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ABSTRACT

Generative masked transformer have demonstrated remarkable success across var-
ious content generation tasks, primarily due to their ability to effectively model
large-scale dataset distributions with high consistency. However, in the anima-
tion domain, large datasets are not always available. Applying generative masked
modeling to generate diverse instances from a single MoCap reference may lead
to overfitting, a challenge that remains unexplored. In this work, we present Mo-
tionDreamer, a localized masked modeling paradigm designed to learn motion
internal patterns from a given motion with arbitrary topology and duration. By
embedding the given motion into quantized tokens with a novel distribution regu-
larization method, MotionDreamer constructs a robust and informative codebook
for local motion patterns. Moreover, a sliding window local attention is intro-
duced in our masked transformer, enabling the generation of natural yet diverse
animations that closely resemble the reference motion patterns. As demonstrated
through comprehensive experiments, MotionDreamer outperforms the state-of-
the-art methods that are typically GAN or Diffusion-based in both faithfulness
and diversity. Thanks to the consistency and robustness of quantization-based ap-
proach, MotionDreamer can also effectively perform downstream tasks such as
temporal motion editing, crowd animation, and beat-aligned dance generation, all
using a single reference motion. Our implementation, learned models and results
are to be made publicly available upon paper acceptance.

1 INTRODUCTION

Motions could be roughly interpreted as coherent and natural compositions of finite internal patterns.
For example, a breaking can be performed by a freestyle composition of breakingdance skills, such
as baby freeze, helicopter, kick up, back spin, etc. Learning these internal patterns from a single
reference motion allows for the generation of diverse yet consistent motions that closely resemble
the reference. This is particularly useful when data is scarce (e.g., in the case of animal motion)
or when the content needs to be constraints. Existing works have attempted to address this (Li
et al., 2022a; Raab et al., 2024; Li et al., 2023b) using GAN (Goodfellow et al., 2014; Denton et al.,
2015; Zhang et al., 2017) or Diffusion Model (Ho et al., 2020; Rombach et al., 2022; Tevet et al.,
2023), where the distribution of internal patterns is modeled implicitly, or through motion matching,
which matches and blends exemplar internal patterns without learning latent embedding. However,
these approaches either struggle with limited expressiveness of internal patterns or failed to achieve
diverse and natural synthesis.

Recent advances in motion synthesis have witnessed great success in using generative masked trans-
former (Zhang et al., 2023a; Jiang et al., 2023; Guo et al., 2024; Pinyoanuntapong et al., 2024),
largely due to their efficient embeddings and explicit distribution modelling. These learned models
quantize motion into tokens and represent them with an explicit categorical distribution in the dis-
crete space defined by the codebook. It is done by randomly masking and predicting the specific
masked tokens in context. However, they usually rely on large-scale datasets, applying global self-
attention to learn the in-context distribution. When adapted to single or few sequence, these models
tend to overfit to sequence-wise global pattern instead of generating novel sequences based on the
distribution of internal patterns. This results in model collapses, since the standard transformer
layers attend all the tokens in a sequence for positional encoding and self-attention.
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Figure 1: Overview of the one-to-many motion synthesis. A single reference motion with arbitrary
skeletons can be applied to generate natural and diverse novel motions while preserving the reference
local motion patterns. Above shows the diverse generations from MotionDreamer of a girl doing
breakdance (upper); a jaguar attacking (bottom).

In this paper, we propose MotionDreamer, a generative masked transformer specifically designed
for one-to-many motion synthesis, as presented in Figure 1. The key idea is to learn the explicit cat-
egorical distribution of internal patterns by strategically narrowing the receptive field of transformer
layers, as illustrated in Figure 2. This is achieved by our proposed localized generative masked trans-
former (Local-M), which incorporates a carefully designed sliding window local attention layer (Sli-
dAttn) as the backbone. This structure focuses on capturing local dependencies of quantized motion
tokens. The SlidAttn layer divides the input motion token sequence into overlapping local windows,
where motion tokens are attended to using window-wise relative positional encoding (Shaw et al.,
2018). The resulting local attention scores are then aggregated through overlap attention fusion, to
better preserve cross-window coherence. During training, a quantized codebook is first optimized
to embed internal patterns of a single reference motion. To prevent the under-utilization of code
entries, a codebook distribution regularization technique is further introduced. Once the reference
motion is represented with motion tokens from the codebook, the Local-M transformer is trained
to model the explicit categorical distribution of internal patterns through generative masked model-
ing, where varying masked portions of motion tokens are progressively predicted. A differentiable
dequantization strategy is also integrated to facilitate the optimization in motion space, by apply-
ing the sparsemax activation function (Martins & Astudillo, 2016) instead of the traditional argmax
operation.

To summarize our main contributions: (1) We introduce MotionDreamer, a novel localized gen-
erative masked modelling paradigm for motion synthesis based on single reference motion. With
just one training motion sequence, it effectively addresses the key issues: a) codebook collapse,
by promoting a highly utilized codebook through a distribution regularization technique, and b)
overfitting, by shrinking the receptive field of transformer using the proposed sliding window local
attention layer as the backbone. (2) Our MotionDreamer faithfully preserves the internal patterns
of reference motion while notably diversifies the synthesized motions. It achieves state-of-the-art
comprehensive performance improving the harmonic means by 19%, and earning the highest score
in perceptual assessments. (3) MotionDreamer is also shown to work well in the downstream appli-
cations of temporal editing, crowd animation and beat-aligned dance synthesis, by leveraging only
a single reference motion.

