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Abstract

Bayesian optimization (BO) is a widely used it-
erative algorithm for optimizing black-box func-
tions. Each iteration requires maximizing an acqui-
sition function, such as the upper confidence bound
(UCB) or a sample path from the Gaussian process
(GP) posterior, as in Thompson sampling (TS).
However, finding an exact solution to these maxi-
mization problems is often intractable and compu-
tationally expensive. Reflecting realistic scenarios,
this paper investigates the effect of using inexact
acquisition function maximizers in BO. Defining
a measure of inaccuracy in acquisition solutions,
we establish cumulative regret bounds for both GP-
UCB and GP-TS based on imperfect acquisition
function maximizers. Our results show that under
appropriate conditions on accumulated inaccuracy,
BO algorithms with inexact maximizers can still
achieve sublinear cumulative regret. Motivated by
such findings, we provide both theoretical justifi-
cation and numerical validation for random grid
search as an effective and computationally efficient
acquisition function solver.

1 INTRODUCTION

Bayesian optimization (BO) is a class of machine learning-
based black-box optimization strategies for finding a global
optimum of a real-valued function f . Typically, f is a func-
tion whose analytical form is unavailable, but it can be
evaluated with a substantial computational cost. Due to its
black-box nature, BO has demonstrated its efficacy across
a broad spectrum of practical applications, such as tuning
hyperparameters in deep learning [25, 40, 49], searching for
neural network architectures [24, 47, 56], designing materi-
als [15, 31, 54], and discovering new drugs [4, 9, 27, 52].

BO follows a sequential decision-making process, where

the outcome of each iteration informs the selection of the
next evaluation point. After each step, the surrogate model
is updated, thereby guiding the selection of the next point
for function evaluation. This process is built around two
key components: (1) updating a Gaussian process (GP) sur-
rogate model and (2) optimizing the acquisition function
to decide the next evaluation point. The Gaussian process
surrogate is favored for modeling the objective function f
due to its capability to iteratively incorporate all previous
observations, possibly corrupted by noise. The acquisition
function αt directs the optimization by solving for the next
evaluation location, denoted by xt,

xt = argmax
x∈X

αt(x).

This function balances the exploration of the search space
with the exploitation of the accurately estimated surrogate
model. In BO, this is referred to as acquisition (inner) op-
timization [48], while optimization of the whole objective
function is termed outer optimization. Various strategies
for designing the acquisition function exist, with popular
options including Expected Improvement (EI) [20], Knowl-
edge Gradient (KG) [13], Probability of Improvement (PI)
[28], Upper Confidence Bound (UCB) [38], and Thompson
Sampling (TS) [39], each offering a unique approach to
manage the exploration-exploitation balance.

1.1 INEXACT ACQUISITION MAXIMIZATION

Optimizing the acquisition function αt is generally con-
sidered more straightforward and computationally efficient
than directly optimizing the objective f , largely because
αt is defined through a Gaussian process surrogate that of-
fers a tractable approximation to the otherwise complex,
black-box function. However, theoretical approaches often
require an exact solution xt for establishing regret bounds,
a task that becomes particularly difficult in practice due to
the possible non-convex nature of the acquisition function.
This situation raises an important question:



What are the implications of inexact acquisition
function maximization in BO?

Despite the widespread success of Bayesian optimization,
this question has been surprisingly overlooked for an ex-
tended period and remains unexplored. Moreover, besides
Bayesian optimization, this problem widely exists in ban-
dits. Take the classical LinUCB algorithm [1] as an exam-
ple, the acquisition function optimization requires an ex-
act optimization solution of context and model parameters,
which is highly intractable in practice. And the problem
is even worse when it comes to generalized linear bandits
and non-linear bandits. Recently, there has been a growing
line of research on bandits and global optimization with
neural network approximation [10, 53, 55] where the inex-
act acquisition function optimization problem still exists.
In real-world applications, algorithms commonly employ
quasi-Newton methods or random search to optimize the
acquisition function, resulting in an approximate solution.
This practice diverges from the theoretical assumptions of
Bayesian optimization, which typically presume that an ex-
act solution xt is attainable at every iteration t. Therefore,
we need a systematic study on this problem to understand
what theoretical guarantee one can provide when an exact
acquisition function solution cannot be obtained. In Table
1, we summarize existing works that address inexactness in
bandit optimization and point out the unique position of our
paper in bandit optimization. In the subsection below, we
discuss related works.

1.2 RELATED WORKS

Optimization of acquisition functions. The optimization
of acquisition functions has been a long-neglected issue
in BO. Wilson et al. [48] first studied acquisition function
maximization in Bayesian optimization. Since acquisition
functions are usually non-convex and high-dimensional,
they focused on how to approximately optimize acquisition
functions. They found that acquisition functions estimated
via Monte Carlo integration are consistently amenable to
gradient-based optimization, and EI and UCB can be solved
by greedy approaches. Although both their work and this
paper study the inexact acquisition function optimization
problem, our research distinguishes itself by concentrat-
ing on the impact that inexact solutions have on Bayesian
optimization.

Inexact acquisition function optimization has also been ex-
plored in the context of combinatorial semi-bandits, where
the decision-making process involves choosing from a com-
binatorial set of actions to optimize a reward function under
constraints. For instance, Xu and Li [51] and Ross et al.
[36] investigate the intricacies of making efficient selections
amidst a combinatorial structure of actions by leveraging
contextual information to inform the selection of action sub-
sets. These works consider an α-approximate oracle [21],

focusing on a relaxed version of regret to account for the
inexactness of acquisition optimization. Regret is defined
as the difference in reward between the pulled (super-) arm
with an approximation of the best reward. Wang and Chen
[45] show that in general, one cannot achieve no-regret with
an approximation oracle in Thompson sampling, even for
the classical multi-armed bandit problem. Kong et al. [26]
revealed that linear approximation regret for combinatorial
Thompson sampling is pathological, while Perrault [33]
studies a specific condition on the approximation oracle,
allowing a reduction to the exact oracle analysis and thus
attaining sublinear regret for combinatorial semi-bandits.
In contrast to these works concerning multi-armed bandits,
our work focuses on Gaussian process bandits and proposes
sufficient conditions that allow popular BO algorithms to
achieve sublinear regret.

Random sampling and discretization methods. Random
discretization methods have been popular approaches in
BO to address the challenges posed by non-convex and
high-dimensional acquisition functions. One source of inex-
actness in acquisition function optimization is due to the dis-
cretization inherent in these methods. Bergstra and Bengio
[5] demonstrate that random search is often more effective
than grid search for hyperparameter optimization, particu-
larly as the dimensionality of the problem increases. They
show that random search explores a larger, less promising
configuration space, but still finds better models within a
smaller fraction of the computation time compared to grid
search. This approach is beneficial in BO as well, where the
curse of dimensionality makes grid-based methods impracti-
cal. Our work provides a theoretical understanding of when
random sampling works well in the context of inexact acqui-
sition function maximization. More recently, Gramacy et al.
[17] propose using candidates based on a Delaunay triangu-
lation of the existing input design for Bayesian optimization.
These “tricands” outperform both numerically optimized
acquisitions and random candidate-based alternatives on
benchmark synthetic and real simulation experiments. Simi-
larly, Wycoff et al. [50] introduce the use of candidates lying
on the boundary of the Voronoi tessellation of current design
points. This approach significantly improves the execution
time of multi-start continuous search without a loss in accu-
racy, by efficiently sampling the Voronoi boundary without
explicitly generating the tessellation, thus accommodating
large designs in high-dimensional spaces. These methods
leverage geometric structures to provide more efficient can-
didate sets for the acquisition optimization process, aligning
with our focus on inexact acquisition function optimization.

