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ABSTRACT

Domain generalization deals with the difference in the distribution between the
training and testing datasets, i.e., the domain shift problem. A principled approach
to domain generalization is by extracting domain-invariant features. In this paper,
we propose an information-theoretic approach for domain generalization. We first
establish the domain transformation model, mapping a domain-free latent image
into a domain. Then, we cast the domain generalization as a rate-distortion problem,
and use the information bottleneck penalty to measure how well the domain-free
latent image is reconstructed from a compressed representation of a domain-specific
image compared to its direct prediction from the domain-specific image itself. We
prove that the information bottleneck penalty guarantees that domain-invariant
features can be learned. Lastly, we draw links of our proposed method with self-
supervised contrastive learning without negative data pairs. Our empirical study on
two different tasks verifies the improvement over recent baselines.

1 INTRODUCTION

Deep neural networks (DNNs) are highly expressive models that reach state-of-the-art performance
in challenging tasks, such as speech and visual recognition (Devlin et al., 2018; He et al., 2016),
by capturing complex correlations among input elements, e.g., pixels of an image. However, the
correlations might also contain spurious features that hurt the generalization performance of DNNs
on out-of-distribution samples (Szegedy et al., 2013; Beery et al., 2018; Alcorn et al., 2019). Un-
fortunately, real-world applications often encounter such out-of-distribution samples, e.g., when
the training domain does not match the testing domain. A prominent example is deblurring, where
models are trained on simulated blurs which differ substantially to real-world blurring (Koh et al.,
2021). In other words, generalization across domains is a critical task before deploying DNNs to
real-world application.

Learning features that are invariant across multiple training domains, and using those features for
out-of-distribution generalization has emerged as a significant topic in domain generalization. In
domain generalization, multiple source domains are accessible during training, but the target domains
are not (Blanchard et al., 2011; Muandet et al., 2013). Invariant risk minimization (IRM) (Arjovsky
et al., 2019) is a prominent approach for learning domain invariant features. However, IRM suffers
from the case when the invariant features contains full information about the label (Ahuja et al.,
2020). To deal with this shortcoming, Ahuja et al. (2021) introduce the information bottleneck theory
on neural networks (Tishby & Zaslavsky, 2015), and show that their method will be guaranteed to
converge to the invariant features. On the empirical side, a series of works align source domain
distributions for domain-invariant representation learning by either direct construct auxiliary penalty
(Duan et al., 2012; Sun & Saenko, 2016; Li et al., 2018b;c; 2017; Niu et al., 2015), or meta learning
(Li et al., 2019; Balaji et al., 2018; Li et al., 2018a).

There are also series of work do not rely on invariant features. They can be categorized as (1) domain-
specific method: Domain2Vec (D2V) (Deshmukh et al., 2018) learns domain-specific embedding,
DMG (Chattopadhyay et al., 2020) aims to learn domain specific masks; and (2) augmentation
method: (Volpi et al., 2018) augments the dataset adversarially, L2A-OT (Zhou et al., 2020) augments
data with image information. Despite their success, there is no guarantee that empirical methods can
solve the task across different environments.
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In this paper, we use an information-theoretic approach to tackle domain generalization. We assume
there is a domain-free latent instance (e.g., an image) that captures the invariant features we want to
extract. We define a domain transformation model that maps the domain-free latent instance into a
domain and then we apply the rate distortion theory to obtain a domain-invariant representation. The
proposed method, called Twins, is guaranteed to converge to the invariant feature under the linear
classification structural equation model (Ahuja et al., 2021). We evaluate our method on linear unit
tests (Aubin et al., 2021) and variants of MNIST dataset (LeCun & Cortes, 2010; Xiao et al., 2017;
Clanuwat et al., 2018), which validates the theoretical analysis and demonstrates how the proposed
method can outperform the previous ones. Our contributions can be summarized as follows:

• We cast domain generalization as a rate distortion problem and prove how the proposed method
can converge.

• We illustrate how the proposed method extends previous results on domain generalization, and
draw links to self-supervised contrastive learning. We demystify the success of contrastive learning
by giving a contrastive learning based domain generalization algorithm with theoretical guarantee.

• We evaluate our method on two datasets and observe consistent improvement over existing base-
lines.

2 PRELIMINARY ON DOMAIN GENERALIZATION

Assume that the instance-label pair (X,Y ) is sampled from an unknown distribution P(X,Y ). The
objective of standard supervised learning is to learn a predictor f that is able to predict the labels Y
of corresponding instances X for each (X,Y ) ∼ P(X,Y ), given the finite training samples drawn
from the underlying distribution P(X,Y ).

Unlike the standard supervised learning tasks, in domain generalization, we cannot sample directly
from the distribution P(X,Y ). Instead, we can only observe (X,Y ) under different domains e ∈ Eall,
denoted as (Xe, Y e) ∼ Pe(Xe, Y e). We also assume that e ∈ Eall is distributed as e ∼ Pe. Given
samples from a finite subset Etrain ( Eall of all the domains, the goal of the domain generalization
problem is to learn a predictor f that generalizes across all possible domains. This can be summarized
as follows:
Problem 2.1 (Domain generalization). Let Etrain ( Eall be a finite subset of training domains. We
have access to the data for each training domain etrain ∈ Etrain, but have no access to the data for
each test domain etest ∈ Eall\Etrain. Given a function classF and a loss function `, our goal is to learn
a predictor f ∈ F using the data from the training domain such that f minimizes the worst-case risk
over Eall. Define the risk of the predictor f on the domain e as Re(f) := EPe(Xe,Y e) `(f(Xe), Y e).
We want to solve the following min-max optimization problem:

minimize
f∈F

max
e∈Eall

Re(f). (DG)

We establish the domain transformation model to characterize the relation between domain-aware
instance Xe and the domain-invariant latent instance X in the Assumption 1, which first appears in
Robey et al. (2021).
Assumption 1 (Domain transformation model). Let δe denote a Dirac distribution for e ∈ Eall. We
assume that there exists a measurable function G : X × Eall → X , which we refer to as a domain
transformation model, that parameterizes the inter-domain covariate shift via

Pe(X) =d G# (P(X)× δe) ∀e ∈ Eall, (1)

where # denotes the push-forward measure and =d denotes equality in distribution.

The Assumption 1 can somewhat reflect the generation of domain specific instances. For example,
the multiple different views of a 3D object (Niu et al., 2015), different angles of the image (Rotated
MNIST (Worrall et al., 2017)). Besides, the MUNIT architecture (Huang et al., 2018) can effectively
distangle the domain-free latent instance X and the specific environment e, and thus can be used as
the domain transformation model G (Robey et al., 2021).