2 RELATED WORKS

2.1 SINGLE INSTANCE SYNTHESIS

Single reference based motion synthesis presents as the extension of single instance learning in the
image domain (Rott Shaham et al., 2019; Zhang et al., 2021; Hinz et al., 2021; Granot et al., 2022) to
motion domain. In image synthesis field, Rott Shaham et al. (2019) utilizes a patch-based discrim-
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inator and an image pyramid to hierarchically generate diverse results from a single image. On the
other hand, Granot et al. (2022) argues that utilizing patch-based nearest neighbor matching results
in a more faithful and robust synthesis based on single image. In the motion synthesis domain, Gani-
mator (Li et al., 2022a) adapting the hierarchical GAN architecture from Rott Shaham et al. (2019) to
learn and generate diverse motion sequences from a single motion instance. SinMDM (Raab et al.,
2024) approaches the hierarchical generation process by diffusion model based on a light-weight
UNet structure with local attention layers (Arar et al., 2022). Both methods model the internal pat-
terns of the single motion implicitly in a continuous latent space, which potentially induce more out-
of-distribution during synthesis, leading to limited capability of representing internal patterns and
unnatural artifacts in generated motions. Inspired by Granot et al. (2022), GenMM (Li et al., 2023b)
generates novel motions through multi-level matching and blending the reference motion patches
simply based on nearest neighbour search. However, the diversity of GenMM (Li et al., 2023b) is
limited as it basically shuffles and merges original motion patches from reference motion without
learning the underlying distribution, and artifacts are more frequently observed in short and highly
dynamic sequences. In this work, we propose a novel localized generative masked transformer for
this task, which presents an effective learning paradigm with strong expressiveness of local patterns
as well as natural and diverse generations. We provide more insights about the mechanism in section
3 and potentials in empirical results in section 4.

2.2 MOTION GENERATIVE TRANSFORMERS

Inspired by the impressive success of generative transformers in image synthesis (Ramesh et al.,
2021; Chang et al., 2022; Li et al., 2023a; Yu et al., 2023), several recent works (Zhang et al.,
2023a; Jiang et al., 2023; Lu et al., 2024; Guo et al., 2024; Pinyoanuntapong et al., 2024) adapted
generative transformer framework to approach text-driven human motion synthesis. Zhang et al.
(2023a) established a simple CNN-based VQ-VAE (van den Oord et al., 2017) for transforming hu-
man motion sequences into discrete motion token sequence, and a modified generative pretrained
transformer(GPT) backbone is utilized for learning to generate novel human motions conditioned
on text prompt. Jiang et al. (2023) proposed to learn mixed motion tokens and text tokens simulta-
neously utilizing language model backbone.Lu et al. (2024) leverages hierarchical VQ-VAE Razavi
et al. (2019) and a hierarchical GPT for more precise whole-body motion generation. Guo et al.
(2024); Pinyoanuntapong et al. (2024) both adapted generative masked modelling to optimizing the
transformer for enhanced semantics mapping between text and motion, where a scheduled varying
portion of tokens are masked for predictions during training iterations. Inspired by the effectiveness
of explicit distribution modeling for motion sequences shown in these works, our method employed
generative masked transformer for MotionDreamer and specifically adapted the framework to single
instance based motion synthesis by shrinking the receptive field of transformer layers. With our
proposed MotionDreamer, we demonstrate strong capability of capturing fine-grained local motion
features, and diversifying their combinations with plausible transitions for novel motions synthesis.

3 LOCALIZED MOTION GENERATIVE TRANSFORMER

Given a single reference motion m1:L of length L and arbitrary skeleton topology, the goal is to to
generate a generally novel motion sequence m̃1:Lg of arbitrary length Lg that preserves the skeleton
structure and underlying local patterns of the reference motion. As illustrated in Fig 2 (a) and (b),
we established a localized generative masked transformer to model the explicit categorical distri-
bution of internal patterns on a learned discrete latent space C (namely codebook), from which we
sample a tuple of embeddings c1:Ng

(namely motion tokens) in an auto-regressive manner to gener-
ate novel motion sequences. Our method incorporates two core components: codebook distribution
regularization and Sliding Window Local Attention (SlidAttn). The codebook regularization miti-
gates codebook collapse when training single sequence, promoting a more uniform and diverse use
of code entries during tokenization, while SlidAttn ensures effective modeling of local transitions
by operating tokens within overlapping windows.

3.1 SINGLE MOTION TOKENIZATION

The tokenization process encodes and maps the local motion segments in the original motion space
M into motion tokens in a quantized discrete latent space C. During training, a finite codebook
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Figure 2: (a) Overview of MotionDreamer based on localized generative masked transformer. The
single reference motion m1:L is embedded as motion tokens c by optimizing a codebook through
vector quantization, where a codebook distribution regularization loss Ltoken is additionally intro-
duced. The Local-M transformer learns the local dependencies of motion tokens through sliding
window local attention (SlidAttn) layers. The SlidAttn layer attends tokens within each unfolded
overlapping windows for attention based on learnable query and relative positional embeddings.
Attention outputs are merged through overlap attention fusion (AttnFuse). (b) Visualization of the
explicit distribution modeling for internal patterns. MotionDreamer learns to express and diversify
the combination of internal patterns with explicit categorical distribution of motion tokens, which is
visualized as multiple token candidates predicted by Local-M given previous generated ones.

