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ABSTRACT

Generative masked transformers have demonstrated remarkable success across
various content generation tasks, primarily due to their ability to effectively model
large-scale dataset distributions with high consistency. However, in the anima-
tion domain, large datasets are not always available. Applying generative masked
modeling to generate diverse instances from a single MoCap reference may lead to
overfitting, a challenge that remains unexplored. In this work, we present Motion-
Dreamer, a localized masked modeling paradigm designed to learn internal motion
patterns from a given motion with arbitrary topology and duration. By embedding
the given motion into quantized tokens with a novel distribution regularization
method, MotionDreamer constructs a robust and informative codebook for local
motion patterns. Moreover, a sliding window local attention is introduced in our
masked transformer, enabling the generation of natural yet diverse animations that
closely resemble the reference motion patterns. As demonstrated through com-
prehensive experiments, MotionDreamer outperforms the state-of-the-art meth-
ods that are typically GAN or Diffusion-based in both faithfulness and diversity.
Thanks to the consistency and robustness of the quantization-based approach, Mo-
tionDreamer can also effectively perform downstream tasks such as temporal mo-
tion editing, crowd animation, and beat-aligned dance generation, all using a sin-
gle reference motion. Visit our project page: https://motiondreamer.github.io/.

1 INTRODUCTION

Motions could be roughly interpreted as coherent and natural compositions of finite internal patterns.
For example, a breaking can be performed by a freestyle composition of breaking dance skills, such
as baby freeze, helicopter, kick up, back spin, etc. Learning these internal patterns from a single
reference motion allows for the generation of diverse yet consistent motions that closely resemble
the reference. This is particularly useful when data is scarce (e.g., in the case of animal motion)
or when the content needs to be constrained. Existing works (Li et al., 2022a; Raab et al., 2024;
Li et al., 2023b) have attempted to address this using GAN (Goodfellow et al., 2014; Denton et al.,
2015; Zhang et al., 2017) or Diffusion Model (Ho et al., 2020; Rombach et al., 2022; Tevet et al.,
2023), where the distribution of internal patterns is modeled implicitly, or through motion matching,
which matches and blends exemplar internal patterns without learning latent embedding. However,
these approaches either struggle with limited expressiveness of internal patterns or fail to achieve
diverse and natural synthesis.

Recent advances in motion synthesis have witnessed great success in the use of generative masked
transformers (Zhang et al., 2023a; Jiang et al., 2023; Guo et al., 2024; Pinyoanuntapong et al.,
2024), largely due to their efficient embeddings and explicit distribution modeling. These learned
models quantize motion into tokens and represent them with an explicit categorical distribution in
the discrete space defined by the codebook. It is done by randomly masking and predicting the
specific masked tokens in context. However, they usually rely on large-scale datasets, applying
global self-attention to learn the in-context distribution. When adapted to single or few sequences,
these models tend to overfit to sequence-wise global patterns instead of generating novel sequences
based on the distribution of internal patterns. This results in model collapses, since the standard
transformer layers attend all the tokens in a sequence for positional encoding and self-attention.
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Figure 1: Overview of the one-to-many motion synthesis. A single reference motion with arbitrary
skeletons can be applied to generate natural and diverse novel motions while preserving the reference
local motion patterns. Above shows the diverse generations from MotionDreamer of a girl doing
breakdance (upper); a jaguar attacking (bottom).

In this paper, we propose MotionDreamer, a generative masked transformer specifically designed for
one-to-many motion synthesis, as presented in Figure 1. The key idea is to learn the explicit categor-
ical distribution of the internal patterns by strategically narrowing the receptive field of transformer
layers, as illustrated in Figure 2. This is achieved by our proposed localized generative masked trans-
former (Local-M), which incorporates a carefully designed sliding window local attention layer (Sli-
dAttn) as the backbone. This structure focuses on capturing local dependencies of quantized motion
tokens. The SlidAttn layer divides the input motion token sequence into overlapping local windows,
where motion tokens are attended to using window-wise relative positional encoding (Shaw et al.,
2018). The resulting local attention scores are then aggregated through overlap attention fusion, to
better preserve cross-window coherence. During training, a quantized codebook is first optimized to
embed internal patterns of a single reference motion. To prevent the under-utilization of code entries,
a codebook distribution regularization technique is further introduced. Once the reference motion is
represented with motion tokens from the codebook, Local-M is trained to model the explicit cate-
gorical distribution of internal patterns through generative masked modeling, where varying masked
portions of motion tokens are progressively predicted. A differentiable dequantization strategy is
also integrated to facilitate the optimization in motion space, by applying the sparsemax activation
function (Martins & Astudillo, 2016) instead of the traditional argmax operation.

To summarize our main contributions: (1) We introduce MotionDreamer, a novel localized gen-
erative masked modeling paradigm for motion synthesis based on single reference motion. With
just one training motion sequence, it effectively addresses the key issues: a) codebook collapse,
by promoting a highly utilized codebook through a distribution regularization technique, and b)
overfitting, by shrinking the receptive field of transformer using the proposed sliding window local
attention layer as the backbone. (2) Our MotionDreamer faithfully preserves the internal patterns
of reference motion while notably diversifying the synthesized motions. It achieves state-of-the-art
comprehensive performance improving the harmonic mean by 19%, and earning the highest score in
perceptual assessments. (3) MotionDreamer is also shown to work well in downstream applications
of temporal editing, crowd animation and beat-aligned dance synthesis, by leveraging only a single
reference motion. Our project page includes visualization demos and implementation codes.

