Under review as submission to TMLR

Flows and Diffusions on the Neural Manifold

Anonymous authors
Paper under double-blind review

Abstract

Diffusion and flow-based generative models have achieved remarkable success in domains
such as image synthesis, video generation, and natural language modeling. In this work, we
extend these advances to weight space learning by leveraging recent techniques to incorporate
structural priors derived from optimization dynamics. Central to our approach is modeling
the trajectory induced by gradient descent as a trajectory inference problem. We unify several
trajectory inference techniques towards matching a gradient flow, providing a theoretical
framework for treating optimization paths as inductive bias. We further explore architectural
and algorithmic choices, including reward fine-tuning by adjoint matching, the use of
autoencoders for latent weight representation, conditioning on task-specific context data,
and adopting informative source distributions such as Kaiming uniform. Experiments
demonstrate that our method matches or surpasses baselines in generating in-distribution
weights, improves initialization for downstream training, and supports fine-tuning to enhance
performance. Finally, we illustrate a practical application in safety-critical systems: detecting
harmful covariate shifts, where our method outperforms the closest comparable baseline.

1 Introduction

Flow matching (FM) (Albergo and Vanden-Eijnden, 2023; Lipman et al., 2023; Liu et al., 2023) is a prominent
fixture in generative modeling tasks from imaging (Lipman et al., 2023; Tong et al., 2024; Esser et al., 2024;
Liu et al., 2024a) to language (Gat et al., 2024; Shaul et al., 2024; Campbell et al., 2024). However, its
application to neural network weights has not been explored. By leveraging the principled, yet versatile
training of FM, we aim to generate task-specific weights on novel tasks.

The natural question is: why generate task-specific weights instead of relying on conventional training
methods? One compelling reason is efficiency. If we can train a meta-model to produce classifiers conditioned
only on the evaluation dataset, then generating weights reduces to a single inference pass of our flow or
diffusion model. This motivation parallels recent work in zero- and few-shot learning (Zhang et al., 2024;
Soro et al., 2025), where generalization to new tasks is achieved with minimal or no training. Further on
efficiency, conditionally generated weights can also serve as a strong, head-start initialization for downstream
fine-tuning, which we later evaluate on corrupted datasets. This approach is especially practical when training
a large number of smaller networks, such as in applications involving implicit neural representations (Essakine
et al., 2025). Finally, we argue that learning to generate neural network weights opens a new perspective: it
allows us to reinterpret diverse problems as questions on weight space. We illustrate this view in Section 5
through an application to detecting harmful covariate shift.

In this paper, we introduce flow matching as a new class of methods for generating neural network weights,
designed to incorporate structural priors such as training trajectories and source distributions. Under this
framework, we may cast our goal as one of trajectory inference (Lavenant et al., 2024), reconstructing the
continuous-time dynamics ¢ — p} given easy sampling from the marginal distributions (p;‘k)szo. In practice,
temporal observations are sparse, necessitating methods that can sensibly interpolate between observed
timepoints, often leveraging biases in data. Indeed, we further ground our approach in the manifold hypothesis
(Bengio et al., 2013), which posits that natural data lies on a low-dimensional submanifold of the ambient

TEqual contribution.



Under review as submission to TMLR

1) Data acquisition \ 2) Autoencoder
S ) - )
ola3zyg :
[ [

T gy et @““@

4) Reward fine-tuning

- -Reward update -,

\ - IR Y / i (] L (m
Y 7 o o o o ) | o Ol
ﬁGen model training \/ \ @) O Q e) N\ ' i D| —Las N oo
~ Ey(po) ~ E4(p1) N . z ]
e 5 > DD{ Ivfl.6)— () -0l 8

- . 1
@\ @ ¢ o o o) N (F 00 o0
D —Lg¢ . 1Y) -

O O O O w , 2l o0 060

[Jug(z) — vo(z t)||2 N : _A @ @

J
\ / - -Reward update -' /

Figure 1: Example unconditional pipeline. (1) Base model pre-training, shown here on MNIST, producing
checkpoints across epochs. (2) Optional: variational autoencoder training with a weight-space reconstruction
objective. (3) Generative meta-model training; here we illustrate unconditional NM-CFM w/ (trained)
VAE (our default NM-CFM is on weight space directly) using the weight initialization from (1) as pg. (4)
Optional: reward fine-tuning via adjoint matching where 7(+) = — Leif( X pashionMNIST; *), Steering the trained
meta-model towards generating FashionMNIST classifiers.

space, representing a bias that may be incorporated as a prior. Drawing on the Lottery Ticket Hypothesis
(Frankle and Carbin, 2019; Zhang et al., 2021; Liu et al., 2024b) as well as the body of work on pruning
(Cheng et al., 2024), we extend this intuition to weight space: neural networks themselves tend to lie on
a low-dimensional structure, which we refer to as the neural manifold (NM)'. We will make use of these
observations to motivate the various experiments conducted in Section 5

In this work, we make preliminary steps toward understanding flows and diffusions on the neural manifold.
Our contributions include: 1) we unify and prove characterizations of various methods to approximate a
gradient descent trajectory, enabling more accurate modeling of our priors; 2) we incorporate theoretical
considerations to design flow- and diffusion-based approaches for generating weights that match or exceed
conventionally trained models on in-distribution tasks, provide better initializations for downstream training,
and allows for conditioning on context data to retrieve pre-trained weights from a distribution pre-trained on
various datasets; 3) we incorporate a fine-tuning mechanism, grounded in adjoint matching (Domingo-Enrich
et al., 2025), to enhance performance, and 4) we show how this can be used to detect harmful covariate
shifts that outperforms the closest comparable baseline, supporting our motivation to reinterpret problems as
questions on weight space.

2 Preliminaries

Conditional flow models. Chen et al. (2019) first introduced continuous normalizing flows as an effective
data generation process through modeling dynamics. Simulation-free methods improve on this concept
by simplifying the training objective (Albergo and Vanden-Eijnden, 2023; Lipman et al., 2023; Liu et al.,
2023). Following the formulation of Lipman et al. (2023), given random variables Xy ~ py and X; ~ p; a

1We note that modern deep neural network architectures exhibit parameter symmetries (Hecht-Nielsen, 1990; Chen et al.,
1993) that may be exploited to reduce the size of weight space. In particular, the neural manifold can be viewed as a quotient
set where we identify distinct weights perturbed by symmetric transformations. As our focus is on generative techniques, the
main paper limits itself to the un-identified space, deferring a discussion and modest experiments to App. G.



Under review as submission to TMLR

data distribution, define a reference flow X = (X);c[0,1] Where X; = ;Xo + a;X; with the constraint that
ap = fB1 = 0and a; = By = 1. The aim of low modeling is to learn a path x = (x¢);¢[o,1) Which has the same
marginal distribution as X. To make this a feasible task, we describe this process as an ODE: dx; = v(xy, t)dt
where xg ~ N(0, I). Training proceeds by first parameterizing v(x;,t) by a neural network 6 and matching
the reference flow velocity, i.e. u(x¢,t) := %Xt. This would, however, be an unfeasible training objective,
therefore, we condition on samples from the distribution x; ~ p; and train

Letm(0) = EtNU[O,l],xlwn,xprt(~IX1)||v(9(xtat) —u(xy, t | x1)]]. (1)

Lipman et al. (2023) proved that this loss produces the same gradients as the marginal loss, thus optimizing
it will result in convergence to the reference u(x;,t). Moreover, we can always marginalize an independent
conditioning variable y on vy, u — this will serve as our context conditioning vector.

Modeling probability paths. The straight line paths advocated in the conventional flow matching
framework (Lipman et al., 2023) can be contextualized in the broader framework of matching interpolants
(Xt)tef0,1] to minimize a given energy function. In the conventional case, the kinetic energy &£(x¢,%;) =
EtNU[O71]|\Xt||2 is minimized (Shaul et al., 2023), however, more general energies have been considered
(Neklyudov et al., 2023; 2024; Kapusniak et al., 2024; Liu et al., 2024c) to broaden the class of learnable
paths. Of interest to us is the concept of finding interpolants that depend on prior knowledge as provided
through samples. For instance, Metric Flow Matching (Kapusniak et al., 2024) learns parametric interpolants
that minimize

E ey o€ (352) = Eentro,1] (oo e 2 ®)

where 7 is some distribution on the product, typically pg ® p1, and g is a data-dependent Riemannian metric
on the ambient space R?. Alternatively, Rohbeck et al. (2025) proposed a more stable option using cubic
splines for multi-marginal flow matching. Most related to our setting is the task of modeling distributions
evolved via gradient flow: %pt = -V - (p:Vs;). For instance, TrajectoryNet (Tong et al., 2020) is an older
work that uses continuous normalizing flows to model cellular trajectories under a spatial potential. More
recently, JKOnet and JKOnet* (Bunne et al., 2022; Terpin et al., 2024) exploited the connection between
diffusion processes and energy-minimizing probability paths (in Wasserstein space) to model a Wasserstein
gradient flow by learning the drift potential Vp(+,¢) in a diffusion process.

Harmful covariate shift detection. Covariate shifts refers to changes in the test data distribution pest ()
as compared to the training distribution pgpain(2) while the relation between inputs and outputs remain
fixed, i.e. Dtest(Y|T) = Pirain(y|z). Importantly, we do not require labels to determine this shift, thus it is
practical to do so in a standard deployment setting. Prior work in this domain include deep kernel MMD (Liu
et al., 2020), H-divergences (Zhao et al., 2022), and Detectron (Ginsberg et al., 2023). As Detectron requires
minimal tuning and is most performant in low-data regimes (N < 100 samples), we emphasize the use of
this approach. In particular, Detectron (Ginsberg et al., 2023) builds off of selective classification—Dbuilding
classifiers that accept/reject test data depending on closeness to the training distribution—and PQ-learning
(Goldwasser et al., 2020) that extends the conventional theory of PAC learning to arbitrary test distributions
by employing selective classification. The main idea considers the generalization set R of a classifier fy and
samples Q from an unknown distribution. The strategy is to fine-tune constrained disagreement classifiers
(CDCs) to agree with fy on R but disagree on Q. If @ C R, then it will be difficult to disagree on Q, but if
the CDCs behave inconsistently on Q, that suggests a covariate shift. Notably, this method is sample-efficient,
agnostic to classifier architecture, and may be used in tests of statistical significance.

