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ABSTRACT

Reinforcement Learning (RL) has emerged as a highly effective technique in vari-
ous applications, including Knowledge Graph (KG) Completion. KG Completion
involves navigating through an incomplete KG from a source entity to a target en-
tity based on a given query relation. However, existing RL-based approaches only
focus on training the agent to move along the graph, seldom take into account the
multi-relation connectivity inherent in knowledge graphs. In this paper, we pro-
pose a novel approach, Reinforcement learning agent Guided by Multi-relation
Graph Neural Network(RGMG). Our approach develop a Multi-relation Graph
Attention Network (MGAT) which generate high quality KG entity and relation
embedding to help agent navigation. Additionally, we develop a Query-aware Ac-
tion Embedding Enhancement (QAE) module to strength information contained
in action embedding. Experiments on various KG reasoning benchmarks demon-
strate that RGMG is highly competitive and outperformed current state-of-the-art
RL-based methods in different dataset.

1 INTRODUCTION

Artificial General Intelligence (AGI) has come a long way, and the development of automated knowl-
edge reasoning is a significant milestone. This technology allows computer systems to infer new
facts from their existing knowledge, which is critical for achieving AGI. Recent years have seen the
construction of comprehensive knowledge graphs (KGs) such as Yago Suchanek et al. (2007) and
Freebase Bollacker et al. (2008), containing vast amounts of well-structured facts for entities and
their relations. However, due to their large scale, most KGs remain highly incomplete, making KG
completion one of the most challenging tasks for automated knowledge reasoning systems.

To address this challenge, we consider to treat KG completion as a reinforcement learning (RL)
problem, training an agent to traverse the graph from a source node to a target node and predict
the missing relations between entities. A KG is a multi-relational graph, denoted as (V,R), with V
representing the set of entities (vertices) and R denoting the set of relations. Given a source node
vs ∈ V and a query relation q ∈ R, the agent aims to find the target node vt ∈ V such that the tuple
(vs, q, vt) is originally missing from the KG.

Over the years, numerous approaches have been proposed for knowledge graph completion. Ten-
sor factorization methods such as Bordes et al. (2013), Yang et al. (2014), Trouillon et al. (2016),
Dettmers et al. (2018a), as well as multi-relational graph neural networks in Shang et al. (2019),
Schlichtkrull et al. (2017), Vashishth et al. (2019), have emerged as popular approaches. These
methods aim to represent entities and relations as latent embeddings based on existing KG connec-
tions. While they are effective at capturing single-hop KG reasoning, they struggle to predict multi-
hop connections. To address this limitation, recent studies have focused on training Reinforcement
Learning (RL) agents to search for paths over the graph, enabling them to predict multi-hop rela-
tions. Early works such as Das et al. (2017) and M-Walk Shen et al. (2018) employed typical RL
techniques such as Monte Carlo Policy Gradient (REINFORCE) Williams (1992) and Monte Carlo
Tree Search (MCTS) to tackle the task of KG reasoning.

Recently, Deep Reinforcement Learning (DRL) has achieved significant success in various domains,
largely due to the use of Deep Neural Networks (DNNs) as excellent function approximators. It is
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Figure 1: An illustrative overview of our proposed approach, RGMG. During inference time, the
MGAT component pre-compute once on all existing KG connections to generate updated entity
and relation embeddings. Then for each query, the agent then takes the updated embeddings and
performs the QAE component (yellow) to further aggregate the neighbourhood of each possible
next action based on the query and state. Finally, the agent (green) decides to move based on the
resulting action embedding.

widely believed that when proper RL algorithms are combined with DNNs, computers can achieve
promising performance on sequential decision-making tasks, even surpassing human performance,
as demonstrated in tasks such as Mnih et al. (2013), Silver et al. (2016). However, most existing
RL approaches for KG reasoning fail to integrate KG information with appropriate neural architec-
tures. Instead, they train entity and relation embedding vectors stored in a lookup table as a simple
representations, resulting in agents that take actions based on low-quality embeddings trained with-
out using any known graph structural information from the KGs. To enhance the homogeneity of
entity and relation embedding, Curl Zhang et al. (2021) proposed grouping pretrained embeddings
into clusters and training an additional agent to guide the path between clusters. However, this ap-
proach separates the pretraining and clustering of embeddings from the agent learning process, and
introducing an extra agent also increases computational costs during inference.