2 RELATED WORKS

2.1 SINGLE INSTANCE SYNTHESIS

Single reference based motion synthesis presents as the extension of single instance learning in the
image domain (Rott Shaham et al., 2019; Zhang et al., 2021; Hinz et al., 2021; Granot et al., 2022)
to motion domain. In image synthesis field, Rott Shaham et al. (2019) generates diverse yet remi-
niscent results from a single image based on generative adversarial learning through the hierarchical
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image pyramid framework. On the other hand, Granot et al. (2022) argues that utilizing patch-based
nearest neighbor matching results in a more faithful and robust synthesis based on single image. In
the motion synthesis domain, Ganimator (Li et al., 2022a) adapts the hierarchical GAN architec-
ture from Rott Shaham et al. (2019) to learn and generate diverse motion sequences from a single
motion instance. SinMDM (Raab et al., 2024) approaches the hierarchical generation process by
the diffusion model based on a light-weight UNet structure with local attention layers (Arar et al.,
2022). Both methods model the internal patterns of the single motion implicitly in a continuous
latent space, which potentially induces more out-of-distribution during synthesis, leading to limited
capability of representing internal patterns and unnatural artifacts in generated motions. Inspired by
Granot et al. (2022), GenMM (Li et al., 2023b) generates novel motions through multi-level match-
ing and blending the reference motion patches simply based on nearest neighbour search. However,
the diversity of GenMM (Li et al., 2023b) is limited as it basically shuffles and merges original
motion patches from reference motion without learning the underlying distribution, and artifacts are
more frequently observed in short and highly dynamic sequences. In this work, we propose a novel
localized generative masked transformer for this task, which presents an effective learning paradigm
with strong expressiveness of local patterns as well as natural and diverse generations. We provide
more insights about the mechanism in Section 3 and potentials in empirical results in Section 4.

2.2 MOTION GENERATIVE TRANSFORMERS

Inspired by the impressive success of generative transformers in image synthesis (Ramesh et al.,
2021; Chang et al., 2022; Li et al., 2023a; Yu et al., 2023), several recent works (Zhang et al.,
2023a; Jiang et al., 2023; Lu et al., 2024; Guo et al., 2024; Pinyoanuntapong et al., 2024) adapt the
generative transformer framework to approach text-driven human motion synthesis. Zhang et al.
(2023a) establishes a simple CNN-based VQ-VAE (van den Oord et al., 2017) for transforming hu-
man motion sequences into discrete motion token sequences, and a modified generative pretrained
transformer(GPT) backbone is utilized for learning to generate novel human motions conditioned on
text prompt. Jiang et al. (2023) learns mixed motion tokens and text tokens simultaneously utilizing
language model backbone.Lu et al. (2024) leverages hierarchical VQ-VAE Razavi et al. (2019) and
a hierarchical GPT for more precise whole-body motion generation. Guo et al. (2024) and Pinyoa-
nuntapong et al. (2024) both adapt generative masked modeling to optimizing the transformer for
enhanced semantics mapping between text and motion, where a scheduled varying portion of tokens
are masked for predictions during training iterations. Inspired by the effectiveness of explicit dis-
tribution modeling for motion sequences shown in these works, our method employs the generative
masked transformer for MotionDreamer and specifically adapts the framework to single instance
based motion synthesis by shrinking the receptive field of transformer layers. With our proposed
MotionDreamer, we demonstrate strong capability of capturing fine-grained local motion features,
and diversifying their combinations with plausible transitions for novel motions synthesis.

3 LOCALIZED MOTION GENERATIVE TRANSFORMER

Given a single reference motion m1:L of length L and arbitrary skeleton topology, the goal is to
generate a generally novel motion sequence m̃1:Lg of arbitrary length Lg that preserves the skeleton
structure and underlying local patterns of the reference motion. As illustrated in Fig 2 (a) and (b),
we establish a localized generative masked transformer to model the explicit categorical distribution
of internal patterns on a learned discrete latent space C (namely codebook), from which we sample
a tuple of embeddings c1:Ng

(namely motion tokens) in an auto-regressive manner to generate novel
motion sequences. Our method incorporates two core components: codebook distribution regular-
ization and Sliding Window Local Attention (SlidAttn). The codebook regularization mitigates the
codebook collapse when training a single sequence, promoting more uniform and diverse use of
code entries during tokenization, while SlidAttn ensures effective modeling of local transitions by
operating tokens within overlapping windows.

3.1 SINGLE MOTION TOKENIZATION

The tokenization process encodes and maps the local motion segments in the original motion space
M into motion tokens in a quantized discrete latent space C. During training, a finite codebook
is preset to represent the motion token space: C = {ci}Ki=1 ⊂ Rd, where K is the number of
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Figure 2: (a) Overview of MotionDreamer based on localized generative masked transformer. The
single reference motion m1:L is embedded as motion tokens c by optimizing a codebook through
vector quantization, where a codebook distribution regularization loss Ltoken is additionally intro-
duced. The Local-M transformer learns the local dependencies of motion tokens through sliding
window local attention (SlidAttn) layers. The SlidAttn layer attends tokens within each unfolded
overlapping window for attention based on learnable query and relative positional embeddings. At-
tention outputs are merged through overlap attention fusion (AttnFuse). (b) Visualization of the
explicit distribution modeling for internal patterns. MotionDreamer learns to express and diversify
the combination of internal patterns with explicit categorical distribution of motion tokens, which is
visualized as multiple token candidates predicted by Local-M given previous generated ones.

