy policy, i.e.,

πw(a|s) =

{
1 if a = argmaxb x(s, b)

⊤w

0 otherwise
,

where tie-breaking in argmax can be done through any
fixed and deterministic prodecure. We recall that Pπw ∈
R|S||A|×|S||A| denotes the state-action transition matrix of
the policy πw. We then have

Lemma 6. There exists a constant C6 such that

∥h(w1)− h(w2)∥2 ≤ C6∥w1 − w2∥2 ∀w1, w2.

The proof is Section C.2. Assumption A3 is then verified.

Remark 2. To prove the above lemma, we need to bound a
term involving

∥∥Dµw1
−Dµw2

∥∥
2
∥w1∥2, for which we rely

on the factor 1/(∥w1∥2+ ∥w2∥2+1) in Lemma 5 to cancel
the multiplicative term ∥w1∥2. Notably, as discussed at the
end of Section 2, an ϵ-greedy policy, due to its discontinu-
ities w.r.t. w, will invalidate Lemma 5 and consequently
prevent the establishment of Lemma 6. Furthermore, despite
that πw is not continuous, Pπw

Xw is Lipschitz continuous,
thanks to the adaptive temperature κw.

We now identify wref = 0 and thus have L(w) = 1
2∥w∥

2
2.

Invoking Theorem 3 then yields

E[L(wt+1)] (15)
≤(1 + f(t))E[L(wt)] + αtE[⟨∇L(wt), h(wt)⟩] + f(t).

Since ∇L(wt) = wt, we now bound the inner product term
of the RHS with the following lemma.

Lemma 7. There exist constants β > 0 and C7 > 0 such
that

⟨w, h(w)⟩ ≤ −β∥w∥22 + C7∥w∥2 ∀w.

7
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The proof is in Section C.3, which is an extension of Lemma
A.9 of Meyn (2024). Notably, this lemma is the place where
we require sufficiently large κ0 and sufficiently small ϵ in (3).
Plugging the bound in Lemma 7 back to (15) yields

E[L(wt+1)] ≤ (1− βαt + f(t))E[L(wt)] +O(αt).

Since f(t) is dominated by αt, it can be seen that E[L(wt)]
remains bounded as t → ∞. By telescoping the above
inequality, we can also obtain an explicit convergence rate
of E[L(wt)] to a bounded set. All those details are in Sec-
tion C.4, which completes the proof.

5.3. Proof of Theorem 2

Proof. It is obvious that (tabular Q-learning) is a special
case of (linear Q-learning) with X identified as the identity
matrix I . Most of the proofs here are similar to Section 5.3.
We, therefore, focus on the different part.

Assumption A1 can be similarly verified with

Pq[(s0, a0, s
′
0), (s1, a1, s

′
1)]

.
=µq(a1|s1)p(s′1|s1, a1)Is′0=s1 ,

where µq is defined in (2). For the other assumptions, by
using X = I in (12), we obtain

h(q) =Dµq (γPπq − I)q +Dµqr

=Dµq (T q − q)

=T ′q − q, (16)

where we have defined the operator T ′ as

T ′q
.
= Dµq

(T q − q) + q.

Here we call T ′ the weighted Bellman optimality operator.
The operator T ′ is highly nonlinear since Dµq

depends on
the stationary distribution of the chain induced by the policy
µq. This operator T ′ is unlikely to be a contraction. The
key insight that we rely on here is that T ′ is still a pseudo-
contraction w.r.t. the infinity norm ∥·∥∞.

Lemma 8. Let Assumption 3.1 hold. For any ϵ > 0, the
weighted Bellman operator T ′ is a pseudo-contraction and
q∗ is the unique fixed point. In other words, for any q, it
holds that

∥T ′q − q∗∥∞ ≤ βm∥q − q∗∥∞,

where βm
.
= 1− (1− γ) infq,s,a dµq (s, a) ∈ (0, 1).

The proof is in Section D.1.

Remark 3. This lemma is, to our knowledge, the first time
that this pseudo contraction property is identified. The inf
is strictly greater than 0 because ϵ > 0.

The pseudo contraction property motivates us to identify
the ∥·∥ in Theorem 3 as ∥·∥∞. Unfortunately, ∥·∥2∞ is not
smooth. We then follow Chen et al. (2021) and use the
Moreau envelope of ∥·∥2∞ defined as

M(q)
.
= infu∈Rd

{
1
2∥u∥

2
∞ + 1

2ξ∥q − u∥22
}
,

where ξ > 0 is a constant to be tuned. Due to the equiva-
lence between norms, there exist positive constants lit and
uit such that lit∥q∥2 ≤ ∥q∥∞ ≤ uit∥q∥2. The properties of
M(q) are summarized below.

Lemma 9. (Proposition A.1 and Section A.2 of Chen et al.
(2021))

(i). M(q) is 2
ξ -smooth w.r.t. ∥·∥2.

(ii). There exists a norm ∥·∥m such that M(q) = 1
2∥q∥

2
m.

(iii). Define lim =
√
(1 + ξl2it), uim =

√
(1 + ξu2

it), then
lim∥q∥m ≤ ∥q∥∞ ≤ uim∥q∥m.

(iv). ⟨∇M(q), q′⟩ ≤ ∥q∥m∥q′∥m,

⟨∇M(q), q⟩ ≥ ∥q∥2m.

We then identify the norm ∥·∥ in Theorem 3 as ∥·∥m and
further identify wref as q∗. As a result, we have realized
L(w) as

L(q) = 1
2 ||q − q∗||2m = M(q − q∗).

Assumption A2 again trivially holds. We now proceed to
verify Assumption A3′. The boundedness of {qt} can be
easily obtained via induction (cf. Gosavi (2006)).

Lemma 10. For any q0, there exists a constant C10 such
that supt ∥qt∥m ≤ C10 a.s.

The proof is in Section D.2. The Lipschitz continuity of Pq

follows directly from the Lipschitz continuity of µq in (2),
which is a direct result from the fact that the softmax func-
tion is Lipschitz continuous. The Lipschitz continuity of
h(q) on a compact set is also simpler to prove than Lemma 6.

Lemma 11. There exists a constant C11 such that for any
q1, q2 satisfying max {∥q1∥m, ∥q2∥m} < C10, it holds that

∥h(q1)− h(q2)∥m ≤ C11∥q1 − q2∥m.

The proof is in Section D.3. Assumption A3′ is now verified.
Invoking Theorem 3 then yields

E[L(qt+1)] (17)
≤(1 + f(t))E[L(qt)] + αtE[⟨∇L(qt), h(qt)⟩] + f(t).

The pseudo-contraction property of T ′ allows us to bound
the inner product in the RHS as below.

8
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Lemma 12. There exists a positive constant C12 such that

⟨∇L(qt), h(qt)⟩ ≤ −C12L(qt) ∀t.

The proof is in Section D.4. Plugging the bound in
Lemma 12 back to (17), we get

E[L(qt+1)] ≤(1− C12αt + f(t))E[L(qt)] + f(t).

Since f(t) is dominated by αt, telescoping the above in-
equality then generates the desired convergence rate. The
detailed steps are in Section D.5, which completes the
proof.

6. Experiments
We test unmodified linear Q-learning (without target net-
works, experience replay, weight projection, or regulariza-
tion) on Baird’s counterexample, a challenging benchmark
for temporal difference methods, especially Q-learning (See
Chapter 11 of Sutton & Barto (2018)). For clearer experi-
mental results, we use a constant learning rate α = 0.1, we
also select κ0 = 100 and ϵ = 0.1.

In Baird’s counterexample, we have seven states, two ac-
tions, zero reward r(s, a) = 0 for all state-action pairs, and
discount factor γ = 0.99. The environment uses a specific
feature representation and all transitions lead to state 7 with
probability 1, regardless of action.