Given the multi-relational nature of KGs, we propose a novel approach for KG reasoning called the
Reinforcement learning agent Guided with Multi-relation Graph Neural Network (RGMG). RGMG
trains an agent alongside a Multi-relational Graph Attention network (MGAT) in an end-to-end
fashion. Through message passing between nodes and edges, MGAT updates entity and relation
embeddings based on the existing KG connections. Furthermore, We believe that the way in which
neighbouring nodes are aggregated should vary depending on the query relation and agent state. To
this end, we developed a Query-aware Action Embedding (QAE) enhancement mechanism, which
allows the agent to investigate the neighbourhood of each action node given the query relation and
current state. Figure 1 provides an illustrative overview of our proposed approach, RGMG. Finally,
our experiments show that the MGAT component generates informative embeddings that are well-
clustered and driven by the reinforcement learning objective, while the QAE component accelerates
the agent learning process.

2 PRELIMINARY

In this section, we first define notations and formulations for the graph reasoning task as a Markov
Decision Process (MDP), and then briefly review several previous reinforcement learning ap-
proaches to this problem.

2.1 DEFINITIONS

Mathematically, recall that a knowledge graph G = (V,R) can be described as G =
{(vs, r, vo), vs, vo ∈ V, r ∈ R}, where (vs, r, vt) represents a fact tuple. Further denote X ∈
Rnv×dv and Z ∈ Rnr×dr be the embedding matrix for entities and relations respectively, then
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xv ∈ X and zr ∈ Z are the embedding vectors of entities v and relation r respectively. The path
searching or walking process on KGs can be viewed as a Markov Decision Process (MDP), which
is a tuple (S,A, T , R).

For state space S, each state at time step t is defined as st = (G, (vs, rq), vt) ∈ S , where G is the
knowledge graph with all known connections, vs ∈ V is the starting node, rq ∈ R is the query
relation and vt ∈ V is the node where agent is standing at time t.

For action space A, the collections of possible actions in time step t is defined as At =
{(vt, r, v,Nv) : (vt, r, v) ∈ G, r ∈ R, v ∈ V}, where Nv = {(u, r) : u ∈ V, r ∈ R, (v, r, u) ∈ G}
is the neighboring node and relation pair each action in At.

For the transition function T : (S ×A) → S, describe the dynamics of the interactions between the
agent and the environment, transit from one state to next state by taking actions. That is, the agent
move from one node at time step t to another node at time step t + 1 by taking the relation edge
between two node as action.

For the reward function R, the agent will receive terminal reward 1 if it reach the target node at
termination step T otherwise it will receive zero reward.

2.2 RELATED WORKS

Multi-relational Graph Convolution Networks (MGCNs) have been developed in various versions to
model graphs with multiple types of connections, such as Knowledge Graphs (KGs). These models
are typically based on the message passing framework, which involves aggregating neighbourhood
information of each node to generate more homogeneous entity and relation embeddings for down-
stream tasks. CompGCN Vashishth et al. (2019) proposed a general form of aggregating message
passing as follows:

x′
v =

∑
(u,r)∈Nv

Wvϕ(xu, zr)

z′r = Wrzr

(1)

where x′
v ∈ Rd

v and z′r ∈ Rd
r are the updated hidden component of entities and relation embedding

for the next graph convolution layer. After several layers of convolutions, the resulting aggregated
entity and relation embedding will pass to Multi-Layer Perceptrons (MLPs) to perform predictions
for different tasks, such as link prediction and node classification.