Misspecified and approximate inference in bandits. Be-
sides acquisition functions (inner optimization), inexactness
also occurs in the (outer) optimization loop of bandit prob-
lems, where the objective function class is misspecified with
respect to the modeling function class. For instance, in the
misspecified linear bandits setting [30], the true objective



Problem settings Model misspecification Approximate posterior Inexact acquisition function

Multi-armed bandits Lattimore et al. [30] Phan et al. [34] Wang and Chen [45]
Foster et al. [12] Lu and Van Roy [32] Kong et al. [26]; Perrault [33]

Bayesian optimization Bogunovic and Krause [7] Vakili et al. [42, 43] This paper

Table 1: Theoretical study of inexactness in bandit optimization

may be nonlinear, while in misspecified Gaussian process
bandit optimization [7], the objective does not necessarily
lie in a function class with a bounded RKHS norm.

Phan et al. [34] studied the effects of approximate infer-
ence on the performance of Thompson sampling in k-armed
bandit problems where only an approximate posterior dis-
tribution can be used. With α-divergence governing the
difference between approximate and true posterior distri-
butions, they proposed a new algorithm that works with
sublinear regret in this challenging scenario. In the context
of Bayesian optimization, Vakili et al. [42, 43] introduced
inducing-point-based sparse Gaussian process approxima-
tions to address the scalability challenges of full Gaussian
process models. In contrast, our work assumes an exact pos-
terior and focuses exclusively on the inexactness introduced
by imperfect acquisition function optimization.

1.3 OUR CONTRIBUTIONS

In this paper, we address the problem of inexact acquisi-
tion function maximization in Bayesian optimization by
analyzing its impact on regret and demonstrating that ran-
dom grid search is a theoretically justified and practical
acquisition solver. We focus on two popular Bayesian op-
timization algorithms, GP-UCB [38] and GP-TS [8], and
study their cumulative regret bound when acquisition func-
tion maximization problems are not perfectly solved. Our
key contributions are summarized as follows.

• To the best of our knowledge, our paper is the first
to theoretically study the effect of the inexact acquisi-
tion function solutions in BO. Despite its widespread
practical use, the effect of inexact acquisition maxi-
mization has been largely overlooked in the literature.
Our work systematically answers the question: “How
do inexact acquisition solutions impact the regret of
BO algorithms, and under what conditions do they
still guarantee convergence?” More broadly, our results
bridge an important gap in inexact bandit optimization,
complementing prior studies on model misspecifica-
tion and approximate inference in multi-armed bandits
and Bayesian optimization (see Table 1).

• Formally, we introduce a measure of inaccuracy in
acquisition solution, worst-case accumulated inaccu-
racy, and we establish the cumulative regret bounds of

both inexact GP-UCB and GP-TS. Our analysis quan-
tifies how the cumulative impact of inexact acquisition
solutions influences regret and establishes sufficient
conditions under which inexact BO algorithms can still
achieve sublinear regrets. These results generalize clas-
sical BO regret bounds to more realistic settings where
exact acquisition maximization is infeasible.

• We theoretically justify random grid search as a valid
acquisition solver for BO. Our regret bounds show
that even with a linearly growing grid size |Xt| =
Θ(t), random grid search achieves sublinear regret.
This significantly relaxes the condition in prior work
[8], which required an exponentially larger grid size
t2d, demonstrating that random grid search is both
computationally efficient and theoretically grounded.

• We empirically validate the efficiency of random grid
search over the existing acquisition function solvers
in the context of BO. Our experiments confirm that
random grid search not only maintains strong regret
performance but also offers substantial computational
savings when solving acquisition functions, reinforcing
its practical viability as an acquisition function solver.

• The Python code to reproduce the numerical experi-
ments in Section 5 is available at https://github.
com/hwkim12/INEXACT_UCB_GRID.

2 PRELIMINARIES

2.1 PROBLEM SETUP AND NOTATIONS

We consider a global optimization problem where the goal
is to maximize an objective function f : X → [0,∞). We
use the following notations

x∗ = argmax
x∈X

f(x), f∗ = f(x∗),

where X = [−b, b]d, b ∈ R>0 is a search space of interest,
which could be viewed as a set of actions or arms. Unlike
the first and second-order optimization methods, where one
needs an analytic expression or derivative information of
f , we allow f to be a blackbox function, whose closed-
form expression for the function or the derivative is not
necessarily known. Only through evaluations of the function
f , which could be contaminated by random noise, we aim
to identify the maximum of f .

https://github.com/hwkim12/INEXACT_UCB_GRID
https://github.com/hwkim12/INEXACT_UCB_GRID


To facilitate theoretical understanding of BO methods, we
assume the objective function f belongs to the reproducing
kernel Hilbert space (RKHS) [3, 6, 44] corresponding to
a positive semi-definite kernel function k : X × X → R,
denoted byHk. Following [8], we restrict our attention to a
set of functions f whose RKHS norm is bounded by some
constant B ∈ R>0. Two important assumptions that will be
used throughout the paper are stated below.

Assumption 1. The kernel k(x, x) ≤ 1 for all x ∈ X .

Assumption 2. We consider the kernel k to be either a
square-exponential kernel or a Matérn kernel with a smooth-
ness parameter ν ≥ 2.

At each tth round, we select xt by maximizing an acquisition
function αt and observe a reward

yt = f(xt) + ϵt,

where the noise ϵt is assumed to be conditionally R-
sub-Gaussian with respect to the σ-algebra F ′

t−1 gen-
erated by {x1, · · · , xt, ϵ1, · · · , ϵt−1} [8, 29], i.e., ∀λ ∈
R, E[eλϵt |F ′

t−1] ≤ exp(λ2R2/2) for some R ≥ 0.

We assess the performance of a BO algorithm over T itera-
tions based on the cumulative regret RT , given by

RT =

T∑
t=1

f∗ − f(xt),

where rt = f∗ − f(xt) is referred to as an instantaneous re-
gret at round t. The BO algorithm is said to be a zero-regret
algorithm if limT→∞ RT /T = 0, and typical theoretical
analyses [8, 38, 41] aim to show sublinear growth of RT as
the zero-regret algorithm will guarantee the convergence of
the algorithm to the maximum. This can be seen from the
fact that the simple regret, given by f∗−maxt=1,··· ,T f(xt),
is bounded above by the average cumulative regret RT /T .
Throughout the paper, we use standard big O notation that
hides universal constants, and we use Õ to hide all logarith-
mic factors in T .

2.2 GP-UCB AND GP-TS ALGORITHMS

In the midst of numerous Bayesian optimization methods,
two particular strategies of interest are Gaussian Process-
Upper Confidence Bound (GP-UCB) introduced in Srini-
vas et al. [38] and Gaussian Process-Thompson Sampling
(GP-TS) proposed by Chowdhury and Gopalan [8]. More
formally, to design BO algorithms, one typically imposes a
zero-centered GP prior to the target objective function f and
models the random noise through a Gaussian random vari-
able with variance τ . Conditioning on all t− 1 observations
prior to obtaining t th observation, the posterior mean µt−1

and standard variance σ2
t−1(x) of the Gaussian process are

given by

µt−1(x) = kt−1(x)
T (Kt−1 + τI)−1Yt−1,

σ2
t−1(x) = k(x, x)− kt−1(x)

T (Kt−1 + τI)−1kt−1(x),

where

kt−1(x) = [k(x1, x), · · · , k(xt−1, x)]
T ,

Yt−1 = [y1, · · · , yt−1],

Kt−1 = [k(x, x′)]x,x′∈{x1,··· ,xt−1}.