Let Φ denote the feature representation mapping, w denote the classifier and w ◦ Φ denote the full
predictor. The regret of the network on the domain e is denoted as Re(w ◦ Φ).

2



Under review as a conference paper at ICLR 2022

Next, we define standard properties related to the datasets used in the domain generalization literature
(Ahuja et al., 2021). For each e ∈ Eall, the distribution (Xe, Y e) ∼ Pe satisfies the following
properties: (1) ∃ a map Φ∗, which we call an invariant feature map, such that E

[
Y e
∣∣Φ∗(Xe

)]
is the

same for all e ∈ Eall and Y e 6⊥ Φ∗(Xe), where ⊥ means mutual independence. (2) ∃ a map Ψ∗,
which we call spurious feature map, such that E

[
Y e
∣∣Ψ∗(Xe

)]
is not the same for all e ∈ Eall and

Y e 6⊥ Ψ∗(Xe) for some domains. Ψ∗ often hinders learning predictors that only rely on Φ∗. For
example, in the CMNIST dataset, the Φ? extracts the underlying digit and Ψ? extracts background
color.

The baseline algorithm for domain generalization Equation (DG) is the Empirical Risk Minimization,
i.e. directly minimizing the empirical risk on the training domains:

min
w,Φ

1

|Etrain|
∑
e∈Etrain

Re(w ◦ Φ), (2)

where |Etrain| denotes the number of training domains.

We say that a data representation Φ elicits an invariant predictor across the set of training domains Etrain
if there is a predictor w that simultaneously achieves the minimum risk, i.e. w ∈ arg minw′ Re(w′ ◦
Φ),∀e ∈ Etrain. Using this notation, the main objective of Invariant Risk Minimization (IRM) is stated
as:

min
w,Φ

1

|Etrain|
∑
e∈Etrain

Re(w ◦ Φ), s.t. w ∈ arg min
w′

Re(w′ ◦ Φ), ∀e ∈ Etrain. (3)

Lastly, we rely on the notion of ‘informativeness’ about the datasets (Ahuja et al., 2021). There are
two such categories of informativeness. In the first case, the invariant features Φ∗(Xe) are partially
informative about the label, i.e. Y 6⊥ Xe|Φ∗(Xe), and color contains information about label not
contained in the uncolored digit. In the second case, invariant features are fully informative about the
label, i.e., Y ⊥ Xe|Φ∗(Xe), i.e., they contain all the information about the label that is contained in
input Xe. Many real-world image datasets have fully informative invariant features, the labels are a
deterministic function of the domain-invariant features and domain-aware spurious features do not
affect the label.

3 METHOD

3.1 RATE DISTORTION & INFORMATION BOTTLENECK PRINCIPLE

Given a domain-free latent instance X ∈ RdX , its observation in a domain e is denoted as Xe :=
G(X, e). We want to learn the feature Ze = Φ(Xe) ∈ RdZ which is informative about the domain-
free variable X , but invariant (i.e. uninformative) to the specific domain e. We use rate–distortion
theory (Davisson, 1972; Blau & Michaeli, 2019) to formulate our domain generalization problem.

Rate–distortion theory is a major branch of information theory which provides the theoretical
foundations for lossy data compression. An encoder Φ encodes domain-aware instances Xe. We
want the representation Ze = Φ(Xe) to be domain-invariant, so we feed Ze into a decoder which
outputs domain-invariant X . We minimize the distortion between the original domain-aware instance
Xe and the reconstructed domain-free instance X . The distortion function measures how well X
is predicted from a compressed representation Ze compared to its direct prediction from Xe. This
trade-off is captured by the following loss function:

LIB(θ, e) = EX∼PX ,e∼PeI(Ze;Xe)− βI(Ze;X) IB objective (4)

where I denotes the mutual information, θ is the parameter of the representation function Φ, and β is
a constant.

In the following, we consider two cases: discrete and continuous variables, owing to their different
definition of entropy.

Discrete case: Since the representation function is deterministic with respect to θ, we can rewrite
Equation (4) through a classical identity of mutual information: I(X;Y ) = H(X) − H(X|Y ),
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where H denotes the Shannon entropy for discrete variables, as follows:

LIB(θ, e) = EX,eI(Ze;Xe)− βI(Ze;X)

= EX,eH(Ze)−H(Ze|Xe)− β(H(Ze)−H(Ze|X))

= EX,eH(Ze|X) +
1− β
β

H(Ze),

(5)

where in the last equality we omit the overall scaling factor of the loss function.

If 0 ≤ β ≤ 1, since H(·) is bounded below by 0, setting Φ to be constant will clearly minimize the
penalty, which is uninformative about the representations we want to learn. Hence, we set β > 1, and
replace 1−β

β with −λ, where 0 ≤ λ < 1. The IB objective can be rewritten as

LIB(θ, e) = EX,eH(Ze|X)− λH(Ze). (6)

Continuous case: In terms of continuous variables, the differential entropy h(·) is not bounded below,
which hinders our analysis. To overcome this, we can define the lower bounded differential entropy
ĥ(X) := h(X + ε), where ε is the independent bounded zero-entropy noise ε ∼ Uniform(0, 1).
Thus, ĥ(X) ≥ h(ε) = 0. We can replace the Shannon entropy H(·) with lower bounded differential
entropy ĥ(·) in Equation (6):

LIB(θ, e) = EX,eĥ(Ze|X)− λĥ(Ze). (7)

For simplicity, we define H to be the Shannon entropy for the discrete variables, or lower bounded
entropy ĥ for continuous variables in the main text. We define He(f) := EXe∼PeH(f(Xe)). We
can extend the Empirical Risk Minimization (ERM) algorithm to include the IB Penalty, and the
resulting algorithm, denoted as Twins-ERM method, is the following:

min
w,Φ

∑
e∈Etrain

He
(
Φ
∣∣X)− λHe

(
Φ
)

s.t.
1

|Etrain|
∑
e∈Etrain

Re
(
w ◦ Φ

)
≤ r (8)

where r is the threshold on the empirical risk on the training domains.

In addition to ERM, another popular minimization framework is the invariant risk minimization (Ar-
jovsky et al., 2019). The proposed penalty can be readily incorporated into the IRM framework, we
call the resulting algorithm Twins-IRM:

min
w,Φ

∑
e∈Etrain

He
(
Φ
∣∣X)− λHe

(
Φ
)
,

s.t.
1

|Etrain|
∑
e∈Etrain

Re
(
w ◦ Φ

)
≤ r, w ∈ arg min

w̃
Re
(
w̃ ◦ Φ

)
,∀e ∈ Etrain.