Completing missing connections in KGs can also be achieved through logic reasoning using a rein-
forcement learning agent. Various methods have been proposed to train such an agent, which can
traverse the graph and find the target node given a starting node and a query relation. One such
method is MINERVA Das et al. (2017), which utilizes a policy network consisting of Long-Short-
Term Memory (LSTM) Hochreiter & Schmidhuber (1997) to update the agent’s state. It then calcu-
lates the probability distribution for the next actions by performing a dot product operation between
the state and action embeddings. Mathematically, this approach can be expressed as follows:

ht = LSTM(ht−1, [zrt−1 ;xvt−1 ]

dt = softmax(At(W2RELU(W1[ht; zq;xvt−1 ])))

At ∼ Categorial(dt)
(2)

where ht is the updated hidden agent state at the time step t, At ∈ R|At|×(dr+dv) is defined to be the
stack of the embedding of all possible action a1, a2, ..., a|At|. Each al is the embedding vector of an
action in the set of possible actions, defined as al = [zrl ;xvl ] where [; ] is the vector concatenation
operator, vl is the next possible node and rl is the relation of the edge connecting vt−1 and vl. To
obtain the probability distribution for next action, a dot product will be operated between At and
a encoded vector from agent hidden state ht, embedding of the query relation zq and xvt−1

, the
entity embedding of the node where the agent stayed at time step t − 1. Moreover, the RL agent
in MINERVA is trained using the REINFORCE algorithm Williams (1992) with sampled graph
walking paths. After MINERVA, several variants have been proposed, including CURL Zhang et al.
(2021). They clusters the nodes in KGs based on pretrained embeddings and trains a pair of agents,
namely GIANT and DWARF, to guide graph walking between and within clusters.
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3 PROPOSED APPROACH

The policy networks used in the above-mentioned Reinforcement Learning (RL) approaches mainly
consist of LSTMs and MLPs. However, these networks are not well-suited for processing graph data,
including Knowledge Graphs (KGs). To fully leverage the information available in KGs and over-
come this limitation, we propose integrating Graph Neural Networks (GNNs) and message passing
through neighbourhood aggregation into RL agent policy learning. In the following section, we will
delve into the details of our proposed approach, building on the notations defined in the previous
section.

3.1 MULTI-RELATIONAL GRAPH ATTENTION NETWORK

Rather than applying existing Graph Convolution Networks (GCNs), we propose an alternative
architecture called the Multi-relational Graph Attention network (MGAT) to encode Knowledge
Graphs (KGs) and generate hidden representations for entities and relations based on known in-
formation in the KG. In the popular TransE algorithm Bordes et al. (2013), relations are modeled
as translation operations on the embedding space between connected entities, with the objective of
minimizing D(xv + zr, xu) for all tuples (v, r, u) ∈ G, where D is a pre-defined distance function.
Inspired by the spirit of TransE, MGAT computes attention weights for each neighbouring node
by taking the dot product of xv + zr and xu. Recall we define the entities embedding matrix as
X ∈ Rnv×dv and relation embedding matrix Z ∈ Rnr×dr , the whole KG node update mechanism
is described as follows:

Q(v, r) = MLPq(xv + zr)

K(u) = MLPk(xu)

V (u, r) = MLPv([xu; zr])

attu = softmax(
∑

(u,r)∈Nv

Q(v, r)TK(u)√
d

)

x′
v = σ(xv +

∑
(u,r)∈Nv

attuV (u, r))

(3)

where x′
v is the updated entities representation for downstream agent decision, Q,K, V are Multi-

Layer Preceptrons (MLP) encoder for the query, key and value in attention mechanism, σ is any non
linearity activation.

Unlike Vashishth et al. (2019) in equation 1, which updates the relation embedding with a linear
layer, we also develop a relation update mechanism to generate relation representation as follows,

z′r = σ(zr +
1

|Mr|
∑
v∈Mr

MLPz(xv)) (4)

where Mr is the set of entities which has at least one connection with other entities in relation r.

By utilizing MGAT, our agent is able to obtain global summaries of the existing knowledge graph
information in the form of updated entity and relation KG embeddings, denoted as x′

v and z′r, re-
spectively. These updated embeddings are then passed to the latter part of the policy network for
further processing. It is worth noting that MGAT is connected to the latter part of the policy network
throughout the entire neural network forward pass, and that the extraction of KG information of
MGAT is trained according to the REINFORCE loss during the backward pass.

