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Abstract001

Using language models to scalably approxi-002
mate human preferences on text quality (LLM-003
as-a-judge) has become a standard practice ap-004
plicable to many tasks. A judgment is often005
extracted from the judge’s textual output alone,006
typically with greedy decoding. However,007
LLM judges naturally provide distributions008
over judgment tokens, inviting a breadth of009
inference methods for extracting fine-grained010
preferences. We find that taking the mean of011
the judgment distribution consistently outper-012
forms taking the mode (i.e. greedy decoding)013
in all evaluation settings (i.e. pointwise, pair-014
wise, and listwise). We further explore novel015
methods of deriving preferences from judgment016
distributions, and find that methods that incor-017
porate risk aversion can improve calibration.018
Lastly, we analyze LLM-as-a-judge paired with019
chain-of-thought (CoT) prompting, showing020
that CoT can collapse the spread of the judg-021
ment distribution, often harming performance.022
Our findings suggest leveraging distributional023
output can improve LLM-as-a-judge, as op-024
posed to using the text interface alone.025

1 Introduction026

LLM-as-a-judge has emerged as a scalable frame-027

work for evaluating model outputs by approximat-028

ing human annotation (Lin et al., 2024; Li et al.,029

2024b; Dubois et al., 2024). Typically, such sys-030

tems prompt off-the-shelf LLMs to score a re-031

sponse or rank multiple responses to a given user032

prompt. LLM-as-a-judge methods boast strong033

agreement with human judgments across a breadth034

of domains and criteria (Zheng et al., 2023b; Ye035

et al., 2023), despite current limitations (Koo et al.,036

2023; Tan et al., 2024).037

Most prior work involving LLM-as-a-judge elic-038

its judgments through the LLM’s text interface (Lin039

et al., 2024; Zhu et al., 2023; Ye et al., 2023), where040

the most likely token (i.e. the mode of the next to-041

ken distribution) or a sampled token is taken to042

represent the LLM’s judgment. Recent works (Lee 043

et al., 2024a; Liu et al., 2023b; Yasunaga et al., 044

2024) have suggested that taking the mean of the 045

score token distribution can better represent the 046

LLM’s judgment. In this work, we comprehen- 047

sively evaluate design choices for leveraging LLM 048

judges’ distributional output. 049

We show that the mean consistently outperforms 050

the mode in the pointwise, pairwise, and listwise 051

settings (i.e. evaluating one, two, and many re- 052

sponses at a time). Specifically, the mean achieves 053

higher accuracy in 92 out of 120 cases on Re- 054

wardBench (Lambert et al., 2024) and MT-Bench 055

(Zheng et al., 2023b). We further explore novel 056

methods of deriving preferences from score dis- 057

tributions (Section 4). For example, incorporating 058

risk aversion can improve calibration. Categorizing 059

methods as discrete or continuous, where discrete 060

methods (e.g. mode) are simple to interpret like 061

rubric scores, we find that continuous methods out- 062

perform discrete methods, due to the latter often 063

predicting ties and failing to capture slight prefer- 064

ences. In particular, the mode assigns ties more 065

frequently than every other method, leading to the 066

lowest accuracy even among discrete methods. 067

We further study how chain-of-thought (CoT) 068

prompting (Wei et al., 2022) impacts the perfor- 069

mance of LLM-as-a-judge. After the CoT reason- 070

ing, LLMs often exhibit sharper score distributions, 071

making the mean judgment similar to the mode. 072

Removing CoT increases the spread of the judg- 073

ment distribution, often improving performance, 074

and more so for taking the mean than taking the 075

mode (e.g. absolute +6.5% for mean vs. +1.4% for 076

mode, on average with pointwise scoring on Re- 077

wardBench), demonstrating the synergy between 078

eliciting and using distributional output. 079

Our findings stress the importance of leveraging 080

distributional output to maximize the effectiveness 081

of LLM-as-a-judge, as opposed to using the text 082

interface alone. As LLM-as-a-judge paradigms 083
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Figure 1: Pointwise LLM judge’s logits produce a score distribution. We show two ways to compare two score
distributions: (1) comparing the modes of the distributions and (2) comparing the means of the distributions.

are widely adopted for complex tasks, improving084

best practices for using LLM-as-a-judge can impact085

many end tasks’ development and evaluation.086

2 Background087

2.1 LLM-as-a-Judge Settings088

We review three settings for LLM-as-a-judge.089

Pointwise Scoring The LLM judge scores the090

two texts independently on a scale from 1 to some091

K, as shown in Figure 1 (Zheng et al., 2023b; Lin092

et al., 2024; Cui et al., 2023).093

Pairwise Scoring The LLM judge scores both094

texts in a single prompt (Zhu et al., 2023; Saha095

et al., 2023; Chan et al., 2023). To account for096

position bias, we prompt the LLM judge twice,097

once for each order of presentation, and average098

the outputs (Lee et al., 2024a).099

Pairwise Ranking The LLM judge states which100

of the two texts it prefers (Lin et al., 2024; Li et al.,101

2024b; Dubois et al., 2024). As with pairwise scor-102

ing, we prompt the LLM judge twice, once for each103

order of presentation.104

2.2 Related Work105

Mean Judgment Several prior works have used106

the mean of the judgment distribution, mostly in107

the pointwise setting. Liu et al. (2023b); Lee et al.108

(2024a); Saad-Falcon et al. (2024) note the bene-109

fits of the mean but do not empirically compare it110

with the mode. Zawistowski (2024) shows that the111

mean outperforms the mode for summary scoring.112

Concurrent work (Yasunaga et al., 2024) shows113

that the mean outperforms the mode on Reward-114

Bench (Lambert et al., 2024), but the paper’s focus115

is on data-efficient alignment. Similarly, Hashemi116

et al. (2024) show that after training a calibrator for117

personalized alignment, the mean outperforms the 118

mode on dialogue judgment. 119

Lee et al. (2024a); Zhai et al. (2024) use pairwise 120

judgment distributions to train a student model, but 121

do not empirically compare with distillation using 122

text judgments. In this work, we benchmark the 123

mode, the mean, and newly proposed methods for 124

leveraging distributional outputs across the point- 125

wise, pairwise, and listwise settings. 126

CoT Zheng et al. (2023b) presented preliminary 127

evidence that CoT benefits LLM-as-a-judge. Other 128

LLM-as-a-judge systems have been proposed that 129

take advantage of LLMs’ ability to perform CoT 130

reasoning (Ankner et al., 2024; Feng et al., 2024). 131

In this work, we analyze the effect of CoT in tan- 132

dem with the method (e.g. mode vs. mean). 133

Related phenomena on the effect of CoT have 134

been studied in the literature (Chiang and Lee, 135

2023; Stureborg et al., 2024; Liu et al., 2024a; Lee 136

et al., 2023; Sprague et al., 2024; Hao et al., 2024; 137

Zheng et al., 2023b). Wang and Zhou (2024) show 138

the sharpening effect of CoT, which improves per- 139

formance on numerical reasoning tasks. In this 140

work, we show that this sharpening effect can be 141

harmful when the LLM is used as a judge. 142

Distributional Reward Models Using distribu- 143

tional judgment makes it possible for LLM judges 144

to represent pluralistically aligned preferences 145

(Sorensen et al., 2024; Siththaranjan et al., 2023; 146

Kumar et al., 2024). Compared to existing work on 147

distributional reward models (Siththaranjan et al., 148

2023; Zhang et al., 2024b; Li et al., 2024a; Dorka, 149

2024; Poddar et al., 2024; Padmakumar et al., 150

2024), (1) our setting involves LLMs not trained 151

or prompted for distributional judgment (Meister 152

et al., 2024), and (2) LLM judges can produce ar- 153

bitrary distributions over a flexibly chosen discrete 154

judgment space. 155
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Model Setting Method RewardBench MT-Bench
Chat Chat Hard Safety Reasoning Total

GPT-4o

point score mode 95.8, 89.7 76.0, 77.4 89.3, 88.5 79.5, 80.3 85.1, 84.0 81.9, 80.5
mean 97.1, 94.3 75.2, 79.8 90.3, 89.7 87.0, 88.0 87.4, 88.0 83.6, 83.2

pair score mode 97.3, 97.9 69.0, 70.7 89.1, 89.5 91.3, 91.3 86.7, 87.4 86.2, 86.5
mean 97.2, 97.8 69.7, 70.8 89.5, 89.5 91.9, 92.4 87.1, 87.6 86.3, 86.8

pair rank mode 96.9, 97.6 76.4, 79.1 89.0, 90.9 91.4, 91.3 88.4, 89.7 86.3, 85.6
mean 96.2, 98.3 76.6, 79.4 88.5, 90.8 93.0, 93.6 88.6, 90.5 87.3, 85.9

Llama-3.1-8B

point score mode 83.8, 87.6 57.6, 58.0 76.2, 78.2 60.8, 64.8 69.6, 72.2 74.9, 71.9
mean 89.0, 95.8 58.6, 58.8 73.0, 80.8 70.2, 81.9 72.7, 79.3 78.7, 81.5

pair score mode 92.0, 94.3 45.4, 45.4 69.5, 78.8 79.9, 82.4 71.7, 75.2 82.6, 82.4
mean 92.6, 95.8 44.6, 45.0 69.3, 78.9 81.7, 87.6 72.1, 76.8 82.3, 81.2

pair rank mode 76.7, 65.2 52.3, 48.1 71.0, 66.4 75.6, 55.8 68.9, 58.9 76.2, 63.0
mean 90.5, 93.0 50.0, 44.1 78.1, 72.7 78.3, 64.6 74.2, 68.6 80.0, 76.5

Mistral-7B

point score mode 52.4, 66.2 51.5, 50.5 79.9, 75.7 57.8, 58.4 60.4, 62.7 59.5, 66.2
mean 54.5, 82.1 53.5, 49.1 79.9, 79.6 67.2, 77.5 63.8, 72.1 62.6, 74.0

pair score mode 87.6, 89.9 40.2, 40.4 74.0, 73.0 67.4, 72.4 67.3, 68.9 79.3, 79.8
mean 89.2, 91.1 41.2, 39.3 74.1, 73.4 67.8, 80.2 68.1, 71.0 80.0, 80.4

pair rank mode 51.0, 51.5 51.0, 46.2 62.2, 66.8 61.0, 50.8 56.3, 53.8 51.5, 51.5
mean 79.5, 81.7 39.3, 36.3 73.1, 67.7 63.8, 50.6 63.9, 59.1 73.5, 65.5

Prometheus-2-7B

point score mode 81.3, 81.7 50.5, 50.8 65.9, 73.4 59.2, 58.2 64.3, 66.0 72.5, 73.5
mean 82.4, 92.2 48.9, 54.4 65.7, 76.6 61.3, 77.6 64.6, 75.2 72.1, 81.6

pair score mode 91.2, 92.0 44.1, 43.6 75.9, 69.4 72.7, 69.6 71.0, 68.7 78.4, 80.8
mean 91.3, 93.0 42.7, 43.0 74.9, 72.0 73.0, 75.1 70.5, 70.8 78.3, 80.9

pair rank mode 55.6, 45.4 51.0, 50.0 66.6, 49.7 65.3, 47.8 59.6, 48.2 51.5, 43.0
mean 90.5, 45.0 44.3, 50.7 74.2, 55.5 69.8, 44.1 69.7, 48.8 75.4, 33.4

Table 1: Mode vs. mean and CoT vs. no-CoT (comma-separated) accuracy results (%). For each base model+setting,
we bold the best result and underline results not significantly worse (α = 0.05). The mean outperforms the mode in
92 out of 120 cases. No-CoT outperforms CoT in 30 out of 40 cases when using the mean for pointwise or pairwise
scoring.