3 Modeling Weight Trajectories
In this section, we build towards our approach. Proofs are provided in App. A.

3.1 The continuity equation on neural network parameters

For the purpose of our analysis, let us restrict our view to neural networks that are optimized by gradient
descent (GD) algorithms to minimize a loss L£(0)) := d(Mg(X) — Y), where My is a neural network



Under review as submission to TMLR

parameterized by trainable weights § € R?, X € RVXP are inputs, Y € RV*¢ are labels, and d is some
differentiable distance function, such as cross-entropy. To minimize via GD, parameter updates are done
by Or+1 = 0k — aVL(0k) given some learning rate o > 0. Taking the learning rate to zero, we can view
parameter evolution as a gradient flow. For simplicity, we assume that the updates are deterministic (contrary
to stochastic gradient descent which randomly selects training batches), and defer to App. D an approach
incorporating stochasticity via Schrodinger bridges. For now, the sole source of randomness is the initialization
0o ~ po. Within this framework, we can write down a continuity equation. In later sections, we show how
this result underpins the choice of modeling framework.

Theorem 1 (Informal; follows Ch. 8.3 of Santambrogio (2015)). Let 6y ~ po be initialized network
parameters and the loss L is C' in the network parameters. If (0;)i>0 is the gradient descent curve, we
have p; = Law/(0;) with

Opr — V- (pVL) = 0. (3)

Proof. The idea is to view GD as an iterated minimization scheme on P () with functional F(p:) =
fﬂ L(x) dpi(z). Alternatively, this may be viewed as the necessary first-order optimality conditions of a
JKO scheme (Lanzetti et al., 2024; Terpin et al., 2024). We provide the full proof in App. A. O

3.2 Approximating Eqn. 3

The problem of learning the continuous dynamics of a system governed by a continuity equation has been
studied in many forms in existing literature. In our setting, Theorem 1 establishes a link between the
practical dynamics of SGD and the continuity equation (Eqn. 3), which provides a more tractable theoretical
framework. Building on this connection, we study methods that realize parameterized solutions to Eqn. 3:
Oipt + V - (pw?) = 0, thereby providing a common lens of interpretation. Lipman et al. (2023, Theorem
1) showed that CFM may be viewed through this lens, hence motivating its use. However, its training
objective assumes affine Gaussian paths, which oversimplifies the non-terminal distributions along a GD path.
Therefore, we turn to a natural generalization: multi-marginal flow matching (MMFM), which has been
shown (Rohbeck et al., 2025, Proposition 2) to correspond to training multiple CEMs. To add to our selection,
Theorem 2 shows a correspondence between MMFM and JKOnet* (Terpin et al., 2024) via the action gap;
this connection, its formulation towards modeling Eqn. 6, and its efficient scalar potential parameterization
motivates its consideration. Below, we expound on the action gap lens, provide some background on MMFM
and JKOnet*, and present a generalization to non-affine regression targets.

3.2.1 The action gap

Frameworks which match gradients have a learnable function Wy (z,t) which is trained to match a regression
target. Two representatives of this approach are the works on Action Matching (Neklyudov et al., 2023; 2024)
and the JKOnet family (Bunne et al., 2022; Terpin et al., 2024). We found the theoretical framework of the
action gap from Action Matching to be most suitable as a reference; we recall it here.

Action matching. The action matching setup presumes an initial distribution qg, a velocity field v :
[0,1] x @ — R?, and a continuity equation which describes the dynamics: %qt = —V - (¢v¢). Neklyudov
et al. (2023, Theorem 2.1) showed that, under mild conditions on ¢, a unique function sj(x) termed the
action may be defined such that v(z) = Vs (z) and the continuity equation $q, = —V - (¢;Vs}) is satisfied.

One can readily see the connection with Eqn. 3: s; = —L up to a constant. Therefore, the action gap is
* 1 ! * 2 1 ! 2
AG(s,s") = 5/, Eq, ()| Vsi(x) — Vsi(x)||* dt = 5/, Eq, ()| Vsi(x) + VL(x)||" dt. (4)

This optimization is clearly intractable because of the required access to VL, therefore the authors computed
a more tractable variational objective for optimization (Neklyudov et al., 2023, Theorem 2.2.). To close this
exposition, we recall a bound on the 2-Wasserstein distance which will be a recurring theme in this section.



Under review as submission to TMLR

Proposition 1 (Prop. A.1 of Neklyudov et al. (2023)). Suppose the curl-free vector field Vs, is continuously
differentiable in (t,x), and uniformly Lipschitz in x throughout [0,1] x RP with Lipschitz constant K. Let
q: denote the density path induced by Vs;. Then,

Wi(arar) < 72507 [ B, ) |Vsa) + VL@ Pt 5)

3.2.2 Approximating Eqn. 3 in practice

Although we made use of the action gap as our theoretical framework, we opt for the simpler objectives of
JKOnet and multi-marginal flow matching in practice. In this section, we present some background and show
their objectives may be cast as minimizing the action gap in the discretization limit.

JKOnet. The JKOnet family considers the problem of modeling the Fokker-Planck equation

Oipi(w) =V - (pe(z)VV (2)) + BAp:(z), (6)

given some potential V. The seminal work Jordan et al. (1998) (namesake of the JKO scheme) related such
equations to a variational objective in Wasserstein space, namely

_ 1
pepr = argmin J(u) + 5= W5 (i, p1)  where J(p) :=/ V(x)pe(x)de + B | pi(z)log(pi(z)) dz, (7)
neP(RP) 27 RP RP

and step size 7 > 0. Focusing on the most recent presentation, termed JKOnet* (Terpin et al., 2024), consider
the Euclidean analog of Eqn. 7 and its first-order optimality condition: VJ(x¢41) + (z¢41 — x¢)/7 = 0, where
x¢ ~ pg. If we let 8 = 0, then by Terpin et al. (2024, Prop. 3.1), we have the minimization objective

/RP xRP

where 7, is the optimal coupling between p; and py41. It can be readily seen that when 5 = 0, Eqn. 6
matches the form of Eqn. 3, and the requisite setup for action matching. The issue with applying the
bound Eqn. 5 stems from the time-discretization. To resolve this, we show in Theorem 2 (replacing u; with
(x¢41 — x¢)/7) that the action Vs Eqn. 4 may be approached in the limit. Moreover, the objective Eqn. 8
is an intuitive description of matching the best linear approximation of the gradient VL. Motivated by its
simplicity, we opt towards JKOnet* as the representative approach.

2

1
VV(2i11) + ;($t+1 —xy)|| dmi(xe, v411) =0, (8)

Multi-marginal flow matching. The MMFM objective is similar to that of CFM in Eqn. 3. The difference
lies in the definition of the regression target. Suppose we wish to generate marginal densities p; , py,, ..., Pf, -
Instead of sampling x ~ p1, we sample z = (zg, ...,z ) independently from each of the marginal densities.
To align with the CFM objective, the reference path p;(z|z) must be a piecewise affine Gaussian path, and
its mean a linear interpolation between the K + 1 samples. Formally, define the interpolant

K—-1
w(z) =Y (m ot g, - m) i (®) ©)

t -1
= k+1 — Lk

and the regression target ought to be

K-1
Tk+1 — Tk
w(x|z)=> T ) (1), (10)
o k1 T Uk

With the usual marginalization of u, i.e. us(x)ps(x) = Eq(z)[ue(x | 2)pe(z | 2)], we can argue by checking the
continuity equation Tong et al. (2024, Theorem 3.1) that p; is generated by wu;.

In addition, it is natural to think that if the timepoints (to, ..., tx) were dense enough, then its limit is the
true probability path ¢t — pf. Rohbeck et al. (2025, Proposition 2) proved that the MMFM objective is



Under review as submission to TMLR

equivalent to solving K CFM objectives. By analogy, we consider a MMFM setup equivalent to K OT-CFM
objectives, and we show that the reference path p; approaches p} in the sense of the action gap (cf. Prop. 1).

Theorem 2. Suppose the true marginals evolve according to %p}‘ = —V . (piVsy) and t — p; is an
absolutely continuous curve. Define q(z) such that marginalizing q with respect to all variables except
Tk, Tip+1 Yields the coupling py, ® (Tf“)#ptk, where T,f“ is the transport map from py, to py, ... Then,

1
lim / E,, (o |[ue(2) — V2 (@)|[Z dt = 0. (11)

|tk —tg+1 |—)0 0

Replacing vy with w, this shows that VV (Eqn. 8) regresses to the reference action in the limit.

3.2.3 Learned proxy matching

In this section, we generalize the regression target in Eqn. 8 and w;(x|z) in Eqn. 10 to encompass methods
such as Metric Flow Matching by presenting the notion of prozy curves. In particular, we define a family of
curves that minimize an objective (such as a data-dependent metric or a Lagrangian) and discuss its fitness
as an interpolant (cf. p; in Eqn. 9) w.r.t. the action gap. As we only discuss the theory of this approach, we
only present an overview here and leave details to App. A.3.

The minimization objective of choice in this section is the Lagrangian L(wxy, @y, t) = ||4¢||3 + Vi(2¢, ¢). This
allows some flexibility in the choice of energy functional V', which in practice will be data-dependent such as
in Metric Flow Matching. In this setting, we seek to characterize choices of energy V' to minimize the Wy
distance between the proxy probability path, which evolves by vy, and the reference p; in Eqn. 3. We start
by writing down a continuity equation for the proxy path (cf. Theorem 1).

Theorem 3 (Proxy reference path). Suppose the Lagrangian L(zy, y,t) = ||@¢||3 + Vi (4, 44) is Tonelli and
strongly convez in velocity. The Lagrangian optimal transport map T exists between pg and p1. Moreover,
there exists a locally Lipschitz, locally bounded vector field w s.t.

Opr +V - (prwe) = 0 (12)

satisfies py = Law(v;) where 7 is a random, smooth Lagrangian-minimizing curve and (vo,v1) s an optimal
coupling of po, p1-

Following the action matching discussion, we define a prozy action gap fol E,|[VL(7s) + ¥s||* ds in terms of
the curve 7. We show in App. A.3 that W2 (p;, p;) may be bound like in Prop. 1. Moreover, we note that
the smoothness assumption of v is quite restrictive, but in practice, this may be weakened (App. E). On the
flip side, if the gradient descent path is smooth enough, then we can define an energy functional V' such that
its minimizing curve « stays close in gradient to —VL (see Theorem 4).

4 Methods

4.1 Architectural modules

We describe the components of our approach below and leave more details to Appendix F, H. Throughout,
we use the NM- prefix to denote our methods, e.g. NM-CFM to denote conditional flow matching. Our
framework is designed to be modular, with different components that can be instantiated in various ways. In
this work, we prioritize simplicity in order to highlight the generative framework and the proposed reward
fine-tuning mechanism. Figure 1 provides an overview of how these components connect; changes to the
schema are possible, such as the generative model in (3) may take in a conditioning signal, and the reward
signal in (4) can differ, as in Meta-Detectron.