(9)

3.2 THEORETICAL GUARANTEE

In this subsection, we establish the theoretical guarantee of our algorithm under the linear classification
case. We consider the following standard 0-1 classification model in literature (Ahuja et al., 2020;
2021):

Assumption 2. Linear classification structural equation model. In each e ∈ Eall,

Y e ← I(w?inv ·Xinv)⊕Ne, Ne ∼ Bernoulli(q), q ≤ 1

2
, Ne ⊥ (Xinv, X

e
spu)

Xe ← S(Xe
inv, X

e
spu), Xe

inv ← G(Xinv, e)
(10)

where I(x) is 1 if x is positive else 0, w?inv ∈ Rm with ‖w?inv‖ = 1 is the labelling hyperplane,
Xe

inv, X
e
inv ∈ Rm, Xe

spu ∈ Ro, S ∈ R(m+o)×(m+o) and G is a continuous domain transformation.

Before presenting our main theorem, we first add two assumptions on the support of invariant features.
Define the support of the invariant features Xe

inv in environment e as X einv.
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Assumption 3 (Invariant feature support overlap). The union of support of the invariant features of
the training domains covers support of the invariant features of all the domains. i.e.

⋃
e∈Eall

X einv ⊆⋃
e∈Etrain

X einv.

Assumption 4 (Strictly separable invariant features). The training support of invariant fea-
tures

⋃
e∈Etrain

X einv is strictly separated by the labelling hyperplane w∗inv. In other words,
minx∈

⋃
e∈Etrain

X e
inv

sign(w∗inv · x) · (w∗inv · x) > 0.

Assumption 3 and 4 describes the property of the support of invariant feature. Under these assump-
tions, we propose our first main theorem:
Theorem 3.1. Suppose each e ∈ Eall follows Assumption 2, and Assumptions 3 and 4 hold for the
invariant features. Also, for each e ∈ Etrain, assume that Xe

spu = AXe
inv +W e, where A ∈ Ro×m,

W e ∈ Ro is continuous, bounded, and zero mean noise. Each solution to Twins-ERM and Twins-IRM
(Equation (8) and Equation (9), with ` as 0-1 loss, and r = q) solves the domain generalization
problem (Equation (DG)).

Sketch of Proof. The full proof is provided at Appendix A. We only present the main idea here.
Denote Φ† as the solution to Equation (9),

Φ†Xe = Φ†S(Xe
inv, X

e
spu) = Φ†invX

e
inv + Φ†spuX

e
spu = (Φ†inv + Φ†spu ·A)Xe

inv + Φ†spuW
e (11)

We will show that Φ+ =
([

Φinv + Φspu · A
]
, 0
)
S−1 can continue to achieve an error of q(= r)

across training domains, and have a lower information bottleneck penalty. Therefore, the optimal
solution to Twins-ERM (Equation (8)) does not depend on the spurious noise W e, and hence solves
the domain generalization problem (Equation (DG)).

It is known that ERM and IRM fails under the assumption of Theorem 3.1 (Theorem 3 in (Ahuja
et al., 2021)). This theorem shows that our algorithm can provably solve the linear classification
structural equation model.

In real world, however, we do not have direct access to the domain-free instance X . Hence, we
practically adopt image from another domain, denoted as Xe′ , as a proxy for X in Twins-ERM
and Twins-IRM (Equation (8) and Equation (9)). In other words, fixing e′ ∈ Etrain, the Twins-ERM
(Equation (8)) can be rewritten as

min
w,Φ

∑
e∈Etrain

He
(
Φ
(
Xe)|Xe′)− λHe

(
Φ
)

s.t.
1

|Etrain|
∑
e∈Etrain

Re
(
w ◦ Φ

)
≤ r, (12)

and the Twins-IRM (Equation (9)) can be rewritten as

min
w,Φ

∑
e∈Etrain

He
(
Φ
(
Xe)|Xe′)− λHe

(
Φ
)

s.t.
1

|Etrain|
∑
e∈Etrain

Re
(
w ◦ Φ

)
≤ r, , w ∈ arg min

w̃
Re
(
w̃ ◦ Φ

)
,∀e ∈ Etrain.

(13)

We will show adopting proxy from another domain will still be guaranteed to solve the domain
generalization problem (Equation (DG)).
Theorem 3.2. . Suppose each e ∈ Eall follows Assumption 2, and Assumptions 3 and 4 hold for the
invariant features. Also, for each e ∈ Etrain, assume that Xe

spu = AXe
inv +W e, where A ∈ Ro×m,

W e ∈ Ro is continuous, bounded, and zero mean noise. Each solution to Twins-ERM and Twins-IRM
(Equation (12) and Equation (13)), with ` as 0-1 loss, and r = q) solves the domain generalization
problem (Equation (DG)).

The full proof of Theorem 3.1 and 3.2 can be found at Appendix A.

3.3 GAUSSIAN BOTTLENECK

The IB obejctive (4) can be directly estimated by k-nearest-neighbor method, as described in Ap-
pendix C. However, such direct estimation requires large memory and is computationally intensive.
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We denote the algorithm by kNN direct estimation as Twins-Direct. In order to facilitate the imple-
mentation of our penalty, we make the simplifying assumption that the datasets follow a Gaussian
distribution (Chechik et al., 2005). Specifically, assuming X,Xe are jointly multivariate zero-mean
Gaussian vectors with covariances ΣX ,ΣXe , and Ze ∈ RdZ is a encoded version of Xe that must
maintain a given value of mutual information with X . We define the covariance of Ze and Ze|X to
be ΣZe and ΣZe|X .

Next, we simplify the Equation (6). The entropy of a Gaussian distribution is simply given by the
logarithm of the determinant of its covariance function (up to a constant that we ignore). The loss
function becomes:

LIB(θ, e) = EX log det(ΣZe|X)− λ log det(ΣZe). (14)

Practical considerations: We reformulate our algorithm so that it resembles the contrastive learning
method, i.e. Barlow Twins (Zbontar et al., 2021). The second term of the loss in Equation (14)
maximizes det(ΣZe). Since computing the determinant of a matrix is computationally intensive, we
adopt a proxy to minimize the Frobenius norm of the correlation matrix of Ze. Since the correlation
matrix is invariant to scaling, we can set the diagonal element of the correlation matrix of Ze to be
1. Then, the second term of Equation (14) amounts to minimizing the off-diagonal term, i.e. the
second term in Equation (16). This term essentially decorrelates the different dimensions of the
representation and prevents these dimensions from encoding similar information.

Besides, it can also easily be shown that the first term of Equation (14) minimizes the information the
representation contains about the domain information has the same solution with the first term of
Equation (16). This term maximizes the alignment between representations of pairs of domain-aware
instances Xe and domain-free instances X .