In other words, the posterior distribution of f conditioning
on {(xi, yi)}t−1

i=1 is given by the Gaussian process with mean
function µt−1 and posterior variance σ2

t−1.

Algorithm 1 GP-UCB [8, 38]

1: Input: Kernel k; Total number of iterations T ; Initial
design points X0; Initial observations Y0.

2: Construct µ0(x) and σ0(x) using X0, Y0.
3: for t = 1, . . . , T do
4: βt ← B +R

√
2(γt−1 + 1 + log(1/δ)).

5: xt ← argmaxx µt−1(x) + βtσt−1(x).
6: Observe yt = f(xt) + ϵt.
7: Xt = Xt−1 ∪ {xt}, Yt = Yt−1 ∪ {yt}.
8: Update µt(x) and σt(x) using Xt, Yt.
9: end for

Algorithm 2 GP-TS [8]

1: Input: Kernel k; Total number of iterations T ; Initial
design points X0; Initial observations Y0.

2: Construct µ0(x) and σ0(x) using X0, Y0.
3: for t = 1, . . . , T do
4: βt ← B +R

√
2(γt−1 + 1 + log(2/δ)).

5: Sample ft(·) ∼ GPD

(
µt−1(·), s2t

)
, with s2t (·) =

β2
t σ

2
t−1(·) .

6: Choose the current decision set Xt ⊂ X of size
|Xt| = (2BLbdt2)d.

7: Set xt = argmaxx∈Xt
ft(x).

8: Observe yt = f(xt) + ϵt.
9: Xt = Xt−1 ∪ {xt}, Yt = Yt−1 ∪ {yt}.

10: Update µt(x) and σt(x) using Xt, Yt.
11: end for

For the choice of an acquisition function to facilitate a
Bayesian optimization strategy, Srinivas et al. [38] consid-
ered a UCB function of the form

αt(x) := µt−1(x) + βtσt−1(x),

where βt is chosen to balance exploitation (picking points
with high function values) and exploration (picking points
where the prediction based on the posterior distribution is
highly uncertain). In their work, they termed the Bayesian
optimization strategy based on the UCB acquisition function



as GP-UCB, which has since become popular in both theo-
retical analyses and empirical applications. In the meantime,
Chowdhury and Gopalan [8] proposed another BO strategy
under the name of GP-TS, which leverages the acquisition
function of the form

αt(x) := ft(x),

where ft is a sample path from the posterior Gaussian pro-
cess with the mean function µt−1 and variance function
β2
t σ

2
t−1. Such a strategy has been widely used under the

name of Thompson sampling in BO and bandit literature
[2, 22, 37]. In practice, optimizing a randomly drawn sam-
ple path ft can be just as hard as finding the optimum of
the target objective f . In reflection of such difficulty, a more
practical version of the aforementioned TS-based BO strat-
egy through discretizing the search space for the acquisition
function was proposed in Chowdhury and Gopalan [8].

For the theoretical analysis, Srinivas et al. [38] and Chowd-
hury and Gopalan [8] considered an increasing sequence for
the choice of βt, and in particular, Chowdhury and Gopalan
[8] set βt to grow at a rate ofO(√γT ) where γT is a kernel-
dependent quantity known as the maximum information
gain at time t, given by

γT = max
XT⊂X :|XT |=T

1

2
log det(IT + τ−1KT ).

The formal procedures for Bayesian optimization using
the UCB and Thompson sampling acquisition functions
are outlined in Algorithms 1 and 2, respectively. Further-
more, the state-of-the-art growth rate of the maximum in-
formation gain is provided in Vakili et al. [41], which states
that γT = O

(
T

d
d+2ν log

2ν
2ν+d (T )

)
for Matérn Kernel and

γT = O
(
logd+1(T )

)
for SE Kernel. Although we work

with UCB and TS in this paper, our analysis can be extended
to more acquisition functions1.

3 REGRET BOUNDS UNDER INEXACT
ACQUISITION FUNCTION
MAXIMIZATION

Although theoretical developments in BO often assume
that the acquisition maximization is solved perfectly, this is
rarely the case in practice. For example, when optimizing
the UCB acquisition function—whose gradient information
is typically available—a popular approach is to use quasi-
Newton methods with multiple starting points [14, 16, 35].
While these methods have proven effective for convex prob-
lems, the UCB acquisition function is usually nonconvex.

1Wang and Jegelka [46] showed that MES, MVES, and PI can
be cast as special cases of UCB with appropriately chosen confi-
dence parameters, and thus fall within the scope of our theoretical
framework.

Consequently, factors such as the number of starting points,
the total number of optimization iterations, and the stopping
criteria all impact the quality of the acquisition solution
obtained.

In TS-based BO methods, it is common to use a discretized
subset of the action space because gradients for the sample
paths are difficult to obtain. In these cases, a sorting algo-
rithm is used to select the maximum value from the posterior
sample path within the chosen grid [8, 23]. Although the-
oretical studies have shown that the TS strategy converges
to the optimal function value, the grid size must grow ex-
ponentially with the number of dimensions [8]. Moreover,
the granularity of the discretization heavily influences the
computational cost. As a result, typical implementations
use the finest discretization possible within the available
computational budget, which can lead to inexact acquisition
solutions.

In this section, we examine how a series of inexact acquisi-
tion function maximizations affects BO strategies. Although
we restrict our attention to acquisition functions of GP-UCB
and GP-TS, our analysis is not pertained to any specific
acquisition function solver. We introduce a measure to quan-
tify the accumulated inaccuracies caused by these inexact
maximizations, with the goal of understanding how they
impact the existing cumulative regret bounds.

3.1 ACCUMULATED INACCURACY

We first introduce a measure of inaccuracies that arise when
solving acquisition function optimization problems. Let
α∗
t = maxαt(x), be the maximum value of the acquisition

function at tth iteration, which is at least as large as αt(xt)
where xt is the action selected at that iteration. For our
analysis, we assume that the acquisition functions {αt}Tt=1

are nonnegative and always achieve a strictly positive maxi-
mum. This assumption can be easily met by adding a posi-
tive constant to the acquisition function at each iteration or
by appropriately restricting the search space. A detailed jus-
tification for the existence of such a constant is provided in
Appendix A.2. We emphasize that this modification does not
change the chosen action, nor does it incur any additional
computational cost.

At each iteration, we quantify the accuracy of the acquisition
optimization solution by the ratio of the acquisition function
value at the selected action to its maximum value:

ηt :=
αt(xt)

α∗
t

∈ [η̃t, 1] ,

so that ηt = 1 if the acquisition function is maximized
perfectly. In other words, a larger value of ηt indicates a
more accurate solution to the tth acquisition optimization
problem. Here, η̃t represents the worst-case accuracy of
the tth acquisition function solver. The overall impact of



inaccurate solutions across iterations is then captured by the
worst-case accumulated inaccuracy,

MT =

T∑
t=1

(1− η̃t) ∈ [0, T ],

which represents the total inaccuracy permitted over T
rounds of Bayesian optimization. Using this measure of
accumulated inaccuracy, we establish cumulative regret
bounds for GP-UCB and GP-TS in the remainder of this
section, in contrast to existing theoretical works that assume
perfect acquisition solutions.