Under review as submission to TMLR

Weight encoder. Due to the often intractable size of weight space, it is sometimes necessary for modeling
to in latent space (see App. F.5 for scaling remarks). We justify this design by appealing to work on the
Lottery Ticket Hypothesis (Frankle and Carbin, 2019; Zhang et al., 2021; Liu et al., 2024b) as well as the
body of work on pruning (Cheng et al., 2024), which suggests that, like natural data, neural networks live on
a low-dimensional manifold within its ambient space. There are a variety of encoders to choose from, such as
the variational autoencoder (VAE) (Kingma and Welling, 2022), and specialized encoders for neural network
parameters (Kofinas et al., 2024; Putterman et al., 2024; Schiirholt et al., 2024). However, to simplify matters
as we are mostly focused on the generative aspect, we stick to the VAE as used in Soro et al. (2025).

Generative meta-model. The backbone of our meta-learning framework is a conditional FM model
following Tong et al. (2024), alongside the multi-marginal variant (MMFM) that matches piecewise-linear
interpolants; see App. E for a detailed discussion of interpolants. We also experiment with using the JKOnet*
method in a few tests; see details in App. F. Preliminary experiments were also done with learned interpolants
such as Metric Flow Matching, but we found them to be unstable, likely due to the sparsity of data and the
large ambient space favoring simpler interpolants. Exploiting the flexibility of FM to use a non-Gaussian
prior, we use the Kaiming uniform or normal initializations (He et al., 2015a), as the source pg; see App. B
for a brief theoretical remark on the effect on p;. To illustrate the benefits of this choice, see the experiments
and discussion in App. G.

Reward fine-tuning. FM models lend themselves to the recently proposed reward fine-tuning method,
based on the adjoint ODE (Domingo-Enrich et al., 2025), which casts stochastic optimal control as a regression
problem. This allows us to tune pre-trained flow meta-models for downstream applications, exemplified in
this work by detecting harmful covariate shifts, and improved generative performance (see results in App.
H.4). Specifically, this method modifies the base generative distribution p?*° to generate the reward-tilted

base

distribution pj(z) o« p*¢(x) exp(r(x)) via the Adjoint Matching (AM) algorithm. Naturally, in our setting,
we suppose p?*°¢ is obtained from meta-training and governs classifiers that predict on Dy, but we wish
to modify the meta-model to generate base models that predict on Ds. Therefore, we set the reward
r(X1) := —L2(X1) where L5 is a loss on Dy such as cross-entropy and proceed with adjoint matching. Unlike
naive fine-tuning strategies that require backpropagation through the inference-time solver, adjoint matching
reduces the problem to a regression objective, closely resembling standard CFM training (see Algorithm 2).
Importantly, it simply renews the drift by learning an additive correction: uft(JL) = vP%%¢(z) + u(t,z) (App.
F.4), so the analysis in Sec. 3.2 continues to apply without modification.

4.2 Detecting harmful covariate shifts

Training CDCs. Continuing the exposition in Sec- Taple 1: Best validation accuracy of unconditional
tion 2, we specify the training regiment of CDCs. NaAf CNN3 generation for various datasets. Original
Let g(-) represent one CDC and f(-) the base clas-  denotes base models trained conventionally by SGD
sifier; further, let P = {(2;,y;)};-; be samples from ;4 p-diff those generated with p-diff (Wang et al.,
the generalization set R and Q = {;};Z, from the 2024). MMFM(k) and JKO(k) indicates the number

unknown distribution. Our objective is for g to main- ¢ marginal distributions in addition to py and pi.
tain performance on P, but to disagree with f on

Q. Naturally, we use the cross-entropy loss £.. on
P, but on Q, Ginsberg et al. (2023) introduces the

CIFAR100 CIFAR10 MNIST STL10

disaareement-cross-entrony: Original 25.62 63.38 98.93 53.88

9 PY: p-diff 25.99 63.37  98.93 53.86

1 N NM-CFM w/ VAE 26.01 64.32 98.91 53.50

~ . ~ NM-CFM 25.31 62.52 98.52 53.49

bace(9, f(2i)) = T— > Liworelog(de), NM-MMFM(2) 2116 63.35 9853 53.20

c=1 NM-MMFM(3) 24.53 63.34 98.62 53.53

where N denotes the total number of classes. We Eﬁ:JMKI\gEg/)[M) 342122 2;23 gggg gggi

combine these objectives by minimizing the CDC N jKO(4) 94.97 63.35 9857 53.91
loss:

1 - .
Leae(P, Q) = m Z lee(g(@i), yi) + A Z Cace(9(Z:), f (&) (13)
(zi,yi)€EP %;€Q



Under review as submission to TMLR

To test for shift, Detectron (Ginsberg et al., 2023) compares g trained with Q sampled from the unknown
distribution (gq) against Q = P (gp), i.e. samples from the generalization set. In particular, the disagreement
rate or the class entropy for each case is obtained and hypothesis tested. In both cases, the disagreement and
entropy are higher if Q represents a significant shift.

Motivation. The problem of detecting covariate shift is not just about the data—a lot of modern neural
networks are robust to such changes. The essence of the problem is whether or not the classifier weights
required to predict on Q differs from the current classifier, motivating a method that is sensitive to changes
in the classifier weights required to predict on a new set. Building on the finding that the support of classifier
weights is narrow (see Sec. 5.2) and the fact that the reward-tilted distribution (obtained from reward
fine-tuning) has the same support, if the ideal classifier required to predict on a new dataset lies far outside
of the original support, then we would expect a noticeable performance difference after reward fine-tuning
than if it were close to the original support (see corruption experiments in App. H.4).

Meta-detectron. Our approach, termed meta-detectron, builds on reward fine-tuning by adjoint matching.
We start by meta-training a NM-CFM meta-model to learn classifier distributions on each of the datasets
(this is identical to the unconditional generation setup). Next, we reward fine-tune, maintaining the procedure
of sampling from the meta-model at each iteration to compute the reward, but now the reward function
is r(X1) = —leqe(P, Q; X1), where X serves the role of g, and the original meta-model generates the base
classifier f in Eqn. 13. As the method requires training gp and gq, we likewise fine-tune two different
meta-models depending on the disagreement set, and compare the disagreement rate and entropy of the
generated gp and gq. Returning to our motivation, it is more likely for the support to lie closer to classifiers
that disagree on an out-of-distribution set Q than those disagreeing on P*. That being said, we expect the
disagreement rate to be more conservative overall due to the tightness of the support.

5 Experiments

First, we confirm various properties that are to be expected of weight generation models. Next, we explore
reward fine-tuning courtesy of adjoint matching, finishing with an application to detect harmful covariate
shifts. Further experiments and details may be found in Apps. G and H respectively.

5.1 Generative modeling desiderata

Unconditional generation. We first evaluate the basic modeling capabilities of the flow meta-model.
The target distribution p; is obtained by training a variety of base models on common datasets: CIFARI10,
CIFAR100, STL10, and MNIST, and saving weight checkpoints across 100 epochs of training. For large
models, we may choose to generate only a subset of the weights. In our case, we generate the batch norm
parameters for ResNet-18 (He et al., 2015b), ViT-base (Dosovitskiy et al., 2021) and ConvNext-tiny (Liu
et al., 2022), and the full medium-CNN (Schiirholt et al., 2022), which we denote CNN3 corresponding to
the number of convolutional layers. The objective is to train a separate meta-model for each dataset and
validate its base model reconstruction on classifying its corresponding test set. Focusing on CNN3, Table 1
shows that we are able to match base models trained conventionally and with p-diff (Wang et al., 2024), with
extra results in Table 9. The results here suggest that our approach have at least the same modeling capacity
as prior work with diffusion models, which is expected. In addition, Figure 2 visualizes how validation loss
changes over inference timesteps for the various NM methods. We observe that methods incorporating
trajectory information (MMFM and JKO) observe a faster decrease in validation loss over inference steps.
This suggests that gradient descent converges rather quickly to the final validation loss and so learning the
intermediate marginal distributions leads to faster inference-time convergence. Finally, due to computational
constraints, we restrict further experiments to the best observed MMFM and JKO settings: in our case,
MMFM(3) and JKO(4); see App. H for a discussion of computation times.

Trajectory modeling. In this experiment, we evaluate the ability of different approaches to model the
weight trajectory. As decided above, we used NM-MMFM(3) and NM-JKO(4) as representatives for this
method. Moreover, in the interest of fairness, we divide the trajectory into 5 buckets, and so the MMFM



Under review as submission to TMLR

CIFAR100

- CIFAR10
8 — MMFM_2 | 275 T
s =
T MMRM4 — MMFM_4
— k03 2550 — k03
7 — o4 | 4
— M ol
225 oM
6 \
2.00

Validation Loss

«

Validation Loss

4 N - V%

3 i 1.00
20 40 6 80 100 20 40 60 80 100
Inference Steps Inference Steps
MNIST STL10
3.0 . T
— MMFM_2 —— MMFM_2
. MMFM 3 26 —— MMFM_3
25 —— MMFM 4 —— MMFM_4
—— JKo3 — JKo_3
— JK0_4 24 —— Jko_4

20 — o — M
2.2
15

]

)

Validation Loss

Validation Loss.

N

20 a 6 8 100 20 40 60 80 100
Inference Steps Inference Steps

Figure 2: Base model validation loss over the course of inference for various NMM methods. The plots were
computed on 20 out of 100 intermediate timepoints for MMFM and CFM, but restricted by design to k
timepoints for JKO(k). In the legend, MMFM _ k refers to MMFM with k intermediate marginal distributions
(that is, distributions in addition to pg and p;) and likewise for JKO.

CIFAR10 MNIST

System 1 System
&~ NM-MMFM-gauss 12 3 & NM-MMFM-gauss |

T &~ D2NWG i = - D2NWG
- JKONet / & JKONet
s r & NM-MMFM r & NM-MMFM

RS
> ]7/ B \;

<

Wasserstein Distance x 100

Wasserstein Distance x 100
o

AN N\
=NV el =

0 1 2 3 a 5 6 0 1 2 3 4 5 6
Index Index

N/

.
-

Figure 3: Mean Wi-distance (x100) between reference and generated intermediate marginals over 5 seeds of
unconditional generation. The horizontal axis corresponds to increasing indices of the intermediate marginals,
ie. kin py, where ty) = 0, ts = 1. The plots also show the effect of using a Gaussian prior with MMFM
(denoted NM-MMFM-gauss); we exclude NM-CFM-gauss due to its large W5 deviation.



Under review as submission to TMLR

and JKO methods would need to interpolate between training distributions. Our baseline is D2NWG (Soro
et al., 2025) where the VAE is trained on full trajectory weights at each batch iteration. See Figure 3 for
results and App. G for more results, including an investigation of parameter symmetries. Interestingly, we
find that the Wasserstein-1 (WW7) distance of the generated trajectory to be consistently lower in D2NWG vs.
NM-CFM, but both methods lag behind MMFM and JKO which explicitly models the weight trajectory.
The over-performance of MMFM and JKO is to be expected, and we suspect the D2NWG performance is
due to latent space training on the full trajectory data; that is, even if the interpolated weights do not follow
the expected trajectory, it still lands on the data manifold. See Figure 5 for a mock illustration.