3.2 QUERY-AWARE ACTION EMBEDDING ENHANCEMENT

MGAT summarizes the existing connections of the KG and updates the entity and relation embed-
ding. However, we believe that to make informative decisions at each time step, the agent needs to
consider the set of possible actions in a query-context-dependent manner, taking into account the
query relation and the current state. To address this, we introduce a Query-aware Action Embed-
ding Enhancement (QAE) mechanism. Specifically, we enable the agent to dynamically construct
an action neighbourhood aggregation function that is tailored to the query relation and the current
agent state. This allows for more nuanced and adaptive decision-making, as the agent can consider
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the context of the current query and state. To achieve this, we explore the one-hop neighbourhood
of each possible action al during the decision-making process. With a bit abuse of notation, we use
al to represent both action and action embedding,

QA(q, ht) = MLPqA([z
′
q;ht])

KA(u, r, ht) = MLPkA
([x′

u; z
′
r])

attu = softmax(
∑

(u,v)∈Nal

QT
AKA√
d

)

eal
=

∑
(u,r)∈Nal

attuKA

(5)

where z′q, x
′
u, and z′r are the update embedding obtained from the MGAT component for query

relation, neighbouring node u and edge relation r respectively. The resulting ea is the action en-
hancement vector. It will be added to the construction of action embedding of al in the policy
network of RGMG.

3.3 POLICY NETWORK

Similar to the MINERVA approach Das et al. (2017), we utilize an LSTM encoder to iteratively
encode and update the agent state using equation 6. Additionally, our agent uses the updated entity
and relation embeddings z′rt− 1 and x′vt− 1 generated from the MGAT component. These em-
beddings are extracted from the underlying knowledge graph and incorporated into the agent state,
providing the agent with more comprehensive information for decision-making.

ht = LSTM(ht−1, [z
′
rt−1

;x′
vt−1

]) (6)

After updating the current agent state, the agent will further explore the neighbourhood of each
possible action node and obtain an action enhancement vector according via the QAE component
using equation 5, and construct the enhanced action embedding as follows,

al = MLPa([z
′
rl
;x′

vl
; eal

])

Same as in equation 2, we stack the embedding of the possible actions together, and compute the
probability distribution for next action,

dt = softmax(AtMLPh([ht; z
′
q;x

′
vt−1

]))

At ∼ Categorial(dt)
(7)

where At ∈ R|At|×d is the stack of possible action embedding at time step t, MLPa : Rd3 → Rd

and MLPh : Rd2 → Rd are the MLPs to align the hidden vectors from query state vector and
actions embedding for dot product operations.

3.4 TRAINING

We adopted the Monte Carlo Policy Gradient (REINFORCE) Williams (1992) method to maximize
the expected reward for sampled path walking episode, defined as

L(θ) =

T∑
t=1

Eπ[R(St, At)|S0] (8)

To reduce the variance of policy updates and stabilize training, we utilized the moving average of
the cumulative discounted reward as the control variate baseline. Additionally, to encourage path
diversity, we added an entropy term Haarnoja et al. (2017) to the RL objective during regularization.
The entropy term promotes exploration and prevents the policy from collapsing to a single action.

During the training stage, it is crucial to remove the training tuples in each batch from the knowledge
graph before passing it to MGAT. This is done to avoid information leakage and ensure that the
learned policy is not biased.

During the inference stage, we first perform MGAT in line 5 once to obtain the updated entity
and relation embeddings. Then, whenever a query is received, we perform the same operations
as described in lines 6-9 and calculate the action probability distribution at each step. Finally, to
generate potential trajectories with high probabilities, a beam search is conducted.
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Table 1: Description statistics of benchmark datasets

Datasets entities relations facts (train) queries (test)

WN18RR 40,945 11 86,835 3,134
NELL-995 75,492 200 154,213 39,927
FB15K-237 14,505 237 272,115 20,466

4 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of RGMG, we compared our proposed approach against state-of-
the-art KG reasoning baselines on three popular real-world KG datasets: FB15K-237 Toutanova
et al. (2015), WN18RR Dettmers et al. (2018b), and NELL-995 Xiong et al. (2017). Our main com-
parison task in this experiment is query answering in Knowledge Graphs, where the agent is tasked
with walking through the knowledge graph to find the most suitable terminal entity vT such that
(vs, rq, vT ) is a fact tuple and complete the missing connection, given a source entity and a query
relation (vs, rq, ?). In the following sections, we discuss the datasets, evaluation methods, imple-
mentation, and results in more detail. By doing so, we aim to demonstrate the superior performance
of RGMG over existing KG reasoning approaches.