In practice, we have no access to the domain-free latent instance. For a given instance Xe, we use
an instance with the same label, but from a different domain, denoted as Xe′ as surrogate for the
domain-free latent X . We minimize the distance between pairs of instances from different domains.
Sample {zeb}1≤b≤B ∼ Ze and {ze′b }1≤b≤B ∼ Ze

′
, we concatenate them into matrix Ze ∈ RB×dZ

and Ze
′ ∈ RB×dZ , where dZ is the dimension of zeb , z

e′

b . After mean shifting every column of Ze

and Ze
′
, such that 1>Ze = 1

>Ze
′

= 0 (1 is a column vector full of 1s), the cross-correlation matrix
CZij is defined as:

CZij =
〈Ze:,i,Ze

′

:,j〉
‖Ze:,i‖2‖Ze

′
:,j‖2

, 1 ≤ i, j ≤ dZ , (15)

and the final penalty is defined as:

c(Z) =
∑
i

(1− CZii )2 + λ
∑
i 6=j

(CZij)
2. (16)

However, we do not have access to domain transformation model either. We construct the contrastive
instances by permuting the instances that have the same label in each iteration. In particular, we
sample B instances {xb}1≤b≤B from training domains as row vectors, where B is the batch size.
We concatenate the representation {zb} = {Φ(xb)} into matrix Z1 ∈ RB×dZ . The contrastive
batch Z2 is constructed by permuting the rows of Z1, i.e. Z1

b,: = Z2
π(b),:, where π is a permutation

of {1, 2, · · · , B} such that the corresponding labels of xb and xπ(b) are identical. CZij defined in
Equation (15) can be rewritten as:

CZij =
〈Z1

:,i,Z
2
:,j〉

‖Z1
:,i‖2‖Z2

:,j‖2
, 1 ≤ i, j ≤ dZ (17)

Such penalty can be readily incorporated into the ERM and IRM losses, i.e.

LTwins−ERM = LERM + µ · c(Z), and LTwins−IRM = LIRM + µ · c(Z), (18)

where LERM and LIRM denote the loss in the ERM and IRM respectively, and µ is the penalty
hyperparameter.
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4 EXPERIMENTS
In this section, we conduct experimentation on two benchmarks: Linear Unit Tests (in Section 4.1,
Section 4.3) and DomainBed (in Section 4.2). Linear Unit Tests (Aubin et al., 2021) consists of
several toy datasets to evaluate algorithms for domain generalization and invariance learning, while
DomainBed (Gulrajani & Lopez-Paz, 2020) is a unified testbed for evaluating domain generalization
algorithms. We use the following four baselines across our experiments: ERM, IB-ERM, IRM,
IB-IRM (Ahuja et al., 2021) in the synthetic data, and use ERM, IRM as baselines in real-world
datasets.

4.1 LINEAR UNIT TESTS

The dataset describes six linear low-dimensional problems, named Example 1/1s, Example 2/2s and
Example 3/3s, where the ’s’ dictates a different rotation matrix. Each example, called unit test, is
designed to test different types of out-of-distribution generalization. We describe in Appendix B.1
the precise distributions and the invariances captured by each example.

Benchmark details: We follow the same pipeline as those used in Aubin et al. (2021); Ahuja
et al. (2021) for the model selection, hyperparameter selection, training, and evaluation. We set
(dinv, dspu) = (5, 5). For all three examples, the models used are linear. The training loss is the
square error for the regression setting (Example 1/1s), and binary cross-entropy for the classification
setting (Example 2/2s, 3/3s). For the evaluation of performance on Example 1/1s, we report mean
square errors and standard deviations. For the evaluation of performance on Example 2/2s, Example
3/3s, we report classification errors and standard deviations.

Model training: For the Twins-ERM approach, there is an additional hyperparameter µ as-
sociated with the c(Z) term in the final objective in Equation (18). We sample the µ from
logµ ∼ Uniform(−3,−1). For each algorithm, we run a random hyperparameter search for 20 trials,
and average the results over 50 data seeds. We train each algorithm and hyperparameter trial on the
train splits of all environments, for 104 full-batch Adam updates (Kingma & Ba, 2014). We choose
the hyperparameters trial that minimizes the error on the validation splits of all environments, i.e. the
train-domain validation set evaluation procedure in (Gulrajani & Lopez-Paz, 2020).

We also implement an Oracle that contains randomized Xspu in each iteration, such that it learns to
ignore the spurious features.

#Envs ERM IB-ERM IRM IB-IRM Twins-ERM Twins-IRM Oracle

Example1 3 13.36 ± 1.49 12.96 ± 1.30 11.15± 0.71 11.68 ± 0.90 14.62 ± 1.20 14.42 ± 0.86 10.42 ± 0.16
Example1s 3 13.33 ± 1.49 12.92 ± 1.30 11.07 ± 0.68 11.74 ± 1.03 14.64 ± 1.22 13.25 ± 1.49 10.45 ± 0.19
Example2 3 0.42 ± 0.01 0.00 ± 0.00 0.45 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example2s 3 0.45 ± 0.01 0.00 ± 0.01 0.45 ± 0.01 0.06 ± 0.12 0.00 ± 0.00 0.43 ± 0.03 0.00 ± 0.00
Example3 3 0.48 ± 0.07 0.49 ± 0.06 0.48 ± 0.07 0.48 ± 0.07 0.42 ± 0.15 0.33 ± 0.14 0.00 ± 0.00
Example3s 3 0.49 ± 0.06 0.49 ± 0.06 0.49 ± 0.07 0.49 ± 0.07 0.50 ± 0.05 0.42 ± 0.11 0.00 ± 0.00

Example2 6 0.37 ± 0.06 0.02 ± 0.05 0.46 ± 0.01 0.43 ± 0.11 0.00 ± 0.00 0.07 ± 0.11 0.00±0.00
Example2s 6 0.46 ± 0.01 0.02 ± 0.06 0.46 ± 0.01 0.45 ± 0.10 0.00 ± 0.00 0.47 ± 0.00 0.00±0.00
Example3 6 0.33 ± 0.18 0.26 ± 0.20 0.14 ± 0.18 0.19 ± 0.19 0.24 ± 0.16 0.25 ± 0.20 0.01±0.00
Example3s 6 0.36 ± 0.19 0.27 ± 0.20 0.14 ± 0.18 0.19 ± 0.19 0.31 ± 0.19 0.44 ± 0.06 0.01±0.00

Table 1: Comparisons on linear unit tests in terms of mean square error (regression, ↓) in Example
1/1s and classification error (classification, ↓) in Examples 2/2s and 3/3s. The highlighted result per
example demonstrates the best performance. When #Envs=6, we do not report results on Example
1/1s, since even the oracle cannot obtain stable results across different data seeds.