0 200 400 600 800 1000 1200 1400
Time Step

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

wt
2
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Figure 1. Convergence of (linear Q-learning) with γ = 0.99, α =
0.1. The graph shows the evolution of ∥wt∥22 over time steps,
demonstrating stable convergence behavior. The blue line rep-
resents the average of the squared L2 norm of weights over 10
independent runs, and the shaded area indicates the range between
minimum and maximum values.

Figure 1 shows the evolution of ∥wt∥2 over 1500 itera-
tions. We observed that the weights of unmodified linear
Q-learning remain stably bounded throughout training, sup-
porting our theoretical findings. Appendix E provides com-
parisons with versions incorporating other modifications.

7. Conclusion
This paper establishes novel L2 convergence rates for both
linear and tabular Q-learning. A key novelty of the result is
that we allow the behavior policy to depend on the current
action value estimation, without making any algorithmic
modification or strong assumptions. Technically, such a
behavior policy is hard to analyze because it brings in time-
inhomogeneous Markovian noise, for which we provide
Theorem 3 as a general tool. A possible future work is to
characterize Q-learning with such a behavior policy from
other aspects, e.g., almost sure convergence rates, high prob-
ability concentration, and Lp convergence rates, following
recent works like Chen et al. (2025); Qian et al. (2024).
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A. Auxiliary Lemmas and Notations
Lemma 13 (Definition 5.1 and Lemma 5.7 of Beck (2017)). The following statements about a differentiable function f(x)
are equivalent:

(i) f(x) is L-smooth w.r.t. a norm ∥·∥.

(ii) ∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥.

(iii) |f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ L
2 ∥x− y∥2.

Lemma 14 (Discrete Gronwall Inequality, Lemma 8 in Section 11.2 of Borkar (2009)). For non-negative real sequences
{xn, n ≥ 0} and {an, n ≥ 0} and scalar L ≥ 0, it holds

xn+1 ≤ C + L
∑n

i=0 aixi ∀n =⇒ xn+1 ≤ (C + x0) exp(L
∑n

i=0 ai) ∀n.

Lemma 15 (Lemma 9 of Zhang et al. (2021)). Let U be a set of policies and ΛP
.
=
{
Pµ ∈ R|S||A|×|S||A| | µ ∈ U

}
be the

set of induced state action transition matrices. Let Λ̄P be the closure of ΛP . Assume for each P ∈ Λ̄P , the chain on S ×A
induced by P is irreducible and aperiodic. Let dPµ

be the stationary distribution of the chain induced by Pµ. Then dPµ
is

Lipschitz continuous in µ on U .

Recall the definition of A(w) in (13). We have

Lemma 16 (Lemma A.9 of Meyn (2024)). There exists a positive constant κ̄0 such that for κ0 > κ̄0 and ϵ < (1 −
γ)2/

[
(1− γ)2 + γ2

]
, there exists a positive constant β > 0 such that w⊤A(w)w ≤ −β∥w∥22 holds for all ∥w∥2 ≥ 1. To

be more specific,

β =
[
(1− γ)− ϵγ

√
ϵ−1 + (1− ϵ)−1

]
λmin(X

⊤DµwX)− γ(1− ϵ)
log(|A|)

κ0

√
λmax(X⊤DµwX)

where λmin(·) and λmax(·) denote the minimal and maximal eigenvalue of the matrix, respectively.

We define shorthand

αi,j
.
=

j∑
t=i

αt, Cx
.
= max

s,a
∥x(s, a)∥2, Cr

.
= ∥r∥∞, Cref

.
= ∥wref∥.

We use Ft = σ(w0, Y1, ..., Yt) to denote the filtration representing the history up to time step t. Recall the definition of τα
in (8). We have

Lemma 17 (Lemma 11 of Zhang et al. (2022)). For sufficiently large t0, it holds that

ταt = O(log(t+ t0)), αt−ταt ,t−1 = O
(
log(t+ t0)

(t+ t0)ϵα

)
.

Lemma 17 ensures that there exists some t̄ > 0 (depending on t0) such that for all t ≥ t̄, it holds that t ≥ ταt . Throughout
the appendix, we always assume t0 is sufficiently large and t ≥ t̄. We will refine (i.e., increase) t̄ along the proof when
necessary.

B. Proofs in Section 5.1
Lemma 18. There exists a constant C18 such that for any w, y, t,

∥H(w, y)∥ ≤C18(∥w∥+ 1),

∥h(wt)∥ ≤C18(∥wt∥+ 1).

Proof. Recall Assumption A2, we have

∥H(w, y)−H(0, y)∥ ≤ CA2∥w∥ ∀w, y.

12
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According to the triangle inequality, we can obtain

∥H(w, y)∥ ≤ ∥H(w, y)−H(0, y)∥+ ∥H(0, y)∥.

Therefore, we can further obtain

∥H(w, y)∥ ≤ CA2∥w∥+ ∥H(0, y)∥.

Thus, choosing C18,1
.
= maxy {CA2, H(0, y)} completes the proof for bounding H(w, y). Similar result can be obtained

for h(w) under Assumption A3 by choosing C18,2
.
= max {CA3, h(0)} and under Assumption A3′ by choosing C18,2

.
=

max {CA3′ , h(0)}. Therefore, we can choose C18
.
= max {C18,1, C18,2}.

Lemma 19. For sufficiently large t0, there exists a constant C19 such that the following statement holds. For any t ≥ t̄ and
any i ∈ [t− ταt

, t], it holds that ∥∥wi − wt−ταt

∥∥ ≤ C19αt−ταt ,i−1(∥wi∥+ 1), (18)∥∥wi − wt−ταt

∥∥ ≤ C19αt−ταt ,i−1(∥wi − wref∥+ 1), (19)∥∥wt−ταt

∥∥ ≤ C19(∥wt − wref∥+ 1). (20)

Proof. In this proof, to simplify notations, we define shorthand t1
.
= t− ταt

. Given Lemma 17, we can select a sufficiently
large t0 such that for any t ≥ t̄,

exp
(
C18αt−ταt t−1

)
<3,

C18αt−ταt t−1 <
1

6
.

We then bound ∥wi − wt1∥ as

∥wi − wt1∥ =

i−1∑
k=t1

∥αkH(wk, Yk+1)∥

≤
i−1∑
k=t1

αkC18(∥wk − wt1∥+ ∥wt1∥+ 1)

≤
i−1∑
k=t1

αkC18(∥wt1∥+ 1) +

i−1∑
k=t1

αkC18(∥wk − wt1∥)

≤ C18αt1,i−1(∥wt1∥+ 1) exp(C18αt1,t−1). (Lemma 14)

We then have

∥wi − wt1∥ ≤ C18αt1,i−1(∥wi − wt1∥+ ∥wi∥+ 1) exp(C18αt1,t−1)

≤ 1

2
∥wi − wt1∥+ C19,2αt1,i−1(∥wi∥+ 1),

where we have defined C19,2
.
= 3C18. Thus, we have

∥wi − wt1∥ ≤ 2C19,2αt1,i−1(∥wi∥+ 1),

which gives a proof of (18). Furthermore, we obtain (19) as

∥wi − wt1∥ ≤ 2C19,2αt1,i−1(∥wi∥+ 1)

≤ 2C19,2αt1,i−1(∥wi − wref∥+ ∥wref∥+ 1)

≤ C19,3αt1,i−1(∥wi − wref∥+ 1).

For (20), taking i = t in the above inequality yields

∥wt1∥ − ∥wt∥ ≤ ∥wt − wt1∥ ≤ C19,3αt1,t−1(∥wt − wref∥+ 1).

13



Convergence Rates of Linear Q-Learning

That is

∥wt1∥ ≤ C19,3αt1,t−1(∥wt − wref∥+ 1) + ∥wt − wref∥+ ∥wref∥
≤ C19,4(∥wt − wref∥+ 1) + ∥wt − wref∥+ ∥wref∥,

which completes the proof.