3 Distributional Judgment156

In this section, we present our findings comparing157

mode vs. mean inference and CoT vs. no-CoT158

prompting for LLM-as-a-judge systems.159

3.1 Methods160

To infer a judgment from the LLM judge’s output161

distribution, we use the mode or the mean. With162

mode, we perform greedy decoding to produce a163

judgment token and discard the logits. With mean,164

we compute a weighted average of the judgment165

options, weighting each judgment option by the166

probability assigned to its token. See Appendix B167

for details.168

3.2 Experimental Setup169

Models As LLM judges, we use gpt-4o-2024-08-170

06 (shortened to GPT-4o) (OpenAI et al., 2024),171

Llama-3.1-8B-Instruct (Llama-3.1-8B) (Dubey172

et al., 2024), Mistral-7B-Instruct-v0.3 (Mistral-7B)173

(Jiang et al., 2023), and Prometheus-2-7B (Kim174

et al., 2024). We cover a commonly used closed-175

sourced LLM (GPT-4o), as well as smaller open-176

sourced variants.177

Inference Settings We prompt the LLM judge 178

with or without CoT reasoning, i.e. to provide 179

a brief explanation before stating the judgment. 180

We use greedy decoding for CoT prompting. See 181

Appendix C for prompts. 182

We softmax the judgment logits into judgment 183

probabilities with temperature 1. We use the score 184

space {1, . . . ,K = 9} in this section. 185

Evaluation Datasets and Metrics We evaluate 186

on RewardBench (Lambert et al., 2024) and MT- 187

Bench (Zheng et al., 2023b), two canonical datasets 188

for preference modeling with human annotations. 189

Each data instance contains a prompt, a preferred 190

response, and a dispreferred response. 191

We evaluate accuracy on the binary classifica- 192

tion task; predicting the correct winner, a tie, or the 193

wrong winner gets 1, 0.5, or 0 points, respectively 194

(Lambert et al., 2024). RewardBench contains 195

2,985 (prompt, response 1, response 2) triplets, 196

each labeled with the preferred response. Since MT- 197

Bench has multiple human judgments per triplet, 198

we compute accuracy using only triplets with unan- 199

imous human judgments (1,132 out of 1,814). See 200

Appendix D for dataset details. 201
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Model Setting RewardBench MT-Bench

GPT-4o
point score .039, .103 .041, .116
pair score .042, .066 .038, .064
pair rank .002, .065 .012, .114

Llama
-3.1-8B

point score .060, .101 .068, .093
pair score .054, .106 .047, .092
pair rank .215, .318 .186, .331

Table 2: Average standard deviation of judgment dis-
tribution, with judgment options rescaled to [0, 1].
Comma-separated values in each cell are with and with-
out CoT. No-CoT always has a greater standard devia-
tion.

3.3 Results202

Table 1 shows our main results, comparing mode vs.203

mean and CoT vs. no-CoT across various prompt204

settings and LLMs.205

Mean outperforms mode The mean outper-206

forms the mode in 92 out of 120 cases. We observe207

particularly large gains for pointwise scoring on the208

Reasoning subset, e.g. absolute +7.7% and +17.1%209

for GPT-4o and Llama-3.1-8B.210

CoT often harms LLM-as-a-judge For the scor-211

ing settings, no-CoT outperforms CoT in 30 out of212

40 cases when using the mean. For the pairwise213

ranking setting, CoT outperforms no-CoT, except214

with GPT-4o on RewardBench.215

We interpret the harmful effect of CoT on point-216

wise scoring with the smaller models as being due217

to sharpening, whereby the initial entropy in the218

judgment is lost as the model commits to one in-219

stantiation of a reasoning trace (Wang and Zhou,220

2024). Moreover, removing CoT benefits the mean221

more than the mode (e.g. 69.6→72.2 for mode vs.222

72.7→79.3 for mean, with Llama-3.1-8B on Re-223

wardBench), revealing the synergy between elicit-224

ing and utilizing distributional judgment. We report225

the standard deviation of judgment distributions in226

Table 2, which confirms this trend.227

Which setting works the best? Comparing dif-228

ferent LLMs, we find GPT-4o performs better with229

pairwise judgment (e.g. 88.0 for pointwise scoring230

vs. 90.5 for pairwise ranking on RewardBench)231

as in prior work, but the smaller models often do232

better with pointwise judgment and rely heavily on233

CoT for pairwise ranking (e.g. with Prometheus-2-234

7B on MT-Bench, 75.4→33.4 when removing CoT235

from pairwise ranking, compared to 81.6 with no-236

CoT pointwise scoring). We believe this is because237

pairwise judgment demands a more powerful judge238

to leverage the context. Thus, in pairwise ranking 239

with the smaller models, the reasoning gained by 240

CoT often outweighs the distributional signal lost 241

in the process. Nonetheless, using pairwise scoring 242

(where assigning individual scores can be viewed 243

as an intermediate reasoning step) rather than pair- 244

wise ranking can eliminate the need for CoT, and 245

we recover much of the gap on RewardBench, and 246

match or exceed pointwise performance on MT- 247

Bench. 248

4 Study on Pointwise Scoring 249

Beyond the mode and mean discussed in prior work 250

and the previous section, we further explore the 251

design space of utilizing distributional output from 252

LLM scorers. 253

Discrete vs. Continuous We say a method is 254

discrete if it compares two score distributions by 255

their independently assigned scores that take values 256

in {1, . . . ,K}. Otherwise, we say it is continuous. 257

Discrete scores are often desirable for interpretabil- 258

ity (e.g. simple rubrics) but can often result in tied 259

comparisons and fail to capture slight preferences. 260

Additional Metric: Mean Squared Error For 261

this further study, we report mean squared error 262

(MSE) in addition to accuracy. For target labels in 263

{0, 1} (a unanimously preferred response), MSE 264

is equivalent to the Brier score. Accuracy incen- 265

tivizes predicting a winner instead of a tie as long 266

as oracle confidence is over 50% (Section 3.2). In 267

contrast, expected MSE is optimized by exactly 268

predicting the oracle confidence, thus serving as a 269

measure of a method’s calibration given the judge’s 270

distributional output. 271

On MT-Bench, we generalize the label space 272

to [0, 1] by averaging the human judgments, thus 273

allowing us to evaluate MSE on the full dataset. 274

In Appendix F.1, we analyze alignment between 275

the judgment distributions of LLMs and those of 276

humans (as opposed to the average or majority 277

vote). 278

4.1 Methods 279

Table 3 lists our extended methods for comparing 280

two score distributions. We briefly motivate each 281

newly introduced method below. 282

We consider the rounded mean as a discrete vari- 283

ant of the mean for a discreteness-controlled com- 284

parison with the mode. 285

1P and RAM reflect risk aversion. 1P takes an 286

approach contrary to MODE; instead of focusing on 287
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Name Description Definition of NAME(X1, X2) ∈ [−1, 1] Discrete or
(higher says X1 is better, lower says X2 is better) Continuous

MODE Mode sgn(r1 − r2) with ri = argmaxk P (Xi = k) Discrete

MEAN Mean
E(X1 −X2)

E|X1 −X2|+ σ(X1 −X2)
Continuous

[MEAN] Rounded mean sgn(r1 − r2) with ri = argmink |EXi − k| Discrete
MEDI Median sgn(r1 − r2) with ri = QXi(0.5) Discrete

1P 1st percentile sgn(r1 − r2) with ri = QXi(0.01) Discrete
RAM Risk-averse mean MEAN(X1 − σ−(X1), X2 − σ−(X2)) Continuous

QT Quantiles
∫ 1

0
sgn(QX1(p)−QX2(p)) dp Continuous

PS Probability of superiority P (X1 > X2)− P (X1 < X2) Continuous

Table 3: Methods of comparing two score distributions X1, X2 over K score options. sgn is the sign function.
QX(p) denotes the value at the p-quantile. σ(X) denotes the standard deviation; σ−(X) =

√
E[max(EX −X, 0)2]

denotes the lower semi-deviation, a risk measure (Bond and Satchell, 2002). Discrete/continuous and more properties
are explained in Section 4.1.

Model Method RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

GPT-4o

MODE 83.5 .115 80.0 .137
MEAN 88.0 .102 83.2 .097

[MEAN] 85.2 .109 80.2 .146
MEDI 84.6 .112 80.2 .142

1P 84.3 .116 81.0 .138
RAM 88.4 .087 83.4 .104

QT 87.9 .096 83.2 .118
PS 87.8 .096 83.3 .103

Llama
-3.1-8B

MODE 72.2 .191 71.8 .143
MEAN 79.3 .155 81.5 .104

[MEAN] 75.0 .186 75.0 .145
MEDI 73.6 .191 73.9 .142

1P 76.0 .183 79.2 .147
RAM 79.9 .129 81.4 .109

QT 79.0 .164 81.1 .116
PS 78.9 .161 81.4 .110

Table 4: Pointwise results over methods. No-CoT (see
Table 10 for CoT). Text styling follows Table 1.

where the most mass lies, 1P assigns a low score288

if there is even a 1% chance of such a low score289

(Siththaranjan et al., 2023). RAM is MEAN but with290

each distribution shifted down by its risk σ−.291

PS has the intuitive interpretation of the differ-292

ence in winrates over repeated pairs of samples293

from the LLM judge (Siththaranjan et al., 2023).294

QT generalizes MEDI and 1P by averaging the com-295

parisons over all quantiles.296

4.2 Results297

Main Results Table 4 shows that the top point-298

wise methods are the continuous ones (MEAN,299

RAM, QT, PS), in both accuracy and MSE. Even300

among discrete methods, MODE has particularly301

low accuracy and without substantially different302

MSE. RAM outperforms MEAN on RewardBench303

(e.g. 0.087 vs. 0.102 MSE with GPT-4o), suggest-304

Model Method Tie rate MEAN’s accuracy

K = 9 K = 99 K = 9 K = 99

GPT-4o

MODE .20 .21 71 73
[MEAN] .16 .03 67 53

MEDI .17 .09 70 62
1P .16 .08 66 60

Llama
-3.1-8B

MODE .35 .24 69 70
[MEAN] .26 .07 64 61

MEDI .29 .11 67 67
1P .23 .08 65 57

Table 5: Tie analysis for discrete pointwise methods on
RewardBench using no-CoT (see Table 11 for CoT and
Table 12 for MT-Bench). We report results with two
score granularity levels (K). Tie rate is the proportion
of instances where the method predicts a tie, over which
we report MEAN’s accuracy (%); excess of 50% indi-
cates room for improving accuracy, and excess of 75%
indicates room for improving MSE.

ing that risk aversion can be helpful for preference 305

modeling. 306

Study: Score Granularity and Ties We show 307

here that ties explain the finding above that the dis- 308

crete methods fall beyond the continuous ones, and 309

we experiment with score granularity as a remedy. 310

Table 5 shows that the discrete methods predict 311

ties on a significant number of instances, on which 312

MEAN is still able to achieve nontrivial accuracy. 313

On the other hand, we find that on instances where 314

a discrete method does not predict a tie, it has simi- 315

lar accuracy to MEAN (not shown; see Table 11), in- 316

dicating that the performance gap is well explained 317

by ties. Tie behavior varies by method; in particu- 318

lar, MODE has the most ties and the highest MEAN 319

accuracy, amounting to the most untapped signal 320

for determining the better response. 321

Table 5 further shows that granularizing the 322

5



User Prompt

Response A

Response B

LLM 
Judge

Please choose 
the better 
response…

Sys. Prompt

A B

User Prompt

Response A

Response BPlease choose 
the better 
response…

Sys. Prompt LLM 
Judge

A B

mode

agg.

agg.

mode

A B

A B A B

Tie

Win

AB

BA

AB

BA

Figure 2: Comparing pairwise LLM-as-a-judge prediction based on when to aggregate the two judgments, one from
each response pair presentation order. Pre- vs. post-aggregation (bottom vs. top in figure) can be likened to mean vs.
mode, as the former aggregates at the distribution level while the latter aggregates at the text level (if mode is used).