code entries. The reference motion m1:L is encoded as a sequence of feature vectors through 1D
convolutional encoder E:

z1:N = {z1, z2, . . . , zN} = E(m1:L) (1)
where N = L

h , and h is the down-sampling factor of the encoder. Through vector quantization (VQ)
(van den Oord et al., 2017), noted as Q(·), each of the feature vectors is mapped to the nearest code
entry in codebook C, resulting in a sequence of motion tokens:

c1:N = {c1, c2, . . . , cN} = Q(z1:N ; C). (2)

Finally, the motion token sequence is projected back to original motion space m through 1D convo-
lutional decoder D as the reconstructed motion sequence:

m̂1:L = D(c1:N ). (3)

3.1.1 CODEBOOK DISTRIBUTION REGULARIZATION

Due to the constraint of highly limited data and the imbalanced temporal distribution of internal pat-
terns, training vector quantizer on single motion sequence is more likely to struggle with issues such
as codebook collapse. Although common strategies such as exponential moving average (EMA)
and codebook reset (Razavi et al., 2019; Zhang et al., 2023a; Guo et al., 2024) result in good re-
construction at the training phase, we spot that the motion patterns are still often lost or blurred
with unnatural transition between poses at the generation phase, shown in Figure 5. This could be
ascribed to the under-utilization of code entries, which may introduce invalid tokens that disturb
the expression of learned patterns. In order to mitigate this, we propose to minimize the KL diver-
gence between predicted token distribution and a pre-assumed prior token distribution (Zhang et al.,
2023b) to encourage a more uniform distribution of the effective code entries:

Ltoken = KL(Ppost, Pprior) = −
K∑

k=1

pk log(
1/K

pk
) (4)

where pk is the posterior distribution of code entries approximated by the average of all the quantized
one-hot vectors indicating the selected code entries. The overall optimization objective for training
the single motion quantizer is then established as:

LVQ = Lrec + βqLq + βkLtoken (5)
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where Lrec = ||m − m̂||1 is the motion reconstruction loss, and Lq =
∑N

i=1 ||fe − sg(fq)||2 is
the standard VQ commitment loss (sg(·) denotes the stop gradient operation) (van den Oord et al.,
2017). Broader impacts of Ltoken on other VQ-based motion representation methods are discussed
in Appendix A.7.

3.2 LOCAL-M TRANSFORMER

Local-M Transformer pϕ models the explicit distribution of internal patterns through progressively
predicting randomly masked motion tokens. Specifically, a varying fraction r of motion tokens c1:N
are masked out in iteration timestep, replaced with a special [MASK] token. The masking ratio is
obtained through a cosine scheduling function r = γm(µ) = cos(πµ2 ) ∈ [0, 1], where µ ∼ U(0, 1) is
randomly sampled, following Chang et al. (2022). Our transformer pϕ is optimized by minimizing
the negative log-likelihood of the target predictions:

Lmask =
∑

cm
r =[MASK]

− log pϕ(c
m
r |cm) (6)

where cm is the token sequence after masking. To facilitate the optimization by directly minimizing
the motion reconstruction loss in addition to the masked modeling loss, we integrate a differentiable
dequantization strategy to enable gradient flow from decoded motion to Local-M transformer. By
incorporating sparsemax(·) activation function (Martins & Astudillo, 2016), the module simulates
the argmax selection of motion tokens in a differentiable manner.

The overall loss function of Local-M transformer is:

LM = Lmask + λrecLrec (7)

where λrec is the hyper-parameter that balance the reconstruction loss with mask modeling loss.
Lrec = ||m−m̂||1 is computed where m̂ is the motion decoded from the predicted token sequence.

3.2.1 SLIDING WINDOW LOCAL ATTENTION

In our problem setting, naively optimizing standard transformer blocks with Lmask leads to severe
overfitting issue as the model fails to capture local dependencies of motion tokens given a single
sequence. To address this problem, we introduce the SlidAttn layer. Each SlidAttn layer unfolds
the motion token sequence into overlapping local windows, and computes attention within each
local window, the output of which is aggregated through overlap attention fusion (AttnFuse). With
SlidAttn, pϕ approximates the joint distribution of motion tokens by modeling the local transitions
in sliding windows.

SlidAttn Mechanism By unfolding the input motion token sequence c1:N with stride S into over-
lapping local windows of size 2W +1 , the key matrices Kt−W :t+W and value matrices Vt−W :t+W

in each window can be obtained, where t = {W,W + S,W + 2S, . . . ,W +BS}. Note that in our
case, having the windows overlapped yet keeping a small overlap length is crucial for learning
smooth transitions across windows on top of local patterns within windows while preserving typi-
cal internal patterns. In this paradigm, utilizing absolute positional encoding (Vaswani et al., 2017)
within local windows may induce severe boundary artifacts especially with only a single sequence.
To mitigate the issue, we employ window-wise relative positional encoding r = RelPos(W ) adapted
from Shaw et al. (2018) which ensures the attention mechanism to focus on the relative distances
instead of absolute positions. Furthermore, we introduce learnable query qt which allows the model
to adaptively attend to important tokens across different windows. This encourages the model to
better capture the fine-grained transitions and internal patterns that vary between different types of
motions. The attention computation shown in Figure 2 attending tokens within each local window
can be formulated as:

Attnt = softmax(
qtKW + r√

dk
)VW (8)

where KW and VW are the abbreviation for Kt−W :t+W and Vt−W :t+W , respectively.