is preset to represent the motion token space: C = {ci}Ki=1 ⊂ Rd, where K is the number of
code entries. The reference motion m1:L is encoded as a sequence of feature vectors through 1D
convolutional encoder E:

z1:N = {z1, z2, . . . , zN} = E(m1:L) (1)

where N = L
h , and h is the down-sampling factor of the encoder. Through vector quantization (VQ)

(van den Oord et al., 2017), noted as Q(·), each of the feature vectors are mapped to the nearest code
entry in codebook C, resulting in a sequence of motion tokens:

c1:N = {c1, c2, . . . , cN} = Q(z1:N ; C) (2)

Finally, the motion token sequence is projected back to original motion space m through 1D convo-
lutional decoder D as the reconstructed motion sequence:

m̂1:L = D(c1:N ) (3)

3.1.1 CODEBOOK DISTRIBUTION REGULARIZATION

Due to the constraint of highly limited data and the imbalanced temporal distribution of internal
patterns, training vector quantizer on single motion sequence is more likely to struggle with is-
sues such as codebook collapse. Although common strategies such as exponential moving average
(EMA) and codebook reset (Razavi et al., 2019; Zhang et al., 2023a; Guo et al., 2024) result in a
good reconstruction at the training phase, we spotted that the motion patterns are still often lost or
blurred with unnatural transition between poses at the generation phase, shown in Figure 5. This
could be ascribed to the under-utilization of code entries, which may introduce invalid tokens that
disturb the expression of learned patterns. In order to mitigate this, we propose to minimize the KL
divergence between predicted token distribution and a pre-assumed prior token distribution (Zhang
et al., 2023b) to encourage a more uniform distribution of the effective code entries:

Ltoken = KL(Ppost, Pprior) = −
K∑

k=1

pk log(
1/K

pk
) (4)

where pk is the posterior distribution of code entries is approximated by the average of all the
quantized one-hot vectors indicating the selected code entries. The overall optimization objective
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for training the single motion quantizer is then established as:

LVQ = Lrec + βqLq + βkLtoken (5)

where Lrec = ||m − m̂||1 is the motion reconstruction loss, and Lq =
∑N

i=1 ||fe − sg(fq)||2 is
the standard VQ commitment loss (sg(·) denotes the stop gradient operation) (van den Oord et al.,
2017). Broader impacts of Ltoken on other VQ-based motion representation methods is discussed in
Appendix A.7.

3.2 LOCAL-M TRANSFORMER

Local-M Transformer pϕ models the explicit distribution of internal patterns through progressively
predicts randomly masked motion tokens. Specifically, a varying fraction r of motion tokens c1:N
are masked out in iteration timestep, replaced with a special [MASK] token. The masking ratio is
obtained through a cosine scheduling function r = γm(µ) = cos(πµ2 ) ∈ [0, 1], where µ ∼ U(0, 1) is
ramdomly sampled, following Chang et al. (2022). Our transformer pϕ is optimized by minimizing
the negative log-likelihood of the target predictions:

Lmask =
∑

cm
r =[MASK]

− log pϕ(c
m
r |cm) (6)

where cm is the token sequence after masking. To facilitate the optimization by directly minimizing
the motion reconstruction loss in addition to the masked modeling loss, we integrate a differentiable
dequantization strategy to enable gradient flow from decoded motion to Local-M transformer. By
incorporating sparsemax(·) activation function (Martins & Astudillo, 2016), the module simulates
the argmax selection of motion tokens in a differentiable manner.

The overall loss function of Local-M transformer is:

LM = Lmask + λrecLrec (7)

where λrec is the hyper-parameter that balance the reconstruction loss with mask modeling loss. Lrec
is computed as equation 5, where m̂ is the motion decoded from the predicted token sequence.

3.2.1 SLIDING WINDOW LOCAL ATTENTION

In our problem setting, naively optimizing standard transformer blocks with with Lmask leads to
severe overfitting issue as the model fail to capture local dependencies of motion tokens given single
sequence. To address this problem, we introduce the sliding window local attention (SlidAttn)
layer. Each SlidAttn layer unfolds the motion token sequence into overlapping local windows, and
computes attention within each local window, the output of which is aggregated through overlap
attention fusion (AttnFuse). With SlidAttn, pϕ approximates the joint distribution of motion tokens
by modeling the local transitions in sliding windows.

SlidAttn Mechanism By unfolding the input motion token sequence c1:N with stride S into over-
lapping local windows of size 2W +1 , the key matrices Kt−W :t+W and value matrices Vt−W :t+W

in each window can be obtained, where t = {W,W + S,W + 2S, . . . ,W +BS}. Note that in our
case, having the windows overlapped yet keeping a small overlap length is crucial for learning
smooth transitions across windows on top of local patterns within windows while preserving typi-
cal internal patterns. In this paradigm, utilizing absolute positional encoding (Vaswani et al., 2017)
within local windows may induce severe boundary artifacts especially with only single sequence. To
mitigate the issue, we employ window-wise relative positional encoding r = RelPos(W ) adapted
from Shaw et al. (2018) which ensures the attention mechanism to focus on the relative distances
instead of absolute positions. Furthermore, we introduce learnable query qt which allows the model
to adaptively attend to important tokens across different windows. This encourages the model to
better capture the fine-grained transitions and internal patterns that vary between different types of
motions. The attention computation shown in Figure 2 attending tokens within each local window
can be formulated as:

Attnt = softmax(
qtKW + r√

dk
)VW (8)

where KW , VW is the abbreviation for Kt−W :t+W and Vt−W :t+W correspondingly.
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AttnFuse Standard average pooling (Vaswani et al., 2017; Beltagy et al., 2020) across the overlap-
ping windows may require large amount of padding for the input token sequence in order to ensure
consistent input-output sequence length, inducing indispensable artifacts. To address this, AttnFuse
aligns the attention output Attnt of each windows as same as the way the input sequence is unfolded
with trivial padding (with padding size ≤ window size ≪ L/h), and blends the overlapped regions
with average voting while straightly passing through the others, resulting in the final aggregated
output. This not only mitigates the padding artifacts that noise the distribution of internal patterns,
but also allows for preserving better coherence for generating smooth motions.