3.2 REGRET BOUNDS

Recall that for the kernel function under consideration,
we have |k(x, x′)| ≤ 1. Furthermore, the tth action xt

satisfies α∗
t := maxαt(x) ≥ αt(xt) ≥ ηtα

∗
t , where

αt(x) = µt−1(x)+βtσt−1(x). We denote byHk the RKHS
associated with a chosen kernel k. We then establish cumula-
tive regret bounds for the GP-UCB algorithm in the presence
of inexact acquisition function solutions.

Theorem 3. Under assumptions 1 and 2, suppose the
objective function f ∈ Hk satisfies ∥f∥Hk

≤ B.
Then, the inexact GP-UCB algorithm with βt = B +
R
√

2(γt−1 + 1 + log(1/δ)) and worst-case accumulated
inaccuracy MT achieves a cumulative regret bound of the
form:

RT = O
(
γT
√
T +MT

√
γT

)
,

with probability 1− δ.

Note that when MT = 0 (exact maximization), the cumu-
lative bound above recovers standard regret guarantees for
GP-UCB [8, 38]. The additive factor of MT

√
γT accounts

for the effect of inaccurate acquisition solutions. This im-
plies that if the worst-case accumulated inaccuracy MT and
the maximum information gain γT do not grow too quickly
so that MT

√
γT

T → 0 as T → ∞, the inexact GP-UCB al-
gorithm will converge to the optimal solution. For example,
with a squared-exponential kernel, it has been shown that γT
grows logarithmically [41]. Theorem 3 thus indicates that
the inexact GP-UCB algorithm converges asymptotically
to the optimal function value, provided that the worst-case
accumulated inaccuracy MT is sublinear.

One can also establish a similar result for the GP-TS algo-
rithm, as stated below. In contrast to the GP-TS algorithm
introduced in [8], our formulation accounts for the extra
uncertainty induced by inexact solutions through the use
of sample paths obtained from the GP posterior with an
enlarged variance.

Theorem 4. Under assumptions 1 and 2, suppose the
objective function f ∈ Hk satisfies ∥f∥Hk

≤ B. Then,

the inexact GP-TS algorithm with variance s2t−1(x) =

(βtσt−1(·) + ṽt)
2, ṽt = ( 1

η̃t
−1)B and worst-case accumu-

lated inaccuracy MT achieves a cumulative regret bound of
the form:

RT = O
(
γT

√
T log T +MT

√
γT log T

)
,

with probability 1− δ.

The above regret bound matches the existing bound for GP-
TS [8], up to an additive factor of MT

√
γT log T , which cap-

tures the inaccuracies in the acquisition function solutions.
Similar to the GP-UCB case, if the worst-case accumulated
inaccuracy MT and the maximum information gain γT do
not increase too rapidly so that MT

√
γT log T/T → 0 as

T → ∞, Theorem 4 shows that the inexact GP-TS algo-
rithm will achieve a sublinear cumulative regret bound.

An overall implication of the theorems established in this
section is that BO strategies can retain asymptotic conver-
gence guarantees even without exact acquisition function
solutions, provided that the accuracy of these solutions im-
proves over time. This insight naturally motivates the ex-
ploration of BO strategies that are computationally more
efficient by reducing the effort spent on acquisition function
maximizations while preserving convergence guarantees.

4 SOLVING ACQUISITION FUNCTION
THROUGH RANDOM GRID SEARCH

Building on the insights from Section 3, we further inves-
tigate a simple yet computationally efficient approach: a
random grid search for acquisition function maximization.
In this method, to maximize an acquisition function αt, one
obtains a set of random points from the search space and
selects the one with the highest acquisition function value.
This approach has been employed in numerous BO problems
and has demonstrated its effectiveness [23, 35]. Importantly,
our results provide the first theoretical validation for this
approach, showing that even with a linear growth in grid
size, one can still achieve sublinear regret.

Concretely, we analyze the GP-UCB and GP-TS algorithms
using a random grid search for acquisition maximization
and derive their cumulative regret bounds. As noted in the
previous section, the accuracy of the acquisition solver must
improve over iterations. To achieve this, we employ a se-
quence of random grids {Xt}t∈N whose size grows linearly
with the iteration count, i.e., |Xt| = Θ(t). Such a strategy
of increasing the grid size has proven empirically successful
[23] in combination with the TS acquisition function.

To precisely define our acquisition function optimization
procedure, consider a grid of random samples Xt ⊂ X that
serves as the search space for the tth acquisition function



optimization. At each tth iteration, we set

xt :=

{
argmaxx∈Xt

µt−1(x) + βtσt−1(x) for GP-UCB
argmaxx∈Xt

ft(x) for GP-TS.

We refer to the first strategy as random grid GP-UCB and
the second as random grid GP-TS. For the choice of ran-
dom grid, we make the following assumption and state our
cumulative regret bound results.

Assumption 5. At iteration t, Xt consists of t indepen-
dent samples drawn uniformly from X . Additionally, the
sequence of random grids {Xt}t∈N is independent across
iterations.

Remark 6. Our results extend to any sampling scheme
whose density remains strictly positive over the search space.
Here, we focus on a uniform random grid because it is the
easiest to implement in practice.

Theorem 7. Under assumptions 1, 2 and 5, suppose f ∈
Hk with ∥f∥Hk

≤ B. With probability 1 − δ, the random
grid GP-UCB with βt = B +R

√
2(γt−1 + 1 + log(2/δ))

yields

RT = O
(
γT
√
T
)
+ Õ

(
T

d−1
d

)
.

Theorem 8. Under assumptions 1, 2 and 5, suppose f ∈
Hk with ∥f∥Hk

≤ B. With probability 1 − δ, the random
grid GP-TS with βt = B + R

√
2(γt−1 + 1 + log(3/δ))

yields

RT = O
(
γT

√
T log T

)
+ Õ

(
T

d−1
d

)
.

Remark 9. Similar to the regret bounds from Section 3, our
cumulative regret bounds now incorporate an additional
factor that accounts for the inaccuracies introduced by the
random grid search. In both Theorem 7 and Theorem 8,
these effects are represented by the term Õ

(
T

d−1
d

)
. Impor-

tantly, our results demonstrate that even a simple random
grid search is sufficient for acquisition function maximiza-
tion, ensuring that Bayesian optimization asymptotically
converges to the global optimum under a suitable growth
rate of the maximum information gain γT .

Remark 10. As the grid size increases superlinearly, the
order of the inaccuracy factor can potentially decrease. For
instance, if the grid size grows at an order of t2, we would
instead get the inaccuracy factor of Õ

(
t
d−2
d

)
or if the grid

size grows at an order of td, we would approximately get
the inaccuracy factor of O(log t).

Remark 11. In our analyses, we mainly considered the
squared-exponential and Matérn kernels, thanks to their
popularity and existing growth rate results on their max-
imum information gain. The key aspect of the maximum
information gain growth rate can be characterized by the

decaying rate of eigenvalues associated with the kernel [41].
Naturally, as long as the decaying rate of a kernel is known,
our analyses can also be extended to other types of kernels.
Furthermore, our analysis can also be extended to settings
with non-stationary noise variance [19].