AttnFuse Standard average pooling (Vaswani et al., 2017; Beltagy et al., 2020) across the overlap-
ping windows may require large amount of padding for the input token sequence in order to ensure
consistent input-output sequence length, inducing indispensable artifacts. To address this, AttnFuse
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aligns the attention output Attnt of each window as same as the way the input sequence is unfolded
with trivial padding (with padding size ≤ window size ≪ L/h), and blends the overlapped regions
with average voting while straightly passing through the others, resulting in the final aggregated
output. This not only mitigates the padding artifacts that noise the distribution of internal patterns,
but also allows for preserving better coherence for generating smooth motions.

3.2.2 INFERENCE PROCESS

At the inference stage, we synthesize the novel motion m̃1:Lg
of arbitrary length Lg using Local-

M in a sliding window based auto-regressive manner, by progressively filling in a fully-masked
template token sequence. The details of the inference process are elaborated in Appendix A.3.

4 EXPERIMENT AND RESULTS

4.1 IMPLEMENTATION DETAILS

Dataset We collect 30 motion sequences from Mixamo (Mixamo, 2023) with human-like skele-
ton and 30 motion sequences with skeletons of animal and artist-crafted creatures from Truebone-
ZOO (Studio, 2023) dataset to form the SinMotion dataset used for evaluation. There are 30 long
sequences (> 600 frames) and 30 short sequences (≤ 600 frames).

Evaluation Metrics We apply 5 sets of metrics to measure the expressiveness of local motion
patterns and synthesis diversity respectively following Li et al. (2022a) and Raab et al. (2024):
(1) Coverage(%) measures the percentage of local motion patterns in reference motions that are
presented in generated motions, which indicates the faithfulness or expressiveness of the internal
patterns. (2) Global Diversity quantifies the overall variation in the generated motion sequences
based on patched nearest neighbor (Li et al., 2022a). It assesses the ability of the synthesis method
to produce a wide range of distinct motions that differ significantly from each other. (3) Local Diver-
sity evaluates local frames diversity. (4) inter diversity measures the diversity between synthesized
motions by averaging per-frame distances. (5) intra diversity diff measures the local pattern dis-
tribution similarity between the reference motion and generated motions, where the statistic of the
pattern distribution is approximated by internal sub-window distances. Computation details for (1),
(2), (3) are presented in Appendix A.5.

As the evaluation results are comprehensively assessed by lots of metrics for different aspects, we
also introduced Harmonic Mean following Raab et al. (2024) to combine the effects of all the met-
rics. The Harmonic Mean is established as early as in van Rijsbergen (1979); Chinchor (1992), pro-
viding a more robust comparison in cases where metric values vary in a large range, and has been
widely applied in many machine learning fields (Powers, 2011; Taha & Hanbury, 2015; Chicco &
Jurman, 2020). It is formulated as HE = H/( 1

x1
+ 1

x2
+ · · · + 1

xH
), where H is the number of

assessed metrics and xi is the standardized score of the i-th metric. Given the nature of this task, we
give the highest weight to metric (1) and lower weights to (2)-(5).

For implementation details of the model architecture, parameter settings and the parameter tuning
ablations, please refer to Appendix A.2 and Appendix A.6.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our method with all the existing approaches for single reference motion synthesis on the
collected SinMotion dataset. The compared framework includes GAN (Li et al., 2022a), diffusion
model (Raab et al., 2024) and non-parametric optimization method (Li et al., 2023b).

Quantitative Comparison For each reference motion in the SinMotion dataset, we randomly
generate 20 samples with Lg = L for measuring the metrics. Table 1 presents the quantitative
results of our method compared to the state-of-the-art methods. Our method achieves state-of-the-
art results on individual metrics (1)-(5), and the best results in the comprehensive metrics Harmonic
Mean. GenMM (Li et al., 2023b) reaches higher coverage but with limited diversity. SinMDM
(Raab et al., 2024) presents good diversity and competitive overall results, while perceptual quality
is traded off as typical artifacts can be frequently observed in the generated motions, illustrated in
Figure 3 and video demos in supplementary materials.
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Table 1: Quantitative comparison with state-of-the-art methods on SinMotion dataset. Bold marks
the best result, and underline notes the second best.

Method Coverage (%) ↑ Global Div. ↑ Local Div. ↑ Inter Div. ↑ Intra Div. ↓ Harmonic Mean ↑
Ganimator (Li et al., 2022a) 91.27 0.97 0.90 0.20 0.34 0.26
GenMM (Li et al., 2023b) 95.29 0.50 0.49 0.19 0.29 0.32

SinMDM (Raab et al., 2024) 91.82 1.31 1.20 0.22 0.32 0.36
Ours 93.47 1.33 1.17 0.25 0.28 0.43

Figure 3: Qualitative comparison on “hiphop dance” sample from Mixamo. Pattern A and B refer to
two difficult patterns presented in the reference motion. Patterns that show up in generated motions
are framed out marked as either success or failure according to its quality.

Qualitative Comparison We select the top 2 difficult yet typical patterns in the “hiphop dance”
sample by integrating opinions of 5 dancers, and compare the visualization results of generated mo-
tions from our method, SinMDM(Raab et al., 2024) and GenMM (Li et al., 2023b) by constraining
Lg = L in Figure 3. As visualized, the generation of both SinMDM (Raab et al., 2024) and GenMM
(Li et al., 2023b) tend to lose track of pattern A, which is a speedy and complex sub-part of a person
squatting down while spinning. GenMM (Li et al., 2023b) fails to present pattern A in the generated
sample, while SinMDM (Raab et al., 2024) generates it with an unnatural transition of a sudden
squatting down pose. The generation of our method succeeds to express pattern A and B as well as
other local patterns, while getting generally distinct from the reference motion. It is worth mention-
ing that GenMM achieves higher quantitative results on coverage while the qualitative result reveals
its lower fidelity in presenting highly dynamic and complex patterns compared to our method. More
generated samples and diversity visualization can be found on our website linked in Appendix A.1.