B.1. Proof of Lemma 1

Proof. According to (9),

T1 =⟨∇L(wt)−∇L(wt−ταt
), H(wt, Yt+1)− h(wt)⟩

≤
∥∥∇L(wt)−∇L(wt−ταt

)
∥∥
∗ · ∥H(wt, Yt+1)− h(wt)∥.

For the first term, ∥∥∇L(wt)−∇L(wt−ταt
)
∥∥
∗

≤ L
∥∥wt − wt−ταt

∥∥ (By (5) and Lemma 13)

≤ LC19αt−ταt ,t−1(∥wt − wref∥+ 1) (Lemma 19).

For the second term,

∥H(wt, Yt+1)− h(wt)∥ ≤ C18(∥wt∥+ 1) + C18(∥wt∥+ 1) ≤ 2C18(∥wt − wref∥+ Cref + 1).

Combining the two inequalities yields

⟨∇L(wt)−∇L(wt−ταt
), H(wt, Yt+1)− h(wt)⟩

≤ LC19αt−ταt ,t−1(∥wt − wref∥+ Cref + 1) · 2C18(∥wt − wref∥+ Cref + 1)

≤ C1,1αt−ταt ,t−1(∥wt − wref∥+ 1)2

≤ 2C1,1αt−ταt ,t−1(∥wt − wref∥2 + 1).

Choosing C1
.
= 4C1,1 then completes the proof.

B.2. Proof of Lemma 2

Proof. According to (9),

T2 =⟨∇L(wt−ταt
), H(wt, Yt+1)−H(wt−ταt

, Yt+1) + h(wt−ταt
)− h(wt)⟩

≤
∥∥∇L(wt−ταt

)
∥∥
∗ ·
∥∥H(wt, Yt+1)−H(wt−ταt

, Yt+1) + h(wt−ταt
)− h(wt)

∥∥.
For the first term, it is trivial to see ∇L(wref) = 0. We can then obtain∥∥∇L(wt−ταt

)
∥∥
∗

=
∥∥∇L(wt−ταt

)−∇L(wref)
∥∥
∗

≤L
∥∥wt−ταt

− wref
∥∥ (Lemma 13)

≤L(
∥∥wt−ταt

− wt

∥∥+ ∥wt − wref∥)

Recall for t̄ sufficiently large, we have C19αt−ταt ,t−1 < 1. Applying Lemma 19 then yields∥∥∇L(wt−ταt
)
∥∥
∗ ≤L(

∥∥wt−ταt
− wt

∥∥+ ∥wt − wref∥)
≤L(∥wt − wref∥+ 1 + ∥wt − wref∥)
≤L(2∥wt − wref∥+ 1). (21)

14
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For the second term, ∥∥H(wt, Yt+1)−H(wt−ταt
, Yt+1) + h(wt−ταt

)− h(wt)
∥∥

≤(CA2 +max {CA3, CA3′})
∥∥wt−ταt

− wt

∥∥
≤C19(CA2 +max {CA3, CA3′})αt−ταt ,t−1(∥wt∥+ 1) (Lemma 19)

≤C19(CA2 +max {CA3, CA3′})αt−ταt ,t−1(∥wt − wref∥+ Cref + 1).

Combining the two inequalities together yields

⟨∇L(wt−ταt
), H(wt, Yt+1)−H(wt−ταt

, Yt+1) + h(wt−ταt
)− h(wt)⟩

≤L(2∥wt − wref∥+ 1) · C19(CA2 +max {CA3, CA3′})αt−ταt ,t−1(∥wt − wref∥+ Cref + 1)

≤C2,1αt−ταt ,t−1(∥wt − wref∥+ 1)2.

Choosing C2
.
= 4C2,1 then completes the proof.

B.3. Proof of Lemma 3

Proof. For the first component of T3 in (10), we have

E
[
T31

∣∣Ft−ταt

]
= E

[〈
∇L(wt−ταt

), H(wt−ταt
, Ỹt+1)− h(wt−ταt

)
〉 ∣∣Ft−ταt

]
≤
〈
∇L(wt−ταt

),E
[
H(wt−ταt

, Ỹt+1)− h(wt−ταt
)
∣∣Ft−ταt

]〉
≤
∥∥∇L(wt−ταt

)
∥∥
∗ ·
∥∥∥E[H(wt−ταt

, Ỹt+1)− h(wt−ταt
)|Ft−ταt

]∥∥∥.
The first term is bounded in (21). For the second term, we have∥∥∥E[H(wt−ταt

, Ỹt+1)− h(wt−ταt
)
∣∣Ft−ταt

]∥∥∥
=

∥∥∥∥∥∑
y

H(wt−ταt
, y)P (Ỹt+1 = y|Ft−ταt

)−
∑
y

H(wt−ταt
, y)dY,wt−ταt

(y)

∥∥∥∥∥
=

∥∥∥∥∥∑
y

H(wt−ταt
, y)(P (Ỹt+1 = y|Ft−ταt

)− dY,wt−ταt
(y))

∥∥∥∥∥
≤
∑
y

∥∥H(wt−ταt
, y)
∥∥ · ∣∣∣P (Ỹt+1 = y|Ft−ταt

)− dY,wt−ταt
(y)
∣∣∣

≤max
y

∥∥H(wt−ταt
, y)
∥∥∑

y

∣∣∣P (Ỹt+1 = y|Ft−ταt
)− dY,wt−ταt

(y)
∣∣∣

≤αtC18(
∥∥wt−ταt

∥∥+ 1) (By (7), (8) and Lemma 18)

≤αtC18(
∥∥wt−ταt

− wt

∥∥+ ∥wt − wref∥+ Cref + 1).

Combining the two bounds yields

E
[
⟨∇L(wt−ταt

), H(wt−ταt
, Ỹt+1)− h(wt−ταt

)⟩|Ft−ταt

]
≤LC18αt(2∥wt − wref∥+ Cref + C19)(C19αt−ταt ,t−1(∥wt∥+ 1) + ∥wt − wref∥+ Cref + 1) (Lemma 19)

≤LC18C19αt(∥wt − wref∥+ Cref + C19 + C3,1)
2

≤LC18C19αt(∥wt − wref∥2 + C3,2).

Choosing C3
.
= LC18C19C3,2 then completes the proof.
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B.4. Proof of Lemma 4

We start with an auxiliary result.

Lemma 20. Then there exist a constant C20 such that

E
[∥∥∥H(wt−ταt

, Yt+1)−H(wt−ταt
, Ỹt+1)

∥∥∥∣∣Ft−ταt

]
≤ C20αt−ταt ,t−1 ln(t+ t0 + 1)(∥wt − wref∥+ 1).

Proof. In this proof, all Pr are probabilities implicitly conditioned on Ft−ταt
. For simplicity, we define Pt

.
= Pwt

.

Pr(Yt = y′) =
∑
y

Pr(Yt = y′, Yt−1 = y) =
∑
y

Pt(y, y
′) Pr(Yt−1 = y),

Pr
(
Ỹt = y′

)
=
∑
y

Pr
(
Ỹt−1 = y

)
Pt−ταt

(y, y′).

Consequently,∑
y′

∣∣∣Pr(Yt = y′)− Pr
(
Ỹt = y′

)∣∣∣ ≤∑
y,y′

∣∣∣Pr(Yt−1 = y)Pt(y, y
′)− Pr

(
Ỹt−1 = y

)
Pt−ταt

(y, y′)
∣∣∣.

We now consider two cases.