Our theoretical results indicate that random grid search is
sufficient for optimizing UCB and TS acquisition functions
to achieve sublinear regret bounds for both GP-UCB and
GP-TS. Although many successful implementations of ran-
dom grid search for acquisition function maximization exist,
there has been little theoretical justification for this approach.
The closest work we are aware of is by [8], which incorpo-
rated a grid search within the GP-TS algorithm to solve the
acquisition function optimization problem. Their analysis
yields sublinear regret for certain kernels but requires the
grid size to scale as t2d, where t is the iteration index and
d is the problem dimension. This requirement is computa-
tionally demanding; indeed, in the same paper, the authors
used a fixed grid size for numerical experiments, highlight-
ing the gap between theoretical developments and practical
implementations. Unlike their results, our regret bounds
justify the empirical success of the TS acquisition function
when using a random grid search that grows linearly with
the iteration number, as demonstrated in [23]. This result
not only demonstrates the theoretical soundness of using
random grid search for acquisition maximization but also
provides rigorous justification for the empirical findings in
[23], which observed that a random grid search of orderO(t)
is robust and efficient for TS algorithms. Furthermore, as
Section 5 will show, the computational efficiency of random
grid search approach offers a significant practical advantage
over more complex solvers such as quasi-Newton methods,
without sacrificing convergence guarantees.

5 EXPERIMENTS

In this section, we first present experimental results on syn-
thetic functions and then a real-world automated machine
learning task. In Appendix B, we provide additional details
of the experimental setup and more ablation studies.

5.1 SYNTHETIC EXPERIMENTS

We conduct numerical experiments on six benchmark func-
tions to demonstrate the effectiveness of random grid search
combined with the UCB acquisition function. We refer the
reader to [23] for a demonstration of the effectiveness of ran-
dom grid search when using the TS acquisition function. The
test functions include Branin (2D on [−5, 10]× [0, 15]), Ras-
trigin (3D on [−5.12, 5.12]3), Hartmann3 (3D on [0, 1]3),
Hartmann4 (4D on [0, 1]4), Levy (5D on [−10, 10]5), and
Hartmann6 (6D on [0, 1]6). For each problem, a set of initial
design points is generated using a Sobol sequence. These



Figure 1: Cumulative regret comparison between acquisition function solvers.

points are scaled to the appropriate domain. We vary the
number of initial design points by problem (20 for Branin,
30 for Rastrigin and Hartmann3, 40 for Hartmann4, 50 for
Levy, and 60 for Hartmann6), reflecting the dimension of
the objective function. After initialization, BO algorithms
with different choices of acquisition function solvers are
performed for a predetermined number of iterations: 80
iterations for Branin, 100 for Rastrigin, Hartmann3, and
Hartmann4, 150 for Levy, and 200 for Hartmann6. In each
iteration, a Gaussian process with a Matérn kernel is fitted to
the available data, and the UCB acquisition function is opti-
mized with an exploration parameter βt =

√
log(t+ 2) for

each iteration t. The optimization of this acquisition func-
tion is carried out using one of four acquisition optimization
methods: a uniform random grid search (abbreviated as Uni-
form), popular quasi-Newton methods including Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (abbreviated
as L-BFGS-B) as well as Nelder–Mead (abbreviated as NM),
and the conjugate gradient (abbreviated as CG) method. For
the random grid size |Xt|, we set it to be 100t, which scales
linearly in terms of the number of iterations. Each method
is evaluated over 20 independent experiments (with varying
random seeds) to provide a statistically valid comparison in
terms of both cumulative regret and computational time.

Figure 1 shows that, across a range of dimensions and objec-
tive landscapes, the uniform sample grid search consistently
achieves competitive cumulative regret and keeps pace with,
or in some cases outperforms, the popular acquisition opti-
mization tools. For instance, in the 2D Branin problem, the

Figure 2: Computational time comparison between acquisi-
tion function solvers.

uniform sample grid search’s cumulative regret curve is su-
perior to that of other sophisticated optimization algorithms
over the entire horizon, demonstrating rapid improvement
from the outset. On the more challenging 3D Rastrigin, 3D
Hartmann3, and 4D Hartmann4 functions, uniform sample
grid search continues to exhibit a steady reduction in re-
gret, closely matching or surpassing other solvers. Even
for the higher-dimensional Levy (5D) and Hartmann6 (6D)
problems, the uniform sample grid search approach remains
impressively competitive, achieving a final cumulative re-
gret that is comparable to the gradient-based methods.

Figure 2 further highlights the uniform sample grid search’s
practical advantages: it maintains one of the lowest average



runtimes across all problems, standing in stark contrast to
NM, which exhibits significantly longer runtimes (especially
in the 5D and 6D settings)2.

While the gap in runtime between uniform random grid
search and existing acquisition function solvers narrows
in higher dimensions—partly due to the increased number
of BO iterations and corresponding grid evaluations—the
uniform sample grid search continues to offer a favorable
balance between efficiency and regret reduction, making it
an appealing choice when balancing rapid progress in regret
reduction with efficient use of computational resources.

5.2 REAL-WORLD AUTOML TASK

Similarly, we perform a hyperparameter tuning task focus-
ing on improving the validation accuracy of the gradient
boosting model (from the Python sklearn package) on the
breast-cancer dataset (obtained from the UCI machine learn-
ing repository). Details of 11 hyperparameters are shown in
Appendix B. Figure 3 shows the performances using differ-
ent inner optimization methods for GP-UCB. We can see
that random grid search (“uniform” in the figure) achieves
relatively low cumulative regret as well as low computation
time from Figure 3.

6 CONCLUSION

In this paper, to the best of our knowledge, we study the
inexact acquisition function maximization problem for BO
for the first time, a topic that has been largely overlooked.
Existing works predominantly operate under the assumption
that an exact solution is attainable, thus allowing for the
establishment of rigorous theoretical upper bounds. How-
ever, in practice, finding exact solutions is difficult due to
the multimodal nature of acquisition functions

To address this discrepancy, we define a measure of inac-
curacy in acquisition solution, referred to as the worst-case
accumulated inaccuracy. We establish cumulative regret
bounds for both inexact GP-UCB and GP-TS. Our bounds
show that under some conditions on the worst-case accu-
mulated inaccuracy, inexact BO algorithms can still achieve
sublinear regrets. Moreover, we extend to provide the first
theoretical validation for random grid search, showing that
even with a linear growth in grid size, one can still achieve

2We provide a brief comparison of the computational complex-
ity of the acquisition optimizers used in Figure 2. For the random
grid search, the grid size scales as O(t), roughly yielding a total
complexity of Õ(T 2) over T iterations. In contrast, gradient-based
methods (e.g., L-BFGS-B, CG) require iterative optimization with
per-iteration costs dependent on the dimensionality. Let It denote
the number of gradient updates at step t, and let cost(gradient)
be the cost of a single gradient evaluation (e.g., O(d3) for New-
ton, O(d2) for CG/BFGS). Then the overall complexity becomes∑T

t=1 O(It × cost(gradient)).
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Figure 3: Cumulative regret (upper) and average compu-
tational time (lower) of different acquisition optimization
tools on the real-world AutoML task.

sublinear regret. Our experimental results also validate the
effectiveness of random grid search in solving acquisition
maximization problems.

Although our work focuses on GP-UCB and GP-TS, our
analysis can be extended to other acquisition functions with
similar structural properties. Additionally, our framework
opens avenues for studying adaptive inexact optimization
strategies, where the computational effort allocated to ac-
quisition function maximization is dynamically adjusted
based on accumulated inaccuracy. We hope our study will
spur systematic theoretical work on inexact acquisition opti-
mization and inspire empirical investigations into efficiently
allocating computational resources in BO.
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A PROOF FOR THEORETICAL STATEMENTS

A.1 ASSUMPTIONS AND KEY LEMMAS

We first list out necessary assumptions and key lemmas to establish theorems stated in the manuscript.

Assumption 12. The kernel k(x, x) ≤ 1 for all x ∈ X .

Assumption 13. We consider the kernel k to be either a square-exponential kernel or a Matérn kernel with smoothness
parameter ν ≥ 2.