User Study To further assess the perceptual performance, we conduct a user study among 20
participants. For each of the 3 reference motions, we present 3 randomly generated motions of each
method. The participants are asked to assess each generated motion by (1) Coverage: it covers all the
noticeable patterns in the reference motion; (2) Diversity: it is generally novel and distinguishable
from the reference motion; (3) Naturalness: it is plausible and natural with smooth transition. The
assessment is based on 5 levels of scores from “1 strongly disagree” to “5 strongly agree” with
each of the above statements. Figure 4 presents the score distribution and averaged score of each
method in each assessed aspect. As shown in Figure 4, our method is scored highest in coverage
and diversity, and is closely comparable with GenMM (Li et al., 2023b) in naturalness. Noted
that GenMM (Li et al., 2023b) is a non-parametric method that directly matches and blends the
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Figure 4: Score distribution and average score results from user study. The score level ranges from 1
to 5 of assessing Coverage, Diversity and Naturalness. The bars align with the right y-axis referring
to percentage of votes of each method in each score level, and the horizontal lines align with left
y-axis labeling the average score of each method.

Table 2: Ablation study on VQ regulatization strategies on SinMotion dataset. Bold text marks the
best result.

Method VQ Perplexity ↑ Coverage (%) ↑ Global Div. ↑ Local Div. ↑ Inter Div. ↑ Intra Div. ↓ Harmonic Mean ↑
Ours w/o. Ltoken 24.56 87.26 1.35 1.14 0.18 0.26 0.34

Ours 28.13 93.47 1.33 1.17 0.25 0.28 0.43

motion patches from the reference motion without extracting latent representation, which naturally
attains good coverage and naturalness in most of the cases. Our method involves generating the
motion token sequence in a discrete latent space and mapping back to the motion space, yet still
reaches competitive perceptual naturalness as GenMM (Li et al., 2023b). Moreover, our method has
greatly surpassed SinMDM (Raab et al., 2024) and GenMM (Li et al., 2023b) in the user perceptual
evaluation. It is worth mentioning that while our method gets close diversity measures compared to
SinMDM (Raab et al., 2024) quantitatively, our superior perceptual performance is demonstrated in
diversity as well as other assessed aspects.

4.3 ABLATION: CODEBOOK DISTRIBUTION REGULARIZATION

Mitigating the under-utilization of code entries during the single motion tokenization phase plays
a crucial role in preserving the local motion patterns. In this work, we introduce codebook dis-
tribution regularization loss Ltoken based on KL divergence in addition to the commonly used
strategies (EMA and codebook reset) for this purpose. We run the training of single motion
tokenization without Ltoken and compare the results with our method quantitatively in Table 2.
We introduce VQ perplexity to quantify the utilization of code entries, which is formulated as
VQ Perplexity = exp(−

∑K
k=1 pk log(pk)). As shown, the VQ perplexity and coverage drop dra-

matically without Ltoken. To further demonstrate it perceptually, we visualize in Figure 5 the qual-
itative comparison of the expressiveness of local patterns. We select a local window from sample
“house dancing”, and retrieve the nearest neighbour local window in the generated motions from
our method and ours without Ltoken. The character in Figure 5 is colored according to the per-frame
similarity score between the generated window and the reference window, with color closer to green
representing higher similarity while color closer to orange referring to lower similarity. As visual-
ized, training with Ltoken contributes to a faithful expression of the reference local motion patterns.
Otherwise, the motion patterns get blurred with redundant poses and transitions.

Table 3: Ablation study on architecture of Local-M transformer on SinMotion dataset. Bold text
marks the best result, and underline notes the second best.

SlidAttn Diff. dequant Coverage (%) ↑ Global Div. ↑ Local Div. ↑ Inter Div. ↑ Intra Div. ↓ Harmonic Mean ↑
98.82 0.03 0.04 0.02 0.08 0.07

✓ 99.26 0.01 0.01 0.01 0.03 0.03
✓ 90.42 1.38 1.21 0.20 0.30 0.35
✓ ✓ 93.47 1.33 1.17 0.25 0.28 0.43
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Figure 5: Ablation study on codebook distribution regularization technique based on optimizing
Ltoken. Color closer to green representing higher per-frame similarity while color closer to orange
referring to lower similarity.

Figure 6: Ablation study on overlap attention fusion (AttnFuse). “Ours w/o. AttnFuse” refers to
applying standard average pooling aggregation as the alternative baseline to AttnFuse. “backflip”,
“handstand” pattern and transition between two patterns are marked. For generated motions, color
closer to the pattern colors indicates higher per-frame similarity with the corresponding pattern,
while color closer to orange indicates lower similarity.

4.4 ABLATION: LOCAL-M TRANSFORMER

We conduct an ablation study on the architecture of Local-M transformer in Table 3. The baseline
is backboned on standard transformer block optimized solely by generative masked modeling loss
Lmask. As presented in Table 3, the standard transformer backbone fails to learn the local motion
token transitions and instead overfits to the single reference motion. By replacing the standard trans-
former blocks with SlidAttn blocks, the Local-M transformer is capable of generating diverse novel
motions, yet with limited expressiveness of internal patterns. The coverage increases with differen-
tiable dequantization enabling stronger constraints directly in motion space, which encourages more
precise representation of motions. Integrating differentiable dequantization with SlidAttn during
training results in the best overall performance according to the Harmonic Mean.