3.2.2 INFERENCE PROCESS

At the inference stage, we synthesize the novel motion m̃1:Lg
of arbitrary length Lg using Local-M

in a sliding window based auto-regressive manner, by progressively fill in a fully-masked template
token sequence. The details of inference process is elaborated in Appendix A.3.

4 EXPERIMENT AND RESULTS

4.1 IMPLEMENTATION DETAILS

Dataset We collect 30 motion sequences from Mixamo (Mixamo, 2023) with human-like skele-
ton and 30 motion sequences with skeletons of animal and artist-crafted creatures from Truebone-
ZOO (Studio, 2023) dataset to form the SinMotion dataset used for evaluation. There are 30 long
sequences (> 600 frames) and 30 short sequences (≤ 600 frames).

Evaluation Metrics We applied 5 set of metrices to measure the expressiveness of local mo-
tion patterns and synthesis diversity respectively following Li et al. (2022a) and Raab et al. (2024):
(1) Coverage(%) measures the percentage of local motion patterns in reference motions that are
presented in generated motions, which indicates the faithfulness or expressiveness of the internal
patterns. (2) Global Diversity quantifies the overall variation in the generated motion sequences
based on patched nearest neighbor (Li et al., 2022a). It assesses the ability of the synthesis method
to produce a wide range of distinct motions that differ significantly from each other. (3) Local Diver-
sity evaluates local frames diversity. (4) inter diversity measures the diversity between synthesized
motions by averaging per-frame distances. (5) intra diversity diff measures the local pattern dis-
tribution similarity between the reference motion and generated motions, where the statistic of the
pattern distribution is approximated by internal sub-window distances. Computation details for (1),
(2), (3) are presented in Appendix A.5.

As the evaluation results are comprehensively assessed by lots of metrices for different aspects,
we also introduced Harmonic Means following Raab et al. (2024) to combine the effects of all the
metrics. The Harmonic Means is established as early as in van Rijsbergen (1979); Chinchor (1992),
providing a more robust comparison in cases where metric values vary in a large range, and has been
widely applied in many machine learning fields (Powers, 2011; Taha & Hanbury, 2015; Chicco &
Jurman, 2020). It is formulated as HE = H/( 1

x1
+ 1

x2
+ · · · + 1

xH
), where H is the number of

assessed metrices and xi is the standardized scores of each metrices. Given the nature of this task,
we give the highest weight to metric (1) and lower weights to (2)-(5).

For implementation details of the model architecture, parameter settings and the paramter tuning
ablations, please refer to the Appendix A.2 and Appendix A.6.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our methods with all the existing approaches for single reference motion synthesis
on the collected SinMotion dataset. The compared framework includes GAN (Li et al., 2022a),
diffusion model (Raab et al., 2024) and non-parametric optimization method (Li et al., 2023b).

Quantitative Comparison For each reference motions in the SinMotion dataset, we randomly
generate 20 samples with Lg = L for measuring the metrices. Table 1 presents the quantitative
results of our methods compared to the state-of-the-art methods. Our method achieves state-of-the-
art results on individual metrices (1)-(5), and the best results in the comprehensive metrics Harmonic
Means. GenMM (Li et al., 2023b) reaches higher coverage but with limited diversity. SinMDM
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Table 1: Quantitative comparison with state-of-the-art methods on SinMotion dataset. Bold marks
the best result, and unerline notes the second best.

Method Coverage (%) ↑ Global Div. ↑ Local Div. ↑ Inter Div. ↑ Intra Div. ↓ Harmonic Means ↑
Ganimator (Li et al., 2022a) 91.27 0.97 0.90 0.20 0.34 0.26
GenMM (Li et al., 2023b) 95.29 0.50 0.49 0.19 0.29 0.32

SinMDM (Raab et al., 2024) 91.82 1.31 1.20 0.22 0.32 0.36
Ours 93.47 1.33 1.17 0.25 0.28 0.43

Figure 3: Qualitative comparison on “hiphop dance” sample from Mixamo. Pattern A and B refers to
two difficult patterns presented in the reference motion. Patterns that show up in generated motions
are framed out marked as either success or failure according to its quality.

(Raab et al., 2024) presents good diversity and competitive overall results, while perceptual quality
is traded off as typical artifacts can be frequently observed in the generated motions, illustrated in
Figure 3 and video demos in supplementary materials.