Assumption 14. At iteration t, Xt is a collection of t random samples drawn uniformly from X . Furthermore, we assume
that the set of uniform random grids {Xt}t∈N are independent.

Lemma 15 (Theorem 2 of Chowdhury and Gopalan [8]). Suppose f ∈ Hk with ∥f∥Hk
≤ B. Then the following statement

holds with probability at least 1− δ, for all x ∈ X and t ∈ N,

|f(x)− µt−1(x)| ≤ βtσt−1(x),

where βt = B +R
√

2(γt−1 + 1 + log(1/δ)) and γt−1 is the maximum information gain after (t− 1) rounds.

Lemma 16 (Lemma 4 of Chowdhury and Gopalan [8]). Let {z1, · · · , zT } be the points selected by arbitrary BO strategy.
Then the following holds,

T∑
t=1

σt−1(zt) ≤
√
4(T + 2)γT

where γT is the maximum information gain after T rounds.

Throughout the remainder of the appendix, we use the notation O(tξ), for arbitrarily small ξ > 0, to represent logarithmic
factors in t.

Lemma 17 (Proposition 4 of Helin et al. [18]). Let x̃1, ..., x̃t be t uniform random samples from a hyperrectangle X ⊆ Rd.
Define ht = supx∈X infi=1,...t ∥x− x̃i∥, then there exists t∗ such that ∀t ≥ t∗,

E[ht] = O(t−
1
d+ξ),

where ξ > 0 is an arbitrarily small positive constant.

In the following lemma, we establish a high-probability upper bound on the cumulative discrepancy between the random
grid Xt and the search space X .

Lemma 18. Let ht = supx∈X inf x̃i∈Xt
∥x− x̃i∥. For δ > 0 small, with probability at least 1− δ, we have

T∑
t=1

ht ≤
t∗∑
t=1

ht +
CT

d−1
d +ξ

δ
,

for some C > 0 and t∗ ∈ N, with arbitrarily small ξ > 0.

Proof. From Lemma 17, we know that there exists C > 0, ξ > 0 and t∗ ∈ N such that E[ht] ≤ Ct−
1
d+ξ for all t ≥ t∗.

From the Markov’s inequality, we know that

P

[
T∑

t=t∗

ht >
CT

d−1
d +ξ

δ

]
≤

E
[∑T

t=t∗ ht

]
CT

d−1
d +ξ

δ ≤ δ

where the second inequality follows from E[
∑T

t=t∗ ht] ≤ CT
d−1
d +ξ.



A.2 GP-UCB/GP-TS WITH INEXACTNESS

We first provide justifications for the nonnegativity of the UCB acquisition function after the constant shift. To this end, we
show the existence of a constant C such that αt + C is non-negative on the search space X .

Lemma 19. For some δ > 0, a constant shifted tth acquisition function of the GP-UCB algorithm, given by

αt(x) + C = µt−1(x) + βtσt−1(x) + C

is non-negative on X with probability 1− δ, for some constant sequence C ∈ R.

Proof. From Lemma 15, we know that
f(x) ≤ µt−1(x) + βtσt−1(x),

for all x ∈ X with probability 1− δ. Therefore,

0 ≤ f(x) + |f(x)| ≤ µt−1(x) + βtσt−1(x) + |f(x)|.

Since supx |f(x)| ≤ ∥f∥Hk
≤ B, we have that µt−1(x) + βtσt−1(x) +B ≥ 0.

We next provide justifications for the nonnegativity of the TS acquisition function after the constant shift. To this end, we
show the existence of a constant Ct such that αt + Ct is non-negative on the search space Xt.

Lemma 20. For some δ > 0, the constant shifted tth acquisition function of the robust GP-TS algorithm, given by

αt(x) + Ct = ft(x) + Ct

is non-negative on Xt with probability 1− δ, for some sequence Ct.

Proof. From Lemma 5 of [8], conditioning on the history until time t, i.e.,Ht := {(x1, y1), · · · , (xt, yt)}, we know that

∀x ∈ Xt, |ft(x)− µt−1(x)| ≤
√

2 log(|Xt|/δ)st−1(x),

with probability 1− δ/2. Therefore, from the definition st−1(x) = βtσt−1(·) + vt, we have

µt−1(x)−
√

2 log(|Xt|/δ)(βT + v) ≤ µt−1(x)−
√

2 log(|Xt|/δ)st−1(x) ≤ ft(x), (1)

where vt =
(

1
ηt
− 1

)
B. Using Lemma 15 with βtσt replaced with st, with probability at least 1− δ/2

−B − (βT + v) ≤ f(x)− st−1(x) ≤ µt−1(x) (2)

holds for all x ∈ X . Combining (1) and (2), we observe that

ft(x) + (1 +
√
2 log(|Xt|/δ))(βT + v) +B ≥ 0,

for all x ∈ Xt with probability at least 1− δ.

Theorem 21 (Restatement of Theorem 3). Under assumptions 12 and 13, suppose an objective function f ∈ Hk with
∥f∥Hk

≤ B. The inexact GP-UCB algorithm with βt = B + R
√

2(γt−1 + 1 + log(1/δ)) and worst-case accumulated
inaccuracy MT yields a cumulative regret bound of the form,

RT = O
(
γT
√
T +MT

√
γT

)
,

with probability 1− δ.



Proof. From Theorem 2 of Chowdhury and Gopalan [8], we know that

µt−1(x
∗)− βtσt−1(x

∗) ≤ f(x∗) ≤ µt−1(x
∗) + βtσt−1(x

∗),

µt−1(xt)− βtσt−1(xt) ≤ f(xt) ≤ µt−1(xt) + βtσt−1(xt)

hold with probability 1− δ. Then

f(x∗)− f(xt) ≤ µt−1(x
∗) + βtσt−1(x

∗)− µt−1(xt) + βtσt−1(xt)

= αt−1(x
∗)− αt−1(xt) + 2βtσt−1(xt)

= (1− ηt)α
∗
t + 2βtσt−1(xt),

where the first equality follows from the definition of the UCB acquisition function, and the second equality is due to the
fact that αt(xt) = ηtαt(x

∗). Since µt−1(x) ≤ f(x) + βtσt−1(x), for all x ∈ X , we conclude that, with probability 1− δ,

α∗
t ≤ max

x∈X
[f(x) + 2βTσt−1(x)] ≤ B + 2βT ,

where the second inequality follows from the fact that supx∈X |f(x)| ≤ ∥f∥Hk
≤ B, and for all x ∈ X , σt−1(x) ≤ 1.

Therefore, we conclude that

RT =

T∑
t=1

f(x∗)− f(xt) ≤ (B + 2βT )

T∑
t=1

(1− ηt) + 2βT

T∑
t=1

σt−1(xt) ≤ (B + 2βT )

T∑
t=1

(1− η̃t) + 2βT

T∑
t=1

σt−1(xt).

From Lemma 16, we arrive at the conclusion.

A similar analysis can be established for the GP-TS algorithm with an enlarged variance s2t−1(x) = (βtσt−1(·) + vt)
2,

vt = ( 1
η̃t
− 1)B. We omit the proof of the following statements as it substantially overlaps with the approach taken in [8]

with a variance factor adjustment.

Theorem 22 (Restatement of Theorem 4). Under assumptions 12 and 13, suppose an objective function f ∈ Hk with
∥f∥Hk

≤ B. The inexact GP-TS algorithm with variance s2t−1(x) = (βtσt−1(·) + ṽt)
2, ṽt = ( 1

η̃t
− 1)B and worst-case

accumulated inaccuracy MT yields a cumulative regret bound of the form

RT = O
(
γT

√
T log T +MT

√
γT log T

)
,

with probability 1− δ.