Model retrieval. Following (Soro et al., 2025), we perform model retrieval to test whether the meta-model
can distinguish weights of the base model given conditioning samples from the dataset the base model was
trained on. The base model is the same CNN3 model and we obtain weight checkpoints from the trained
on MNIST, Fashion-MNIST (FMNIST), CIFAR10, and STL10 across 50 epochs of conventional training.
Unlike in the previous test, we will train just a single meta-model conditioned on context samples from
their respective training sets passed through a CLIP (Radford et al., 2021) encoder (see Figure 8). During
validation, we pass in a random support sample from one of the four datasets and generate the full CNN3.
In Table 2, we see that most of our mean top-5 validation accuracy matches that of the base models. This
shows that our approach has the necessary capacity for conditional generation on weight space. There is a
noticeable decline in NM-MMFM accuracy; this is due to the higher complexity of the target vector field as
opposed to the straight NM-CFM targets. With a larger meta-model, we were able to get higher accuracies,
but the results here serve to inform the reader of this downside.

Downstream initialization. Next, we repeat the model retrieval test, but instead we obtain weights
across 10 epochs of conventional training. We opted for the encoded runs if possible for efficiency. The
generated weights are used as initialization before fine-tuning another 20 epochs. As shown in Table 3, our
initialization enjoys faster convergence, even for corrupted datasets, highlighting the generalization capability
of our meta-model.

5.2 Reward fine-tuning

Adjoint matching. Continuing from the exposition in  Taple 2: Mean validation accuracy of top-5 NM
Section 4, we note that our noise injection is different 1odel retrievals. A single meta-model is used
from the noise schedule assumed in the original deriva- fu; 411 base datasets, with a conditioning signal
tions (Domingo-Enrich et al., 2025). As such, we mod- ghtained from image samples used to distinguish
ified the computations slightly as given in App. F.4. petween each set.

However, since the conventional flow matching algorithm
injects a very small noise in the Gaussian path, i.e.
pe(xt|z0, 21) = N (14, 021), where practically o; = 1073,

CIFAR10 STL10 MNIST FMNIST

PR . .. . Original 63.38 53.88  98.93 89.77
we fqund th'at divisions by o in .the adjoint matching NM.CFM 6980 5347 9869 9024
algorithm will explode quantities in the loss. To resolve Ny rcrMm w/ VAE 6279 5341 9854  90.59
this issue, we derived a deterministic version of the ad- NM-MMFM 53.45  49.62 92.86  76.55

joint matching algorithm, which we found to work much ~NM-MMFM w/ VAE = 63.87 5286 98.36  89.73
better with more sensible norms. Further, we derived a NM-JKO! 62.04 5116 9744 8775
multi-marginal variant of the adjoint matching algorithm,

however, we focus our resources only on the CFM case.

All computations may be found in App. F.4.

Support of classifier weights. Notably, the method of reward fine-tuning cannot be applied for arbitrary
meta-model fine-tuning. Indeed, this follows from the fact that supp p} = supp pt®°. Empirically, we
found that fine-tuning a NM-CFM model trained to generate CIFAR10 classifiers into one that generates
STL10 classifiers fails at achieving reasonable accuracies, often just slightly better than a Kaiming uniform

initialization. This suggests that the support of classifier weights, trained for different datasets, are mostly

1JKOnet expects the trajectory to evolve via gradient flow. This is not guaranteed in the latent space, hence we only show
the un-encoded variant.

10



Under review as submission to TMLR

Table 3: Mean validation accuracy over top-5 fine-tuned generated weights post-retrieval. Setup follows Table
2, excepting the target weight data. tilde indicates corrupted datasets, on which the model was not trained.

Epoch Method CIFARI0O  STLI0 MNIST  FMNIST  CIFARIO0 STL10 MNIST FMNIST
Randomlnit ~ 10% ~ 10% ~10% ~ 10% ~ 10% ~ 10% ~ 10% ~ 10%
NM-CFM w/ VAE  30.66+0.08 36.85+0.36 90.93+0.35 72.44+027 44.63+0.05 40.06+£0.02 95.57£0.05 83.68%0.24

0 NM-MMFM w/ VAE 39.08+0.22 21.98+ 0.80 90.55+0.23 74.08+0.08 41.89+0.37 36.41+1.54 90.02+1.00 83.38%0.20
NM-JKO 40.53£0.27 18.83+0.30 90.80+£0.20 74.45+0.15 45.04+0.19 41.76+021 95.42+022 83.90+0.04
Randomlnit 34.05+1.13 16.64+161 83.21+0.57 66.81+£0.74 36.27+2.05 22134211 96.52+0.20 77.21+0.26
NM-CFM w/ VAE ~ 44.68+0.16 38.18-0.40 94.02+0.42 76.43+£022 48.28+0.14 41.66+£0.19 97.38+£0.10 85.27+0.30

1 NM-MMFM w/ VAE 43.96+0.37 29.44+1.25 94714035 79.85+0.47 47.98+0.32 39.93+1.45 97.68+0.13 85.50%0.12
NM-JKO 45.044+0.31 22.26+0.08 94.944+0.17 80.63+0.20 49.61+0.29 42.414+0.31 97.394+0.02 85.48+0.13
Randomlnit 46.55+0.80 25.08+1.13 92.53+0.28 79.08+0.03 47.74+1.33 31554200 98.24+0.03 84.87+0.40
NM-CFM w/ VAE  47.41£0.13 39.98+0.29 9522+0.09 79.88+0.61 51.60+0.14 42.62+0.08 98.04+0.05 86.76+0.15

5 NM-MMFM w/ VAE 47.06+0.45 3524+0.72 95.92+0.19 82.08+0.11 51.70+0.21 41.35+£0.65 98.51+0.02 86.64%0.14
NM-JKO 48.14£0.08 26.00£028 95.92+0.11 82.87+0.19 53.01+£0.11 43.38+020 98.13+£0.05 86.75+0.04
Randomlnit 50.28+0.43 33.63+£0.99 95.81+0.18 82.36+£042 51.35+1.21 44164128 98.51+0.05 88.25+0.69
NM-CFM w/ VAE  52.25+0.18 41.18+0.28 96.41+0.08 83.42+£0.23 55.66+0.23 44.38+0.16 98.25+0.05 88.02+0.17

20 NM-MMFM w/ VAE 52.57+0.73 39.80+0.48 97.01+0.21 84.38+0.08 55.85+0.76 44.10+0.26 98.85+0.03 88.29+0.03
NM-JKO 52.50£0.02 34.53+0.35 96.82+0.10 84.89+0.20 56.65+0.27 45.06+021 98.43+£0.03 88.10+0.14

30 RandomlInit 52.9940.55 37.79+0.55 96.55+0.22 84.164+0.66 56.05+1.21 45.80+1.19 98.55+ 0.05 88.55+0.66

disjoint. We stress that this property of the support is a function of both the downstream data and the model
architecture. Indeed, due to the small size of the CNN3, the parameters that predict on different datasets e.g.
CIFARI10 and STL10, will differ considerably, but this may not be the case for larger neural networks which
possess a larger generalization set. To summarize our hypothesis: the support set of CNN3 weights trained
for different datasets are narrow and mostly disjoint, thus, small changes in the training data will noticeably
affect the support w.r.t. validation accuracy.

We found experimental evidence to support this hypothesis, and also to suggest that reward fine-tuning goes
a long way towards improving validation accuracy on out-of-distribution data. Indeed, we find accuracies
to be bounded above, often far below the validation accuracy obtained from SGD fine-tuning for the most
corrupted data. We defer results and discussion to App. H.4, specifically Tables 12 and 13. Given this finding,
we use it to approach the problem of harmful covariate shifts.

5.3 Detecting harmful covariate shifts

Table 4: True positive rate at the 5% significance level (TPR@5) and area under receiver operating charac-
teristic curve (AUROC) for detection of harmful covariate shift on CIFAR10.1 and Camelyon17. We test
on both the disagreement rate (DAR) and the entropy, setting A = x/(|Q| + 1). See App. H for details on
choosing . The best result for each column and our method are bolded.

TPRQ5 CIFARI10 Camelyon

Q| 10 20 50 10 20 50
Detectron (DAR), k =1 0 0 0 0 .10£.10 0
Detectron (DAR), x vary 0 0 10+.10 .10+.10 .204+.13  .50+.17
Meta-detectron (DAR), k vary .53+.13 .47+.13 .53+.13 .73+.12 .40+.13 .68 +.10
Detectron (Entropy), k =1 .60+.17 40+.16 .50+.17 0 0 0
Detectron (Entropy), « vary .60+.16 .10+.10 .10+.10 0 0 0
Meta-detectron (Entropy), « vary .47+.13 .934+.07 1.00 1.00 0 .24 4.09
AUROC CIFAR10 Camelyon

Q| 10 20 50 10 20 50
Detectron (DAR), k =1 0.515 0.595 0.485 0.59 0.595 0.795
Detectron (DAR), k vary 0.480 0.495 0.665 0.665 0.750 0.875
Meta-detectron (DAR),  vary 0.876 0.838 0.900 0.867 0.760 0.930
Detectron (Entropy), k =1 0.740 0.695 0.850 0.345 0.610 0.720
Detectron (Entropy), « vary 0.775 0.740 0.785 0.490 0.445 0.660

Meta-detectron (Entropy), x vary 0.809 0.987 1.000 1.000 0.836 0.755

11



Under review as submission to TMLR

Q|

CIFAR10

10

20

50

Meta-detectron (P*), k vary
Meta-detectron (Q), k vary

60.78 £0.21 — 61.09+0.17
60.97 £0.15 — 60.76 +0.26

60.97+0.16 — 60.49 £0.25
61.61+0.30 — 61.11 £0.13

60.78 £0.09 — 60.38 £0.24
61.14 +0.15 — 60.59 +0.26

Q|

Camelyon

10

20

50

Meta-detectron (P*), x vary
Meta-detectron (Q), x vary

92.10£0.35 — 92.12 4+ 0.46
92.36 £0.34 — 91.89 +0.66

92.09 +£0.54 — 91.95 £0.48
90.61+1.45 — 91.38 £0.23

92.31+£0.21 — 90.43 +0.82
92.66 +£0.24 — 91.01 £0.36

Table 5: In-distribution validation accuracy before and after meta-detectron training at various |Q| sizes.