Case 1. Under Assumption A3∣∣∣Pr(Yt−1 = y)Pt(y, y
′)− Pr

(
Ỹt−1 = y

)
Pt−ταt

(y, y′)
∣∣∣

≤
∣∣∣Pr(Yt−1 = y)Pt(y, y

′)− P (Ỹt−1 = y)Pt(y, y
′)
∣∣∣+ ∣∣∣P (Ỹt−1 = y)Pt(y, y

′)− P (Ỹt−1 = y)Pt−ταt
(y, y′)

∣∣∣
≤
∣∣∣Pr(Yt−1 = y)− Pr

(
Ỹt−1 = y

)∣∣∣Pt(y, y
′) + CA3

∥∥wt − wt−ταt

∥∥
∥wt∥+

∥∥wt−ταt

∥∥+ 1
Pr
(
Ỹt−1 = y

)
≤
∣∣∣Pr(Yt−1 = y)− Pr

(
Ỹt−1 = y

)∣∣∣Pt(y, y
′) + CA3C19

αt−ταt ,t−1(∥wt∥+ 1)

∥wt∥+
∥∥wt−ταt

∥∥+ 1
Pr
(
Ỹt−1 = y

)
(Lemma 19)

≤
∣∣∣Pr(Yt−1 = y)− Pr

(
Ỹt−1 = y

)∣∣∣Pt(y, y
′) + C20,1αt−ταt ,t−1,

where C20,1
.
= CA3C19.

Case 2. Under Assumption A3′∣∣∣Pr(Yt−1 = y)Pt(y, y
′)− Pr

(
Ỹt−1 = y

)
Pt−ταt

(y, y′)
∣∣∣

≤
∣∣∣Pr(Yt−1 = y)Pt(y, y

′)− Pr
(
Ỹt−1 = y

)
Pt(y, y

′)
∣∣∣+ ∣∣∣Pr(Ỹt−1 = y

)
Pt(y, y

′)− Pr
(
Ỹt−1 = y

)
Pt−ταt

(y, y′)
∣∣∣

≤
∣∣∣Pr(Yt−1 = y)− Pr

(
Ỹt−1 = y

)∣∣∣Pt(y, y
′) + CA3′

∥∥wt − wt−ταt

∥∥Pr(Ỹt−1 = y
)

≤
∣∣∣Pr(Yt−1 = y)− Pr

(
Ỹt−1 = y

)∣∣∣Pt(y, y
′) + CA3′C19αt−ταt ,t−1(∥wt∥+ 1)Pr

(
Ỹt−1 = y

)
(Lemma 19)

≤
∣∣∣Pr(Yt−1 = y)− Pr

(
Ỹt−1 = y

)∣∣∣Pt(y, y
′) + CA3′C19αt−ταt ,t−1(UA3′ + 1)Pr

(
Ỹt−1 = y

)
≤
∣∣∣Pr(Yt−1 = y)− Pr

(
Ỹt−1 = y

)∣∣∣Pt(y, y
′) + C20,2αt−ταt ,t−1,

where C20,2
.
= CA3′C19(UA3′ + 1).

Thus, denote C20,3
.
= max {C20,1, C20,2}, we have∑

y′

∣∣∣Pr(Yt = y′)− Pr
(
Ỹt = y′

)∣∣∣ ≤∑
y

∣∣∣Pr(Yt−1 = y)− Pr
(
Ỹt−1 = y

)∣∣∣+ C20,3|Y|αt−ταt ,t−1.
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Applying the above inequality recursively yields

∑
y′

∣∣∣Pr(Yt = y′)− Pr
(
Ỹt = y′

)∣∣∣ ≤ C20,3|Y|
t−1∑

j=t−ταt

αt−ταt ,j

For the summation term, we have∑t−1
j=t−ταt

αt−ταt ,j

αt−ταt ,t−1
≤

ταt
ταt

αt−ταt

ταt
αt

=
ταt

αt−ταt

αt
= O

(
ln(t+ t0) · αt−ταt

αt

)
= O (ln(t+ t0)) .

Then there exists a constant C20,4 such that

t−1∑
j=t−ταt

αt−ταt ,j
≤ αt−ταt ,t−1C20,4 ln(t+ t0),

Consequently,

E
[∥∥∥H(wt−ταt

, Yt+1)−H(wt−ταt
, Ỹt+1)

∥∥∥|Ft−ταt

]
=

∥∥∥∥∥∥
∑
y′

H(wt−ταt
, y′) Pr(Yt+1 = y′)−

∑
y′

H(wt−ταt
, y′) Pr

(
Ỹt+1 = y′

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
y′

H(wt−ταt
, y′) Pr(Yt+1 = y′)−H(wt−ταt

, y′) Pr
(
Ỹt+1 = y′

)∥∥∥∥∥∥
≤C18(

∥∥wt−ταt

∥∥+ 1) ·
∑
y′

∣∣∣Pr(Yt+1 = y′)− Pr
(
Ỹt+1 = y′

)∣∣∣
≤C18αt−ταt ,t−1(C19(∥wt − wref∥+ 1) + 1)C20,3|Y|C20,4 ln(t+ t0 + 1).

Choosing C20
.
= C18(C19 + 1)C20,3C20,4|Y| then completes the proof.

We are now ready to present the proof of Lemma 4.

Proof. For the second component of T3 in (10), we have

E
[
T32

∣∣Ft−ταt

]
= E

[〈
∇L(wt−ταt

), H(wt−ταt
, Yt+1)−H(wt−ταt

, Ỹt+1)
〉 ∣∣Ft−ταt

]
≤
〈
∇L(wt−ταt

),E
[
H(wt−ταt

, Yt+1)−H(wt−ταt
, Ỹt+1)

∣∣Ft−ταt

]〉
≤
∥∥∇L(wt−ταt

)
∥∥
∗ ·
∥∥∥E[H(wt−ταt

, Yt+1)−H(wt−ταt
, Ỹt+1)

∣∣Ft−ταt

]∥∥∥.
From Lemma 20, we have

E
[∥∥∥H(wt−ταt

, Yt+1)−H(wt−ταt
, Ỹt+1)

∥∥∥∣∣Ft−ταt

]
≤ C20αt−ταt ,t−1 ln(t+ t0 + 1)(∥wt − wref∥+ 1).

Thus, there exists a constant C4 such that

T32 ≤ E
[∥∥∇L(wt−ταt

)
∥∥
∗

∥∥∥E[H(wt−ταt
, Yt+1)−H(wt−ταt

, Ỹt+1)
∣∣Ft−ταt

]∥∥∥]
≤ L(2∥wt − wref∥+ Cref + C19)C20αt−ταt ,t−1 ln(t+ t0 + 1)(∥wt − wref∥+ 1) (By (21))

≤ 2LC20αt−ταt ,t−1 ln(t+ t0 + 1)(∥wt − wref∥+ Cref + C19)
2

≤ C4αt−ταt ,t−1 ln(t+ t0 + 1)(∥wt − wref∥2 + 1).

This completes the proof.