The experimental results are reported in Table 1. In the Example 2/2s, since the invariant feature
contains full information about the label, we do observe that IB penalty in (Ahuja et al., 2021) and
Twins penalty in our paper performs the best. In the Example 1/1s and 3/3s, the spurious feature
contains partial information about the label, we generally find invariant risk can reduce the error
in this case. We empirically verify the benefit of using the proposed penalty over the previously
proposed baselines.

4.2 MNIST-TYPE DATASET

In the second benchmark we use DomainBed to experiment on MNIST-type datasets inspired by
the construction of CS-CMNIST (Ahuja et al., 2021) to evaluate covariate shift. In addition to the
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origin MNIST (LeCun & Cortes, 2010), we extend the benchmark to include FashionMNIST (Xiao
et al., 2017) and KMNIST (Clanuwat et al., 2018), where the images of the latter two are used
as drop-in replacements for MNIST images. The idea in CS-CMNIST is to associate each class
with a color, and each image is assigned the color associated to its class with probability pe or a
random color with probability 1 − pe. We construct three environments for this experiment: two
training environments containing 20,000 data points each, one test containing 20,000 points. In
the two training environments, the pe is set to 1.0 and 0.9 respectively. In the testing environment,
the pe is set to 0, i.e., all the images are colored completely at random. A grid search in the range
of {10−4, 10−3, 10−2, 10−1, 1} is used to determine the optimal penalty parameter µ. We fix the
trade-off parameter λ = 5 × 10−3. We run the experiments using 5 different seeds and report the
mean and the standard deviation of the classification.

The results are reported in Table 2. We find that generally setting µ = 10−2 would be the best choice.
See Appendix D Notice that both the IRM and the ERM versions in each case perform similarly. The
results reveal that ERM and IRM have the weakest performance. IB-ERM and IB-IRM increase the
accuracy of ERM and IRM respectively, with Twins-ERM and Twins-IRM outperforming all the
compared methods.

ERM IB-ERM IRM IB-IRM Twins-ERM Twins-IRM Twins-Direct

MNIST 60.27 ± 1.21 71.80 ± 0.69 61.49 ± 1.45 71.79 ± 0.70 83.03 ± 1.34 82.83 ± 2.73 79.98± 0.87
FashionMNIST 50.92 ± 1.20 51.74 ± 1.12 48.41 ± 0.90 50.92 ± 1.20 55.60 ± 3.33 56.04 ± 1.79 55.20± 2.16
KMNIST 22.80 ± 1.06 29.21 ± 0.85 22.89 ± 0.94 27.83 ± 0.37 51.24 ± 3.94 51.52 ± 3.83 50.29± 2.58

Table 2: Classification accuracy (↑) on MNIST-type datasets. Notice that the proposed Twins-ERM
and Twins-IRM exhibit the best performance outperforming previous methods by a significant margin.
Twins-Direct (See Appendix C) achieve similar performance with Twins-ERM and Twins-IRM

4.3 REAL WORLD DATASETS

In the third benchmark we use DomainBed to experiment on real world datasets: OfficeHome
(Venkateswara et al., 2017), PACS (Li et al., 2017). For our Twins algorithm, we ran a hyperparameter
search in the range of {10−4, 10−3, 10−2, 10−1} for µ, and 20 hyperparameter seeds for remaining
hyperparameters in the DomainBed suite (Gulrajani & Lopez-Paz, 2020). We run the experiments
using 3 different seeds and report the mean and the standard deviation of the classification. For ERM
and IRM, we directly borrow the reuslts from the original paper.

The results are reported in Table 3 and 4. We find that our Twins-IRM algorithm obtain consistent
improvement over the baselines.

Algorithm A C P R Avg
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5 ± 0.3
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3 ± 2.1
Twins-IRM 64.8 ± 0.2 52.6 ± 0.7 77.5 ± 0.2 78.9 ± 0.3 68.5 ± 0.4

Table 3: Classification accuracy (↑) on OfficeHome.

Algorithm A C P S Avg
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5 ± 0.7
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5 ± 1.1
Twins-IRM 88.0 ± 0.3 79.6 ± 0.4 97.9 ± 0.5 80.1 ± 0.9 86.4 ± 0.6

Table 4: Classification accuracy (↑) on PACS.

5 RELATED WORK

5.1 RELATION TO INVARIANT RISK MINIMIZATION

Relation to IB-ERM/IB-IRM (Ahuja et al., 2021). Ahuja et al. (2021) introduce the information
bottleneck method. However, similar to Tishby et al. (2000), Ahuja et al. (2021) utilize the information
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bottleneck to learn a representation that compresses the input as much as possible while preserving
all the relevant information about the target label. Ours instead is label-free and tries to preserve the
relevant information about the domain-free latent image during compression, and uses another image
with the same label but different domain as surrogate for the unknown domain-free latent image.
Essentially, setting β = 0 will reduce our penalty into the one in Ahuja et al. (2021), but β > 1 can
help eliminate the trivial solution that the representation mapping is constant, and is shown to achieve
better performance on various datasets.

Previous work has demonstrated that the entropy penalty alone (i.e. β = 0) might fail in specific
case, such as in Section 4 in Ahuja et al. (2021). Nevertheless, our proposed framework does not
suffer from this counter-example. We introduce such an example next as a simple classification
problem. In each e ∈ Etrain, Y e ← Xe

inv⊕Ne and Xe
spu ← Y e⊕V e, where all the random variables

involved are binary valued, noise Ne, V e are Bernoulli with parameters q (identical across Etrain),
ce (varies across Etrain) respectively. If ce < q, then in Etrain predictions based on Xe

spu are better
than predictions based on Xe

inv. If Φ selects Xe
inv, the IB penalty equals −λH(Xe

inv); while if Φ
selects Xe

spu, the IB penalty equals H(Ne ⊕ V e) − λH(Xe
spu). Since Xe

spu ← Xe
inv ⊕Ne ⊕ V e,

we have −λH(Xe
inv) < H(Ne ⊕ V e)− λH(Xe

spu) by Lemma A.2 in the Appendix. Our IB penalty
is then able to select the invariance term Xe

inv. On the other hand, if Xe
inv obeys uniform Bernoulli

distribution, its entropy will be no lower than Xe
spu, and hence the entropy term alone is not enough.

5.2 RELATION TO CROSS-DOMAIN COVARIANCE METHOD

Aligning the cross-domain distribution has been studied extensively in the domain generalization
community both empirically and theoretically (Sun & Saenko, 2016; Li et al., 2018b; Rahman et al.,
2020; Kpotufe & Martinet, 2018). Despite the fact that we use covariance as well, the motivation and
implication of the proposed regularization scheme are different. Domain aligning method, such as
CORAL (Sun & Saenko, 2016), aligns the correlation matrix from different domains. However, our
method (Equation (16)) tries to decorrelate each dimension of the representation by minimizing the
off-diagonal term of cross-correlation matrix. In our penalty, we do not want to align the covariance
between different domains. For example, given a batch of data of size B ×N , where B is the batch
size and N is the feature dimension. Cross-domain covariance tries to deal with the row vector and
the correlation matrix is of size N ×N . Our covariance penalty deals with column vector, and the
correlation matrix is of size B ×B. Since usually B � N , the computation would be much easier.