Method RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

G
PT

-4
o

MODE 81.5–2.0 .132+.017 78.1–1.9 .152+.015
MEAN 86.7–1.3 .108+.006 82.9–0.3 .099+.002

[MEAN] 86.5+1.3 .127+.018 82.7+2.5 .182+.036
MEDI 85.2+0.6 .126+.014 81.5+1.3 .170+.028

1P 86.4+2.1 .116+.000 82.7+1.7 .165+.027
RAM 86.7–1.7 .089+.002 83.0–0.4 .105+.001

QT 86.6–1.3 .114+.018 82.7–0.5 .147+.029
PS 86.6–1.2 .105+.009 82.4–0.9 .107+.004

L
la

m
a-

3.
1-

8B

MODE 71.9–0.3 .221+.030 75.1+3.3 .168+.025
MEAN 79.3+0.0 .156+.001 81.3–0.2 .103–.001

[MEAN] 78.5+3.5 .198+.012 80.7+5.7 .180+.035
MEDI 76.5+2.9 .207+.016 80.1+6.2 .161+.019

1P 78.5+2.5 .195+.012 81.5+2.3 .177+.030
RAM 79.7–0.2 .129+.000 81.1–0.3 .109+.000

QT 78.7–0.3 .177+.013 81.3+0.2 .143+.027
PS 78.6–0.3 .163+.002 81.8+0.4 .111+.001

Table 6: Pointwise results over methods (K = 99). No-
CoT (see Table 13 for CoT). Subscripts denote change
from K = 9 (Table 4). Text styling follows Table 1.

score space from K = 9 to K = 99 improves323

the expressivity of the discrete methods (except for324

MODE), drastically reducing the rate of ties, while325

MEAN accuracies remain similar or decrease.326

Table 6 expands on the comparison between327

K = 99 and K = 9, reporting results from the328

same setting in Table 4 except for the granularity329

scale. Consistent with our motivation, the discrete330

methods (except for MODE) improve in accuracy,331

rivaling the continuous methods. Although MODE332

somewhat makes up for its low accuracy with a333

lower MSE than most other discrete methods on334

MT-Bench, it also suffers the highest MSE among335

discrete methods on RewardBench.336

Taken together, Tables 4, 5, 6 show that even in337

use cases where discrete scores are desired, one338

should consider alternatives to the mode.339

Sensitivity to Score Granularity In Appendix 340

F.2, we analyze the sensitivity of different methods 341

to score granularity, and find theoretically and em- 342

pirically that the mode is the most sensitive method. 343

5 Study on Pairwise Ranking 344

The judgment styles in Section 3’s overview were 345

scoring (Section 4) and ranking. In this section, we 346

analyze design decisions for pairwise ranking, and 347

in Section 6 listwise ranking. 348

5.1 Design Decisions 349

As we explain below, the pairwise ranking exper- 350

iments in Table 1 used Likert-2, post-aggregation 351

for the mode, and pre-aggregation for the mean. 352

We now consider alternative choices (see Appendix 353

B.2.2 for details). 354

Timing of aggregation and measure of central 355

tendency Pairwise judgment suffers from posi- 356

tion bias, i.e. the LLM judge’s sensitivity to the 357

order in which the evaluated texts are presented, 358

which is usually addressed by prompting the LLM 359

judge twice, once for each order of presentation 360

(Lee et al., 2024a). We examine the remaining 361

question of whether to aggregate the two judgments 362

before or after computing the measure of central 363

tendency (mode, median, or mean), as shown in 364

Figure 2. Pre- vs. post-aggregation can be likened 365

to mean vs. mode, as the former aggregates at the 366

distribution level while the latter aggregates at the 367

text level (if mode is used). 368

Granularity The judge expresses its preference 369

on a K-point Likert scale: [>,<] (Likert-2), [>,= 370

, <] (Likert-3), or [≫, >,=, <,≪] (Likert-5) (Liu 371

et al., 2024b). 372
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Method RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

G
PT

-4
o

mode agg 88.1, 89.3 .099, .090 86.1, 84.9 .139, .142
agg mode 88.4, 90.3 .112, .094 86.5, 85.2 .154, .154
medi agg 88.1, 89.3 .099, .091 86.1, 84.9 .138, .142
agg medi 88.4, 90.0 .111, .094 86.6, 85.4 .153, .146
mean agg 88.9, 90.4 .098, .077 86.5, 85.4 .132, .100
agg mean 88.9, 90.4 .098, .078 86.6, 85.4 .132, .097

L
la

m
a-

3.
1-

8B

mode agg 56.7, 52.4 .240, .279 57.5, 53.4 .192, .176
agg mode 73.1, 66.1 .265, .337 78.1, 70.9 .222, .268
medi agg 56.8, 52.5 .240, .279 57.5, 53.5 .192, .176
agg medi 72.9, 65.3 .261, .319 78.0, 69.1 .218, .238
mean agg 73.2, 65.6 .207, .229 78.2, 70.5 .144, .146
agg mean 73.2, 66.3 .222, .240 78.1, 70.8 .155, .155

Table 7: Pairwise ranking results over methods, us-
ing Likert-3. We denote pre- or post-aggregation by
prepending or appending ‘agg’, respectively. Comma-
separated values are with and without CoT. Text styling
follows Table 1.

Model K
RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

GPT-4o
2 88.6, 90.5 .094, .077 87.3, 85.9 .136, .101
3 88.9, 90.4 .098, .078 86.6, 85.4 .132, .097
5 88.8, 89.5 .099, .106 84.7, 85.8 .129, .087

Llama
-3.1-8B

2 74.2, 68.6 .187, .214 80.0, 76.5 .126, .135
3 73.2, 66.3 .222, .240 78.1, 70.8 .155, .155
5 70.0, 58.5 .215, .234 77.1, 64.8 .142, .153

Table 8: Pairwise ranking results over Likert-K scales,
using pre-aggregation mean. Comma-separated values
are with and without CoT. Text styling follows Table 1.

5.2 Methods Results373

Table 7 shows that, especially with Llama-3.1-8B,374

accuracy depends little on the measure of central375

tendency and mostly on when we aggregate, with376

aggregating first leading to higher accuracy (as377

much as 56.7 vs. 73.1 for post- vs. pre-aggregation378

using the mode with Llama-3.1-8B on Reward-379

Bench). Considering that the timing of aggregation380

does not affect accuracy if the two runs agree, this381

shows that even for inconsistent judgments caused382

by position bias, there is still valuable signal in383

the relative magnitudes of preference that we can384

leverage by aggregating first.385

On the other hand, an intuitive explanation for386

why the measure of central tendency has little effect387

on accuracy is that the judgment space is small, so388

there is high correlation between the signs of the389

measures of central tendency. In fact, they are390

equivalent in the pre-aggregation Likert-2 setting.391

Although aggregating first improves accuracy, it392

harms MSE for mode and median, which we at-393

tribute to the volatile prediction of a binary winner 394

when faced with the uncertain situation of posi- 395

tional inconsistency. Nevertheless, the mean (with 396

either pre- or post-aggregation) is among the top 397

accuracy methods while outperforming all other 398

methods on MSE. This demonstrates the calibration 399

benefit of using the judgment distribution to pro- 400

duce a continuous prediction. Furthermore, with 401

GPT-4o, we find that although CoT has differing ef- 402

fects on accuracy for RewardBench and MT-Bench, 403

the minimum MSE for either is achieved with no- 404

CoT, highlighting the discord between CoT’s sharp- 405

ening effect and calibration. 406

In Appendix F.3, we further analyze position 407

bias and find that CoT increases the occurrence of 408

severe position bias. 409

5.3 Granularity Results 410

Table 8 compares the Likert scales used in the pair- 411

wise ranking prompt. We find that the simplest one, 412

Likert-2, performs the best overall, in line with 413

the AlpacaEval methodology (Dubois et al., 2024) 414

but deviating from WB-Reward and Arena-Hard- 415

Auto (Lin et al., 2024; Li et al., 2024b), which use 416

Likert-5.1 Even so, the most calibrated setting on 417

MT-Bench is (GPT-4o) Likert-5 no-CoT, achieving 418

a 31% lower MSE than the most accurate setting, 419

Likert-2 CoT, suggesting that a finer granularity has 420

potential to improve calibration (Liu et al., 2024b). 421

Similar to Table 7, we find that in every case with 422

GPT-4o, no-CoT achieves lower MSE than CoT, 423

even in cases where CoT leads to higher accuracy. 424

This result is in line with AlpacaEval, which uses 425

no-CoT and judgment probabilities, but deviating 426

from WB-Reward and Arena-Hard-Auto, which 427

use CoT and decoded judgments. 428

6 Listwise Judgment 429

Listwise judgment is not as prevalent as pointwise 430

or pairwise judgment, but is more efficient (Zhu 431

et al., 2024). Furthermore, listwise prompting 432

grants the judge the maximal context for compari- 433

son (Buyl et al., 2023), generalizing the advantage 434

of pairwise prompting over pointwise prompting, 435

given a sufficiently capable judge. 436

1We remark that the evaluation setups in these works and
ours differ in that theirs use coarse-grained, model-level agree-
ment using Chatbot Arena Elo scores (Zheng et al., 2023b),
while ours uses fine-grained, instance-level agreement.
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6.1 Judgment Spaces and Methods437

We consider two prompts for eliciting listwise pref-438

erences over N texts (Appendix C.4). Prompt 1439

is the one proposed by Zhu et al. (2024), which440

prompts to produce all
(
N
2

)
pairwise preferences441

and then aggregate them into a sorted list. Prompt442

2 skips the intermediate pairwise step and asks to443

directly produce the list (Liu et al., 2023a; Qin444

et al., 2023). We can then extract all pairwise2445

preferences from one of the following judgment446

spaces using the mode (textual output) or the mean447

(distributional output).448

• INTERM (Prompt 1): Intermediate pairwise pref-449

erences (Likert-3, no-CoT, only one of the two450

presentation orders), which we view as the rea-451

soning process leading to the list. This efficiently452

extends pairwise ranking to the listwise setting,453

similar to batch prompting (Cheng et al., 2023).454

• LIST (Prompt 1): Final list. For MEAN, we use455

the probability distribution over text identifiers456

at each rank, inspired by Zhuang et al. (2023);457

Reddy et al. (2024). Specifically, at rank r, de-458

note pr(i) as the probability of decoding text459

(identifier) i. Decoding text i at rank r implies460

that any text j not yet decoded will be decoded at461

a later rank and is thus worse than text i, and vice462

versa. Hence, we define MEAN(i, j) ∈ [0, 1] as463

the average of pr(i)
pr(i)+pr(j)

over the ranks r until464

i or j is decoded.465

• DIRECT LIST (Prompt 2): LIST but with Prompt466

2 (no intermediate pairwise step).467

6.2 Experimental Setup468

Models Due to the context length required for469

listwise ranking and the difficulty of the task, we470

limit our evaluation to GPT-4o.471

Datasets We evaluate on Nectar (Zhu et al.,472

2024), RM-Bench (Liu et al., 2024c), and MT-473

Bench (Zheng et al., 2023b).474

From Nectar, we use a random subset of 1,000475

prompts, each with 7 responses. We discard the476

GPT-4 judgments included in the dataset and col-477

lect our own silver labels using GPT-4o with pair-478

wise ranking (Likert-5, no-CoT, pre-aggregation,479

mean). RM-Bench contains 1,327 prompts, each480

with 3 chosen and 3 rejected responses, i.e. 9 pair-481

wise preferences. MT-Bench contains 160 prompts,482

2We retain the pairwise evaluation setup from previous
sections; see Appendix D.1 for discussion.