A.3 RANDOM GRID SEARCH BASED GP-UCB

Theorem 23. Under assumptions 12, 13 and 14, suppose f ∈ Hk with ∥f∥Hk
≤ B. With probability at least 1− δ, the

random grid GP-UCB with βt = B +R
√
2(γt−1 + 1 + log(2/δ)) yields

RT = O
(
γT
√
T + T

d−1
d +ξ

)
,

for arbitrarily small ξ > 0.

Proof. Note that

RT =

T∑
t=1

f(x∗)− f(xt)

=

T∑
t=1

f(x∗)− f([x∗]t) + f([x∗]t)− f(xt),

where [x∗]t is the point closest to x∗ in Xt. By Lemma 15, for all possible realizations of X1, · · · ,XT , with a probability
1− δ/2, we have

µt−1([x
∗]t)− βtσt−1([x

∗]t) ≤ f([x∗]t) ≤ µt−1(x
∗
t ) + βtσt−1([x

∗]t)

µt−1(xt)− βtσt−1(xt) ≤ f(xt) ≤ µt−1(xt) + βtσt−1(xt).



From the definition of xt, we know µt−1([x
∗]t) + βtσt−1([x

∗]t) ≤ µt−1(xt) + βtσt−1(xt). Therefore, we have

f([x∗]t)− f(xt) ≤ 2βtσt−1(xt).

Furthermore, from Lemma 1 of [11], we know that f(x∗) − f([x∗]t) ≤ C∥x∗ − [x∗]t∥ for some constant C > 0. Since
∥x∗ − [x∗]t∥ ≤ ht for ht := supx∈X inf x̄i∈Xt ∥x− x̄i∥, we have

RT ≤ C

T∑
t=1

ht + 2βT

T∑
t=1

σt−1(xt).

Then by Lemma 18, we know that with probability at least 1− δ/2, C
∑T

t=1 ht = O
(
T

d−1
d +ξ

)
. Combined with Lemma

16 and invoking the union bound, we have the result.

A.4 RANDOM GRID SEARCH BASED GP-TS

In this section, we list all additional definitions and lemmas we use in proofs for the regret bound of a random grid search
based GP-TS. Since our approach closely follows to that of Chowdhury and Gopalan [8], many of the preliminary lemma
we list here can be proven in an analogous fashion. We will adjust and restate the Lemma and proof if needed.

Definition 24. We define the filtration Ft = σ {(x1, y1,X2), · · · , (xt, yt,Xt+1)} as the σ-algebra generated by the
collection of evaluation locations, function evaluations and search grids observed until time t. Note that conditional on Ft,
the search grid is no longer random.

Lemma 25 (Lemma 5 of [8]). For all t ∈ N, assume |Xt| = ct with c > 0. Then

P
[
∀x ∈ Xt, |ft(x)− µt−1(x)| ≤ βt

√
2 log(ct3)σt−1(x)

∣∣∣Ft−1

]
≥ 1− 1/t2,

for some constant c > 0, δ ∈ (0, 1) and βt = B +R
√
2(γt−1 + 1 + log(3/δ)).

We introduce some definitions here.

Definition 26. ∀t ≥ 1, c̃t =
√
6 log t+ 2 log c and ct = βt(1 + c̃t).

Definition 27. We define the following two events:

Ef (t) = {∀x ∈ X , |µt−1(x)− f(x)| ≤ βtσt−1(x)}
Eft(t) = {∀x ∈ Xt, |ft(x)− µt−1(x)| ≤ βc̃tσt−1(x)}

Definition 28. Given a grid Xt, define the set of saturated points to be

St := {x ∈ Xt : ∆t(x) > ctσt−1(x)},

where [x∗]t is the point closest to x∗ in Xt and ∆t(x) := f([x∗]t)− f(x). Notice that conditioning on Xt, [x∗]t ∈ Xt \ St.

Lemma 29 (Lemma 6 of [8]). Suppose |Xt| = ct, c > 0. For δ ∈ (0, 1), following statements hold.

• P[∀ t ≥ 1, Ef (t)] ≥ 1− δ/3

• P[Eft(t)|Ft−1] ≥ 1− 1/t2

Lemma 30 (Lemma 7 of Chowdhury and Gopalan [8]). For any filtration Ft−1 such that Ef (t) is true,

P
[
ft(x) > f(x)

∣∣∣Ft−1

]
≥ η :=

1

4e
√
π

> 0,

holds for any x ∈ X .

Lemma 31 (Lemma 8 of Chowdhury and Gopalan [8]). For any filtration Ft−1 such that Ef (t) is true,

P[xt ∈ Xt \ St|Ft−1] ≥ η − 1/t2.



Lemma 32. For any filtration Ft−1 such that Ef (t) is true, we have

E[∆t(xt)|Ft−1] ≤
11ct
η

E[σt−1(xt)|Ft−1] +
2B

t2
,

where ∆t(xt) := f([x∗]t)− f(xt).

Proof. Given a grid Xt, let x̄t = argminx∈Xt\St
σt−1(x). From the law of total expectation and positivity of the σt−1, we

have

E[σt−1(xt)|Ft−1] ≥ E[σt−1(xt)|Ft−1, xt ∈ Xt \ St]P[xt ∈ Xt \ St|Ft−1]

≥ E[σt−1(x̄t)|Ft−1](η − 1/t2), (3)

where the second inequality follows from the definition of x̄t and Lemma 31.

To control ∆t(xt) = f([x∗]t)− f(xt), recall that if Ef (t) and Eft(t) are both true, we know that

for all x ∈ Xt, ft(x)− ctσt−1(x) ≤ f(x) ≤ ft(x) + ctσt−1(x). (4)

Notice that

∆t(xt) = f([x∗]t)− f(xt)

= f([x∗]t)− f(x̄t) + f(x̄t)− f(xt)

≤ ∆t(x̄t) + ft(x̄t) + ctσt−1(x̄t)− ft(xt) + ctσt−1(xt)

≤ ct(2σt−1(x̄t) + σt−1(xt)) + ft(x̄t)− ft(xt)

≤ ct(2σt−1(x̄t) + σt−1(xt))

where the first inequality is due to (4), the second inequality follow from the fact x̄t /∈ St and the last inequality comes from
the definition of xt.

Therefore, we have

E[∆t(xt)|Ft−1] ≤ 2ctE[σt−1(x̄t)|Ft−1] + ctE[σt−1(xt)|Ft−1] + 2BP
[
Eft(t)c|Ht−1

]
≤ 2ct

η − 1/t2
E[σt−1(xt)|Ft−1] + ctE[σt−1(xt)|Ft−1] +

2B

t2

≤ 11ct
η

E[σt−1(xt)|Ft−1] +
2B

t2
,

where we used the fact supx∈cX ∆t(x) ≤ 2B which can be deduced from the fact sup |f(x)| ≤ ∥f∥Hk
≤ B in the first

inequality. The second inequality follows from the inequality in (3) and Lemma 25. The third inequality is due to the fact
1

η−1/t2 ≤
5
η .

Next, we define random variables and associated filtration to invoke concentration inequality for super-martingales.

Definition 33. Let Y0 = 0, and for all t ∈ {1, · · · , T},

∆̄t(xt) = ∆t(xt)I
{
Ef (t)

}
Zt = ∆̄t(xt)−

11ct
η

σt−1(xt)−
2B

t2

Yt =

t∑
s=1

Zs

From the definition, and by Lemma 32, we deduce the following result, which we formally state as lemma.