Overlap Attention Fusion Effectiveness The mechanism of SlidAttn is highlighted with the
overlap attention fusion as an alternative to the average pooling aggregation of standard local at-
tention layers. In Figure 6, we particularly look into the effects of overlap attention fusion from
qualitative results by comparing it to the standard average pooling aggregation which is denoted as
“Ours w/o. AttnFuse”. We highlight the signature pattern “backflip”, “handstand” and transitions
between this two patterns. In the generated motions of the two compared methods, the closer the
color is to the pattern color, the higher per-frame similarity to the corresponding pattern is indicated,
while color closer to orange indicates lower similarity to either pattern. We compare generated
motions of similar motion tokens from the two methods as they share the same VQ codebook. As
presented in Figure 6, our method with overlap attention fusion achieves faithful expression of the
patterns as well as seamless globally distinct re-arrangement of the two patterns by generating natu-
ral transitions. Meanwhile, the baseline with average pooling aggregation fails to globally diversify
the patterns with unnatural transitions and noisy motion patterns.
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Figure 7: Application visualization. (a) crowd animation: a crowd doing warm-up. (b) Temporal
Editing: floorcombo with the ending part fixed, different internal patterns generated. (c) Beat-
aligned Dance Synthesis: the green boxes marks the keyframes align with the music beats.

4.5 APPLICATION

Crowd Animation The unconditional generation of the one-to-many motion synthesis can effi-
ciently provide a diverse set of characters with similar structure performing the same internal pat-
terns in different ways, as shown in Figure 7(a).

Temporal Editing The goal of temporal editing is to edit the reference motion by re-generating
an arbitrary subpart with the learned local patterns, which can be realized through masking only the
template tokens within the assigned editing subpart. As shown in Figure 7(b), MotionDreamer can
reproduce novel samples by fixing the end part of reference motion “floorcombo”.

Beat-aligned Dance Synthesis Another interesting application we explore is a variation from the
music-to-dance tasks (Li et al., 2021; 2022b; Tseng et al., 2023), the beat-aligned dance synthesis
based on single instance, where the generated motions are ensured to preserve the keyframe poses
on the music beats provided with the reference motion. To accommodate this task, we incorporate
the beat features using librosa (McFee et al., 2015) as an auxiliary temporal-aligned feature for the
motion tokens by employing an additional pair of light-weight encoder-decoder. As visualized in
Figure 7(c), the synthesized dance clip can well align with the typical poses on the beats yet well
diversifying them, and the dance patterns are also internally reminiscent yet generally diverse.

For implementation details please refer to Appendix A.4 and for video demos go to Appendix A.1.

5 CONCLUSION

In this work, we introduce MotionDreamer, a novel one-to-many motion synthesis framework based
on localized generative masked modeling. Our method leverages codebook distribution regulariza-
tion to address the codebook collapse and under-utilization, ensuring a diverse representation of
motion patterns even with a single motion. Furthermore, we propose a sliding window local atten-
tion (SlidAttn) mechanism that effectively captures local dependencies and smooth transitions across
overlapping windows, significantly improving both the fidelity and diversity of generated motions.
Through comprehensive experiments, we demonstrate that MotionDreamer achieves state-of-the-art
performance, outperforming existing approaches in generating natural and diverse motions from a
single reference, and shows strong potential in practical applications such as temporal editing and
beat-aligned dance synthesis. More future directions are discussed in Appendix A.8.
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Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, and Lu Jiang. MAGVIT: Masked gen-
erative video transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec. In Proceedings of the 39th International Conference
on Machine Learning (ICML), pp. 12929–12939, 2021.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Dimitris N Metaxas, and David
Ognibene. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp.
5907–5915, 2017.

Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli Huang, Yong Zhang, Hongwei Zhao,
Hongtao Lu, and Xi Shen. T2m-gpt: Generating human motion from textual descriptions with
discrete representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023a.

Yulun Zhang, Songhua Liu, Yinqiang Shao, et al. Regularized vector quantization for tokenized
image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 10241–10251, 2023b.

Zicheng Zhang, Congying Han, and Tiande Guo. Exsingan: Learning an explainable gen-
erative model from a single image. In Proceedings of the British Machine Vision Con-
ference (BMVC), 2021. URL https://www.bmvc2021-virtualconference.com/
conference/papers/paper_0348.html.

A APPENDIX

A.1 VIDEO DEMOS
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Figure 8: (a) Inference pipeline illustration. (b) Single Motion-Beat Tokenization for beat-aligned
dance synthesis.

A.2 IMPLEMENTATION DETAILS

The proposed method and architecture have been majorly illustrated in Section 3 of our paper. The
involved parameter setting of the proposed architecture of MotionDreamer is presented in Table 4.
During training, we crop the single reference motion sequence into overlapping motion patches of
length Tp and sp. At the single motion tokenization phase, encoder E, codebook C and decoder D
are trained with learning rate lr1. Local-M transformer is trained with learning rate lr2. We select
the parameter settings for training in Table 5 based on the best empirical results. All the reference
motions are trained and evaluated on a single RTX2080Ti GPU.

Table 4: Parameter settings for architectures.
Param. Definition Value

h down-sampling factor in tokenization 8
d latent embedding fe, fq dimension 4096
dk transformer latent embedding dimension 384
NE number of layers in E 3
ND number of layers in D 3
NM number of layers in Local-M 3
K number of code entries in C 48
W local window size of SlidAttn layer 5 (tokens)
S window stride of SlidAttn layer 4 (tokens)

Table 5: Parameter settings for training and in-
ference.