Space Method Nectar RM-Bench MT-Bench

Acc MSE Acc MSE Acc MSE

interm mode 80.4 .155 62.1 .339 80.8 .201
mean 80.4 .048 62.5 .243 80.7 .121

list mode 82.2 .156 62.4 .376 83.7 .189
mean 82.0 .105 61.7 .317 83.5 .157

direct list mode 86.1 .138 69.9 .301 86.8 .168
mean 86.4 .087 69.4 .267 85.9 .133

Table 9: Listwise results (GPT-4o). Text styling follows
Table 1.

each with 6 responses. See Appendix D for dataset 483

details. 484

6.3 Results 485

Table 9 compares mode and mean in the listwise 486

judgment spaces. The two methods have similar 487

accuracy, but the mean has much lower MSE. 488

We find DIRECT LIST to be the most accurate 489

judgment space, while INTERM has the lowest 490

MSE. We hypothesize that DIRECT LIST outper- 491

forms LIST due to the intermediate pairwise com- 492

parisons playing a similar role to CoT in the point- 493

wise and pairwise settings (Section 3.3), where 494

distributional output is captured most intactly with- 495

out it. Even so, in Appendix F.3 we find DIRECT 496

LIST to suffer the most position bias, consistent 497

with Zhu et al. (2024), while INTERM has the least. 498

7 Conclusion 499

We comprehensively evaluated design choices for 500

leveraging LLM judges’ distributional output. For 501

pointwise scoring, we showed that continuous 502

methods (e.g. mean) outperform discrete meth- 503

ods (especially the mode) due to ties. For pairwise 504

ranking, we related the mean vs. mode comparison 505

to pre- vs. post-aggregation of the two presentation 506

orders’ judgments. Although smaller LLM judges 507

suffer heavily from inconsistent judgments due to 508

position bias, pre-aggregation effectively leverages 509

the relative magnitudes of preference. 510

We showed that CoT collapses the spread of the 511

judgment distribution, often hurting performance. 512

This applies even to the challenging setting of list- 513

wise ranking, where accuracy was maximized by 514

directly predicting the list without an intermediate 515

pairwise step. We hope that highlighting this limi- 516

tation of CoT encourages the development of rea- 517

soning mechanisms that preserve output diversity 518

and calibration for judgment and other subjective 519

or open-ended tasks. 520
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Limitations521

Downstream Performance In this paper, we522

evaluate LLM-as-a-judge design decisions by their523

performance on preference modeling datasets.524

However, this setup may not reveal downstream525

impacts. We do not explore the impact of distribu-526

tional judgments on reinforcement learning from527

AI feedback (RLAIF) (Lee et al., 2024a) or human528

decision making.529

Training Our experiments involve off-the-shelf530

LLMs as judges without specific tuning. We do531

not explore training LLM judges to express dis-532

tributional judgments (Saad-Falcon et al., 2024).533

Similarly, we exclude distributional reward models534

(Dorka, 2024) from the scope of our study.535

CoT We conclude from our results that CoT of-536

ten hurts judgment performance. However, we537

only consider one prompt design per setting for538

eliciting CoT reasoning (Appendix C) and do not539

perform prompt optimization. Furthermore, we do540

not consider more extensive test-time scaling, such541

as asking the judge to produce its own reference542

response (Zheng et al., 2023b) or aggregating many543

CoT judgment runs (Zhang et al., 2024a; Stureborg544

et al., 2024).545

Natural Language Judgments A valuable as-546

pect of LLM-as-a-judge is its ability to augment547

judgments with interpretable rationales (Mahan548

et al., 2024; Byun et al., 2024; Ye et al., 2024b;549

Cao et al., 2024). However, the distributional judg-550

ments we consider here are limited to those that are551

easily quantifiable, and we do not propose methods552

for leveraging distributional output over natural lan-553

guage feedback. While it is possible to continue de-554

coding a rationale after the judgment, the rationale555

will be conditioned on the decoded judgment and556

not reflect the distribution over the unchosen judg-557

ment options. One approach could be to decode558

several rationales, each conditioned on a different559

judgment option.560
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A Related Work 1265

A.1 LLM-as-a-judge Settings 1266

LLM-as-a-judge has been used in pointwise (evalu- 1267

ating one response at a time), pairwise (two), and 1268

listwise (many) settings. 1269

Pairwise judgment has the advantage of ground- 1270

ing each evaluated response in the other, creating 1271

for a more calibrated task and leading to better 1272

agreement with humans (Liusie et al., 2023). How- 1273

ever, due to intransitivity in pairwise preferences 1274

(Liu et al., 2024e), the cost to sort N texts is O(N2) 1275

rather than O(N logN), compared to O(N) in the 1276

pointwise setting. In addition, pairwise compar- 1277

isons are susceptible to position bias (Shi et al., 1278

2024), which often must be addressed by running 1279

both orders and aggregating the results (Zeng et al., 1280

2023; Li et al., 2024b). Pairwise comparisons have 1281

also been shown to be more biased toward superfi- 1282

cial traits such as verbosity and tone, in both LLM 1283

and human judges (Payne, 1976; Jeong et al., 2024), 1284

although pointwise scoring more easily falls victim 1285

to adversarial responses (Raina et al., 2024). 1286

The listwise setting provides the maximal 1287

amount of context to the judge while keeping the 1288

same compute complexity as the pointwise setting. 1289

However, the judgment task becomes much more 1290

challenging (Qin et al., 2023; Koo et al., 2023), 1291

especially due to the amplified position bias (Zhu 1292

et al., 2024), and the combinatorially many orders 1293

makes it severely more daunting to address than 1294

in the pairwise case (Tang et al., 2023; Qin et al., 1295

2024). To mitigate position bias, Zhu et al. (2024) 1296

leverage intermediate pairwise preferences for ag- 1297

gregation into a sorted list. Zhuang et al. (2023); 1298

Reddy et al. (2024) use the distribution from a sin- 1299

gle output token for listwise passage reranking, a 1300

related task to LLM-as-a-judge. 1301

B Methods 1302

Let A1 and A2 be two texts to compare. We de- 1303

scribe the methods of predicting a value in [−1, 1] 1304

that signifies the advantage of A1 over A2. For 1305

accuracy, we take the sign of the prediction. For 1306

MSE, we rescale predictions from [−1, 1] to [0, 1]. 1307
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The methods are invariant to scaling and trans-1308

lating the judgment space, and all methods that1309

do not take expectations E (which assumes linear-1310

ity) are invariant to applying a positive monotone1311

transformation to the judgment space.1312

The prompts for the various settings are in Ap-1313

pendix C.1314

B.1 Pointwise Methods1315

The pointwise methods are introduced in Section1316

4.1. The LLM judge independently judges A1 and1317

A2, producing score distributions over {1, . . . ,K}1318

for an integer K that define independent random1319

variables X1 and X2, which are used to compare1320

A1 and A2. The methods are all equivalent if1321

the distributions are deterministic, thus our exper-1322

iments evaluate their ability to leverage the LLM1323

judge’s distributional output.1324

The denominator in MEAN normalizes it into1325

[−1, 1], similar to sgn(x) = x
|x| , taking 0

0 to be1326

0. The σ term grants continuity. Specifically, let1327

k, k′ ∈ {1, . . . ,K} with k ̸= k′. Let X1 have1328

a two-point distribution (1 − ϵ)δk + ϵδk′ and let1329

X2 have a deterministic distribution δk, for ϵ ∈1330

[0, 1]. Then as a function of ϵ, MEAN(X1, X2) is1331

continuous at ϵ = 0.1332

For MEAN, RAM, and PS, we assume X1 and1333

X2 to be independent, but QT can be viewed as PS1334

but with X1 and X2 positively monotonically cor-1335

related. By incorporating the sign function, QT and1336

PS are less sensitive to extremal values than MEAN.1337

In addition, QT and PS can model intransitive pref-1338

erences, e.g. PS(X1, X2), PS(X2, X3) > 0 ⇏1339

PS(X1, X3) > 0, which we analyze in Appendix1340

F.4.1341

B.2 Pairwise Methods1342

In the pairwise setting, we consider two prompting1343

approaches for jointly evaluating the two texts A11344

and A2: scoring both texts (§B.2.1) and expressing1345

a preference (§B.2.2).1346

To account for position bias, we prompt the LLM1347

judge once for each order of presentation. For an1348

order o ∈ O := {(1, 2), (2, 1)}, we use o to denote1349

dependence on the order (Ao1 , Ao2) in which the1350

texts appear in the prompt.1351

B.2.1 Pairwise Scoring1352

For a given order o, the LLM judge scores the two1353

texts jointly in the same run. If we could obtain1354

the joint distribution P (Xo
o1 , X

o
o2), we could com-1355

pute the marginals and use any method in Table1356

3. However, the judge first outputs the score for 1357

Ao1 and conditions on it when outputting the score 1358

for Ao2 , i.e. Xo
o1 and Xo

o2 are not independent. 1359

Thus, the full joint distribution P (xo1 , xo2) = 1360

P (xo1)P (xo2 | xo1) can only be obtained by in- 1361

jecting each xo1 ∈ {1, . . . ,K} into the context to 1362

access P (xo2 | xo1). This is feasible with local 1363

models but not with API-access models where in- 1364

ference cost scales with K. Hence, we stick to a 1365

single run and condition on the greedily decoded 1366

xo1 = argmaxk P (Xo
o1 = k), giving us 1367

Xo
∆

d
= (Xo

1 −Xo
2 ) | (Xo

o1 = xo1) 1368

as a proxy for the score difference Xo
1 −Xo

2 . Se- 1369

mantically, Xo
∆ is symmetric (i.e. there should be 1370

no default preference for A1 or A2), so we would 1371

like our scalar judgment to be some measure of cen- 1372

tral tendency (mode, median, or mean). As shown 1373

in Figure 2, we also have the choice of whether 1374

to aggregate the judgments from the two orders of 1375

presentation before or after computing the measure 1376

of central tendency. 1377

For pre-aggregation, we simply take the mixture 1378

distribution, 1379

P (X∆ = δ) :=
1

|O|
∑
o∈O

P (Xo
∆ = δ) 1380

for all δ ∈ {−(K − 1), . . . ,K − 1}, leaving more 1381

sophisticated approaches such as the convolution 1382

and Wasserstein barycenter for future study: 1383

AGG-MODE := sgn(mode(X∆)) 1384

AGG-MEDI := sgn(median(X∆)) 1385

AGG-MEAN := MEAN(X∆), 1386

where MEAN is defined as in Table 3, overloaded 1387

to take a single argument representing X1 −X2. 1388

For post-aggregation, we sum the two scalar 1389

judgments from the two orders and normalize: 1390

MODE-AGG :=

∑
o∈Omode(Xo

∆)∑
o∈O |mode(Xo

∆)|
1391

MEDI-AGG :=

∑
o∈Omedian(Xo

∆)∑
o∈O |median(Xo

∆)|
1392

MEAN-AGG :=
1

|O|
∑
o∈O

MEAN(Xo
∆), 1393

taking 0
0
:= 0. 1394
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B.2.2 Pairwise Ranking1395