Qualitative Comparison We select the top 2 difficult yet typical patterns in the “hiphop dance”
sample by integrating opinions of 5 dancers, and compare the visualization results of generated mo-
tions from our method, SinMDM(Raab et al., 2024) and GenMM (Li et al., 2023b) by constraining
Lg = L in Figure 3. As visualized, the generation of both SinMDM (Raab et al., 2024) and GenMM
(Li et al., 2023b) tend to lose track of pattern A, which is a speedy and complex sub-part of a person
squatting down while spinning. GenMM (Li et al., 2023b) fail to present pattern A in the gener-
ated sample, while SinMDM (Raab et al., 2024) generate it with an unnatural transition of a sudden
squatting down pose. The generation of our method succeeds to express pattern A and B as well as
other local patterns, while gets generally distinct from the reference motion. It is worth mentioning
that GenMM achieves higher quantitative results on coverage while the qualitative result reveals its
lower fidelity in presenting highly dynamic and complex patterns compared to our method. More
generated samples and diversity visualization can be found on our website linked in Appendix A.1.

User Study To further assess the perceptual performance, we conduct a user study among 20
participants. For each of the 3 reference motions, we present 3 randomly generated motions of each
method. The participants are asked to assess each generated motion by (1) Coverage: it covers all the
noticeable patterns in the reference motion; (2) Diversity: it is generally novel and distinguishable
from the reference motion; (3) Naturalness: it is plausible and natural with smooth transition. The
assessment is based on 5 levels of scores from “1 strongly disagree” to “5 strongly agree” with
each of the above statements. Figure 4 presents the score distribution and averaged score of each
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Figure 4: Score distribution and average score results from user study. The score level ranges from 1
to 5 of assessing Coverage, Diversity and Naturalness. The bars align with the right y-axis referring
to percentage of votes of each method in each score level, and the horizontal lines align with left
y-axis labelling the average score of each method.
Table 2: Ablation study on VQ regulatization strategies on SinMotion dataset. Bold text marks the
best result.

Method VQ Perplexity ↑ Coverage (%) ↑ Global Div. ↑ Local Div. ↑ Inter Div. ↑ Intra Div. ↓ Harmonic Means ↑
Ours w/o. Ltoken 24.56 87.26 1.35 1.14 0.18 0.26 0.34

Ours 28.13 93.47 1.33 1.17 0.25 0.28 0.43

method in each assessed aspect. As shown in Figure 4, our method is scored highest in coverage
and diversity, and is closely comparable with GenMM (Li et al., 2023b) in naturalness. Noted
that GenMM (Li et al., 2023b) is a non-parametric method that directly matches and blends the
motion patches from the reference motion without extracting latent representation, which naturally
attains good coverage and naturalness in most of the cases. Our method involves generating the
motion token sequence in a discrete latent space and mapping back to the motion space, yet still
reaches competitive perceptual naturalness as GenMM (Li et al., 2023b). Moreover, our method has
greatly surpassed SinMDM (Raab et al., 2024) and GenMM (Li et al., 2023b) in the user perceptual
evaluation. It is worth mentioning that while our method gets close diversity measures compared to
SinMDM (Raab et al., 2024) quantitatively, our superior perceptual performance is demonstrated in
diversity as well as other assessed aspects.

4.3 ABLATION: CODEBOOK DISTRIBUTION REGULARIZATION

Mitigating the under-utilization of code entries during the single motion tokenization phase plays
a crucial role in preserving the local motion patterns. In this work, we introduced codebook dis-
tribution regularization loss Ltoken based on KL divergence in addition to the commonly used
strategies (EMA and codebook reset) for this purpose. We run the training of single motion
tokenization without Ltoken and compare the results with our method quantitatively in Table 2.
We introduced VQ perplexity to quantify the utilization of code entries, which is formulated as
VQ Perplexity = exp(−

∑K
k=1 pk log(pk)). As shown, the VQ perplexity and coverage drop dra-

matically without Ltoken. To further demonstrate it perceptually, we visualize in Figure 5 the qual-
itative comparison of the expressiveness of local patterns. We select a local window from sample
“house dancing”, and retrieve the nearest neighbour local window in the generated motions from
our method and ours without Ltoken. The character in Figure 5 is colored according to the per-frame
similarity score between the generated window and the reference window, with color closer to green
representing higher similarity while color closer to orange referring to lower similarity. As visual-
ized, training with Ltoken contributes to a faithful expression of the reference local motion patterns.
Otherwise, the motion patterns get blurred with redundant poses and transitions.

Table 3: Ablation study on architecture of Local-M transformer on SinMotion dataset. Bold text
marks the best result, and underline notes the second best.

SlidAttn Diff. dequant Coverage (%) ↑ Global Div. ↑ Local Div. ↑ Inter Div. ↑ Intra Div. ↓ Harmonic Means ↑
98.82 0.03 0.04 0.02 0.08 0.07

✓ 99.26 0.01 0.01 0.01 0.03 0.03
✓ 90.42 1.38 1.21 0.20 0.30 0.35
✓ ✓ 93.47 1.33 1.17 0.25 0.28 0.43
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Figure 5: Ablation study on codebook distribution regularization technique based on optimizing
Ltoken. Color closer to green representing higher per-frame similarity while color closer to orange
referring to lower similarity.

Figure 6: Ablation study on overlap attention fusion (AttnFuse). “Ours w/o. AttnFuse” refers to
applying standard average pooling aggregation as the alternative baseline to AttnFuse. “blackflip”,
“handstand” pattern and transition between two patterns are marked. For generated motions, color
closer to the pattern colors indicates higher per-frame similarity with the corresponding pattern,
while color closer to orange indicates lower similarity.