5.3 RELATION TO CONTRASTIVE-BASED DOMAIN GENERALIZATION

Our method can also be regarded as a contrastive-based domain generalization problem. Contrastive
learning (Chopra et al., 2005; Caron et al., 2020; Grill et al., 2020; Chen et al., 2020; Zbontar
et al., 2021) has been a successful paradigm in self-supervised leaning. Contrastive learning aims
at bringing positive pair samples closer together, while moving negative samples further away in
a learned embedding space. Essentially, the aim of domain generalization is to extract domain-
invariant features, similarly aiming to minimize the distance of features within the same class in
the embedding space, while maximizing the distance of features from different classes. Such aim is
closely related to the domain generalization. SelfReg (Kim et al., 2021) uses only positive data pairs
and introduces inter-domain curriculum learning to prevent representation collapse (Grill et al., 2020).
(Jeon et al., 2021) uses domain-aware supervised contrastive to ensure domain invariance while
increasing class discriminability, Compared to previous works, our method instead introduces a much
simpler framework to ensure convergence to domain invariant features with theoretical guarantee.

6 CONCLUSION

In this work, we introduce an information-theoretical approach for domain generalization. We cast the
task of domain generalization as a rate distortion problem and then use information bottleneck penalty
to obtain guarantees on the existence of features we want to learn. We link our method, called Twins,
with self-supervised learning, which can provide a theoretical perspective in the success behind self-
supervised learning. We conduct an empirical study on Twins-ERM and Twins-IRM under various
datasets and confirm the consistent improvement of the proposed method over existing baselines. In
the future, we intend to further analyze domain generalization in the rate distortion framework and
conduct large scale experiments to verify our IB formulation in real-world applications.
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A PROOF OF THEOREM 3.1

The entropy or the Shannon entropy (Wehrl, 1978) of a discrete random variable X ∼ PX with
support X is defined as

H(X) = −
∑
x∈X

PX(X = x) log
(
PX(X = x)

)
. (19)

The differential entropy (Wehrl, 1978) of a continuous random variable X ∼ PX with support X is
given as follows

h(X) = −
∫
x∈X

log
(
PX(x)

)
dPX(x), (20)

where dPX(x) is the Radon-Nikodym derivative of PX w.r.t the Lesbegue measure.

For continuous variables, the differential entropy h(·) is not bounded below, we can define the lower
bounded differential entropy (Kirsch et al., 2020) ĥ(X) = h(X + ε), where ε is an independent
zero-entropy noise ε ∼ Uniform(0, 1). Since X ⊥ ε, ĥ(X) ≥ h(ε) = 0, we get that ĥ(·) is bounded
below.
Lemma A.1. If X and Y are discrete random variables that are independent with the supports
satisfying 2 ≤ |X | <∞, 2 ≤ |Y| <∞, where | · | denotes the number of element in a set, then for
λ < 1,

λH(X) +H(Y ) > λH(X + Y ) (21)

Proof. Define Z = X + Y .

H(Z|X) = −
∑
x∈X

PX(x)
∑
z∈Z

PZ|X(Z = z|X = x) log
(
PZ|X(Z = z|X = x)

)
= −

∑
x∈X

PX(x)
∑
z∈Z

PY |X(Y = z − x|X = x) log
(
PY |X(Y = z − x|X = x)

)
= −

∑
x∈X

PX(x)
∑
z∈Z

PY |X(Y = z − x|X = x) log
(
PY |X(Y = z − x|X = x)

)
(use X ⊥ Y )

= −
∑
x∈X

PX(x)
∑
z∈Z

PY (Y = z − x) log
(
PY (Y = z − x)

)
= H(Y )

(22)

Hence,

H(X+Y )−H(X) = H(X+Y )−H(X+Y |Y ) = I(X+Y ;Y ) = H(Y )−H(Y |X+Y ) ≤ H(Y )
(23)

λ(H(X + Y )−H(X)) ≤ λH(Y ) ≤ H(Y ) (24)
when λ < 1.

The equality holds if and only if H(Y ) = 0, which is impossible since 2 ≤ |Y| <∞.

Lemma A.2. If X , Y and Z are discrete random variables with the supports satisfying 2 ≤ |X | <
∞, 2 ≤ |Y| <∞ and 2 ≤ |Y| <∞, where | · | denotes the number of element in a set. Besides, Y is
independent of X and Z. Then for λ < 1,

H(X + Y |Z)− λH(X + Y ) > H(X|Z)− λH(X) (25)

Proof. Similar to Equation (22), we would have

H(X + Y )−H(X) = I(X + Y ;Y ),

H(X + Y |Z)−H(X|Z) = I(X + Y ;Y |Z),
(26)
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By the chain rule of conditional mutual information,

I(X + Y ;Y |Z) = I(Y ;X + Y, Z)− I(Y ;Z)

= I(Y ;X + Y, Z)− 0 ( since Y ⊥ Z)

= I(Y ;X + Y ) + I(Y ;Z|X + Y ) ≥ I(Y ;X + Y )

(27)

where the last inequality holds since the conditional mutual information is non-negative. Since λ < 1,

I(X + Y ;Y |Z) ≥ I(Y ;X + Y ) ≥ λI(Y ;X + Y ) (28)

and hence the equality holds iff I(Y ;X + Y ) = 0, in other words, Y ⊥ X + Y . If given
X +Y = xmax + ymax, we can infer Y = ymax. Hence, P(Y = ymax|X +Y = xmax + ymax) = 1.
However, P(Y = ymax) = 1 as the support of Y has at least two elements, which gives a contradiction.
Hence,

I(X + Y ;Y |Z) > λI(Y ;X + Y ) (29)

Lemma A.3. If X and Y are continuous random variables that are independent and have a bounded
support, then for λ < 1,

ĥ(X) + λĥ(Y ) > λĥ(X + Y ) (30)

Proof. Setting ε ∼ Uniform(0, 1) independent of X,Y , we have ĥ(X) = h(X + ε), ĥ(Y ) =

h(Y + ε), ĥ(X + Y ) = h(X + Y + ε). We have

λ(h(X + Y + ε)− h(Y + ε)) = λI(X + Y + ε;X)

and h(X + ε) = h(X + ε)− h(ε) = I(X + ε;X)
(31)

According to the data processing inquality, (Beaudry & Renner, 2011) and X ⊥ X + Y + ε|X + ε,

I(X + Y + ε;X) ≤ I(X + ε, Y ;X) = I(X + ε;X) (32)

where the last equality holds since X + ε ⊥ Y , and we get

λ(h(X + Y + ε)− h(Y + ε)) ≤ I(X + Y + ε;X) ≤ I(X + ε;X) = h(X + ε) (33)

Rearranging it, we get
ĥ(X) + λĥ(Y ) ≥ λĥ(X + Y ) (34)

Since λ < 1, the equality holds only if I(X+Y +ε;X) = 0. In other words, we haveX+Y +ε ⊥ X .
In the next, we show that it is not possible.