Param. Definition Value
Tp length of a motion patch for training VQ, Local-M 96, 128 (frames)
sp stride of motion patches for training VQ, Local-M 24, 32 (frames)
βq weighting factor of Lq 0.1
βk weighting factor of Ltoken 1e-3
λrec weighting factor of Lrec during training Local-M 0.2
lr1 learning rate for training tokenization 2e-4
lr2 learning rate for training Local-M 2e-4

A.3 INFERENCE PROCESS ELABORATION

At the inference stage, shown in Figure 8, we synthesize the novel motion m̃1:Lg
of arbitrary length

Lg in a localized auto-regressive strategy based on sliding windows. We first initialized a blank
template token sequence c0g of length Lg/h with all the tokens masked. A synthesis window of size
Wg is preset, and slides along the template token sequence with stride Sg for auto-regressive syn-
thesis. At each window-step, the learned Local-M transformer progressively unmasks all the motion
tokens within the synthesis window through iterative re-masking (IR), where tokens generated with
low confidence are re-masked for updated generation in the next iteration. The stride of the sliding
synthesis window ensures overlapping tokens from the previous window-step. These overlapping
tokens remain un-masked as condition tokens for generating other tokens in the new window-step.
After all the window-steps, the completely generated token sequence cg is de-quantized and decoded
to motion space, resulting in novel motion m̃1:Lg . Our best empirical selection for parameters is
Wg = Tp, Sg = 3Tp/4.
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A.4 APPLICATION IMPLEMENTATION ELABORATION

Crowd Animation The crowd animation shares exactly the same architecture, training and infer-
ence pipelines as what we describe in the major contents. What we showcase here in this application
is the way to use MotionDreamer as an efficient tool for generating similar yet diverse motions for
a crowd of characters with the same skeleton structures. More demos are shown in our project page
link in A.1.

Temporal Editing As presented in Figure 8(a), the template token sequence for temporal editing
at the inference stage, noted as c0e, is constructed differently compared with either general synthe-
sis elaborated in Appendix A.3 or other applications discussed in this section. By providing the
sub-parts to generate with corresponding timestamps, the template sequence is constructed as the
combination of encoded motion tokens for the fixed sub-parts and the [MASK] tokens for the sub-
parts to be generated. The motion generated from c0e retains exactly the same motion for the fixed
sub-parts, while presenting diverse motions based on learned internal patterns for the others.

Beat-aligned Dance Synthesis The beat-aligned dance synthesis involves incorporating auxiliary
beat features into the latent motion representation, ensuring that the synthesized motion aligns with
the rhythm while maintaining natural transitions and variations. To approach this, the single motion-
beat tokenization is proposed where we establish the lightweight encoder(Eb)-decoder (Db) network
based on only NE (= ND) 1D-convolutional layers for embedding the beat features, as shown in
Figure 8(b). Eb maps beat features, extracted from the paired music the using librosa (McFee et al.,
2015), to the discrete latent space shared with the motion features; Db decodes the quantized beat
embeddings back to the original space for beat features. This lightweight architecture facilitates
tempo alignment based on single-instance while minimizing computational overhead.

A.5 EVALUATION METRICS

The computations of our applied evaluation metrics follow Li et al. (2022a) and Raab et al. (2024).
Coverage The coverage of the reference motion m is measured based on all possible temporal
windows given length Lc, which is written as WLc

. Given a generated motion m̃, a temporal
window mw ∈ WL would be labeled as covered if the distance measure for the nearest neighbor in
m̃ is smaller than a threshold ϵ. The distance metric is chosen as Frobenius norm on the local joint
rotation matrices, and the window size Lc = 30, defined as:

Cov(m, m̃) =
1

|WLc
|

∑
mw∈WLc

1[NN(mw, m̃) < ϵ]. (9)

Global Diversity Li et al. (2022a) proposes a distance measure for patched nearest neighbors
(PNN) to measure the global diversity. The generated motion is segmented with length no shorter
than a threshold Tm for each sub-part, and the measure is oriented for finding an optimized segmen-
tation for the motion with minimum averaged per-frame nearest neighbor cost. For more details, we
refer the readers to Li et al. (2022a)

Local Diversity The local diversity metric is based on the local frame diversity by comparing
every local window of the generated motion to its nearest neighbor in the reference motion:

DLocal =
1

|WLd
|

∑
m̃w∈WLd

NN(m̃w,m). (10)

A.6 MORE ABLATION STUDIES

Table 6 shows the ablation study for our settings for the architecture and the key parameters.

Local Attention Mechanism We want to highlight the second part of Table 6, where we com-
pare our proposed SlidAttn with other two alternatives for local attention layer, Local SASA and
QnA. Compared to Local SASA, which is the most standard local attention layer which processes
non-overlapping windows without learnable queries or positional encodings, SlidAttn significantly
improves coverage and diversity, demonstrating the importance of overlapping windows and en-
riched attention computation. QnA applied in SinMDM (Raab et al., 2024) is a convolutional local
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Table 6: Ablation study for parameter settings. Bold text marks the best result.