We prompt the LLM judge to express its prefer-1396

ence on a K-point Likert scale: [>,<] (Likert-2),1397

[>,=, <] (Likert-3), or [≫, >,=, <,≪] (Likert-1398

5). Assigning the symbols [≫, >,=, <,≪] the1399

numerical values [2, 1, 0,−1,−2], the methods for1400

pairwise ranking then follow those above for pair-1401

wise scoring. We remark that the ‘mode’ and1402

‘mean’ for pairwise scoring and pairwise rank-1403

ing in Table 1 are with post-aggregation and pre-1404

aggregation, respectively.1405

B.3 Listwise Methods1406

The listwise methods are introduced in Section 6.1.1407

C Prompts1408

We present representative example prompts to illus-1409

trate the different settings. The prompts are adapted1410

from MT-Bench (Zheng et al., 2023b). Auxiliary1411

modifications are not shown, such as the prompt1412

for second-turn evaluation in MT-Bench.1413

C.1 Judgment Extraction Details1414

To identify the token position containing the judg-1415

ment, we use the specified format when available1416

(e.g. “Rating A: {rating_a}.” in pairwise scor-1417

ing). Otherwise, we use the latest token position1418

with more than 0.5 total probability assigned to1419

judgment tokens. If no valid token is found, we de-1420

fault the judgment to the minimum score of 1 in the1421

scoring setting, and to a tie in the ranking setting.1422

(For Nectar experiments, we exclude instances with1423

invalid silver-label judgments.)1424

For the local models (Llama-3.1-8B, Mistral-7B,1425

Prometheus-2-7B) in no-CoT prompting, we force1426

a prefix of the assistant’s response (e.g. “Rating1427

A: ”) and use a single output token as the judgment1428

token position.1429

C.2 Pointwise Prompts 1430

System prompt for pointwise scoring (CoT,
K = 9)

Please act as an impartial judge and
evaluate the quality of the response
provided by an AI assistant to the user
prompt displayed below. Your
evaluation should consider factors
such as the helpfulness, relevance,
accuracy, depth, creativity, level of
detail, and ethicality of the response.
Begin your evaluation by providing a
short explanation. Be as objective as
possible. After providing your
explanation, please rate the response
with an integer score from 1 to 9,
without further explanation.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1431

System prompt for pointwise scoring (no-
CoT, K = 9)

Please act as an impartial judge and
evaluate the quality of the response
provided by an AI assistant to the user
prompt displayed below. Your
evaluation should consider factors
such as the helpfulness, relevance,
accuracy, depth, creativity, level of
detail, and ethicality of the response.
Be as objective as possible. Please rate
the response with an integer score
from 1 to 9, without further
explanation.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1432

User prompt for pointwise judgment

[User Prompt]
{User Prompt}
[End User Prompt]

[Start of Assistant's Answer]
{Assistant's Answer}
[End of Assistant's Answer]

1433
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C.3 Pairwise Prompts1434

System prompt for pairwise scoring (CoT,
K = 9)

Please act as an impartial judge and
evaluate the quality of the responses
provided by two AI assistants to the
user prompt displayed below. Your
evaluation should consider factors
such as the helpfulness, relevance,
accuracy, depth, creativity, level of
detail, and ethicality of their responses.
Begin your evaluation by comparing
the two responses and provide a short
explanation. Avoid any position biases
and ensure that the order in which the
responses were presented does not
influence your decision. Do not allow
the length of the responses to
influence your evaluation. Do not
favor certain names of the assistants.
Be as objective as possible. After
providing your explanation, output
your final verdict by strictly following
this format: "Rating A: {rating_a}.
Rating B: {rating_b}.", where
"{rating_a}" and "{rating_b}" are
integer scores from 1 to 9.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1435

For pairwise ranking with the local models, we1436

use a different prompt from the one below. We1437

found that they would often fail to include the1438

braces specified in the judgment format, so we1439

omit them when prompting these models.1440

System prompt for pairwise ranking (Likert-
5, CoT)

Please act as an impartial judge and
evaluate the quality of the responses
provided by two AI assistants to the
user prompt displayed below. You
should choose the assistant that
follows the user's instructions and
answers the user's question better.
Your evaluation should consider
factors such as the helpfulness,
relevance, accuracy, depth, creativity,
level of detail, and ethicality of their
responses. Begin your evaluation by
comparing the two responses and
provide a short explanation. Avoid any
position biases and ensure that the
order in which the responses were
presented does not influence your
decision. Do not allow the length of
the responses to influence your
evaluation. Do not favor certain names
of the assistants. Be as objective as
possible. After providing your
explanation, output your final verdict
by strictly following this format:
"[[>>]]" if assistant A is significantly
better, "[[>]]" if assistant A is slightly
better, "[[=]]" for a tie, "[[<]]" if
assistant B is slightly better, and
"[[<<]]" if assistant B is significantly
better.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1441

User prompt for pairwise judgment

[User Prompt]
{User Prompt}
[End User Prompt]

[Start of Assistant A's Answer]
{Assistant A's Answer}
[End of Assistant A's Answer]

[Start of Assistant B's Answer]
{Assistant B's Answer}
[End of Assistant B's Answer]

1442
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C.4 Listwise Prompts1443

The listwise prompts are adapted from Nectar (Zhu1444

et al., 2024).1445

System prompt for listwise judgment (N =
7), with intermediate pairwise preferences

We are interested in ranking different large
language model chat completions to a
conversation. Please act as an
impartial judge and evaluate the
quality of the completions provided by
the 7 AI assistants. Your evaluation
should consider factors such as the
helpfulness, relevance, accuracy,
depth, creativity, level of detail, and
ethicality of their responses.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

After the conversation and assistant
responses, the section "PAIRWISE
EVALUATION ORDER" will specify
the order in which to perform pairwise
comparisons. Output an array in
which, for each pairwise comparison,
you choose the letter of the better
response, or '=' for a tie. The array
should be comma-separated and
enclosed in double square brackets.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Then, considering these pairwise rankings,
please rank all 7 responses from best
to worst (breaking ties randomly),
strictly in the following format: [[_, _,
_, _, _, _, _]] where '_' contains an
assistant's letter name.

↪→

↪→

↪→

↪→

↪→

Avoid any position biases and ensure that
the order in which the responses were
presented does not influence your
decision. Do not allow the length of
the responses to influence your
evaluation. Do not favor certain names
of the assistants. Be as objective as
possible.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1446

System prompt for listwise judgment (N =
7), without intermediate pairwise prefer-
ences

We are interested in ranking different large
language model chat completions to a
conversation. Please act as an
impartial judge and evaluate the
quality of the completions provided by
the 7 AI assistants. Your evaluation
should consider factors such as the
helpfulness, relevance, accuracy,
depth, creativity, level of detail, and
ethicality of their responses.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Please rank all 7 responses from best to
worst (breaking ties randomly),
strictly in the following format: [[_, _,
_, _, _, _, _]] where '_' contains an
assistant's letter name.

↪→

↪→

↪→

↪→

Avoid any position biases and ensure that
the order in which the responses were
presented does not influence your
decision. Do not allow the length of
the responses to influence your
evaluation. Do not favor certain names
of the assistants. Be as objective as
possible.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

1447
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User prompt for listwise judgment (N = 7).
The presentation order is randomized. The
pairwise evaluation order is randomized ev-
ery instance for the prompt with interme-
diate pairwise preferences, and omitted for
the prompt without intermediate pairwise
preferences.

[CONVERSATION START]
{Conversation}
[CONVERSATION END]

[MODEL A RESPONSE START]
{Model A's response}
[MODEL A RESPONSE END]

[MODEL B RESPONSE START]
{Model B's response}
[MODEL B RESPONSE END]

[MODEL C RESPONSE START]
{Model C's response}
[MODEL C RESPONSE END]

[MODEL D RESPONSE START]
{Model D's response}
[MODEL D RESPONSE END]

[MODEL E RESPONSE START]
{Model E's response}
[MODEL E RESPONSE END]

[MODEL F RESPONSE START]
{Model F's response}
[MODEL F RESPONSE END]

[MODEL G RESPONSE START]
{Model G's response}
[MODEL G RESPONSE END]

PAIRWISE EVALUATION ORDER: [(G,
C), (B, G), (C, D), (A, E), (G, A), (A,
D), (B, A), (B, E), (B, F), (A, C), (E,
C), (E, F), (B, D), (F, A), (G, E), (F,
C), (F, D), (C, B), (F, G), (D, G), (E,
D)]

↪→

↪→

↪→

↪→

↪→

1448

D Datasets1449

RewardBench (Lambert et al., 2024) is a reward1450

model benchmark spanning chat, reasoning, and1451

safety. Each instance consists of a prompt, a cho- 1452

sen response, and a rejected response, all manually 1453

verified. The dataset categories are Chat, with 358 1454

instances sourced from AlpacaEval (Li et al., 2023) 1455

and MT-Bench (Zheng et al., 2023b); Chat Hard, 1456

with 456 instances sourced from MT-Bench and 1457

LLMBar (Zeng et al., 2023); Safety, with 740 in- 1458

stances sourced from XSTest (Röttger et al., 2023), 1459

Do-Not-Answer (Wang et al., 2023), and original 1460

data; and Reasoning, with 1431 instances sourced 1461

from PRM800k (Lightman et al., 2023) and Hu- 1462

manEvalPack (Muennighoff et al., 2023). Except 1463

for excluding the prior sets category, we follow the 1464

original work and compute the final score as the 1465

average of the category scores. 1466

MT-Bench (Zheng et al., 2023b) is a dataset 1467

of multi-turn questions spanning writing, roleplay, 1468

extraction, reasoning, math, coding, knowledge I 1469

(STEM), and knowledge II (humanities/social sci- 1470

ence). There are 3,355 (prompt, model pair, human 1471

judge, turn) tuples, 1,814 unique (prompt, model 1472

pair, turn) tuples, and 80 unique prompts each with 1473

two turns of interaction. To evaluate accuracy, we 1474

use the 1,132 instances with unanimous non-tie 1475

human judgments. To evaluate MSE, we use all 1476

1,814 instances and set the label of an instance 1477

to the average of the human judgments, where a 1478

0 or 1 represents the evaluated winner, and a 0.5 1479

represents a tie. 1480

Nectar (Zhu et al., 2024) is a dataset of 183k 1481

prompts each with 7 model responses. The prompts 1482

are sourced from Anthropic-HH (Bai et al., 2022), 1483

LMSYS-Chat-1M (Zheng et al., 2023a), UltraFeed- 1484

back (Cui et al., 2023), and ShareGPT. We use a 1485

random subset of size 1,000. 1486

RM-Bench (Liu et al., 2024c) is a reward model 1487

benchmark focusing on sensitivity to subtle content 1488

differences and resistance to style biases. There 1489

are 1,327 instances spanning chat, code, math, and 1490

safety. Similar to RewardBench, we follow the 1491

original work and average the 4 category scores. 1492

For each prompt, there are 3 pairs of (chosen, re- 1493

jected) responses, where each pair is written with 1494

a particular style regarding concision and whether 1495

formatted as plain text or markdown. 1496

The HelpSteer2 dataset (Wang et al., 2024b) con- 1497

tains multiple human ratings on a 0-4 scale for 1498

five attributes (helpfulness, correctness, coherence, 1499

complexity, verbosity) for each (prompt, response) 1500

instance. We use a random subset of size 1,000. 1501
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D.1 Listwise Evaluation1502