—— DAR AUROC
—— Entropy AUROC

—— DAR AUROC
— Entropy AUROC

— Pitrain loss
Qtrainloss | |

— P train loss.
Q train loss

2.5
0.4 0.4

100

Train Loss

200 250 0 50 100 200 250

150 150
Batch lteration Batch Iteration

Figure 4: Plots illustrating how AUROC and ¢.4. evolves over meta-detectron training iterations for CIFAR10
and Camelyonl7 when |Q| = 20. See App. H.5 for more figures

We evaluate Meta-detectron (Sec. 4.2) on CNN3 with experiments following Ginsberg et al. (2023) on
CIFAR10.1 (Recht et al., 2019), where shift comes from the dataset pipeline, and Camelyonl7 (Veeling et al.,
2018), which consists of histopathological slides from multiple hospitals. Table 4 shows the True Positive
Rate at 5% Significance Level (TPR@5) and AUROC aggregated over 10 randomly chosen seeds for sampling
P* and Q of varying sample sizes. In addition, we ablated over the weight \; see App. H.5 for details and
further results. Compared to the original tests (Ginsberg et al., 2023, Table 1) on ResNet-18, we observe
that covariate shift is highly architecture dependent. This is expected as CNN3 underfits CIFAR10 (~ 63%
validation accuracy). Our approach accounts for this as the base classifiers are generated directly by the
fine-tuned meta-models. We also observe-though not shown—lower disagreement rates overall, which pays
off in the TPRQ5 as the P* disagreement rates are close to zero in all cases, and confirms the conservative
nature of our method. Importantly, we also observe in Table 5 that the validation accuracy on P is mostly
unchanged. Regarding meta-training behavior, Figure 4 shows that the AUROC increases sharply early
in the reward fine-tuning phase, requiring only about 50 batch iterations to reach its peak. This coincides
with a marked decrease in £.4.. However, we also note some instability in the AUROC throughout training,
particularly in the Camelyon experiments, where fluctuations are more pronounced.

6 Related work

Flow matching for trajectory inference. The flow matching framework (Albergo and Vanden-Eijnden,
2023; Lipman et al., 2023; Liu et al., 2023) gives way to a few methods of controlling the trajectory of the
inference path, from the simple multi-marginal approach (Rohbeck et al., 2025), to approaches with more
sophisticated interpolants (Neklyudov et al., 2023; 2024; Kapusniak et al., 2024; Pooladian et al., 2024;
Rohbeck et al., 2025). A traditional application of trajectory inference is single cell RN A-sequencing (Tong
et al., 2020; Neklyudov et al., 2024; Kapusniak et al., 2024), however, a similar problem arises in weight
generation. For a broad mathematical overview, see (Lavenant et al., 2024).

Weight generation. Recent approaches to generating neural network parameters centers around learning
a distribution over pre-trained weights and generalizing this ability with the help of conditioning information.

12



Under review as submission to TMLR

Most similar to our approach in this regard are the various diffusion-based approaches (Soro et al., 2025;
Zhang et al., 2024; Wang et al., 2024) which have been used to generate neural network weights with a
focus on in-context learning tasks such as zero- and few-shot learning. However, flexibility is limited by
its restriction to Gaussian processes and a sluggish inference speed. More broadly, we may categorize this
form of learning as meta-learning (Fifty et al., 2024; Hu et al., 2022; Zhmoginov et al., 2022), which aims
to learn concepts from a few demonstrations. It is therefore natural that the literature has two evaluation
settings: in-distribution tasks and out-of-distribution (OOD) tasks. With enough training and capacity, it’s
clear meta-models (i.e. models trained on multiple data distributions) should excel at in-distribution tasks.
However, generalization to novel tasks often presents a challenge to meta-learning and weight generation
frameworks (Wang et al., 2024; Schiirholt et al., 2024; Soro et al., 2025), including non-diffusion-based
approaches Knyazev et al. (2021; 2023). See Appendix C for further related works.

7 Conclusion, Limitations, and Future Work

In this work, we have provided a preliminary investigation of the latest dynamical generative models for
weight generation with applications to covariate shift detection. Due to the large size of modern neural
network architectures, limited resources constrain our study to architectures with < 106 parameters. To
address other concerns such as training dataset diversity and the lack of experiments incorporating stochastic
weight evolution, future research directions include: 1) exploration of equivariant architectures to reduce
dimensionality of weight space, 2) incorporating Schrodinger bridge matching approaches to address stochastic
weight evolution. Moreover, the methods here open up a plethora of other applications. For instance, we
may experiment with 1) more traditional meta-learning tests such as zero- and few-shot learning; 2) model
merging by superposition of the inference ODE/SDE (Skreta et al., 2025); or 3) network constrained problems
such as generating binary or Lipschitz neural networks.

References

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. In The
Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
1i7geBbCR1t.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching for Generative
Modeling, February 2023.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=XV;jTT1nw5z.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Guy Wolf,
and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch optimal transport.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
CD9Snc73AW.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam Levi, Dominik
Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, Kyle Lacey, Alex Goodwin,
Yannik Marek, and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis, 2024.
URL https://arxiv.org/abs/2403.03206.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and giang liu. Instaflow: One step is enough for high-quality
diffusion-based text-to-image generation. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=1k4yZbbDgX.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi, and Yaron Lipman.
Discrete flow matching. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=GTDKo3Sv9p.

Neta Shaul, Itai Gat, Marton Havasi, Daniel Severo, Anuroop Sriram, Peter Holderrieth, Brian Karrer, Yaron Lipman,
and Ricky T. Q. Chen. Flow matching with general discrete paths: A kinetic-optimal perspective, 2024. URL
https://arxiv.org/abs/2412.03487.

13


https://openreview.net/forum?id=li7qeBbCR1t
https://openreview.net/forum?id=li7qeBbCR1t
https://openreview.net/forum?id=XVjTT1nw5z
https://openreview.net/forum?id=XVjTT1nw5z
https://openreview.net/forum?id=CD9Snc73AW
https://openreview.net/forum?id=CD9Snc73AW
https://arxiv.org/abs/2403.03206
https://openreview.net/forum?id=1k4yZbbDqX
https://openreview.net/forum?id=GTDKo3Sv9p
https://arxiv.org/abs/2412.03487

Under review as submission to TMLR

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative flows on discrete
state-spaces: Enabling multimodal flows with applications to protein co-design. arXiv preprint arXiv:2402.04997,
2024.

Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang. Metadiff: Meta-
learning with conditional diffusion for few-shot learning. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(15):16687-16695, Mar. 2024.

Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter, and Sung Ju Hwang.
Diffusion-based neural network weights generation. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=3j8WHjM9alMm.

Amer Essakine, Yanqi Cheng, Chun-Wun Cheng, Lipei Zhang, Zhongying Deng, Lei Zhu, Carola-Bibiane Schonlieb,
and Angelica I Aviles-Rivero. Where do we stand with implicit neural representations? a technical and performance
survey. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/
forum?id=QTsJXSvAI2.

Hugo Lavenant, Stephen Zhang, Young-Heon Kim, and Geoffrey Schiebinger. Toward a mathematical theory of
trajectory inference. The Annals of Applied Probability, 34(1A):428 — 500, 2024. doi: 10.1214/23-AAP1969. URL
https://doi.org/10.1214/23-AAP1969.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. IEEE
Trans. Pattern Anal. Mach. Intell., 35(8):1798-1828, August 2013. ISSN 0162-8828. doi: 10.1109/TPAMI.2013.50.
URL https://doi.org/10.1109/TPAMI.2013.50.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In In-
ternational Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=rJ1-b3RcF7.

Zeru Zhang, Jiayin Jin, Zijie Zhang, Yang Zhou, Xin Zhao, Jiaxiang Ren, Ji Liu, Lingfei Wu, Ruoming Jin, and Dejing
Dou. Validating the lottery ticket hypothesis with inertial manifold theory. In Proceedings of the 85th International
Conference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA, 2021. Curran Associates
Inc. ISBN 9781713845393.

Bohan Liu, Zijie Zhang, Peixiong He, Zhensen Wang, Yang Xiao, Ruimeng Ye, Yang Zhou, Wei-Shinn Ku, and Bo Hui.
A survey of lottery ticket hypothesis, 2024b. URL https://arxiv.org/abs/2403.04861.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning: Taxonomy,
comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46
(12):10558-10578, 2024. doi: 10.1109/TPAMI.2024.3447085.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Rolf Eckmiller, editor,
Advanced Neural Computers, pages 129-135. North-Holland, Amsterdam, 1990. ISBN 978-0-444-88400-8. doi:
https://doi.org/10.1016/B978-0-444-88400-8.50019-4. URL https://www.sciencedirect.com/science/article/
pii/B9780444884008500194.

An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural network error surfaces.
Neural Computation, 5(6):910-927, 1993. doi: 10.1162/neco.1993.5.6.910.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching: Fine-tuning
flow and diffusion generative models with memoryless stochastic optimal control. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=x(BRrtQM8u.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary Differential Equations,
December 2019.

Neta Shaul, Ricky T. Q. Chen, Maximilian Nickel, Matt Le, and Yaron Lipman. On kinetic optimal probability
paths for generative models. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action matching: learning stochastic

dynamics from samples. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

14


https://openreview.net/forum?id=j8WHjM9aMm
https://openreview.net/forum?id=QTsJXSvAI2
https://openreview.net/forum?id=QTsJXSvAI2
https://doi.org/10.1214/23-AAP1969
https://doi.org/10.1109/TPAMI.2013.50
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/abs/2403.04861
https://www.sciencedirect.com/science/article/pii/B9780444884008500194
https://www.sciencedirect.com/science/article/pii/B9780444884008500194
https://openreview.net/forum?id=xQBRrtQM8u

Under review as submission to TMLR

Kirill Neklyudov, Rob Brekelmans, Alexander Tong, Lazar Atanackovic, Qiang Liu, and Alireza Makhzani. A
computational framework for solving wasserstein lagrangian flows. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Kacper Kapusniak, Peter Potaptchik, Teodora Reu, Leo Zhang, Alexander Tong, Michael Bronstein, Avishek Joey
Bose, and Francesco Di Giovanni. Metric Flow Matching for Smooth Interpolations on the Data Manifold, May
2024.

Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos Theodorou, and Ricky T. Q. Chen.
Generalized schrédinger bridge matching. In The Twelfth International Conference on Learning Representations,
2024c. URL https://openreview.net/forum?id=SoismgeX7z.

Martin Rohbeck, Charlotte Bunne, Edward De Brouwer, Jan-Christian Huetter, Anne Biton, Kelvin Y. Chen, Aviv
Regev, and Romain Lopez. Modeling complex system dynamics with flow matching across time and conditions.
In The Thirteenth International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=hwnObm0OTrV.