4.1 DATESETS

The WN18RR and FB15K-237 datasets were created by removing various sources of test leakage
from the original WN18 and FB15K datasets, respectively, thus making the datasets more realistic
and challenging. The NELL-995 dataset, released by Xiong et al. (2017), contains separate graphs
for each query relation. Following the setup in Das et al. (2017), we combined all the graphs of
different relation types into a single graph for the query answering task, considering that some
entities may be connected by more than one type of relation. Table 1 presents some descriptive
statistics of the knowledge graphs in each dataset. These datasets were selected for evaluation as
they are widely used benchmark datasets in the KG reasoning community and have been previously
used in several studies.

4.2 EVALUATION METHODS

We evaluation our proposed RGMG approach against some state-of-the-art reinforcement learning
approaches for Knowledge Graph Reasoning. In particular, MINERVA Das et al. (2017), M-WALK
Shen et al. (2018), GaussPath Wan & Du (2021), Curl Zhang et al. (2021). The results for non-RL
base approaches are also reported as baseline, including DistMult Yang et al. (2014) and CompIEx
Trouillon et al. (2016). For all baseline, we reported and compared with the performance presented
in their original paper.

For each test sample in each of the datasets, the trained agent generates a collection of possible walk-
ing paths and terminal entity nodes via beam search with a fixed beam width. We report standard
ranking metrics for Graph completion tasks, including Hits@1, 3, and 10, as well as Mean Recipro-
cal Ranking (MRR). These metrics provide an evaluation of the agent’s performance in accurately
completing knowledge graph queries by ranking the correct terminal entity nodes higher than the
incorrect ones.

There are two type of tasks to evaluate the algorithm. Link prediction in KG completion involves
predicting missing entities in unknown links of an incomplete KG. In our approach, we utilize
multiple rollouts to search for missing entities in queries of the form (e1, r, ?) or (?, r, e2). On the
other hand, fact prediction is a related but subtly different task that aims to infer whether an unknown
fact (triple) holds or not. According to Xiong et al. (2017), true test triples are ranked with some
generated false triples. To evaluate this task, we first remove all links of groundtruth relations in the
raw KG. Then, our dual agents attempt to infer and traverse the KG to reach the target entity. We
report Mean Average Precision (MAP) scores for various relation tasks of NELL-995 (corresponding
to different subsets).
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Table 2: Query answering performance measured by Hits@1, 3, 10 and MRR of our approach is
compared to state-of-the-art approaches. The best approach in each category is highlighted.

WN18RR NELL-995 FB15K-237

Model @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10 MRR Rank

DistMult 41.0 44.1 47.5 43.3 61.0 73.3 79.5 68.0 27.5 41.7 56.8 37.0 4.42
ComplEx 38.2 43.3 48.0 41.5 61.2 76.1 82.1 68.4 30.3 43.4 57.2 39.4 3.75
MINERVA 41.3 45.6 51.3 44.8 66.3 77.3 83.1 72.5 21.7 32.9 45.6 29.3 3.75
M-WALK 41.5 44.7 54.3 43.7 63.2 75.7 81.9 70.7 16.8 24.5 40.3 23.4 4.50
Curl 42.9 47.1 52.3 46.0 66.7 78.6 84.3 73.8 22.4 34.1 47.0 30.6 2.67
RGMG 44.1 48.7 53.3 47.2 69.8 79.6 85.5 75.6 25.8 35.4 44.2 32.0 1.92

Table 3: Fact prediction performance, MAP scores for different tasks in NELL-995 dataset.