17



Convergence Rates of Linear Q-Learning

B.5. Proof of Theorem 3

Recall the decomposition (9), combining the bounds for T1, T2, T31 and T32 from the above lemmas, we have:

E
[
⟨∇L(wt), H(wt, Yt+1)− h(wt)⟩|Ft−ταt

]
≤C1αt−ταt ,t−1(E

[
L(wt)|Ft−ταt

]
+ 1) + C2αt−ταt ,t−1(E

[
L(wt)|Ft−ταt

]
+ 1) + C3αt(E

[
L(wt)|Ft−ταt

]
+ 1)

+ C4αt−ταt ,t−1 ln(t+ t0 + 1)(E
[
L(wt)|Ft−ταt

]
+ 1)

≤D3αt−ταt ,t−1 ln(t+ t0 + 1)(E
[
L(wt)|Ft−ταt

]
+ 1).

where D3
.
= C1 + C2 + C3 + C4 is constant. Recall (6) and combine all the results, we have

E
[
L(wt+1)|Ft−ταt

]
≤E
[
L(wt)|Ft−ταt

]
+ αtE

[
⟨∇L(wt), h(wt)⟩|Ft−ταt

]
+ αtE

[
⟨∇L(wt), H(wt, Yt+1)− h(wt)⟩|Ft−ταt

]
+

Lα2
t

2
E
[
∥H(wt, Yt+1)∥2|Ft−ταt

]
≤E
[
L(wt)|Ft−ταt

]
+ αtE

[
⟨∇L(wt), h(wt)⟩|Ft−ταt

]
+ αtD3αt−ταt ,t−1 ln(t+ t0 + 1)(E

[
L(wt)|Ft−ταt

]
+ 1) +

Lα2
t

2
C2

18(1 + ∥wt − wref∥)2

≤E
[
L(wt)|Ft−ταt

]
+ αtE

[
⟨∇L(wt), h(wt)⟩|Ft−ταt

]
+ αtD3αt−ταt ,t−1 ln(t+ t0 + 1)(E

[
L(wt)|Ft−ταt

]
+ 1) + 2Lα2

tC
2
18(E

[
L(wt)|Ft−ταt

]
+ 1).

Denoting f(t)
.
= D3αtαt−ταt ,t−1 ln(t+ t0 + 1) +

2Lα2
tC

2
A2

l2s
= O

(
ln2(t+t0+1)
(t+t0)2ϵα

)
and taking the total expectation then

completes the proof of Theorem 3.

C. Proofs in Section 5.2
C.1. Proof of Lemma 5

Proof. Since softmax is Lipschitz continuous, we only need to bound
∣∣κw1

x(s, a)⊤w1 − κw2
x(s, a)⊤w2

∣∣.
Case 1: ∥w1∥2 < 1 and ∥w2∥2 < 1. In this case, κw1

= κw2
= κ0. Define Cx

.
= sups,a ∥x(s, a)∥2. Then we have∣∣κw1x(s, a)

⊤w1 − κw2x(s, a)
⊤w2

∣∣
≤κ0Cx∥w1 − w2∥2

≤ 3κ0Cx

1 + ∥w1∥2 + ∥w2∥2
∥w1 − w2∥2.

Case 2: ∥w1∥2 ≥ 1 and ∥w2∥2 ≥ 1. Without loss of generality, let ∥w1∥ ≥ ∥w2∥. In this case, κw1
= κ0

∥w1∥2
, κw2

= κ0

∥w2∥2
.

Then we have

|κw1
− κw2

| = κ0

∣∣∣∣∥w2∥2 − ∥w1∥2
∥w1∥2∥w2∥2

∣∣∣∣ ≤ κ0
∥w1 − w2∥2
∥w1∥2∥w2∥2

.

Therefore, ∣∣κw1
x(s, a)⊤w1 − κw2

x(s, a)⊤w2

∣∣
≤
∥∥κw1

x(s, a)⊤(w1 − w2)
∥∥
2
+
∣∣x(s, a)⊤w2

∣∣|κw1
− κw2

|

≤ κ0

∥w1∥2
Cx∥w1 − w2∥2 + Cx∥w2∥2κ0

∥w1 − w2∥2
∥w1∥2∥w2∥2

≤ 6κ0Cx

3∥w1∥2
∥w1 − w2∥2

≤ 6κ0Cx

1 + ∥w1∥2 + ∥w2∥2
∥w1 − w2∥2.
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Case 3: ∥w1∥2 < 1 and ∥w2∥2 ≥ 1, and vice versa. In this case, κw1
= κ0, and κw2

= κ0

∥w2∥2
≤ κ0. We can obtain that

|κw1
− κw2

| = κ0

(
1− 1

∥w2∥2

)
.

Similarly, we have ∣∣κw1x(s, a)
⊤w1 − κw2x(s, a)

⊤w2

∣∣
≤
∥∥κw2x(s, a)

⊤(w1 − w2)
∥∥
2
+
∣∣x(s, a)⊤w1

∣∣|κw1 − κw2 |

≤κ0Cx

∥w2∥
∥w1 − w2∥2 + Cx∥w1∥2κ0

(
1− 1

∥w2∥2

)
≤κ0Cx

∥w2∥
∥w1 − w2∥2 + Cxκ0

(
1− 1

∥w2∥2

)
≤κ0Cx

∥w2∥
∥w1 − w2∥2 +

Cxκ0

∥w2∥2
(∥w2∥2 − 1)

(∗)
≤ 6κ0Cx

3∥w2∥2
∥w1 − w2∥2

≤ 6κ0Cx

1 + ∥w1∥2 + ∥w2∥2
∥w1 − w2∥2,

where (∗) is obtained because ∥w1∥2 < 1, and according to the triangle inequality ∥w1 − w2∥2 ≥ ∥w2∥2 − ∥w1∥2 ≥
∥w2∥2 − 1 since ∥w2∥2 ≥ 1. This completes the proof.

C.2. Proof of Lemma 6

Proof. According to the definition in (13) and (14), we can apply the triangle inequality to get

∥h(w1)− h(w2)∥2
=∥A(w1)w1 + b(w1)−A(w2)w2 − b(w2)∥2
≤
∥∥X⊤Dµw1

(T (Xw1)−Xw1)−X⊤Dµw2
(T (Xw2)−Xw2)

∥∥
2

≤
∥∥X⊤Dµw1

(T (Xw1)− T (Xw2)− (Xw1 −Xw2))
∥∥
2
+
∥∥X⊤(Dµw1

−Dµw2
)(T (Xw2)−Xw2)

∥∥
2
.

The first term in the RHS can be bounded by ∥w1 − w2∥ easily because
∥∥Dµw1

∥∥
2
≤ 1 and T is a contraction (and thus

Lipschitz continuous w.r.t. any norm). For the second term in the RHS, according to Lemma 15, Dµw
is Lipschitz continuous

on µw, that is ∥∥Dµw1
−Dµw2

∥∥
2
≤ C6,1∥µw1 − µw2∥2.

Here we interpret µw as a vector in R|S||A|. It is easy to see that

∥T (Xw2)−Xw2∥ ≤ C6,2 + C6,2∥w2∥2

for some C6,2. Then Lemma 5 implies that for some C6,3, we have∥∥X⊤(Dµw1
−Dµw1

)(T (Xw2)−Xw2)
∥∥
2

≤∥X∥2C6,1∥µw1 − µw2∥2(C6,2 + C6,2∥w2∥2)

≤C6,3
1 + ∥w2∥2

1 + ∥w1∥2 + ∥w2∥2
∥w1 − w2∥2

≤C6,3∥w1 − w2∥2,

which completes the proof.
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C.3. Proof of Lemma 7

Proof. From Lemma 16, we know that if ∥w∥2 ≥ 1, there exist positive constants β, which satisfy

w⊤A(w)w ≤ −β∥w∥22.

Therefore, for ∥w∥2 ≥ 1, recall b(w) = X⊤Dµw
r, we have a constant C7,1

.
= |S|2|A|CxCr that ensures

⟨w,A(w)w + b(w)⟩ ≤ −β∥w∥22 + C7,1∥w∥2.

For ∥w∥2 ≤ 1, recall ∥A∥2 can be bounded by another constant C7,2 = (|S||A|Cx)
2(γ + 1), thus

⟨w,A(w)w + b(w)⟩ ≤ (C7,1 + C7,2)∥w∥2 ≤ −β∥w∥22 + (C7,1 + C7,2 + β)∥w∥2.

Thus, for C7
.
= C7,1 + C7,2 + β = |S|2|A|CxCr + (|S||A|Cx)

2(γ + 1) + β, it always holds that

⟨wt, A(wt)wt + b(wt)⟩ ≤ −β∥wt∥22 + C7∥wt∥2.