Alexander Tong, Jessie Huang, Guy Wolf, David van Dijk, and Smita Krishnaswamy. Trajectorynet: A dynamic
optimal transport network for modeling cellular dynamics. In Proceedings of the 37th International Conference on
Machine Learning, 2020.

Charlotte Bunne, Laetitia Meng-Papaxanthos, Andreas Krause, and Marco Cuturi. Proximal Optimal Transport
Modeling of Population Dynamics. In International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 25, 2022.

Antonio Terpin, Nicolas Lanzetti, Martin Gadea, and Florian Dorfler. Learning diffusion at lightspeed. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=y10avdRFNK.

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, and Danica J. Sutherland. Learning deep kernels
for non-parametric two-sample tests. In Proceedings of the 37th International Conference on Machine Learning,
ICML’20. JMLR.org, 2020.

Shengjia Zhao, Abhishek Sinha, Yutong He, Aidan Perreault, Jiaming Song, and Stefano Ermon. Comparing
distributions by measuring differences that affect decision making. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=KB50on0NJIAU.

Tom Ginsberg, Zhongyuan Liang, and Rahul G Krishnan. A learning based hypothesis test for harmful covariate
shift. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=rdfgqiwz71Z.

Shafi Goldwasser, Adam Tauman Kalai, Yael Tauman Kalai, and Omar Montasser. Beyond perturbations: learning
guarantees with arbitrary adversarial test examples. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, Pdes, and Modeling.
Progress in Nonlinear Differential Equations and Their Applications. Springer International Publishing, 2015. ISBN
978-3-319-20828-2.

Nicolas Lanzetti, Antonio Terpin, and Florian Dérfler. Variational analysis in the wasserstein space, 2024. URL
https://arxiv.org/abs/2406.10676.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker—planck equation.
SIAM Journal on Mathematical Analysis, 29(1):1-17, 1998. doi: 10.1137/S0036141096303359. URL https:
//doi.org/10.1137/50036141096303359.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL https://arxiv.org/abs/1312.
6114.

Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J. Burghouts, Efstratios Gavves, Cees G. M.
Snoek, and David W. Zhang. Graph Neural Networks for Learning Equivariant Representations of Neural Networks.
https://arxiv.org/abs/2403.12143v3, March 2024.

15


https://openreview.net/forum?id=SoismgeX7z
https://openreview.net/forum?id=hwnObmOTrV
https://openreview.net/forum?id=hwnObmOTrV
https://openreview.net/forum?id=y10avdRFNK
https://openreview.net/forum?id=y10avdRFNK
https://openreview.net/forum?id=KB5onONJIAU
https://openreview.net/forum?id=rdfgqiwz7lZ
https://openreview.net/forum?id=rdfgqiwz7lZ
https://arxiv.org/abs/2406.10676
https://doi.org/10.1137/S0036141096303359
https://doi.org/10.1137/S0036141096303359
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114

Under review as submission to TMLR

Theo Putterman, Derek Lim, Yoav Gelberg, Stefanie Jegelka, and Haggai Maron. Learning on loras: Gl-equivariant
processing of low-rank weight spaces for large finetuned models, 2024. URL https://arxiv.org/abs/2410.04207.

Konstantin Schiirholt, Michael W. Mahoney, and Damian Borth. Towards scalable and versatile weight space learning.
In Proceedings of the 41st International Conference on Machine Learning (ICML). PMLR, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In 2015 IEEE International Conference on Computer Vision (ICCV), pages
1026-1034, 2015a. doi: 10.1109/ICCV.2015.123.

Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu,
and Yang You. Neural network diffusion, 2024. URL https://arxiv.org/abs/2402.13144.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016 IFEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 770778, 2015b. URL https://api.
semanticscholar.org/CorpusID:206594692.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s, 2022. URL https://arxiv.org/abs/2201.03545.

Konstantin Schiirholt, Diyar Taskiran, Boris Knyazev, Xavier Gir6-i Nieto, and Damian Borth. Model zoos: A dataset
of diverse populations of neural network models. In Thirty-Sizth Conference on Neural Information Processing
Systems (NeurIPS) Track on Datasets and Benchmarks, September 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In International Conference on Machine Learning, 2021. URL
https://api.semanticscholar.org/CorpusID:231591445.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize to
imagenet? In International conference on machine learning, pages 5389-5400. PMLR, 2019.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equivariant cnns for
digital pathology. In Medical image computing and computer assisted intervention—-mICCAI 2018: 21st international
conference, granada, Spain, September 16-20, 2018, proceedings, part II 11, pages 210-218. Springer, 2018.

Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky T. Q. Chen, and Brandon Amos. Neural optimal
transport with lagrangian costs. In The 40th Conference on Uncertainty in Artificial Intelligence, 2024. URL
https://openreview.net/forum?id=x4paJ2sJyZ.

Christopher Fifty, Dennis Duan, Ronald Guenther Junkins, Ehsan Amid, Jure Leskovec, Christopher Re, and Sebastian
Thrun. Context-aware meta-learning. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=1JYAKDVnRU.

Shell Xu Hu, Da Li, Jan Stithmer, Minyoung Kim, and Timothy M. Hospedales. Pushing the limits of simple pipelines
for few-shot learning: External data and fine-tuning make a difference. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9058-9067, 2022. doi: 10.1109/CVPR52688.2022.00886.

Andrey Zhmoginov, Mark Sandler, and Max Vladymyrov. HyperTransformer: Model Generation for Supervised and
Semi-Supervised Few-Shot Learning, July 2022.

Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero-Soriano. Parameter prediction for unseen
deep architectures. In Advances in Neural Information Processing Systems, 2021.

Boris Knyazev, Doha Hwang, and Simon Lacoste-Julien. Can we scale transformers to predict parameters of diverse
imagenet models? In International Conference on Machine Learning, 2023.

Marta Skreta, Lazar Atanackovic, Joey Bose, Alexander Tong, and Kirill Neklyudov. The superposition of diffusion
models using the it6 density estimator. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=2058Mbgkd2.

16


https://arxiv.org/abs/2410.04207
https://arxiv.org/abs/2402.13144
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:206594692
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2201.03545
https://api.semanticscholar.org/CorpusID:231591445
https://openreview.net/forum?id=x4paJ2sJyZ
https://openreview.net/forum?id=lJYAkDVnRU
https://openreview.net/forum?id=2o58Mbqkd2

Under review as submission to TMLR

K.R. Parthasarathy. Probability Measures on Metric Spaces. AMS Chelsea Publishing Series. AMS Chelsea Pub.,
2005. ISBN 978-0-8218-3889-1.

L. Ambrosio, N. Gigli, and G. Savare. Gradient Flows: In Metric Spaces and in the Space of Probability Measures.
Lectures in Mathematics. ETH Ziirich. Birkhduser Basel, 2006. ISBN 9783764373092. URL https://books.google.
ca/books?id=Hk_wNpOsc4gC.

C. Villani. Optimal Transport: Old and New. Grundlehren Der Mathematischen Wissenschaften. Springer Berlin
Heidelberg, 2008. ISBN 978-3-540-71050-9.

Benjamin Schachter. An Eulerian Approach to Optimal Transport with Applications to the Otto Calculus. PhD thesis,
University of Toronto, 2017.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time convex optimization
formulations for two-layer networks, 2020. URL https://arxiv.org/abs/2002.10553.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, and Ricky
T. Q. Chen. Multisample flow matching: straightening flows with minibatch couplings. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’ Aurelio Ranzato, and Nando de Freitas. Predicting Parameters in
Deep Learning, October 2014.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learning Representations,
2017.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A. Efros, and Jitendra Malik. Learning to learn with generative
models of neural network checkpoints, 2022.

Kai Wang, Dongwen Tang, Wangbo Zhao, Konstantin Schiirholt, Zhangyang Wang, and Yang You. Recurrent diffusion
for large-scale parameter generation, 2025. URL https://arxiv.org/abs/2501.11587.

Sachin Ravi and Hugo Larochelle. Optimization as a Model for Few-Shot Learning. In International Conference on
Learning Representations, February 2017.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma Brunskill. Supervised
Pretraining Can Learn In-Context Reinforcement Learning. Advances in Neural Information Processing Systems,
36:43057-43083, December 2023.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context learning by
meta-learning transformers, 2024. URL https://arxiv.org/abs/2212.04458.

Yingjun Du, Zehao Xiao, Shengcai Liao, and Cees Snoek. ProtoDiff: Learning to Learn Prototypical Networks by
Task-Guided Diffusion, November 2023.

Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling SGD with stochastic differential
equations (SDEs). In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=goEdyJ_nVQI.

Renato Berlinghieri, Yunyi Shen, and Tamara Broderick. Beyond schrédinger bridges: A least-squares approach for
learning stochastic dynamics with unknown volatility. In 7th Symposium on Advances in Approzimate Bayesian
Inference — Workshop Track, 2025. URL https://openreview.net/forum?id=GJdo8L1NX1.

Tianrong Chen, Guan-Horng Liu, Molei Tao, and Evangelos Theodorou. Deep momentum multi-marginal schrédinger
bridge. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=ykvvvOgc4R.

Yunyi Shen, Renato Berlinghieri, and Tamara Broderick. Multi-marginal schrédinger bridges with iterative reference
refinement. In The 28th International Conference on Artificial Intelligence and Statistics, 2025. URL https:
//openreview.net/forum?id=VcwZ3gtYFY.

Yuangi Du, Michael Plainer, Rob Brekelmans, Chenru Duan, Frank Noe, Carla P Gomes, Alan Aspuru-Guzik, and
Kirill Neklyudov. Doob’s lagrangian: A sample-efficient variational approach to transition path sampling. Advances
in Neural Information Processing Systems, 37:65791-65822, 2024.

17


https://books.google.ca/books?id=Hk_wNp0sc4gC
https://books.google.ca/books?id=Hk_wNp0sc4gC
https://arxiv.org/abs/2002.10553
https://arxiv.org/abs/2501.11587
https://arxiv.org/abs/2212.04458
https://openreview.net/forum?id=goEdyJ_nVQI
https://openreview.net/forum?id=GJdo8LlNX1
https://openreview.net/forum?id=ykvvv0gc4R
https://openreview.net/forum?id=ykvvv0gc4R
https://openreview.net/forum?id=VcwZ3gtYFY
https://openreview.net/forum?id=VcwZ3gtYFY

Under review as submission to TMLR

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis, 2009.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature learning. In
AISTATS, 2011.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-image-models, 2019.

Damian Falk, Léo Meynent, Florence Pfammatter, Konstantin Schiirholt, and Damian Borth. A model zoo of vision
transformers, 2025. URL https://arxiv.org/abs/2504.10231.