4.4 ABLATION: LOCAL-M TRANSFORMER

We conducted an ablation study on the architecture of Local-M transformer in Table 3. The base-
line is backboned on standard transformer block optimized solely by generative masked modeling
loss Lmask. As presented in Table 3, the standard transformer backbone fails to learn the local mo-
tion token transitions and instead overfits to the single reference motion. By replacing the standard
transformer blocks with SlidAttn blocks, the Local-M transformer is capable of generating diverse
novel motions, yet with limited expressiveness of internal patterns. The coverage increases with
differentibale dequantization enabling stronger constraints directly in motion space, which encour-
ages more precise representation of motion. Integrating differentiable dequantization with SlidAttn
during training results in the best overall performance according to the harmonic means.

Overlap Attention Fusion Effectiveness The mechanism of SlidAttn is highlighted with the
overlap attention fusion as an alternative to the average pooling aggregation of standard local at-
tention layers. In Figure 6, we particularly look into the effects of overlap attention fusion from
qualitative results by comparing it to the standard average pooling aggregation which is denoted as
“Ours w/o. AttnFuse”. We highlight the signature pattern “blackflip”, “handstand” and transitions
between this two patterns. In the generated motions of the two compared method, the closer the
color is to the pattern color, the higher per-frame similarity to the corresponding pattern is indicated,
while color closer to orange indicates lower similarity to either patterns. We compare generated
motions of similar motion tokens from the two method as they share the same VQ codebook. As
presented in Figure 6, our method with overlap attention fusion achieves faithful expression of the
patterns as well as seamless globally distinct re-arrangement of the two patterns by generating natu-
ral transitions. Meanwhile, the baseline with average pooling aggregation fails to globally diversify
the patterns with unnatural transitions and noisy motion patterns.

9
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Figure 7: Application visualization. (a) crowd animation: a crowd doing warm-up. (b) Temporal
Editing: floorcombo with the ending part fixed, different internal patterns generated. (c) Beat-
aligned Dance Synthesis: the green boxes marks the keyframes align with the music beats.

4.5 APPLICATION

Crowd Animation The unconditional generation of the one-to-many motion synthesis can effi-
ciently provide a diverse set of characters with similar structure performing the same internal pat-
terns in different ways, as shown in Figure 7(a).

Temporal Editing The goal of temporal editing is to edit the reference motion by re-generating
an arbitrary subpart with the learned local patterns, which can be realized through creating masking
only the template tokens within the assigned editing subpart. As shown in Figure 7(b), Motion-
Dreamer can reproduce novel samples by fixing the end part of reference motion “floorcombo”.

Beat-aligned Dance Synthesis Another interesting application we explored is a variation from
the music-to-dance tasks (Li et al., 2021; 2022b; Tseng et al., 2023), the beat-aligned dance synthesis
based on single instance, where the generated motions are ensured to preserve the keyframe poses
on the music beats provided with the reference motion. To accommodate this task, we incorporate
the beat features using librosa (McFee et al., 2015) as an auxiliary temporal-aligned feature for the
motion tokens by employing an additional pair of light-weight encoder-decoder. Our qualitative
evaluation on the AIST++ dataset (Li et al., 2021) are shown in Figure 7(c). As visualized, the
synthesized dance clip can well align with the typical poses on the beats yet well diversifying them,
and the dance patterns are also internally reminiscent yet generally diverse.

For implementation details please refer to Appendix A.4 and for video demos go to Appendix A.1.

5 CONCLUSION

In this work, we introduced MotionDreamer, a novel one-to-many motion synthesis framework
based on localized generative masked modeling. Our method leverages codebook distribution reg-
ularization to address codebook collapse and under-utilization, ensuring a diverse representation of
motion patterns even with single motion. Furthermore, we proposed a sliding window local atten-
tion (SlidAttn) mechanism that effectively captures local dependencies and smooth transitions across
overlapping windows, significantly improving both the fidelity and diversity of generated motions.
Through comprehensive experiments, we demonstrated that MotionDreamer achieves state-of-the-
art performance, outperforming existing approaches in generating natural and diverse motions from
a single reference, and shows strong potential in practical applications such as temporal editing and
beat-aligned dance synthesis. More future directions are discussed in Appendix A.8.
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A APPENDIX

A.1 VIDEO DEMOS

The video version of visualization in the paper as well as demos for more generation results and
application results can be found on our anonymous project page link:

https://motiondreamer.github.io/motiondreamer-page/.
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Figure 8: (a) Inference pipeline illustration. (b) Single Motion-Beat Tokenization for beat-aligned
dance synthesis.

A.2 IMPLEMENTATION DETAILS

The proposed method and architecture has been majorly illustrated in section 3 of our paper. The
involved parameter setting of the proposed architecture of MotionDreamer is presented in Table 4.
During training, we crop the single reference motion sequence into overlapping motion patches of
length Tp and sp. At the single motion tokenization phase, encoder E, codebok C and decoder D
are trained with learning rate lr1. Local-M transformer is trained with learning rate lr2. We select
the parameter settings for training in Table 5 based on the best empirical results. All the reference
motions are trained and evalutated on a single RTX2080Ti GPU.

Table 4: Parameter settings for architectures.
Param. Definition Value

h down-sampling factor in tokenization 8
d latent embedding fe, fq dimension 4096
dk transformer latent embedding dimension 384
NE number of layers in E 3
ND number of layers in D 3
NM number of layers in Local-M 3
K number of code entries in C 48
W local window size of SlidAttn layer 5 (tokens)
S window stride of SlidAttn layer 4 (tokens)

Table 5: Parameter settings for training and in-
ference.