This completes the proof.

C.4. Proof of Theorem 1

Proof. Combining (15) and Lemma 7, we have

E[L(wt+1)]

≤E[L(wt)] + αtE[⟨∇L(wt), h(wt)⟩] + f(t)(1 + E[L(wt)])

≤E[L(wt)] + αt(−βE
[
∥wt∥22

]
+ C7E[∥wt∥2]) + f(t)(1 + E[L(wt)])

=(1− 2βαt + f(t))E[L(wt)] + αtC7E[∥wt∥2] + f(t)

≤(1− 2βαt + f(t))E[L(wt)] + E
[
αtβ · 1

2
∥wt∥22 +

2αt

β
C2

7

]
+ f(t) (using x+ y ≥ √

xy)

≤(1− βαt + f(t))E[L(wt)] +D1,1αt (since f(t) ≤ 2C2
7

β
αt for sufficiently large t)

≤(1−D1,2αt)E[L(wt)] +D1,1αt.

where D1,1
.
= 4

βC
2
7 and D1,2

.
= β

2 . Unfolding the recursion from time t̄ to t yields

E[L(wt)] ≤
t−1∏
k=t̄

(1−D1,2αk)E[L(wt̄)] +D1,1

t−1∑
k=t̄

αk

t−1∏
j=k+1

(1−D1,2αj).

Case 1: ϵα = 1. We can derive that

t−1∏
j=k+1

(1−D1,2αj) ≤ exp

−D1,2

t−1∑
j=k+1

αj


≤ exp

(
−D1,2α

∫ t

k+1

1

x+ t0
dx

)
= exp (−D1,2α(ln(t+ t0)− ln(k + 1 + t0)))

=

(
k + 1 + t0
t+ t0

)D1,2α

.

Substituting back, we obtain

E[L(wt)] ≤
(
t0 + t̄

t+ t0

)D1,2α

E[L(wt̄)] +D1,1

t−1∑
k=t̄

α

k + t0

(
k + 1 + t0
t+ t0

)D1,2α

.
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The second term becomes

t−1∑
k=t̄

α

k + t0

(
k + 1 + t0
t+ t0

)D1,2α

≤ 2D1,2α

(t+ t0)D1,2α

t−1∑
k=t̄

(k + t0)
D1,2α−1.

Denote c
.
= D1,2α and S(t)

.
= 1

(t+t0)c

∑t−1
k=t̄(k + t0)

c−1.

1. When c ̸= 1:

t−1∑
k=t̄

(k + t0)
c−1 ≤

∫ t

t̄−1

(x+ t0)
c−1dx ≤ (t+ t0)

c

c
,

S(t) ≤ 1

(t+ t0)c
· (t+ t0)

c

c
=

1

c
.

2. When c = 1:

S(t) ≤ 1

t+ t0

t−1∑
k=t̄

k0 =
t− t̄

t+ t0
< 1.

Thus, we conclude that S(t) ≤ 1
D1,2α

, that is

E[L(wt)] ≤
(
t0 + t̄

t+ t0

)D1,2α

E[L(wt̄)] +D1,12
D1,2

1

D1,2α

=
D1,3

(t+ t0)D1,2α
E[L(wt̄)] +D1,4.

Furthermore, the last constant can be expanded as D1,4 ≤ 4
βC

2
7

2β

β/2 ≤ ((|S||A|Cx)
2(γ + 1) + |S|2|A|CxCr)

2 2β+3

β2 . For
the E[L(wt̄)] term, since t̄ is deterministic, starting from the update of wt+1, we have

∥wt+1∥ ≤ ∥wt∥+ αt∥H(wt, Yt+1)∥ ≤ ∥wt∥+ αtC18(∥wt∥+ 1).

That is, ∥wt+1∥ ≤ α0C18 +
∑t

i=0(α0C18 + 1)∥wi∥. Applying discrete Gronwall inequality, we obtain

∥wt̄∥ ≤ (C18 + ∥w0∥) exp

(
t̄−1∑
t=0

(1 + α0C18)

)
= (C18 + ∥w0∥) exp(t̄+ t̄α0C18)

Furthermore, combining this with the current bound, denote B1,1
.
= D1,3 exp(2t̄(1 + α0C18)), B1,2

.
= D1,2 and B1,3

.
=

2
(

D1,3

(t̄+t0)
D1,2α × 2C18 exp(2t̄(1 + α0C18)) +D1,4

)
then completes the proof of the first case.

Case 2: ϵα ∈ (0, 1).

t−1∏
j=k+1

(1−D1,2αj) ≤ exp

−D1,2

t−1∑
j=k+1

αj


≤ exp

(
−D1,2α

∫ t

k+1

1

(x+ t0)ϵα
dx

)
= exp

(
−D1,2α

1− ϵα

[
(t+ t0)

1−ϵα − (k + 1 + t0)
1−ϵα

])

=
exp

(
D1,2α
1−ϵα

(k + 1 + t0)
1−ϵα

)
exp

(
D1,2α
1−ϵα

(t+ t0)1−ϵα

) .
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Substituting back, we obtain

E[L(wt)] ≤ exp

(
−D1,2α

1− ϵα

[
(t+ t0)

1−ϵα − (t̄+ t0)
1−ϵα

])
E[L(wt̄)]

+D1,1

t−1∑
k=t̄

α

(k + t0)ϵα
exp

(
−D1,2α

1− ϵα

[
(t+ t0)

1−ϵα − (k + 1 + t0)
1−ϵα

])
.

For the second term,

t−1∑
k=t̄

α

(k + t0)ϵα
exp

(
−D1,2α

1− ϵα

[
(t+ t0)

1−ϵα − (k + 1 + t0)
1−ϵα

])

≤ α

exp
(

D1,2α
1−ϵα

(t+ t0)1−ϵα

) t−1∑
k=t̄

1

(k + t0)ϵα
exp

(
D1,2α

1− ϵα
(k + 1 + t0)

1−ϵα

)
.

To make the notation cleaner, we define M =
D1,2α
1−ϵα

, then

RHS =
α

exp (M(t+ t0)1−ϵα)

t+t0−1∑
k=t̄+t0

1

kϵα
exp

(
M(k + 1)1−ϵα

)
≤ α

exp (M(t+ t0)1−ϵα)

t+t0−1∑
k=t̄+t0

2ϵα

(k + 1)ϵα
exp

(
M(k + 1)1−ϵα

)
≤ 2ϵαα

exp (M(t+ t0)1−ϵα)

∫ t+t0+1

1

x−ϵα exp
(
Mx1−ϵα

)
dx.

Now we perform a substitution to simplify the integral, let u .
= Mx1−ϵα , then du = M(1− ϵα)x

−ϵαdx, thus∫ t+t0+1

1

x−ϵα exp
(
Mx1−ϵα

)
dx =

1

M(1− ϵα)

∫ M(t+t0+1)1−ϵα

M

exp (u)du ≤
exp

(
M(t+ t0 + 1)1−ϵα

)
M(1− ϵα)

.

Finally, we have

E[L(wt)] ≤ exp

(
−D1,2α

1− ϵα

[
(t+ t0)

1−ϵα − (t̄+ t0)
1−ϵα

])
E[L(wt̄)]

+D1,1

t−1∑
k=t̄

α

(k + t0)ϵα
exp

(
−D1,2α

1− ϵα

[
(t+ t0)

1−ϵα − (k + 1 + t0)
1−ϵα

])
≤ exp

(
−D1,2α

1− ϵα

[
(t+ t0)

1−ϵα − (t̄+ t0)
1−ϵα

])
E[L(wt̄)]

+D1,1
2ϵαα

exp (M(t+ t0)1−ϵα)

exp
(
M(t+ t0)

1−ϵα
)

M(1− ϵα)

= exp

(
−D1,2α

1− ϵα

[
(t+ t0)

1−ϵα − (t̄+ t0)
1−ϵα

])
E[L(wt̄)] +

2ϵαD1,1α

M(1− ϵα)

= exp

(
−D1,2α

1− ϵα

[
(t+ t0)

1−ϵα − (t̄+ t0)
1−ϵα

])
E[L(wt̄)] +

2ϵαD1,1

D1,2

= exp

(
−D1,2α

1− ϵα

[
(t+ t0)

1−ϵα − (t̄+ t0)
1−ϵα

])
E[L(wt̄)] +D1,5.