Lemma 34. (Yt)
T
t=0 is a super-martingale process with respect to filtration Ft.



Proof. It suffices to show that for all t ∈ {1, · · · , T} and any Ft−1, E [Yt − Yt−1|Ft−1] ≤ 0. Note that

E [Yt − Yt−1|Ft−1] = E [Zt|Ft−1] = E
[
∆̄t(xt)|Ft−1

]
− 11ct

η
E [σt−1(xt)|Ft−1]−

2B

t2
. (5)

If Et(t) is false, we have E
[
∆̄t(xt)|Ft−1

]
= 0, which shows that (5) is less than or equal to zero. On the other hand, if

Et(t) is true, from Lemma 32, we can again conclude that (5) is less than or equal to zero.

Lemma 35. Given any δ > 0,

T∑
t=1

∆t(xt) ≤
11cT
η

T∑
t=1

σt−1(xt) +
2Bπ2

6
+

4B + 11cT
η

√
2T log(3/δ),

with probability at least 1− 2δ/3.

Proof. By construction,

|Yt − Yt−1| = |Zt| ≤
∣∣∆̄t(xt)

∣∣+ 11ct
η

σt−1(xt) +
2B

t2
≤ 2B +

11ct
η

+
2B

t2
≤ 4B + 11ct

η

where the first inequality is due to the triangle inequality. The second inequality comes from the fact that
∣∣∆̄t(xt)

∣∣ ≤
2 supx∈X |f(x)| ≤ 2∥f∥Hk

≤ 2B and σt−1(x) ≤ 1 for all x ∈ X . The third inequality follows from η ≤ 1. From the
Azuma-Hoeffding inequality, with at least probability 1− δ/3, we have

YT − Y0 =

T∑
t=1

∆̄t(xt)−
T∑

t=1

11ct
η

σt−1(xt)−
T∑

t=1

2B

t2
≤

√√√√2 log(3/δ)

T∑
t=1

(4B + 11ct)2

η2
.

In other words, we have

T∑
t=1

∆̄t(xt) ≤
T∑

t=1

11ct
η

σt−1(xt) +

T∑
t=1

2B

t2
+

√√√√2 log(3/δ)

T∑
t=1

(4B + 11ct)2

η2

≤ 11cT
η

T∑
t=1

σt−1(xt) +
2Bπ2

6
+

4B + 11cT
η

√
2T log(3/δ)

with at least probability 1− δ/3. From Lemma 29, we know Ef (t) holds for all t ≥ 1 with probability at least 1− δ/3. In
other words, by definition, ∆t(xt) = ∆̄t(xt) for all t ≥ 1 with probability at least 1− δ/3. Applying the union bound, we
obtain the statement.

Theorem 36 (Restatement of Theorem 8). Under assumptions 12, 13 and 14, suppose f ∈ Hk with ∥f∥Hk
≤ B, for some

B > 0. With probability at least 1− δ, the random grid GP-TS with βt = B +R
√
2(γt−1 + 1 + log(3/δ)) yields

RT = O
(
γT

√
T log T + T

d−1
d +ξ

)
,

for arbitrarily small ξ > 0.



Proof. Note that

RT =

T∑
t=1

f(x∗)− f(xt)

=

T∑
t=1

f(x∗)− f([x∗]t) + f([x∗]t)− f(xt)

=

T∑
t=1

f(x∗)− f([x∗]t) +

T∑
t=1

∆t(xt)

≤ C

T∑
t=1

∥x∗ − [x∗]t∥2 +
T∑

t=1

∆t(xt)

≤ C

T∑
t=1

ht +

T∑
t=1

∆t(xt),

where the first inequality follows from the Lipschitzness of f , which was shown in Lemma 1 of [11] and the second
inequality is due to the definition of fill distance ht = supx∈X inf x̃i∈Xt

∥x − x̃i∥. From Lemma 18, we know that the

leading term C
∑T

t=1 ht = O
(
T

d−1
d +ξ

)
. For the second term, note that from Lemma 35

T∑
t=1

∆t(xt) ≤
11cT
η

T∑
t=1

σt−1(xt) +
2Bπ2

6
+

4B + 11cT
η

√
2T log(3/δ)

= O
(
cT

√
4(T + 2)γT + cT

√
T
)

where the last equality is due to Lemma 16. From the definition of ct, we know cT = O(
√
γT log T ). Since the leading term

dominates, we have
T∑

t=1

∆t(xt) = O
(
γT

√
T log T

)
.

Applying union bound and combining everything, we get the result.

B ADDITIONAL DETAILS OF EXPERIMENTS

B.1 EXPERIMENTAL SETUP OF REAL-WORLD AUTOML TASK

In the 11-dimensional real-world hyperparameter tuning task, we focus on improving the validation accuracy of the
gradient boosting model (from the Python sklearn package) on the breast-cancer dataset (from the UCI machine learning
repository). The 11 hyperparameters are:

• Loss, (string, “logloss” or “exponential”).

• Learning rate, (float, (0, 1)).

• Number of estimators, (integer, [20, 200]).

• Fraction of samples to be used for fitting the individual base learners, (float, (0, 1)).

• Function to measure the quality of a split, (string, “friedman mse” or “squared error”).

• Minimum number of samples required to split an internal node, (integer, [2, 10]).

• Minimum number of samples required to be at a leaf node, (integer, [1, 10]).

• Minimum weighted fraction of the sum total of weights, (float, (0, 0.5)).

• Maximum depth of the individual regression estimators, (integer, [1, 10]).

• Number of features to consider when looking for the best split, (float, “sqrt” or “log2").



• Maximum number of leaf nodes in best-first fashion, (integer, [2, 10]).

For integer-valued parameters, we conducted optimization on the continuous domain and rounded to the nearest integer
value.

B.2 ABLATION STUDIES

B.2.1 Experiments with Different Grid Sizes

We have further added a numerical experiment investigating the effect of linearly varying grid size versus a fixed grid size of
100 in the 11-dimensional machine learning hyperparameter tuning problem. From Figure 4, it can be seen that the linearly
varying grid size performs slightly better than the fixed grid size in terms of the cumulative regret plot.
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Figure 4: Performances with uniform random and uniform fixed grid sizes.

B.2.2 Experiments with a Smaller Initial Design Points

We further investigated the impact of a smaller initial design. In Section 5, we used n = 10d; here, we repeat those
simulations with n = 5d. Results are shown in Figure 6 and Figure 5. Once again, the random grid search GP-UCB achieved
competitive performance while substantially improving computational efficiency.

Figure 5: Average computational time of different acquisition optimization methods with a smaller initial design points
(n = 5d, in the manuscript, we considered n = 10d).



Figure 6: Cumulative regret of different acquisition optimization methods with a smaller initial design points (n = 5d, in the
manuscript, we considered n = 10d).


	Introduction
	Inexact Acquisition Maximization
	Related Works
	Our Contributions

	Preliminaries
	Problem Setup and Notations
	GP-UCB and GP-TS Algorithms

	Regret bounds under inexact acquisition function maximization 
	Accumulated inaccuracy
	Regret Bounds

	Solving acquisition function through random grid search
	Experiments
	Synthetic Experiments
	Real-World AutoML Task

	Conclusion
	Proof for Theoretical Statements
	Assumptions and Key Lemmas
	GP-UCB/GP-TS with inexactness
	Random Grid Search based GP-UCB
	Random Grid Search based GP-TS

	Additional Details of Experiments
	Experimental Setup of Real-World AutoML Task
	Ablation Studies
	Experiments with Different Grid Sizes
	Experiments with a Smaller Initial Design Points