The support of X can be divided into the union of intervals. We assume ∆ > 0 such that [xmax −
∆, xmax] belongs to the rightmost interval of X; and [ymax − ∆, ymax] belongs to the rightmost
interval of Y , where xmax and ymax denotes the maximum of the support of X and Y . Define an
eventM : xmax + ymax− δ ≤ X + Y + ε ≤ xmax + ymax + 1. IfM occurs, note that ε is bounded
by 1, we have

PX(X ≤ xmax − δ|M) = 0, PY (Y ≤ ymax − δ|M) = 0 (35)

If δ < ∆, based on the definition of the interval, we have that

PX(X ≤ xmax − δ) > 0, PY (Y ≤ ymax − δ) > 0 (36)

If X + Y + ε ⊥ Y then PY (Y ≤ ymax − δ) = PY (Y ≤ ymax − δ|M), which is not the case from
the above equations (35) and (36).

Lemma A.4. If X ,Y and Z are continuous random variables that have a bounded support, and Y
is independent of X and Z, then for λ < 1,

ĥ(X + Y |Z)− λĥ(X + Y ) ≥ ĥ(X|Z)− λĥ(X) (37)
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Proof. Like Lemma A.2, we rewrite the inequality as

I(X + Y + ε;Y |Z) > λI(X + Y + ε;Y ) (38)

Similar to Equation (27), Y is independent of Z we could write I(X + Y + ε;Y |Z) = I(Y ;Z,X +
Y + ε). We then use the data processing inequality, we would get

I(X + Y + ε;Y |Z) = I(Y ;Z,X + Y + ε) ≥ I(X + Y + ε;Y ) (39)

since λ < 1, and similar to the proof of Lemma A.3, I(X + Y + ε;Y ) > 0, we would have

I(X + Y + ε;Y |Z) > λI(X + Y + ε;Y ) (40)

Proof of Theorem 3.1. The proof of the theorem resembles the proof of Theorem 4 in (Ahuja et al.,
2021). Consider a solution to equation Φ†,

Φ† ·Xe = Φ† · S(Xe
inv, X

e
spu) = Φinv ·Xe

inv + Φspu ·Xe
spu

=
[
Φinv + Φspu ·A

]
·Xe

inv + Φspu ·W e.
(41)

and since Φ† achieves the error of q,

I(w+
inv ·X

e
inv) = I(Φinv ·Xe

inv + Φspu ·Xe
spu) (42)

In the next we prove Φspu by contradiction. Define Φ+ =
([

Φinv + Φspu · A
]
, 0
)
S−1. Observe

that we can write Φ† · Xe = Φ+ · Xe + Φspu · W e. a) Φspu · W e ⊥ Φ+ · Xe (Φ+ · Xe =[
Φinv + Φspu ·A

]
·Xe

inv and Xe
inv ⊥W e),

b.1) Φ+ ·Xe, Φspu ·W e are discrete random variables with finite support of size at least two. (discrete
case)

b.2) Φ+ ·Xe, Φspu ·W e are continuous bounded random variables. (continuous case)

In the discrete case, from a), b.1), and Lemma A.1 it follows that

λH(Φ+ ·Xe) +H(Φspu ·W e) > λH(Φ† ·Xe) (43)

Rearranging the terms, we have

H(Φspu ·W e)− λH(Φ† ·Xe) > −λH(Φ+ ·Xe) (44)

Since Xe
inv = G(Xinv, e), we have H(Φ† ·Xe|Xinv) = H(Φspu ·W e) and H(Φ+ ·Xe|Xinv) = 0.

Hence, we get

H(Φ† ·Xe|Xinv)− λH(Φspu ·W e) > H(Φ+ ·Xe|Xinv)−H(Φ+ ·Xe). (45)

and therefore, Φ+ ·Xe would have a lower penalty. In the continuous case, the argument is similar
by invoking a), b.2) and Lemma A.3. Φ+ can achieve strictly lower penalty than Φ†.

Following the proof of the first part of Theorem 4 in (Ahuja et al., 2021), we can show that Φ+

achieves the same error of q in all the training environments. Thus Φ+ is a strictly better solution Φ†,
which contradicts the optimality of Φ†. Therefore, it follows that Φspu = 0. And hence,

I(w+
inv ·X

e
inv) = I(Φinv ·Xe

inv) (46)

Based on Theorem 3 in (Ahuja et al., 2021), if a solution does not rely on spurious features and
satisfies equation (46) for all the points in the support, then under the Assumption 3 such a solution
solves the domain generalization problem (DG).
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Proof of Theorem 3.2. The major difference here is that we do not condition on the unknown invariant
feature. Notations are defined similarly as in the proof of Theorem 3.1. Compared with Equation
(45), we now want to prove that:

H(Φ† ·Xe|Xe′)− λH(Φspu ·W e) > H(Φ+ ·Xe|Xe′)−H(Φ+ ·Xe). (47)
In other words,

H(Φ+ ·Xe + Φspu ·W e|Xe′)− λH(Φspu ·W e) > H(Φ+ ·Xe|Xe′)−H(Φ+ ·Xe). (48)

Since Φspu ·W e is independent of Xe′ and Φ+ ·Xe. We use Lemma A.2 for the discrete case and
Lemma A.4 for the continuous case to prove Equation (48). The rest of the proof is the same as the
proof in Theorem 3.1.

B DATASET DESCRIPTION

B.1 LINEAR UNIT TEST

Example 1/1s The dataset in environment e ∈ Eall is sampled from the following distributions:

Xe
inv ∼ Ndinv(0, (σe)2), Ỹ e ∼ Ndinv(WyxX

e
inv, (σ

e)2),

Xe
spu ∼ Ndspu

(WxyỸ
e, 1), Xe ← S · (Xe

inv, X
e
spu),

Y e ← 2

(dinv + dspu)
1T
dinv Ỹ

e,

(49)

where Wyz ∈ Rdinv×dinv , Wxy ∈ Rdspu×dinv are matrices drawn i.i.d. from the standard normal
distribution, 1dinv ∈ Rdinv is a vector of ones, Nk is a k dimensional vector from the normal
distribution, and S ∈ R(dinv+dspu)×(dinv+dspu) is a rotation matrix fixed for all environments. The
parameter σ is set differently for every environment (i.e., domain). In particular, we set (σe=e0)2 =
0.1, (σe=e1)2 = 1.5, and (σe=e2)2 = 2 for the first three environments. In case there are more than
three environments, the (σe=ej ) for j > 3 is uniformly from Unif(10−2, 10). The rotation matrix S
is set to the identity matrix in Example 1 and a random unitary matrix in Example 1s.