The last constant can be expanded as D1,5 =
2ϵα+3C2

7
β2 = 2ϵα+3

β2 ((|S||A|Cx)
2(γ + 1) + |S|2|A|CxCr)

2. Then Theorem 1
follows from using the Gronwall inequality to bound L(wt̄) with ∥w0∥ and the equivalence of norms, with B1,4, B1,5, and
B1,6 selected similarly.
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D. Proofs in Section 5.3
D.1. Proof of Lemma 8

Proof. It is obvious that q∗ is the unique fixed point because infq,s,a dµq (s, a) > 0 thanks to the fact that ϵ > 0. We also
have

∥T ′q − q∗∥∞ =
∥∥T ′q −Dµq

(q∗ − q∗)− q∗
∥∥
∞

=
∥∥DµqT q −Dµqq + q − q∗ +Dµq (q∗ − q∗)

∥∥
∞

=
∥∥Dµq

(T q − q∗) + (I −Dµq
)(q − q∗)

∥∥
∞

≤ max
s,a

∣∣dµq (s, a)(T q − q∗)(s, a) + (1− dµq (s, a))(q − q∗)(s, a)
∣∣

≤ max
s,a

dµq
(s, a)∥T q − q∗∥∞ + (1− dµq

(s, a))∥q − q∗∥∞

≤ max
s,a

dµq (s, a)γ∥q − q∗∥∞ + (1− dµq (s, a))∥q − q∗∥∞

= max
s,a

(1− (1− γ)dµq
(s, a))∥q − q∗∥∞

≤
(
1− (1− γ) inf

q,s,a
dµq

(s, a)

)
∥q − q∗∥∞,

which completes the proof.

D.2. Proof of Lemma 10

Proof. Recalling the update rule for tabular Q-learning in (SA) and (11), we have

∥qt+1∥∞ ≤ (1− αt)∥qt∥∞ + αt(Cr + γ∥qt∥∞)

= (1− αt + γαt)∥qt∥∞ + αtCr.

If ∥qt∥m is unbounded, then ∥qt∥∞ is also unbounded, that is for each constant M > ∥q0∥∞, we can find some time t such
that ∥qt∥∞ < M ≤ ∥qt+1∥∞. Therefore,

M < (1− αt + γαt)M + αtCr,

which is equivalent to

αt(1− γ)M < αtCr.

Since Cr is a constant, we will get a contradiction for M > Cr

1−γ . This completes the proof.

D.3. Proof of Lemma 11

Proof. Recalling the definition of h(w) in (16), we have

∥h(q1)− h(q2)∥∞ = ∥T ′q1 − q1 − (T ′q2 − q2)∥∞
=
∥∥Dµq1

(T q1 − q1)−Dµq1
(T q2 − q2) +Dµq1

(T q2 − q2)−Dµq2
(T q2 − q2)

∥∥
∞

≤
∥∥Dµq1

(T q1 − q1)−Dµq1
(T q2 − q2)

∥∥
∞ +

∥∥Dµq1
(T q2 − q2)−Dµq2

(T q2 − q2)
∥∥
∞

≤ ∥(T q1 − T q2)− (q1 − q2)∥∞ +
∥∥Dµq1

−Dµq2

∥∥
∞∥T q2 − q2∥∞.

The first term in the RHS can be bounded with ∥q1 − q2∥∞ easily. For the second term in the RHS,
∥∥Dµq1

−Dµq2

∥∥ can be
bounded with ∥q1 − q2∥∞ thanks to Lemma 15. Noticing that ∥T q2 − q2∥∞ is bounded because q2 lies in a compact set
then completes the proof.

D.4. Proof of Lemma 12

Proof. Recall that βm = (1− γ) infq,s,a dµq
(s, a), we have

⟨∇M(qt − q∗), h(qt)⟩
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=⟨∇M(qt − q∗), T ′qt − qt⟩
=⟨∇M(qt − q∗), T ′qt − q∗ + q∗ − qt⟩
=⟨∇M(qt − q∗), T ′qt − q∗⟩ − ⟨∇M(qt − q∗), qt − q∗⟩

≤∥qt − q∗∥m∥T ′qt − q∗∥m − ∥qt − q∗∥2m (Lemma 9)

≤∥qt − q∗∥m · 1

lim
∥T ′qt − q∗∥∞ − ∥qt − q∗∥2m

≤∥qt − q∗∥m · 1

lim
βm∥qt − q∗∥∞ − ∥qt − q∗∥2m

=−
(
1− uim

lim
βm

)
∥qt − q∗∥2m.

Since βm < 1, we can choose a sufficiently small ξ (defined in Lemma 9) such that C12
.
= 1− uim

lim
βm > 0, which completes

the proof.

D.5. Proof of Theorem 2

Proof. Combining (17) and Lemma 12 yields

E[L(qt+1)] ≤E[L(qt)] + αtE[⟨∇L(qt), h(qt)⟩] + f(t)(1 + E[L(qt)])
=(1− 2C12αt + f(t))E[L(qt)] + f(t)

≤(1−D2,1αt)E[L(qt)] +D2,2
ln2(t+ t0)

(t+ t0)2ϵα
.

Recall we have:

αt =
α

(t+ t0)ϵα
, αt−τ,t−1 = O

(
ln(t+ t0)

(t+ t0)ϵα

)
,

where ϵα ∈ (0.5, 1] and t0 > 0 is chosen sufficiently large. Then for any 0.5 < ϵ′α < ϵα, for t large enough, the recursive
inequality can be simplified to:

E[L(qt+1)] ≤ (1−D2,1αt)E[L(qt)] +D2,2
α2

(t+ t0)2ϵ
′
α
.

Thus,

E[L(qt)] ≤

(
t−1∏
k=t̄

(1−D2,1αk)

)
E[L(qt̄)] +D2,2

t−1∑
k=t̄

α2

(t+ t0)2ϵ
′
α

t−1∏
j=k+1

(1−D2,1αk).

Therefore we have:

t−1∏
j=k+1

(1−D2,1αj) ≤ exp

−D2,1

t−1∑
j=k+1

αj

.

Case 1: ϵα = 1. With the step size αj =
α

j+t0
, the sum can be approximated by an integral:

t−1∑
j=k+1

αj ≥ α

∫ t

k+1

1

x+ t0
dx = α(ln(t+ t0)− ln(k + 1 + t0)).

Thus, the product term becomes:

t−1∏
j=k+1

(1−D2,1αj) ≤ exp [−D2,1α (ln(t+ t0)− ln(k + 1 + t0))] =

(
k + 1 + t0
t+ t0

)D2,1α

.
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Substituting back into the recursive inequality:

E[L(qt)] ≤
(
t̄+ t0
t+ t0

)D2,1α

E[L(qt̄)] +D2,2

t−1∑
k=t̄

α2

(k + t0)2

(
k + 1 + t0
t+ t0

)D2,1α

.

Now the summation term can be bounded by:

t−1∑
k=t̄

α2

(k + t0)2

(
k + 1 + t0
t+ t0

)D2,1α

≤
t+t0−1∑
k=t0+t̄

1

k2

(
2k

t+ t0

)D2,1α

=
2D2,1α

(t+ t0)D2,1α

t+t0−1∑
k=t0+t̄

kD2,1α−2.