For the listwise setting, we use the same evaluation1503

setup as with the pointwise and pairwise setting.31504

We concern ourselves with agreement at the pair1505

level rather than the list level because pairwise pref-1506

erences are sufficient to produce a total order, such1507

as by choosing the maximum likelihood order (Liu1508

et al., 2024e; Liusie et al., 2024) or with graph-1509

theoretic methods (Tideman, 1987; Schulze, 2011;1510

Li et al., 2024c). Thus, pairwise preferences are an1511

adequate unit at which to measure agreement, and1512

the aggregation into a total order may be modular-1513

ized away for experimental simplicity.1514

To compute accuracy on Nectar with silver labels1515

(Section 6.2), we take the sign of the silver label as1516

the silver label for accuracy.1517

E Additional Results1518

Tables 10 (K = 9) and 13 (K = 99) show point-1519

wise results over methods (expanded versions of1520

Tables 4 and 6). Tables 11 and 12 show expanded1521

tie analyses on RewardBench (simplified in Table1522

5) and MT-Bench.1523

F Analysis1524

F.1 Heterogenous Preferences1525

We investigate whether LLM judges can repre-1526

sent pluralistically aligned preferences (i.e. reflect1527

diverse human opinions) (Sorensen et al., 2024;1528

Siththaranjan et al., 2023; Kumar et al., 2024)1529

through their judgment distribution, without ex-1530

plicit training or prompting.1531

F.1.1 Multimodality1532

We begin by quantifying the degree of multimodal-1533

ity in the judgment distributions. An implicit as-1534

sumption behind the conventional method of using1535

the mode judgment is that the judgment distribution1536

is unimodal and thus the mode is a representative1537

judgment. However, in cases where humans dis-1538

agree, we would like LLM judges to reflect the1539

heterogeneity in the human population with a mul-1540

timodal distribution.1541

We quantify multimodality as the minimum1542

amount of probability mass that must be added1543

to make an unnormalized unimodal distribution,1544

divided by the total mass of the unnormalized1545

unimodal distribution to obtain a value in [0, 1),1546

3This means that the MT-Bench results can be directly
compared across the settings.

where a distribution is unimodal if the probabil- 1547

ity mass function is non-decreasing and then non- 1548

increasing. For example, if the judgment distri- 1549

bution is [0.5, 0.2, 0.3], the minimum additional 1550

mass is 0.1 to obtain the unimodal distribution 1551

[0.5, 0.3, 0.3] with total mass 1.1, so we compute 1552

the multimodality as 0.1/1.1 ≈ 0.091. 1553

Table 14 presents the results. We find that more 1554

granularity leads to more multimodality (note that 1555

K = 2 always has multimodality 0), and no-CoT 1556

is more multimodal than CoT. The case of extreme 1557

multimodality for pointwise scoring K = 99 can 1558

be largely attributed to token bias (Lovering et al., 1559

2024; Shaikh et al., 2024). For example, GPT-4o 1560

K = 99 CoT on MT-Bench assigns on average 1561

0.036 probability to a single token that is a multiple 1562

of 5, but only 0.002 to a single token that differs by 1563

1 from one of those multiples of 5. 1564

F.1.2 Annotator Disagreement 1565

We next examine whether human annotator dis- 1566

agreement is correlated with the uncertainty in the 1567

LLM’s judgment distribution. On datasets with 1568

multiple human judgments per instance, we com- 1569

pute Spearman’s ρ between the standard deviation 1570

of the human judgments and that of the LLM’s 1571

judgment distribution. 1572

For MT-Bench, we take the 961 instances with 1573

multiple human judgments. Table 15 reports weak 1574

correlation in all settings except no correlation in 1575

pairwise ranking with Llama-3.1-8B. Remarkably, 1576

pointwise score distributions encode sufficient in- 1577

formation to predict if humans will disagree on a 1578

pairwise comparison of the texts. 1579

The HelpSteer2 dataset (Wang et al., 2024b) con- 1580

tains multiple human ratings on a 0-4 scale for five 1581

attributes for each (prompt, response) instance. We 1582

use a random subset of size 1,000. We prompt with 1583

the provided annotation guidelines and have the 1584

model rate all attributes in a single run. Table 16 re- 1585

ports weak correlation on helpfulness, correctness, 1586

and coherence but no correlation on complexity 1587

and verbosity. We suspected this to be due to that 1588

conditioning on the earlier attributes’ scores may re- 1589

duce uncertainty for the later attributes (Stureborg 1590

et al., 2024; Hashemi et al., 2024), but we found 1591

that the average standard deviation is similar across 1592

attributes for both LLM and human judgments. 1593

F.1.3 Pluralistic Alignment 1594

We finally evaluate the alignment between pre- 1595

dicted judgment distributions and human judgment 1596
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Model Method RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

GPT-4o

MODE 85.1, 83.5 .116, .115 82.0, 80.0 .150, .137
MEAN 87.4, 88.0 .099, .102 83.6, 83.2 .115, .097

[MEAN] 85.1, 85.2 .116, .109 82.0, 80.2 .150, .146
MEDI 85.0, 84.6 .116, .112 82.0, 80.2 .150, .142

1P 84.8, 84.3 .120, .116 82.6, 81.0 .141, .138
RAM 87.4, 88.4 .072, .087 83.9, 83.4 .114, .104

QT 87.4, 87.9 .107, .096 83.5, 83.2 .139, .118
PS 87.4, 87.8 .106, .096 83.5, 83.3 .136, .103

Llama
-3.1-8B

MODE 69.6, 72.2 .237, .191 74.8, 71.8 .177, .143
MEAN 72.7, 79.3 .198, .155 78.7, 81.5 .129, .104

[MEAN] 70.1, 75.0 .238, .186 75.7, 75.0 .172, .145
MEDI 69.8, 73.6 .238, .191 75.2, 73.9 .176, .142

1P 70.2, 76.0 .238, .183 76.8, 79.2 .172, .147
RAM 72.7, 79.9 .146, .129 78.8, 81.4 .126, .109

QT 72.8, 79.0 .220, .164 78.7, 81.1 .154, .116
PS 72.8, 78.9 .216, .161 78.6, 81.4 .149, .110

Table 10: Pointwise results over methods. Comma-separated values are with and without CoT (expanded version of
Table 4). Text styling follows Table 1.

Model Method Tie rate MEAN’s accuracy Non-tie accuracy ∆ ↑

K = 9 K = 99 K = 9 K = 99 K = 9 K = 99

GPT-4o

MODE .13, .20 .09, .21 64, 71 61, 73 +0.0, –0.1 –0.0, –0.1
[MEAN] .13, .16 .02, .03 65, 67 61, 53 +0.0, +0.0 +0.0, –0.0

MEDI .13, .17 .06, .09 65, 70 58, 62 –0.0, +0.0 –0.0, –0.1
1P .13, .16 .05, .08 66, 66 58, 60 +0.1, +0.1 +0.0, +0.5

Llama
-3.1-8B

MODE .27, .35 .18, .24 60, 69 63, 70 +0.2, –0.2 +0.1, –2.0
[MEAN] .25, .26 .07, .07 58, 64 56, 61 +0.0, +0.0 +0.0, +0.0

MEDI .26, .29 .11, .11 60, 67 59, 67 +0.1, –0.5 –0.2, –0.6
1P .24, .23 .08, .08 61, 65 55, 57 +0.3, +0.6 +0.8, +0.1

Table 11: Tie analysis for discrete pointwise methods on RewardBench (expanded version of Table 5). Tie rate is the
proportion of instances where the method predicts a tie, over which we report MEAN’s accuracy (%); excess of 50%
indicates room for improving accuracy, and excess of 75% indicates room for improving MSE. Non-tie accuracy
∆ (%) is the method’s accuracy minus MEAN’s accuracy over the non-tie instances. Comma-separated values are
with and without CoT. We find that the mode has the most ties, the highest MEAN accuracy, and the lowest non-tie
accuracy delta (i.e. poor recall without better precision), especially for no-CoT K = 99.

distributions. We quantify the distance between1597

two distributions with the Wasserstein p-distance1598

for p ∈ {1, 2} (Eq. 1). A higher p more heavily1599

punishes large point distances |x−y|. We scale the1600

judgment spaces to [0, 1] so that Wp(µ, ν) ∈ [0, 1].1601

As baselines, we consider deterministic distri-1602

butions that place probability 1 on a measure of1603

central tendency.1604

Table 17 shows that using a distributional pre-1605

diction has little success in improving alignment1606

with the MT-Bench human pairwise preferences,1607

but Table 18 shows success for HelpSteer2 human1608

pointwise scores.1609

We also experimented with the HelpSteer2-1610

Preference dataset, prompting with the provided1611

annotation guidelines (Wang et al., 2024a). How-1612

ever, we found severe position bias in our experi-1613

ments with GPT-4o and Llama-3.1-8B (no-CoT). 1614

The analysis showed no correlation between pre- 1615

dicted distribution variance and annotator disagree- 1616

ment, and poor pluralistic alignment compared to 1617

the deterministic baselines. 1618

F.2 Sensitivity to Score Granularity 1619

Adopting the view that LLMs latently encode a con- 1620

tinuous distribution but output a discretization of 1621

it (Gillman et al., 2024), we analyze how faithfully 1622

functions of the (latent) continuous distribution can 1623

be approximated by those functions computed on 1624

the (observed) discretization. For practical inter- 1625

est, this manifests as robustness to the choice of 1626

K, with convergence in distribution to the continu- 1627

ous distribution as K → ∞. Thus, independently 1628

of the “principledness” of certain functions of a 1629
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Model Method Tie rate MEAN’s accuracy Non-tie accuracy ∆ ↑

K = 9 K = 99 K = 9 K = 99 K = 9 K = 99

GPT-4o

MODE .13, .24 .09, .24 61, 64 62, 67 +0.0, +0.2 +0.1, –0.6
[MEAN] .13, .21 .02, .04 61, 64 42, 48 +0.0, +0.0 +0.0, +0.0

MEDI .13, .22 .05, .11 61, 64 64, 55 +0.0, +0.1 +0.0, –0.6
1P .14, .19 .06, .09 56, 62 67, 56 –0.1, +0.1 +0.3, +0.7

Llama
-3.1-8B

MODE .25, .45 .14, .26 66, 71 61, 65 –0.1, –1.0 –0.4, –3.0
[MEAN] .24, .36 .06, .09 63, 68 49, 55 +0.0, +0.0 +0.0, –0.1

MEDI .25, .40 .10, .18 65, 69 54, 58 +0.0, –0.3 –0.4, +0.5
1P .20, .23 .07, .07 60, 59 53, 50 +0.1, –0.3 +1.8, +0.3

Table 12: Tie analysis for discrete pointwise methods on MT-Bench, mirroring Table 11.