Method Coverage (%) ↑ Global Div. ↑ Local Div. ↑ Inter Div. ↑ Intra Div. ↓ Harmonic Mean ↑
K = 32 84.23 1.08 1.02 0.16 0.30 0.24
K = 48 93.47 1.33 1.17 0.25 0.28 0.43
K = 64 73.36 1.20 1.09 0.14 0.34 0.22

Local SASA 74.23 1.13 1.10 0.15 0.31 0.23
QnA (Raab et al., 2024; Arar et al., 2022) 85.02 1.37 1.20 0.26 0.32 0.31

SlidAttn 93.47 1.33 1.17 0.25 0.28 0.43
SlidAttn w/o. learnable queries 71.42 1.48 1.37 0.20 0.36 0.23

SlidAttn w/o. r 89.84 1.05 1.01 0.22 0.30 0.22
SlidAttn 93.47 1.33 1.17 0.25 0.28 0.43
W = 3 82.39 1.24 1.12 0.20 0.29 0.25
W = 5 93.47 1.33 1.17 0.25 0.28 0.43
W = 7 88.71 1.36 1.19 0.25 0.36 0.35

S = 1 81.79 1.41 1.20 0.23 0.29 0.28
S = 4 93.47 1.33 1.17 0.25 0.28 0.43
S = 5 94.89 1.03 0.98 0.24 0.38 0.38

Table 7: Impact of codebook regularization loss on other VQ methods for motion representation.
Bold text marks the best result.

Method R Precision Top 1↑ Perplexity↑
MMM (Pinyoanuntapong et al., 2024) 0.503 1642.194

MMM (Pinyoanuntapong et al., 2024) w/ Ltoken 0.572 1678.538
MoMask (Guo et al., 2024) 0.504 368.914

MoMask (Guo et al., 2024) w/ Ltoken 0.504 372.702

attention layer modified from Arar et al. (2022), which incorporates learnable queries and relative
positional encoding. Compared to QnA, which relies on the convolutional layers for overlapping
window operation, SlidAttn reaches better overall performance with a dramatic rise in coverage
measures and competitive diversity results. This demonstrates that our proposed SlidAttn uniquely
employs a more effective sliding window attention computation and aggregation paradigm for pro-
cessing overlapping local windows under this framework.

Sliding Window Parameters The last part is worth highlighting as it presents the ablations for
stride of the sliding windows in SlidAttn of Local-M (refer to Section 3), which demonstrates that
having a relatively small overlap length (W −S = 1) in our case results in the best Harmonic Mean,
which attains good diversity while preserving the internal patterns from reference motion.

A.7 DISCUSSION ON CODEBOOK REGULARIZATION

We also conduct additional experiments on the broader impact of our codebook regularization loss
on general motion tokenization trained on large datasets. We choose MMM (Pinyoanuntapong et al.,
2024) and MoMask (Guo et al., 2024) to experiment with, as they share similar framework but with
different VQ architectures. MMM (Pinyoanuntapong et al., 2024) tokenizes the motions with a stan-
dard VQ layer with a large codebook, while MoMask (Guo et al., 2024) incorporates residual VQ
layers (Borsos et al., 2023; Martinez et al., 2014; Zeghidour et al., 2021) with a stack of codebooks
for fine-grained motion representation. We apply our codebook regularization loss Ltoken to the two
methods for training the motion tokenization, comparing 1) R Precision Top 1 for the reconstruc-
tion performance or the motion representation capacity of learned codebook(s); 2) perplexity for the
codebook utilization.

As the results shown in Table 7, both R precision and perplexity have been significantly improved
for MMM, indicating better and more effective use of the codebook to become more effective at
representing motion data. For MoMask, the impact of Ltoken is also evident. While the R pre-
cision remains stable at 0.504, the perplexity improves from 368.914 to 372.702. This shows that
the incorporation of Ltoken helps optimize the utilization of residual VQ layers without sacrificing
the motion representation capacity. These results clearly demonstrate the effectiveness of our pro-
posed Ltokenin enhancing the quality and utilization of codebooks across different VQ architectures,
making it a valuable addition to motion representation frameworks.

The improvements are particularly significant for methods like MMM, where the standard VQ lay-
ers benefit the most from the regularization. For more advanced residual VQ architecture adapted
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by MoMask, the improvements in codebook utilization are moderate, with no significant gains in
motion representation capacity. This may be due to the nature of residual VQ layers, which obtain
higher motion representation capacity by utilizing multiple codebooks to quantize the information
loss from previous layers, rather than directly representing motion data. Consequently, higher code-
book utilization alone does not significantly enhance motion representation capacity in this context.

There are also other alternatives regarding the codebook regularization for VQ-based representation,
which can be further explored in future work. For example, entropy regularization, which encour-
ages entropy maximization of the token distribution, can promote codebook utilization, as applied
in Volkov (2022); Xiao et al. (2024). Stochastic sampling methods can also be incorporated such as
Zhang et al. (2023b) by modifying sampling strategies to implicitly regularize the token utilization
distribution across large-scale datasets.

A.8 LIMITATIONS

While MotionDreamer demonstrates strong performance in generating diverse and natural motion
sequences from a single reference, several limitations remain. First, the framework’s performance
is highly dependent on the quality of the reference motion. Second, due to the inherent nature of
single instance based motion synthesis, the framework exhibits limited capacity to generalize across
a broader range of motion editing and conditional synthesis tasks, given the nature of single instance
based synthesis. Future work will focus on improving the model’s extrapolation capabilities and
enhancing its generalization to both few-shot and large-scale datasets. In particular, the development
of a more flexible framework capable of distilling knowledge from diverse motion priors would
allow the model to accommodate a wider array of motion styles and patterns. Moreover, integrating
a more robust attention mechanism may enable the model to capture long-range dependencies and
global patterns more effectively, thus extending its applicability to a broader set of motion editing
and synthesis tasks.
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