TASK DeepPath MINERVA M-Walk CURL RGMG

AthletePlaysInLeague 96.0 94.0 96.1 97.1 97.4
AthletePlaysForTeam 75.0 80.0 84.7 82.9 84.0
AthleteHomeStadium 89.0 89.8 91.9 94.3 92.0
TeamPlaysSports 73.8 88.0 88.4 88.7 89.3
AthletePlaysSport 95.7 98.0 98.3 98.4 98.3
OrganizationHiredPerson 74.2 85.6 88.8 87.6 87.7
PersonBornInLocation 75.7 78.0 81.2 82.1 84.2
WorksFor 71.1 81.0 83.2 82.1 82.7
OrgHeadquarteredInCity 79.0 94.0 94.3 94.8 94.1
PersonLeadsOrganization 79.5 87.7 88.3 88.9 89.1

Overall 80.9 87.6 89.5 89.7 89.9

4.3 IMPLEMENTATION DETAILS

Message Passing Framework. We utilized the PyTorch-Geometric library Fey & Lenssen (2019)
for message passing operations in node neighbourhood aggregation. This library, built on top of
PyTorch Paszke et al. (2019), allowed for easy implementation and training of Graph Neural Net-
works (GNNs). We relied on a useful pytorch-scatter function to compute matrix operations in the
Compressed Row Storage (CRS) format.

Dataset. Following the approach of MINERVA Das et al. (2017) and Curl Zhang et al. (2021),
we further split the existing fact tuples in the KG into non-overlapping train and validation sets.
Specifically, we separated 3034, 543, and 17535 fact tuples from the training facts for use in the
validation dataset, which was used for all model selection and hyperparameter tuning. In trainin
stage, since our approach summarizes all known connections in the graph using GNNs to aid the
agent in path searching, we removed all training tuple samples in each batch from the KG before
passing it to the MGAT module.

4.4 COMPARISONS WITH STATE-OF-THE-ART

Following the approach of Das et al. (2017) and Zhang et al. (2021), we evaluated our proposed
approach against other methods using the same test datasets. Table 2 presents the results of vari-
ous approaches on the three benchmark datasets. Our proposed RGMG achieved the best overall
performance, ranking at 1.92 on average among all the metrics. Notably, RGMG outperformed all
existing approaches on the WN18RR dataset, with a significant difference in performance. On the
Nell-995 dataset, RGMG achieved better performance on most metrics, except for Hits@10, and
was comparable to SOTA models in general.

On the FB15K-237 dataset, among all the reinforcement learning-based models, RGMG achieved
the best overall results. However, as observed in Table 2, embedding-based approaches like Dist-
Mult Yang et al. (2014) and Complex Trouillon et al. (2016) dominated over RL multi-hop logic
reasoning-based methods. Further investigation and reference to Bordes et al. (2013) revealed that
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Figure 2: The positive reward rate of different models on the three main test datasets. Left: Nell-955;
Middle: WN18RR; Right: FB15K-237

Table 4: Some example paths searched by RGMG

i) About born location
Politician Ryan PersonBornInLocation−−−−−−−−−−−→ ?(City York)

Politician Ryan PoliticianHoldsOffice−−−−−−−−−−−→ PoliticalOffice Governor PoliticianusHoldsOffice−1

−−−−−−−−−−−−−−→ Politicianus Nixon
PersonBornInCity−−−−−−−−−→ City York

ii) About sport athlete
Personus Kobe Bryant

AthletePlaysSport−−−−−−−−−→ ?(Sport Basketball)

Personus Kobe Bryant
AthleteLedSportsTeam−−−−−−−−−−−−→ Sportsteam Los Angeles Lakers

athleteplaysforteam−1

−−−−−−−−−−−→ Athlete Pau Gasol
athleteplayssport−−−−−−−−→ Sport Basketball

iii) About organization hires:
Sportsteam Florida Gators

OrganizationHiredPerson−−−−−−−−−−−−−→ ?(Visualartist Meyer)

Sportsteam Florida Gators CoachesTeam−1

−−−−−−−−−→ Coach Urban Meyer
OrganizationHiredPerson−1

−−−−−−−−−−−−−−→ University Uf
OrganizationHiredPerson−−−−−−−−−−−−−→ Visualartist Meyer

the distribution of query relation types in FB15K-237 is significantly different from that of WN18RR
and Nell-995 datasets. Specifically, FB15K-237 contains a larger proportion of 1-to-M relation sam-
ples than other datasets. For 1-to-M type query instances, the agent is required to predict a list of
entities. However, during the evaluation of multi-hop logic reasoning-based methods, we aim to
search for a single target entity. This can lead to the agent getting stuck in some local nodes cen-
tered in the target list of entities. Additionally, some target entities of the triple may not have a
possible path to travel from the source entity due to the incomplete nature of the knowledge graph.