Konstantin Schiirholt, Léo Meynent, Yefan Zhou, Haiquan Lu, Yaoqing Yang, and Damian Borth. A model zoo on
phase transitions in neural networks, 2025. URL https://arxiv.org/abs/2504.18072.

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git Re-Basin: Merging Models modulo Permutation
Symmetries, March 2023.

Hoang Tran, Thieu Vo, Tho Huu, Tan Nguyen, et al. Monomial matrix group equivariant neural functional networks.
Advances in Neural Information Processing Systems, 37:48628-48665, 2024.

Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel Sokota, J Zico Kolter, and Chelsea
Finn. Permutation equivariant neural functionals. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=fmYmXNPmhv.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. Advances in neural information processing systems, 33:7462-7473,
2020.

Boya Zeng, Yida Yin, Zhiqiu Xu, and Zhuang Liu. Generative modeling of weights: Generalization or memorization?,
2025. URL https://arxiv.org/abs/2506.07998.

Appendix

This appendix consist of details left out in the main text. First, we complete the proofs of the results in the
text. Next, we perform a more comprehensive review of the related literature. Following, we fill in a few
technical results that were promised in the main text, before closing with architecture and training settings.

A Further Theory

A.1 Proof of Theorem 1

Theorem 1:

Let 6y ~ po be the initialized network parameters residing on {2 C RP a compact set. Suppose that
L:Q — Ris C! and the gradient descent curve (6;)¢>o reside in Q. Define p, = Law(6;) and further
assume p; > 0 a.e., then it satisfies the continuity equation Eqn. 3.

Proof of Theorem 1. We follow the reasoning of Santambrogio (2015, Ch. 8). First, we provide context as

for the discretized formulation of a gradient flow. Let F': R? — R be lower semi-continuous and is bounded
below as F(x) > C; — Cy|z|? for some Cy,Cy > 0. Consider the formal problem

x'(t) = =VF(z)
z(0) = zo

This is understood as a Cauchy problem which happens to be a gradient flow. If we fix a small time step
7 > 0, this problem has a discretization

T2
z},, € argmin F(z) + |z — = *
z€R? 2T

18


https://github.com/rwightman/pytorch-image-models
https://arxiv.org/abs/2504.10231
https://arxiv.org/abs/2504.18072
https://openreview.net/forum?id=fmYmXNPmhv
https://arxiv.org/abs/2506.07998

Under review as submission to TMLR

We now generalize this discretization scheme and show that its limit is a solution to the gradient flow.

Define J(p) := [, £dp. We now have the scheme

W2(p, pT
Phi1 € argmin J(p) + M_
PEP(Q) 2T

Claim: The minimization above produces a minimizer p = py ;. If we modify

- J(p) p < Leb?
J(p) ={ (®) .
+o0o  otherwise

then this is a unique minimizer.

Proof. As Q is compact, it’s a well-known result that P(€) is compact in the weak topology (Parthasarathy,
2005). Moreover, Santambrogio (2015, Prop. 7.1) gives lower semi-continuity of J, which is enough for
existence. Moreover, from Santambrogio (2015, Prop. 7.19), we have: if p < Leb?, then W2 (-, p) is strictly
convex. Since J(p) is linear in p, we have that the minimization objective is strictly convex with the
modification to .J, thus the minimizer is unique. O

Note: due to the nice properties of having p < Leb?, and considering that we do not lose much generality,
we will use J for the rest of the proof.

Claim: The first variation ‘;—i(p) = L for all p € P(Q).

Proof. We note that since €2 is compact, £ is presumed continuous, and p a finite measure, we have that
J(p) < oo for all p € P(2). This is sufficient to show that p is always regular for J. Moreover, the first
variation satisfies:

oJ
d = [ 22p) dx.
7 EZOJ (p+ex) / 5 (p) dx
By linearity: J(p+ ex) = J(p) + € [ Ldx, and therefore %(p) =L O

It was remarked Santambrogio (2015, Remark 7.13) that the first variation of the transport cost 7. for a
continuous cost c¢ is exactly the Kantorovich potential ¢ only if it is unique. In our case, uniqueness stems
from Santambrogio (2015, Prop. 7.18). Given our preparation, we are now ready to state the main Lemma.

Lemma 1. Let T{,, be the optimal transport map from pj ., to pj, (note the reverse), then we have the
velocity

-
=T

Vpy = =-VL a.e (14)

Proof. Since the first variation is linear in the functional argument, we have that the first variation

§(J +W3(,pp)/27)
op

(p) =L+ ¢/

By Santambrogio (2015, Prop. 7.20), we have £ + ¢/7 = C a.e. where ¢ is the Kantorovich potential and
some constant C' (precisely, on all supppj_ ,, which is assume > 0 a.e.). Differentiating, we have

Vo=1-T;,, =—-1VL ae.

19



Under review as submission to TMLR

Remark. The reader may notice that the equation above for Vi resembles the JKOnet* objective presented
in Sec. 3.2.2. Terpin et al. (2024) uses the first-order necessary conditions for optimality, which bypasses
checking that the learned gradient function defines a transport map and the requirement that the scalar
function be convex. The original JKOnet (Bunne et al., 2022), which requires a bi-level optimization objective,
is more explicit in following the transport map, negatively affecting efficiency and stability.

Before proceeding further, we provide a simple bound on the 2-Wasserstein distance of consecutive iterates:
by optimality
w3 (Pit1:PF)

< T
o — J(pk)a

J(Pry1) +

therefore

W3( ,
3 p’““ i) <Z J71)) < 2J(py) =: C.
k

where we telescoped the sum and used inf J > 0 as £ > 0.

For us to take a limit, we need to fine p] for values in (k7, (k + 1)7). Following Santambrogio (2015, Ch. 8),
take

kT —1t
p{—( T v,erL) pp forte ((k—1)rkr).
-
#

Moreover, v] ought to be defined so that it advects p” over time, and following the intuition of interpolating
between discrete values, we require

Wo(piy,pt)  Walpj_1,1k)
- o N/ RT t+tH Pt ) k—1' 1k
[of |22y = 1(@7)'|(8) = Lim m = = -
In fact,
_TT
0] = ko ((kr — t)o] +0) "
T

T oy T

works. Define the momentum E7 = p

Remark. Note the similarity of the approximation method to the MMFM intermediate densities in

Sec. 3.2.2. For simplicity of our objective, the interpolants p] are defined by requiring the conditional

Pi (@2 (h—1yrs Thr) = N(25(1 = B)T(h—1)r + BiZkr,0¢I) where B; = @ In contrast, the density

approximations here require a form on ||Ut L2 p7)-

Now we bound the maximal E7:

1 1 1
|ET|<[0,11xﬂ>=/0 /Q|vz|dp:dt:/0 ||v:||L1<p;>dts/O 107 1o -

Using the Cauchy-Schwarz inequality

r WQ(p ’p)
[ il < [ gyt = > (Pt < o2 (15)

Moreover, we see for 0 < s <t < 1,

Halv ) = / (7Y I(r)dr < (¢ = s)'/? </ |(PT)/|(7")2dr>1/2

But since |(p7)'|(r)? = ||vf|[32 we have

(p7)?
Wa(pf,p}) < C*(t —5)'/2. (16)
This provides a uniform Hélder bound on ¢t — p], which implies uniform boundedness and equicontinuity.

Therefore, up to subsequences, both E7 and p” converges to a limit as 7 — 0: by Arzela-Ascoli, we have

20



Under review as submission to TMLR

p” — p uniformly on Ws. Moreover, by boundedness of |E"|, we have weak compactness on the space of
measures, and therefore, there exists a subsequence s.t. E™ — E weakly.

Now, checking the distributional test, e.g. Santambrogio (2015, Definition 4.1), we have that d;p] + V- E™ = 0.
Moreover, the distributional test passes to the limit as v] is continuous, [ [ ||vf|*dpjdt < C?, and p™ — p
uniformly, and E™ — F weakly. In other words, we have 0;p; + V - E = 0. We are left to compute E.

Claim: £ = —pVL.

The trick here is to instead consider simpler curves than the interpolation we defined above. In particular,

ST 5T

consider pj = pj,, for t € (k7,(k +1)7) and 0] = v], . Likewise, define E™ = p77. Since

WQ(pZ+17p;q—)
T

1 1/2
([l TaPdin) = Il

we have |[07 1 |[22(p7) = |[v]41]|22(p7)- This implies that E7 has the same bound as in Eqn. 15. Moreover, by
using Eqn. 16, we see Wa(p], p7) < C?,/7. Hence, we have the same convergence: p7 — p uniformly. One
needs to be more careful with the momentum. Let E™ — E weakly, we look to prove Jr- dE = J f-dE for
all f:[0,1] x Q — RP Lipschitz. We compute:

’/f-dET—/f-dET

where £(t) returns the smallest multiple k7 > ¢, and the RHS is bounded by Lip(f)C?7. Thus, as 7 — 0, we
see that £ = F.

But now, E7 = 47" = —p" VL by Lemma 1. Therefore, for any f € C1((0,1) x Q,RP), we test:

/f-dET:—/f-VﬁpT.

As L € C', we know the integrand is continuous, so we can just pass the limit as 7 — 0, meaning that
E = F = —pV L invoking the fact that p7 — p uniformly. O

1 1
< [ 1o =0 +0 = Al dy it < Lin(hyr [ [ (a7
0 0

A.2 Proofs of Sec. 3.2.2

Theorem 2:

Suppose the true marginals evolve according to % pi = =V (p;Vsf) and t — pj is an absolutely continuous
curve. Define ¢(z) such that marginalizing ¢ with respect to all variables except xy, Zx+1 yields the coupling
Dty ® (T,f“)#ptk, where T,f“ is the transport map from py, to p,,,. Then,

1
lim / E,, (o |[ue(2) — V2 (@)|[3 dt = 0.

|tk—tk+1|—>0 0
Replacing u; with #==t this shows that VV (Eqn. 8) regresses to the reference action in the limit.

Proof of Theorem 2. By absolute continuity of the curve and Brenier’s theorem, the Monge map between
Ds, Pt exists for 0 < s <t < 1. By Ambrosio et al. (2006, Prop. 8.4.6), we have that

Vs; = }lbli}% E(T (pt7pt+h) —id), (17)

where T*(p;, p;, ;) is the unique transport map between densities p; and p;, ;. Fixing a small h > 0, define

[

M—
di(x) := Z 1[hm,h(m+1))(t)Tv where 175, = T (P, Ph(m+1))-

m=0

21



Under review as submission to TMLR

The idea of our next steps is to instead consider the normed difference between u; and d;, and later conclude
by the triangle inequality.