Define:

S(t)
.
=

t+t0−1∑
k=t0+t̄

kD2,1α−2.

The behavior of S(t) depends on the value of D2,1α:

1. When D2,1α < 1, then D2,1α− 2 < −1. The sum S(t) converges to a constant as t → ∞:

S(t) ≤ D2,3.

Therefore,

2D2,1αS(t)

(t+ t0)D2,1α
≤ 2D2,1αD2,3

(t+ t0)D2,1α
.

2. When D2,1α = 1, then D2,1α− 2 = −1. The sum S(t) behaves like the harmonic series:

S(t) ≤ ln(t+ t0 − 1).

Thus,

2D2,1αS(t)

t+ t0
≤ 2D2,1α ln(t+ t0 − 1)

t+ t0
.

3. When D2,1α > 1, then D2,1α− 2 > −1. The sum S(t) grows polynomially:

S(t) ≤ (t+ t0)
D2,1α−1

D2,1α− 1
.

Therefore,

2D2,1αS(t)

(t+ t0)D2,1α
=

2D2,1α(t+ t0)
D2,1α−1

(D2,1α− 1)(t+ t0)D2,1α
≤ 2D2,1α

(D2,1α− 1)(t+ t0)
.

Substituting the bounded summation term back into the recursive inequality, we obtain:

E[L(qt)] ≤
(

2t0
t+ t0

)D2,1α

E[L(qt̄)] +
2D2,1αS(t)

(t+ t0)D2,1α

≤ D2,4

(t+ t0)D2,1α
E[L(qt̄)] +

D2,5 ln(t+ t0)

(t+ t0)min (1,D2,1α)
. (22)

For the E[L(qt̄)] term, since t̄ is deterministic, following the similar derivation as above, we can obtain

E[L(qt̄)] ≤
(

t0
t̄+ t0

)D2,1α

E[L(q0)] +D2,2

t̄−1∑
k=0

α2

(k + t0)2

(
k + 1 + t0
t̄+ t0

)D2,1α

.
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Similarly, the summation term can be bounded by:

t̄−1∑
k=0

α2

(k + t0)2

(
k + 1 + t0
t̄+ t0

)D2,1α

≤ 2D2,1α

(t̄+ t0)D2,1α

t̄+t0−1∑
k=t0

kD2,1α−2

≤ 2D2,1αt̄

(t̄+ t0)D2,1α
max(t

D2,1α−2
0 , (t̄+ t0 − 1)D2,1α−2).

Therefore, E[L(qt̄)] ≤ D2,6E[L(q0)] + D2,7. Combining this with (22), denote B2,1
.
= D2,4D2,6, B2,2

.
= D2,1 and

B2,3
.
= D2,4D2,7 +D2,5 then completes the proof of the first case.

Case 2: ϵα ∈ (0.5, 1). With the step size αj =
α

(j+t0)ϵα
, the sum can be approximated by an integral:

t−1∑
j=k+1

αj ≥ α

∫ t

k+1

1

(x+ t0)ϵα
dx =

α

1− ϵα

[
(t+ t0)

1−ϵα − (k + 1 + t0)
1−ϵα

]
.

Thus, the product term becomes:

t−1∏
j=k+1

(1−D2,1αj) ≤ exp

(
−D2,1α

1− ϵα

[
(t+ t0)

1−ϵα − (k + 1 + t0)
1−ϵα

])
.

Substituting back into the recursive inequality, we can get:

E[L(qt)] ≤ exp

(
−D2,1α

1− ϵα
(t+ t0)

1−ϵα

)
exp

(
D2,1α

1− ϵα
t1−ϵα
0

)
E[L(qt̄)]

+D2,2

t−1∑
k=t̄

α2

(k + t0)2ϵ
′
α
exp

(
−D2,1α

1− ϵα

[
(t+ t0)

1−ϵα − (k + 1 + t0)
1−ϵα

])
.

Denote D2,6
.
= exp

(
D2,1α
1−ϵα

t1−ϵα
0

)
. Now we bound the summation term. Since 2ϵ′α > 1, this term can be bounded by:

t−1∑
k=t̄

α2

(k + t0)2ϵ
′
α
exp

(
−D2,1α

1− ϵα

[
(t+ t0)

1−ϵα − (k + 1 + t0)
1−ϵα

])

=

t̄+⌊ t
2 ⌋−1∑

k=t̄

α2

(k + t0)2ϵ
′
α
exp

(
−D2,1α

1− ϵα

[
(t+ t0)

1−ϵα − (k + 1 + t0)
1−ϵα

])

+

t−1∑
k=t̄+⌊ t

2 ⌋

α2

(k + t0)2ϵ
′
α
exp

(
−D2,1α

1− ϵα

[
(t+ t0)

1−ϵα − (k + 1 + t0)
1−ϵα

])

≤⌊ t
2
⌋ α2

t
2ϵ′α
0

exp

(
−D2,1α

1− ϵα

[
(t+ t0)

1−ϵα − (t̄+ ⌊ t
2
⌋+ t0)

1−ϵα

])
+

t−1∑
k=t̄+⌊ t

2 ⌋

α2

(k + t0)2ϵ
′
α

≤⌊ t
2
⌋ α2

t
2ϵ′α
0

exp
(
−D2,7(t+ t0)

1−ϵα
)
+

∫ t−1

t̄+⌊ t
2 ⌋−1

α2

(x+ t0)2ϵ
′
α
dx

≤⌊ t
2
⌋ α2

t
2ϵ′α
0

exp
(
−D2,7(t+ t0)

1−ϵα
)
+

α2

1− 2ϵ′α
(t+ t0)

1−2ϵ′α

≤D2,8(t+ t0)
1−2ϵ′α .

Substituting the bounded summation term back into the recursive inequality, we obtain:

E[L(qt)] ≤ exp

(
−D2,1α

1− ϵα
(t+ t0)

1−ϵα

)
D2,6E[L(qt̄)] +D2,2D2,8(t+ t0)

1−2ϵ′α
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≤ exp

(
−D2,1α

1− ϵα
(t+ t0)

1−ϵα

)
D2,6E[L(qt̄)] +D2,9(t+ t0)

1−2ϵ′α .

Then Theorem 2 follows from using the Gronwall inequality to bound L(qt̄) with ∥q0∥ and the equivalence of norms, with
B2,4, B2,5, and B2,6 selected similarly.

E. Comparsion with other algorithms
We compare our unmodified linear Q-learning algorithm with several variants that incorporate common modifications.
All experiments are conducted in the Baird’s counterexample environment with 10 independent runs per algorithm. All
algorithms use the same ϵ-softmax behavior policy with adaptive temperature parameter κ0 = 10 and ϵ = 0.1 as described
in our main paper.

We compare the following algorithms:

1. No Modification: The original linear Q-learning algorithm as analyzed in our theoretical results.

2. Target Network: A separate target network is used for computing the TD error, with the target network updated every
10 timesteps.

3. Weight Projection: After each update, the weights are projected onto a ball with radius 10, ensuring ∥wt∥2 ≤ 10 at all
times(Chen et al., 2023).

4. Ridge Regularization: A ridge regularization term is added to the update rule with coefficient η = 0.01(Zhang et al.,
2021), penalizing large weight values.

Figure 2 shows the evolution of weight norms ∥wt∥22 for all four algorithms. While all methods eventually maintain bounded
weights, our unmodified approach achieves comparable performance without the computational overhead or hyperparameter
tuning required by the other methods.
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Figure 2. Each scenario is independently run 10 times, with the solid lines representing the averages of the squared L2 norm of weights,
and the shaded areas indicating the ranges between minimum and maximum values. This comparison illustrates the impact of different
modification strategies on the algorithm’s convergence behavior.
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