Model Method RewardBench MT-Bench

Acc ↑ MSE ↓ Acc ↑ MSE ↓

GPT-4o

MODE 86.0+0.9, 81.5–2.0 .117+.001, .132+.017 83.9+1.9, 78.1–1.9 .147–.003, .152+.015
MEAN 87.4+0.0, 86.7–1.3 .097–.002, .108+.006 84.8+1.2, 82.9–0.3 .105–.010, .099+.002

[MEAN] 87.0+1.9, 86.5+1.3 .124+.008, .127+.018 85.1+3.1, 82.7+2.5 .167+.017, .182+.036
MEDI 86.7+1.7, 85.2+0.6 .119+.003, .126+.014 84.1+2.1, 81.5+1.3 .160+.010, .170+.028

1P 86.6+1.8, 86.4+2.1 .121+.001, .116+.000 84.2+1.6, 82.7+1.7 .159+.018, .165+.027
RAM 87.1–0.3, 86.7–1.7 .071–.001, .089+.002 85.1+1.2, 83.0–0.4 .108–.006, .105+.001

QT 87.3–0.1, 86.6–1.3 .112+.005, .114+.018 84.8+1.3, 82.7–0.5 .149+.010, .147+.029
PS 87.3–0.1, 86.6–1.2 .105–.001, .105+.009 84.8+1.3, 82.4–0.9 .130–.006, .107+.004

Llama
-3.1-8B

MODE 73.4+3.8, 71.9–0.3 .222–.015, .221+.030 77.3+2.5, 75.1+3.3 .190+.013, .168+.025
MEAN 75.9+3.2, 79.3+0.0 .183–.015, .156+.001 79.3+0.6, 81.3–0.2 .125–.004, .103–.001

[MEAN] 75.3+5.2, 78.5+3.5 .229–.009, .198+.012 79.3+3.6, 80.7+5.7 .201+.029, .180+.035
MEDI 74.4+4.6, 76.5+2.9 .228–.010, .207+.016 78.4+3.2, 80.1+6.2 .198+.022, .161+.019

1P 76.2+6.0, 78.5+2.5 .218–.020, .195+.012 80.6+3.8, 81.5+2.3 .187+.015, .177+.030
RAM 76.1+3.4, 79.7–0.2 .132–.014, .129+.000 79.7+0.9, 81.1–0.3 .123–.003, .109+.000

QT 75.7+2.9, 78.7–0.3 .214–.006, .177+.013 78.8+0.1, 81.3+0.2 .179+.025, .143+.027
PS 75.7+2.9, 78.6–0.3 .203–.013, .163+.002 78.6+0.0, 81.8+0.4 .151+.002, .111+.001

Table 13: Pointwise results over methods (K = 99). Comma-separated values are with and without CoT (expanded
version of Table 6). Subscripts denote change from K = 9 (Table 10). Text styling follows Table 1.

Model Setting K RewardBench MT-Bench

GPT-4o

point score 9 .000, .008 .000, .012
point score 99 .362, .409 .357, .440
pair rank 3 .000, .018 .000, .019
pair rank 5 .014, .049 .021, .041

Llama
-3.1-8B

point score 9 .009, .040 .013, .025
point score 99 .356, .379 .382, .365
pair rank 3 .044, .091 .051, .081
pair rank 5 .107, .194 .107, .245

Table 14: A study on multimodality (see Appendix
F.1.1). Comma-separated values are with and without
CoT.

ground-truth continuous distribution, it is appropri-1630

ate to examine the effect of discretization on our1631

ability to approximate them to begin with. Our1632

theoretical result is stated in Proposition 1 (see1633

Appendix G.1 for full statement, proof, and discus-1634

sion).1635

Proposition 1. Among the discrete methods in Ta-1636

ble 3, MODE computed on continuous distributions1637

may fail to be approximated by the same function1638

Model Setting MT-Bench

GPT-4o
point score +0.21, +0.24
pair score +0.19, +0.27
pair rank +0.19, +0.27

Llama
-3.1-8B

point score +0.21, +0.14
pair score +0.20, +0.24
pair rank +0.02, –0.04

Table 15: Spearman’s ρ between standard deviation of
human judgments and that of LLM’s judgment distri-
bution. Comma-separated values are with and without
CoT. Bold denotes significant correlation (α = 0.01).
Ranking uses Likert-3; scoring uses K = 9 converted
to a Likert-3 distribution [P (X1 > X2), P (X1 =
X2), P (X1 < X2)].

computed on their discretizations, even under regu- 1639

larity conditions. Meanwhile, [MEAN], MEDI, and 1640

1P admit an approximation error bound. 1641

We empirically assess the robustness to K of 1642

the score distributions produced by the LLM judge 1643

as well as the functions computed on them. The 1644

former is not addressed by Proposition 1, which 1645
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Model Helpfulness Correctness Coherence Complexity Verbosity

GPT-4o +0.24 +0.36 +0.32 +0.02 –0.01
Llama-3.1-8B +0.14 +0.22 +0.22 –0.00 +0.01

Table 16: Spearman’s ρ between standard deviation of human judgments and that of LLM’s judgment distribution.
HelpSteer2, no-CoT. Bold denotes significant correlation (α = 0.01).

Model Setting Method W1 W2

GPT-4o

point score
mode .229, .246 .406, .419
mean .229, .247 .388, .349
distr .219, .222 .395, .386

pair score
mode .229, .230 .419, .419
mean .218, .215 .399, .387
distr .220, .215 .408, .401

pair rank
mode .228, .226 .420, .412
mean .221, .212 .396, .362
distr .215, .203 .405, .385

Llama
-3.1-8B

point score
mode .274, .267 .438, .405
mean .277, .267 .412, .359
distr .261, .246 .425, .391

pair score
mode .268, .276 .460, .470
mean .241, .244 .404, .400
distr .239, .243 .426, .433

pair rank
mode .296, .336 .490, .531
mean .356, .370 .423, .420
distr .347, .356 .540, .548

Table 17: Pluralistic alignment error (↓, Eq. 1) from MT-
Bench human pairwise preferences. Comma-separated
values are with and without CoT. Text styling follows
Table 1. The method ‘distr’ uses the predicted distribu-
tion, while the other methods place probability 1 on a
measure of central tendency.

assumes the score distributions to be errorless dis-1646

cretizations and thus consistent across granulari-1647

ties.1648

F.2.1 Sensitivity of Score Distributions1649

For an evaluated text, let µK denote the score1650

distribution with granularity K, with the score1651

space scaled to [0, 1]. We coarsify µ99 into µ̂991652

by binning into 9 blocks of 11 scores. We then1653

quantify sensitivity as the Wasserstein 1-distance1654

W1(µ
9, µ̂99) ∈ [0, 1] averaged over the pointwise1655

instances in the dataset. The Wasserstein p-distance1656

between two distributions µ and ν is1657

Wp(µ, ν) = inf
γ∈Γ(µ,ν)

(
E

(x,y)∼γ
|x− y|p

) 1
p

, (1)1658

where Γ(µ, ν) is the set of couplings of µ and ν.1659

F.2.2 Sensitivity of Pointwise Methods1660

For a dataset D of paired responses, we denote aK1661

as the |D|-length vector containing the value of a1662

method computed on each pair using granularity1663

K. We then quantify sensitivity as the normalized 1664

flip rate 1665

FR :=
∥sgn(a9)− sgn(a99)∥1

∥sgn(a9)∥1 + ∥sgn(a99)∥1
∈ [0, 1]. (2) 1666

F.2.3 Results 1667

Table 19 presents the results on sensitivity to granu- 1668

larity. The discrete metrics are more sensitive than 1669

the continuous metrics. Furthermore, consistent 1670

with Proposition 1, we find that the mode is the 1671

most sensitive among the discrete methods, partic- 1672

ularly with no-CoT. 1673

The effect of CoT differs between the models: 1674

GPT-4o is less sensitive with CoT, and Llama-3.1- 1675

8B is less sensitive with no-CoT. Similar to Lee 1676

et al. (2024b), it would appear that although GPT- 1677

4o is a more capable judge than Llama-3.1-8B, it 1678

is not as robust to granularity (in each model’s 1679

CoT/no-CoT of choice). However, this is partially 1680

because a limitation with setting K as large as 99 1681

for GPT-4o is that no-CoT distributions tend to 1682

have high spread (Table 2), resulting in nontriv- 1683

ial probability mass falling outside of the top 20 1684

tokens provided by the OpenAI API. Concretely, 1685

the average total mass on the top score tokens is 1686

0.88/0.90 on RewardBench/MT-Bench for no-CoT, 1687

but over 0.99 for CoT. 1688

F.3 Position Bias 1689

We compare the degree of position bias (i.e. the 1690

LLM judge’s sensitivity to the order in which the 1691

evaluated texts are presented (Zheng et al., 2023b)) 1692

between various settings. 1693

Evaluation Metrics For the pairwise setting 1694

(scoring or ranking), we measure mean absolute 1695

error (MAE) and mean squared error (MSE) be- 1696

tween the two judgments from the two orders, using 1697

pre-aggregation mean. Compared to MAE, MSE 1698

punishes a few large errors more than many small 1699

errors. 1700

For the listwise setting, we measure Spearman’s 1701

ρ between the difference in the presented positions 1702

of two responses and the judgment. 1703

4In every judgment space, GPT-4o tends to favor responses
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Model Method Helpfulness Correctness Coherence Complexity Verbosity

W1 W2 W1 W2 W1 W2 W1 W2 W1 W2

GPT-4o
mode .218 .311 .219 .332 .149 .252 .211 .273 .186 .257
mean .221 .297 .217 .318 .151 .240 .213 .262 .197 .244
distr .188 .279 .194 .301 .134 .233 .199 .255 .179 .249

Llama
-3.1-8B

mode .259 .369 .250 .377 .154 .280 .227 .290 .182 .255
mean .255 .339 .249 .347 .158 .253 .224 .274 .174 .223
distr .219 .328 .215 .334 .134 .250 .209 .270 .164 .234

Table 18: Pluralistic alignment error (↓, Eq. 1) from HelpSteer2 human pointwise scores. No-CoT. Text styling
follows Table 1. The method ‘distr’ uses the predicted distribution, while the other methods place probability 1 on a
measure of central tendency.

Model Method Reward-
Bench MT-Bench

GPT-4o

– .091, .105 .093, .111
MODE .103, .150 .128, .214
MEAN .066, .080 .105, .136

[MEAN] .104, .115 .144, .199
MEDI .101, .113 .137, .185

1P .096, .117 .137, .196
RAM .074, .084 .111, .138

QT .064, .078 .104, .133
PS .064, .078 .104, .137

Llama
-3.1-8B

– .136, .063 .117, .076
MODE .213, .201 .223, .247
MEAN .149, .042 .131, .048

[MEAN] .213, .139 .219, .218
MEDI .219, .160 .224, .218

1P .223, .105 .183, .133
RAM .168, .037 .156, .068

QT .151, .034 .130, .048
PS .151, .037 .129, .046

Table 19: Sensitivity to granularity (↓) of the score distri-
butions (Eq. 1) and of the pointwise methods computed
on them (Eq. 2). Comma-separated values are with and
without CoT. Text styling follows Table 1.

Results Tables 20 and 21 report position bias in1704

the pairwise settings. We find that no-CoT always1705

improves MSE, even when it hurts MAE, showing1706

that no-CoT reduces cases of extreme position bias.1707

Table 22 reports listwise position bias. We find1708

that DIRECT LIST exhibits the most position bias,1709

consistent with Zhu et al. (2024), despite achiev-1710

ing the highest accuracy (Table 9). On the other1711

hand, INTERM has the least position bias. As the1712

intermediate pairwise preferences can be likened1713

to CoT, this suggests that intermediate reasoning1714

can mitigate bias in challenging judgment settings.1715

However, since an ideal judge should be able to1716

simultaneously maximize accuracy and minimize1717

bias, we believe current methods have ample room1718

for improvement.1719

that are presented earlier.