Example 2/2s Following the notation of the original paper (Aubin et al., 2021), let
µcow = 1dinv

, µcamel = −µcow, νanimal = 10−2,

µgrass = 1dspu
, µsand = −µgrass, νbackground = 1.

(50)

The dataset in environment e ∈ Eall is sampled from the following distribution:
je ∼ Categorical

(
pese, (1− pe)se, pe(1− se), (1− pe)(1− se)

)
,

Xe
inv ∼

{
(Ndinv(0, 0.1) + µcow) · νanimal if je ∈ {1, 2},
(Ndinv(0, 0.1) + µcamel) · νanimal if je ∈ {3, 4},

Xe
spu ∼

{
(Ndspu

(0, 0.1) + µgrass) · νbackground if je ∈ {1, 4},
(Ndspu

(0, 0.1) + µsand) · νbackground if je ∈ {2, 3},
Xe ← S · (Xe

inv, X
e
spu), Y e ← I(1T

dinvX
e
inv),

(51)

where the environment foreground/background probabilities are pe=e0 = 0.95, pe=e1 = 0.97,
pe=e2 = 0.99 and the cow/camel probabilities are se=e0 = 0.3, se=e1 = 0.5, se=e2 = 0.7. For
nenv > 3 and j ∈ [3 : nenv − 1], the extra environment variables are respectively drawn according to
pe=ej ∼ Unif(0.9, 1) and se=ej ∼ Unif(0.3, 0.7). The rotation matrix S is set to the identity matrix
in Example 2 and a random unitary matrix in Example 2s.

Example 3/3s The example is meant to present a linear version of the spiral classification problem of
Parascandolo et al. (2020). Let µinv = 0.1 · 1dinv , and µespu ∼ Ndspu(0, 1) for all the environments.
The dataset in environment e ∈ Eall is sampled from the following distribution:

Y e ∼ Bernoulli
(1

2

)
, Xe ← S · (Xe

inv, X
e
spu)

Xe
inv ∼

{
Ndinv(+µinv, 0.1) if Y e = 0,

Ndinv(−µinv, 0.1) if Y e = 1,
Xe

spu ∼
{
Ndspu(+µespu, 0.1) if Y e = 0,

Ndspu(−µespu, 0.1) if Y e = 1,
,

(52)
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The rotation matrix S is set to the identity matrix in Example 3 and a random unitary matrix in
Example 3s. In the above dataset, the invariant features are anti-causally related to the label Y e.

Remark on Linear unit test: In the Example 1/1s and Example 3/3s, the invariant features are
causal and partially informative about the label. The spurious features carry extra information about
the label not contained in the invariant features. In the Example 2/2s, the invariant features are causal
and carry full information about the label.

C GAUSSIAN-FREE ENTROPY ESTIMATION

C.1 ESTIMATING ENTROPY BY KNN

Since the feature is in high-dimensional spaces it is challenging to estimate the density of Z,
preventing us from directly computing the exact entropy. To remedy this issue, we resort to the
particle-based entropy estimator from Singh et al. (2003); Beirlant et al. (1997), which is based
on k-Nearest Neighbors (kNN). We introduce this approach in general terminologies. Consider a
distribution p with respect to z ∈ Z , the particle based entropy estimate is given by

Ĥk(p) = − 1

N

N∑
i=1

log
k

NVolki
+ log k − Φ(k) ∝

N∑
i=1

log Volki (53)

where Φ is the digamma function, log k − Φ(k) is a bias correction term. Volki is the volume of the
hyper-sphere of radius Ri = ‖zi − zKNN

k ‖2, which is the Euclidean distance between zi and its k-th
nearest neighbor zKNN

k . The volumn is given by:

Volki =
‖zi − zKNN

k ‖n2 · πn/2

Γ(n2 + 1)
(54)

where Γ is the Gamma function, n is the dimension of Z . Putting Equation (53) and Equation (54)
together, we have

Ĥk(p) =
n

N

N∑
i=1

log ‖zi − zKNN
k ‖2 + logN + C (55)

where Ck,n is determined by n and k.

C.2 ESTIMATING IB OBJECTIVE 4

Recall that Ze = f(Xe), and Xe = G(X, e), we can estimate the IB objective LIB by first sampling
{ei} ∼ Pe, 1 ≤ i ≤ D, and then Xei

j ∼ Pei(Xei), 1 ≤ j ≤ Ni for any fixed i. We can use samples
Zeij = f(Xei

j ) to estimate EX,eH(Ze), i.e.

EX,eH(Ze) ≈ n∑D
i=1Ni

D∑
i=1

Ni∑
j=1

log ‖Ze
i

j − ZKNN
k ‖2 + log(

D∑
i=1

Ni) + Ck,n (56)

where n is the dimension of Zi, ZKNN
k is Ze

i

j ’s k-th nearest neighbor in the full dataset {Zeij }
D,Ni

i=1,j=1.

For the first term, we use the same method but conditioned on the fixed label. In other words, it
should be

EX,eH(Ze|X) ≈ 1

D

D∑
i=1

 n

Ni

Ni∑
j

log ‖Zij − ZKNN
ik ‖2 + logNi

+ Ck,n (57)

where ZKNN
ik is Zij’s k-th nearest neighbor in the dataset {Zij}j .

C.3 COMPARISON

We perform our experiments on ColoredMNIST datasets. At each checkpoint, we sample 1024
isntances and set kNN parameter to be 5 to estimate the IB penalty (4) by Equation (56) and (57) at
every checkpoints. We plot the trajectory of kNN based penalty in Figure (1). Clearly, our Twins
method is able to efficiently minimize the true Gaussian entropy.
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Figure 1: kNN based IB penalty (4)

D HYPERPARAMETER SELECTION OVER µ

µ = 10−4 10−3 10−2 10−1 1

MNIST 79.24 ± 0.69 80.44 ± 2.70 82.83 ± 2.73 77.19 ± 6.49 72.11 ± 4.08
KMNIST 49.48 ± 4.27 52.24 ± 3.94 52.29 ± 3.26 43.02 ± 0.68 36.31 ± 3.20
FashionMNIST 54.88 ± 1.57 53.87 ± 2.41 56.04 ± 1.79 52.25 ± 2.70 50.96 ± 1.61
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