Param. Definition Value
Tp length of a motion patch for training VQ, Local-M 96, 128 (frames)
sp stride of motion patches for training VQ, Local-M 24, 32 (frames)
βq weighting factor of Lq 0.1
βk weighting factor of Ltoken 1e-3
λrec weighting factor of Lrec during training Local-M 0.2
lr1 learning rate for training tokenization 2e-4
lr2 learning rate for training Local-M 2e-4

A.3 INFERENCE PROCESS ELABORATION

At the inference stage, shown in Figure 8, we synthesize the novel motion m̃1:Lg
of arbitrary length

Lg in a localized auto-regressive strategy based on sliding windows. We first initialized a blank tem-
plate token sequence c0g of length Lg/h with all the tokens masked. A synthesis window of size Wg

is preset, and slides along the template token sequence with stride Sg for auto-regressive synthesis.
At each window-steps, the learned Local-M transformer progressively unmasks the all the motion
tokens within the synthesis window through iterative re-masking(IR), where tokens generated with
low confidence are re-masked for updated generation in the next iteration. The stride of the sliding
synthesis window ensures a overlapping tokens from the previous window-step. These overlapping
tokens remain un-masked as condition tokens for generating other tokens in the new window-step.
After all the window-steps, the completely generated token sequence cg is de-quantized and de-
coded to motion space, resulting in novel motion m̃1:Lg . Our best empirical selection for paramers
is Wg = Tp, Sg = 3Tp/4.
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A.4 APPLICATION IMPLEMENTATION ELABORATION

Crowd Animation The crowd animation share the exactly same architecture, training and in-
ference pipelines with what we describe in the major contents. What we showcase here in this
application is the way to use MotionDreamer as an efficient tool for generating similar yet diverse
motions for a crowd of characters with the same skeleton structures. More demos are shown in our
anonymous project page link in A.1.

Temporal Editing As presented in 8(a), the template token sequence for temporal editing at the
inference stage, noted as c0e, is constructed differently compared with either general synthesis elab-
orated in A.3 or other applications discussed in this section. By providing the sub-parts to generate
with corresponding timestamps, is constructed as the combination of encoded motion tokens for the
fixed sub-parts and the [MASK] tokens for the sub-parts to be generated. The motion generated
from c0e retains exactly the same motions for the fixed sub-parts, while presenting diverse motions
based on learned internal patterns for the others.

Beat-aligned Dance Synthesis The beat-alinged dance synthesis involves incorporating auxiliary
beat features into the latent motion representation, ensuring that the synthesized motion aligns with
the rhythm while maintaining natural transitions and variations. To approach this, the single motion-
beat tokenization is proposed where we establish the lightweight encoder(Eb)-decoder (Db) network
based on only NE (= ND) 1D-convolutional layers for embedding the beat features, as shown
in 8(b). Eb maps beat features, extracted from the paired music the using librosa (McFee et al.,
2015), to the discrete latent space shared with the motion features; Db decodes the quantized beat
embeddings back to the original space for beat features. This lightweight architecture facilitates
tempo alignment based on single-instance while minimizing computational overhead.

A.5 EVALUATION METRICS

The computations of our applied evaluation metrics follow Li et al. (2022a) and Raab et al. (2024).
Coverage The coverage of the reference motion m is measured based on all possible temporal
windows given length Lc, which is written as WLc

. Given a generated motion m̃, a temporal
window mw ∈ WL would be labeled as covered the distance measure for the nearest neighbor in
m̃ is smaller than a threshold ϵ. The distance metrics is chosen as Frobenius norm on the local joint
rotation matrices, and the window size Lc = 30, defined as:

Cov(m, m̃) =
1

|WLc
|

∑
mw∈WLc

1[NN(mw, m̃) < ϵ] (9)

Global Diversity Li et al. (2022a) proposed a distance measure for patched nearest neighbors
(PNN) to measure the global diversity. The generated motion is segmented with length no shorter
than a threshold Tm for each sub-parts, and the measures is oriented for finding an optimized seg-
mentation for the motion with minimum averaged per-frame nearest neighbor cost. For more details,
we refer the readers to Li et al. (2022a)

Local Diversity The local diversity metrics is based on the local frame diversity by comparing
every local windows of the generated motion to its nearest neighbor in the reference motion:

DLocal =
1

|WLd
|

∑
m̃w∈WLd

NN(m̃w,m) (10)

A.6 MORE ABLATION STUDIES

Table 6 shows the ablation study for our settings for the architecture and the key parameters.

Local Attention Mechanism We want to highlight the second part of Table 6., where we com-
pare our proposed SlidAttn with other two alternatives for local attention layer, Local SASA and
QnA. Compared to Local SASA, which is the most standard local attention layer which processes
non-overlapping windows without learnable queries or positional encodings, SlidAttn significantly
improves coverage and diversity, demonstrating the importance of overlapping windows and en-
riched attention computation. QnA applied in SinMDM (Raab et al., 2024), is a convolutional local
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Table 6: Ablation study for parameter settings. Bold text marks the best result.