Model Setting K MAE MSE

GPT-4o

score 9 .090, .076 .057, .031
score 99 .094, .095 .049, .032
rank 2 .086, .087 .083, .037
rank 3 .085, .089 .078, .035
rank 5 .141, .182 .079, .053

Llama
-3.1-8B

score 9 .199, .163 .125, .066
score 99 .188, .160 .114, .060
rank 2 .357, .329 .193, .154
rank 3 .683, .518 .547, .340
rank 5 .506, .342 .334, .164

Table 20: Pairwise position bias (↓, see Appendix F.3)
on RewardBench (see Table 21 for MT-Bench). Comma-
separated values are with and without CoT. Text styling
follows Table 1. We find that no-CoT always maintains
or improves MSE, even when it hurts MAE.

Model Setting K MAE MSE

GPT-4o

score 9 .108, .091 .075, .038
score 99 .111, .108 .066, .039
rank 2 .108, .132 .100, .056
rank 3 .108, .134 .093, .051
rank 5 .187, .172 .120, .047

Llama
-3.1-8B

score 9 .211, .148 .145, .056
score 99 .193, .141 .129, .049
rank 2 .312, .355 .174, .172
rank 3 .618, .532 .466, .337
rank 5 .458, .298 .293, .129

Table 21: Pairwise position bias (↓) on MT-Bench, mir-
roring Table 20.

F.4 Transitivity 1720

We say a comparison method a(·, ·) ∈ [−1, 1] is 1721

transitive if a(A1, A2) > 0 and a(A2, A3) ≥ 0 1722

imply a(A1, A3) > 0 for all triplets of texts 1723

(A1, A2, A3). For example, a score distribution 1724

comparison function that reduces to the compari- 1725

son of two real numbers derived from the two score 1726

distributions independently (e.g. mode or mean) 1727

is transitive. On the other hand, QT, PS, and the 1728

pairwise ranking methods are intransitive. 1729

Human preferences have been shown to exhibit 1730
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Space Nectar RM-Bench MT-Bench

interm .086 .079 .033
list .092 .100 .041

direct list .118 .105 .056

Table 22: Listwise position bias (↓) with GPT-4o. We
report the absolute value4 of Spearman’s ρ between the
difference in the presented positions of two responses
and the judgment. Text styling follows Table 1.

Model Setting Method MT-Bench

GPT-4o

point score QT .000, .000
point score PS .006, .002
pair rank MODE-AGG .026, .022
pair rank AGG-MEAN .007, .003

Llama
-3.1-8B

point score QT .000, .000
point score PS .001, .000
pair rank MODE-AGG .234, .218
pair rank AGG-MEAN .040, .023

Table 23: A study on transitivity. In each cell, we
report the proportion of triplets that exhibit intransitivity,
with and without CoT. (Pointwise scoring uses K = 9;
pairwise ranking uses Likert-2.) In addition, our Nectar
silver labels (GPT-4o, Likert-5, no-CoT, mean) have an
intransitivity rate of 0.020.

intransitivity (Klimenko, 2015), motivating the1731

question of whether LLM judges do so too and1732

how this depends on the method used. Several1733

prior works have proposed methods incorporating1734

awareness of the intransitivity in LLM or human1735

preferences (Liu et al., 2024e; Ethayarajh et al.,1736

2024; Zhang et al., 2024d; Ye et al., 2024a; Hu1737

et al., 2024; Zhang et al., 2024c; Liu et al., 2024d).1738

We adopt the view in Liu et al. (2024e) that tran-1739

sitivity is generally desirable and indicative of a1740

more capable judge, especially in the absence of a1741

curated dataset of intransitive human preferences.1742

Nevertheless, we remark that the ability to model1743

intransitivity is essential to preference modeling in1744

its full generality (Ethayarajh et al., 2024; Zhang1745

et al., 2024d; Ye et al., 2024a), which, among point-1746

wise methods, is achieved by QT and PS but not by1747

mode and mean used in prior work.1748

Table 23 presents the intransitivity rates of dif-1749

ferent methods. Despite the capacity of QT and PS1750

to model intransitive preferences (Savage, 1994;1751

Finkelstein and Thorp, 2006; Conrey et al., 2013),1752

we find that they exhibit negligible intransitiv-1753

ity compared to the pairwise ranking methods.1754

Similar to Liu et al. (2024e), we observe that1755

a stronger judge (GPT-4o) exhibits less intransi-1756

tivity than a weaker judge (Llama-3.1-8B). Pre-1757

aggregation mean exhibits less intransitivity than 1758

post-aggregation mode. Notably, for pairwise rank- 1759

ing, we observe more intransitivity with CoT than 1760

without CoT, even though CoT achieves higher ac- 1761

curacy (Table 1). 1762

G Derivations 1763

G.1 Approximability of Discrete Pointwise 1764

Functions Under Discretization 1765

Proposition 1. We analyze the discrete methods in 1766

Table 3. Specifically, we consider the score function 1767

r rather than sgn(r1 − r2). 1768

Let X be a random variable with support S ⊂ 1769

[12 ,K + 1
2) for an integer K. Define its discretiza- 1770

tion X̂ by P (X̂ = x̂) := P ([X] = x̂) for 1771

x̂ ∈ Ŝ := {1, . . . ,K}, where [·] denotes round- 1772

ing to the nearest integer. 1773

1. MODE may fail to be approximated: Sup- 1774

pose X has a density fX that is L-Lipschitz 1775

with L ≤ 1 and achieves its supremum 1776

at x∗ ∈ argmaxx∈S fX(x). Let x̂∗ ∈ 1777

argmaxx̂∈Ŝ P (X̂ = x̂). Suppose x̂ ∈ Ŝ, 1778

with arbitrarily large |x̂ − x̂∗| > 1, satisfies 1779

P (X̂ = x̂∗) ≥ P (X̂ = x̂) + L
4 . The above is 1780

consistent with [x∗] = x̂. 1781

2. [MEAN] can be approximated: |[EX] − 1782

[EX̂]| ≤ 1. 1783

3. MEDI and 1P can be approximated: For p ∈ 1784

(0, 1), |QX(p)−QX̂(p)| ≤ 1
2 . 1785

Proof. 1786

1. We present a construction. 1787

If L = 0, the claim is immediate; assume not. 1788

Define d := L
4 (
√

1 + 8/L − 2) ≥ L
4 . Let 1789

fX(x) = (d − L
4 ) + L(x − x̂ + 1

2) for x ∈ 1790

[x̂− 1
2 , x̂), and fX(x) = (d−L

4 )+L(x̂−x+ 1
2) 1791

for x ∈ [x̂, x̂ + 1
2), and fX(x) = d + L

4 for 1792

[x] = x̂∗. 1793

Around the regions [x̂− 1
2 , x̂+

1
2), [x̂

∗− 1
2 , x̂

∗+ 1794
1
2), we let fX decrease to 0 with slope ±L, or 1795

until reaching the domain boundary or each 1796

other. Continuity is maintained at the junction 1797

because, supposing x̂ < x̂∗ without loss of 1798

generality, the nearest endpoints x̂+ 1
2 , x̂

∗− 1
2 1799

satisfy |(x̂+ 1
2)− (x̂∗ − 1

2)| ≥ 1 and |fX(x̂+ 1800
1
2)− fX(x̂∗ − 1

2)| =
L
2 . 1801

We verify that P (X̂ = x̂∗) = d + L
4 = 1802

P (X̂ = x̂) + L
4 and x̂ ∈ {x̂} ∪ [x̂∗ − 1

2 , x̂
∗ + 1803

1
2) = argmaxx∈S fX(x). 1804
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It remains to check that we have a valid dis-1805

tribution. The total
∫
fX is bounded by the1806

case if fX is allowed to reach 0 everywhere1807

possible above:1808 ∫
fX ≤ P (X̂ = x̂) + P (X̂ = x̂∗)1809

+
1

L

(
d− L

4

)2

+
1

L

(
d+

L

4

)2

1810

= 1− L

4
< 1,1811

so fX can be made a valid density by adding1812

an appropriately scaled uniform density, not1813

affecting the desired properties.1814

2. Denote the measures of X, X̂ as µX , µX̂ . The1815

definition of (X, X̂) is equivalent to the ex-1816

istence of a coupling γ ∈ Γ(µX , µX̂) with1817

samples defined by (x, x̂) ∼ γ for x ∼ µX1818

and x̂ = [x].1819

|EX − EX̂| =
∣∣∣∣∫ (x− x̂) dγ(x, x̂)

∣∣∣∣1820

≤
∫

|x− x̂| dγ(x, x̂) ≤
∫

1

2
dγ(x, x̂) =

1

2
1821

Thus, |[EX]− [EX̂]| ≤ 1.1822

3. Let q := QX(p).1823

P (X̂ < [q]− 1

2
) = P (X < [q]− 1

2
) < p1824

≤ P (X < [q] +
1

2
) = P (X̂ < [q] +

1

2
),1825

implying QX̂(p) = [q] where |q − [q]| ≤ 1
2 .1826

1827

Remark. The suppositions in (1) are to impose1828

regularity and show even then approximation may1829

not hold. For an example of their omission, with-1830

out requiring absolutely continuous X , it could1831

place atoms at arbitrary x, preventing any margin1832

P (X̂ = x̂∗)− P (X̂ = x̂) less than 1 from produc-1833

ing an error bound. The crucial case that causes the1834

mode to be unstable to approximate is the case of1835

multimodality.1836

In (3), it is crucial that we assumed no discretiza-1837

tion error, i.e. |P (X̂ = x̂) − P ([X] = x̂)| = 0.1838

With any discretization error, we would have no1839

bound on approximation error.1840

H Licensing 1841

Our usage of the artifacts below complies with their 1842

licenses. 1843

Model Licensing GPT-4o5 has a proprietary li- 1844

cense. Llama-3.1-8B6 is licensed under the Llama 1845

3.1 Community License Agreement. Mistral- 1846

7B7 and Prometheus-2-7B8 are licensed under the 1847

Apache License 2.0. 1848

Dataset Licensing The datasets contain English 1849

language data. RewardBench9 and RM-Bench10 1850

are licensed under the ODC-By license. MT- 1851

Bench11 and HelpSteer212 are licensed under the 1852

CC BY 4.0 license. Nectar13 is licensed under the 1853

Apache License 2.0. 1854

I Ethical Considerations 1855

LLMs can exhibit unwanted biases. Relying on 1856

their judgments for downstream applications can 1857

propagate these biases. Nevertheless, our findings 1858

in this paper promote practices for improving align- 1859

ment with human preferences. 1860

5https://platform.openai.com/docs/models#
gpt-4o

6https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

7https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

8https://huggingface.co/prometheus-eval/
prometheus-7b-v2.0

9https://huggingface.co/datasets/allenai/
reward-bench

10https://huggingface.co/datasets/THU-KEG/
RM-Bench

11https://huggingface.co/datasets/lmsys/mt_
bench_human_judgments

12https://huggingface.co/datasets/nvidia/
HelpSteer2/tree/main/disagreements

13https://huggingface.co/datasets/
berkeley-nest/Nectar
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