Our evaluation of fact prediction on the Nell-995 dataset, as shown in Table 3, demonstrates that
RGMG performs the best on only 4 out of 10 tasks. However, it achieves the highest overall av-
erage MAP scores when compared to other RL-based algorithms. This indicates that RGMG can
consistently outperform existing methods, even when evaluating different types of tasks.

4.5 FURTHER ANALYSIS

The results presented in the above provide strong evidence that our proposed method outperforms
existing approaches. We attribute this success to the efficient learning process of our agent guided
by a Multi-relational Graph Attention Network (MGAT) and the Query-aware Action embedding
Enhancement (QAE) component that boosts performance further. To validate this hypothesis, we
conducted ablation studies on the test dataset to examine the impact of different components of our
proposed model.

In Figure 2, we compared the performance of different versions of our model. The model tagged
as ’w/o mgat’ refers to the same architecture as the proposed model, except that the MGAT part
is removed. Similarly, the QAE component is removed for the ’w/o qae’ model. Note that only
the reward rate in the first 3000 iterations is plotted. From the figures, it is evident that the ’w/o
mgat’ model requires more iterations to improve the positive reward rate, and its peak reward is
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Figure 3: The positive reward rate of different models on the three main test datasets. Left: Nell-955;
Middle: WN18RR; Right: FB15K-237

lower than other versions of the model. This demonstrates that adding Graph Neural Networks
(GNNs) is beneficial for the convergence of learning process. On the other hand, although the QAE
component does not show clear faster convergence, it consistently helps the model reach a higher
peak across all the datasets. These quantitative results provide strong evidence for the effectiveness
of our proposed method. In addition to the quantitative analysis, we also provide examples of paths
discovered by RGMG in Table 4 to demonstrate its ability to find the target node for different types
of KG completion tasks.

In addition, we showcase the effectiveness of the Multi-relation Graph Attention Network (MGAT)
in generating well-clustered entity embeddings for downstream agent path searching in Figure 3.
The top row of the figure shows the TSNE plot of sampled entity embedding before passing through
MGAT, while the bottom row shows the embedding after passing through MGAT. For each dataset,
we selected entities from three example categories, namely [drug, coach, bank], [noun, verb, adj.],
and [country, university, award], for Nell-955, WN18RR, and FB15K-237, respectively. As evident
from Figure 3, the embeddings generated from MGAT are grouped with clear boundaries according
to their respective categories. These results demonstrate the effectiveness of MGAT in generating
well-clustered embeddings, which can significantly improve the agent’s performance in searching
for the target entities.

Unlike the Curl algorithm proposed by Zhang et al. (2021), which requires an extra GIANT agent
to guide the traveling between clusters since the cluster and embedding are predetermined before
agent learning, we propose to generate well-clustered embeddings driven by the REINFORCE from
knowledge graph structure object via MGAT and train the agent together with MGAT in an end-
to-end style. This approach not only produces high-quality and task-oriented embeddings but also
avoids the need for extra agent management and resource since all the KG embeddings can be pre-
computed once before path search.

5 CONCLUSIONS

In conclusion, our proposed approach of training Reinforcement learning agent Guided with Multi-
relation Graph Neural Network (RGMG) for Knowledge Graph (KG) Completion has shown
promising results. By incorporating a Multi-relation Graph Attention network (MGAT) for KG
entity and relation embedding and a Query-aware Action embedding Enhancement (QAE) module
for action embedding, our approach has demonstrated competitive performance compared to current
state-of-the-art RL-based methods on various KG reasoning benchmarks.
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