Method Coverage (%) ↑ Global Div. ↑ Local Div. ↑ Inter Div. ↑ Intra Div. ↓ Harmonic Means ↑
K = 32 84.23 1.08 1.02 0.16 0.30 0.24
K = 48 93.47 1.33 1.17 0.25 0.28 0.43
K = 64 73.36 1.20 1.09 0.14 0.34 0.22

Local SASA 74.23 1.13 1.10 0.15 0.31 0.23
QnA (Raab et al., 2024; Arar et al., 2022) 85.02 1.37 1.20 0.26 0.32 0.31

SlidAttn 93.47 1.33 1.17 0.25 0.28 0.43
SlidAttn w/o. learnable queries 71.42 1.48 1.37 0.20 0.36 0.23

SlidAttn w/o. r 89.84 1.05 1.01 0.22 0.30 0.22
SlidAttn 93.47 1.33 1.17 0.25 0.28 0.43
W = 3 82.39 1.24 1.12 0.20 0.29 0.25
W = 5 93.47 1.33 1.17 0.25 0.28 0.43
W = 7 88.71 1.36 1.19 0.25 0.36 0.35

S = 1 81.79 1.41 1.20 0.23 0.29 0.28
S = 4 93.47 1.33 1.17 0.25 0.28 0.43
S = 5 94.89 1.03 0.98 0.24 0.38 0.38

Table 7: Impact of codebook regularization loss on other VQ methods for motion representation.
Bold text marks the best result.

Method R Precision Top 1↑ Perplexity↑
MMM (Pinyoanuntapong et al., 2024) 0.503 1642.194

MMM (Pinyoanuntapong et al., 2024) w/ Ltoken 0.572 1678.538
MoMask (Guo et al., 2024) 0.504 368.914

MoMask (Guo et al., 2024) w/ Ltoken 0.504 372.702

attention layer modified from Arar et al. (2022) , which incorporates learnable queries and relative
positional encoding. Compared to QnA, which relies on the convolutional layers for overlapping
window operation, SlidAttn reaches better overall performance with a dramatic rise in coverage
measures and competitive diversity results. This demonstrates that our proposed SlidAttn uniquely
employs a more effective sliding window attention computation and aggregation paradigm for pro-
cessing overlapping local windows under this framework.

Sliding Window Parameters The last part is worth highlighting as it presents the ablations for
stride of the sliding windows in SlidAttn of Local-M (refer to section 3), which demonstrates that
having an relatively small overlap length (W − S = 1) in our case results in the best harmonic
means, which attains good diversity while preserves the internal patterns from reference motion.

A.7 DISCUSSION ON CODEBOOK REGULARIZATION

We’ve also conducted additional experiments on the broader impact of our codebook regularization
loss on general motion tokenization trained on large datasets. We chose MMM (Pinyoanuntapong
et al., 2024) and MoMask (Guo et al., 2024) to experiment with, as they share similar framework
but with different VQ architectures. MMM (Pinyoanuntapong et al., 2024) tokenizes the motions
with a standard VQ layer with a large codebook, while MoMask (Guo et al., 2024) incorporates
residual VQ layers (Borsos et al., 2023; Martinez et al., 2014; Zeghidour et al., 2021) with a stack
of codebooks for fine-grained motion representation. We apply our codebook regularization loss
Ltoken to the two methods for training the motion tokenization, comparing 1) R Precision Top 1 for
the reconstruction performance or the motion representation capacity of learned codebook(s); 2)
perplexity for the codebook utilization.

As the results shown in Table 7, both R precision and perplexity have been significantly improved
for MMM, indicating a better and more effective use of the codebook to become more effective at
representing motion data. For MoMask, the impact of Ltoken is also evident. While the R pre-
cision remains stable at 0.504, the perplexity improves from 368.914 to 372.702. This shows that
the incorporation of Ltoken helps optimize the utilization of residual VQ layers without sacrificing
the motion representation capacity. These results clearly demonstrate the effectiveness of our pro-
posed Ltokenin enhancing the quality and utilization of codebooks across different VQ architectures,
making it a valuable addition to motion representation frameworks.

The improvements are particularly significant for methods like MMM, where the standard VQ lay-
ers benefit the most from the regularization. For more advanced residual VQ architecture adapted
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by MoMask, the improvements in codebook utilization are moderate, with no significant gains in
motion representation capacity. This may be due to the nature of residual VQ layers, which obtain
higher motion representation capacity by utilizing multiple codebooks to quantize the information
loss from previous layers, rather than directly representing motion data. Consequently, higher code-
book utilization alone does not significantly enhance motion representation capacity in this context.

There are also other alternatives regarding the codebook regularization for VQ-based representation,
which can be further explored in future work. For example, entropy regularization, which encour-
ages entropy maximization of the token distribution can promote codebook utilization, as applied in
Volkov (2022); Xiao et al. (2024). Stochastic sampling methods can also be incorporated such as
Zhang et al. (2023b) by modifying sampling strategies to implicitly regularize the token utilization
distribution across large-scale datasets.

A.8 LIMITATIONS

While MotionDreamer demonstrates strong performance in generating diverse and natural motion
sequences from a single reference, several limitations remain. First, the framework’s performance
is highly dependent on the quality of the reference motion. Second, due to the inherent nature of
single instance based motion synthesis, the framework exhibits limited capacity to generalize across
a broader range of motion editing and conditional synthesis tasks, given the nature of single instance
based synthesis. Future work will focus on improving the model’s extrapolation capabilities and
enhancing its generalization to both few-shot and large-scale datasets. In particular, the development
of a more flexible framework capable of distilling knowledge from diverse motion priors would
allow the model to accommodate a wider array of motion styles and patterns. Moreover, integrating
a more robust attention mechanism may enable the model to capture long-range dependencies and
global patterns more effectively, thus extending its applicability to a broader set of motion editing
and synthesis tasks.
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