Recall that

u D (.T xk7Tk+1 Tk
Ut(m) :Eq(z)t(pt Z l[tk,tk+1) /Ut($|xkaTI§+1($k)) ! ‘ pté) ( )) dptk(mk)v (18)

where we used the assumed disintegration of ¢(z). We compute

By (ollue(e) = di(a)} = [ o) - de(o)| dpr(z) (19)
Ti (o) = on Tlw) = o | pelalan, TH @) 2
/H/ thon —tk A ] (@) dp, (z1) det(f) (20)
T @) — o T (@) — | polalen, T (02)
// |78 —tk a h ) pi(x) dpe, (1) dpy (). 1)

assuming that ¢ € [tx, tx+1) and using the fact

)P (|2, Ty ()
/dt pt( ) dpt(Ik).

Claim: The reference p; is an absolutely continuous curve in Ws-space.

Proof. Let 0 < s < t < 1 be given. It is known that affine Gaussian paths are absolutely continuous,
in particular this means that there exists g, € L'([0,1]) such that Wa(ps,,pe,,,) < ft gk(t)dr. If
[s,t] C [tk,tk+1], then we conclude. Otherwise, consider Wa(ps,pt) < Wa(ps,pt,,) + Wg(ptk,pt) O

The continuity claim allows us to take the limit: W3 (p,,p:) — 0 as |t —t| — 0. Moreover, by Santambrogio
(2015, Theorem 5.10), we have p;, — py, i.e. narrow convergence.

Claim: Suppose py, = ph,, and py, ., = D (pr)- We have [[T7(pe, royy) = T (P, Ph(m+1) |22 (p,) — 0-

Proof. Let t < min(ty, h(m+1)). We first prove this claim for 7*(ps, ps,.,) — T*(Pts Ph(m+1))- Villani (2008,
Cor. 5.23) gives convergence in measure (in this case, p; is the measure). Thus, the argument for L?(p;)

convergence follows from a typical analysis argument. To simplify notation, let T'=T, th(mﬂ) and (T3,)n>1
the approaching sequence.

Suppose not, i.e. there exists a subsequence (T,,;) such that [T}, — T'||p2(p,) > € for some € > 0. By
convergence in p;-measure, there exists a further subsequence (ij) that converges to T pointwise p;-
a.e. Since Tn,T € L?(p;), by the Dominated Convergence Theorem ||Tnij — T||r2(p,) — 0, and hence
J |Tm ) dpe(z) — [|T(x)|dpi(x). At this point, we have proven that for every subsequence (taken

1mphc1tly) of 1ntegra1 J|T,.(z)| dp(z), there exists a further subsequence that converges to the limit. It
is a well-known result in analysis that this shows convergence of the original sequence of integrals, i.e.
||Tn — THLQ(pf,) — 0.

We now apply the previous result three times to the following and conclude:

||T*(ptk3ptk-+1) - T*(phm7ph(7R+1))||L2(pt) < |‘T*(ptk7ptk+1) - T*(ptkvpt)||L2(pt)
+ ||T*(ptk7pt) - T*(phm7pt)||L2(pt)
+ ||T*(th7pt) - T*(phm7ph(m+1))||L2(pt)

22



Under review as submission to TMLR

To finish, we remind the reader that the densities p;, = pj, , therefore, the supposition of this claim is fulfilled
by the observation of narrow convergence: p;, — pj . and p;“kH — pz(m 41y Therefore, combining the claim
with Eqn. 21, we can make E,, ,)||us(2) — di(2)||3 < 6/2 for some small § > 0. Then, if we had chosen a

small enough %, we would have E,, (,,||Vsi(z) — di(2)|[3 < 6/2. Combining these bounds, we conclude.

O

A.3 Extended Sec. 3.2.3

Given its importance as the reference flow we will match during FM training, we discuss how close of a
proxy curve (generalization of p; in Eqn. 9) we can obtain within a family of paths that minimizes an energy
functional. This will include methods such as Metric Flow Matching (Kapusniak et al., 2024), but also
shares similarities with GSBM (Liu et al., 2024c). To motivate this, note that one could "sample" from p;,
by saving neural network parameters over the course of training on different initial samples 8y ~ pg. This
approach can be used to build a dataset of intermediate weights D = Ute[O,l] D; of weights saved over the
course of training. Following Kapusniak et al. (2024), if we define a data-dependent metric g : R? — S, (p),
which is a smooth map parameterized by the dataset D, we may compute a smooth energy-minimizing curve
Yoy = argmin, o () between fixed points (xg,X1) ~ 7 that can be shown to stay close to
the data (Kapusniak et al., 2024, Proposition 1). Further, we may perform this minimization by training
geodesic interpolants x; , ~ (t;7n), see App. E for details. Following, we develop a framework using energy
functionals, which are data-dependent in practice, motivated by the connection between the metric and
potential approach (Kapusniak et al., 2024, App. C.1): |[Z¢||g(z,) = 2413 + V (2¢; 20, 1), where V is a
potential function depending on the boundary conditions. In this setting, we seek to characterize choices of
energy V to minimize the W5 distance between the proxy probability path, which evolves by vy, and the
reference p; in Eqn. 3. We start by writing down a continuity equation for the proxy path (cf. Theorem 1).

Theorem 3: Suppose the Lagrangian L(z¢, d¢,t) = ||4¢]|3 + Vi(z¢, 4¢) is Tonelli and strongly convex in
velocity. The Lagrangian optimal transport map 7' exists between py and p;. Moreover, there exists a
locally Lipschitz, locally bounded vector field w s.t.

Opr + V- (Prwe) =0
satisfies p; = Law(~;) where « is a random, smooth Lagrangian-minimizing curve and (vo,1) is an optimal

coupling of pg, p;.

Proof of Theorem 3. First, let us recall the definition of a Tonelli Lagrangian. Following (Schachter, 2017),
it satisfies:

1. L does not depend on time.
Lis C?.

L is strictly convex in velocity.

- W

There exists a constant ¢y and a function 6 : R? — R with superlinear growth, i.e. lim|,|_o 0(v)/|v| =
00, with 6 > 0 s.t. L(z,v) > ¢o + 0(v).

Then, as noted in Schachter (2017, Ch. 3.3), the Lagrangian optimal transport problem has a solution,

specifically a map T : R? — RP which pushforwards py to p;. For our purposes, we should also note that
there exists a unique optimal trajectory o : [0, 1] x R? — RP? s.t.

1
o = arginf, ;o 1] xrrre {/0 /]R L(o(t,x),o(t,x)) dpo(x)dt : o(1,-)po = pl} .
p

Using Schachter (2017, Prop. 3.4.4), we have a velocity field w : [0, 1] x R? — RP satisfying (¢, ) = w(o(t, x))
which is locally Lipschitz and locally bounded. Then, by Schachter (2017, Prop. 3.4.3), the path defined by

23



Under review as submission to TMLR

Pt = (0¢)#po and the velocity field w; satisfies the continuity equation
Opr + V- (Prwr) =0

in the sense of distributions. All that’s left is to show that p; = Law(y;) where v is drawn from the
Lagrangian-minimizing curves. However, this follows from Villani (2008, Thm. 7.21) as (pt):e[o,1] minimizes

1
a) =inf [ [ Lio(t.0).6(t.0)) dm(x)
7 Jo JRe
applying the equivalence between (iii) and (i) of Thm. 7.21. O

The following discussion will focus on quantifying closeness of the reference p and p. Our objective is to
characterize functionals that would induce good proxy trajectories which remain close to Eqn. 3. Hence,
we ought to assume some regularity for V', in particular, we want the Lagrangian to be Tonelli. In Prop. 2
below, this definition of the learned path is used to find an expression for the W5 distance that accounts for
the closeness of w; to the loss gradient —V L.

Proposition 2 (Adapted from Cor. 5.25 Santambrogio (2015)). Suppose that (p,p) resides in a compact
domain Q C RP and suppose that pg, py are absolutely continuous w.r.t. Lebesque measure for every t.
Further, if we assume p,p are absolutely continuous curves in Wo(S2), then

W2 (b, Be) = 2 / / (& — Tu()) - (VL) + wy(Te(x))) dt dpy(z), (22)

where Ty is the optimal transport map between py and p; for the cost |x — y|*/2.

Proof of Prop. 2. The assumption aligns with Santambrogio (2015, Cor. 5.25), which gives:

VR i) =2 [ (0= D)) - (VL(o) = n(Tifa) dpr(o).

Integrating both sides and noting that py = p¢ yields the desired result.
O

Following the action matching discussion, we define a prozy action gap for the data-dependent energy that will
be used for a more intuitive and practical Ws-bound; see App. D for an analogue with entropy-regularization.

1t .
AG(p.7) = 5 [ EJIVLG) + 3 (23)

where the expectation is taken over all Lagrangian-minimizing curves s.t. (7yo,71) is an optimal coupling
under the Lagrangian in Theorem 3.

We note that this definition is unconventional as it uses curves obtained from p in Theorem 3. However, we
believe this formulation to better match the interpretation of finding a proxy trajectory that reflects evolution
via GD minimization. Intuitively, our Lagrangian-minimizing curves ought to have derivatives close to the
gradient descent direction along its length, and the objective is to vary the potential V' to minimize AG(p, p).
Next, we adapt a result from Neklyudov et al. (2023); Albergo and Vanden-Eijnden (2023) to bound the
Wasserstein distance in terms of the action gap (cf. Prop. 1)

Proposition 3. Suppose that VL is uniformly Lipschitz in x with Lipschitz constant K. Then,

t
W30 50 < 4250 [ EIIVEG) + 50l o (24)
0

24



Under review as submission to TMLR

where the expectation is taken over all Lagrangian-minimizing curves s.t. (Yo,71) 48 an optimal coupling
under the Lagrangian in Theorem 3.

Proof of Prop. 3. First, note from Villani (2008, Thm. 7.21) that as p;, p; are continuous paths, there exists
dynamical optimal couplings of (pg,p1), as defined in Villani (2008, Def. 7.20), which we shall denote 4,y
respectively. In particular, we use that p, = Law(v.(t)) and p; = Law(v(¢)), and that both (v(0),~(1)) and
(74(0),74(1)) are distributed according to 7 the optimal coupling between (pg, p1). Understanding this, we
may define

Qu 1= Ey(0) 1)l [1(8) = YOI = Epr. 0) 7. o 11 (8) = YOI = WE (1, 51)- (25)

Furthermore, as the reference path (p;):c(o,1] follows the continuity equation Eqn. 3, 4(t) = —V.L(7«(t)).
Thus, considering the time-derivative, we have

% - 2/<7(t) = 7= (), =VL(y (1)) = 3(1))) dw (70, 71)

=2 [ (3(0) = 20, =V LG (0) + VLG drnlrom)
2 / ((t) = 72 (8), — VLY (B) — 4(8)) dr(r0,71)

The first term may be bounded by Lipschitzness of V.L:

2(7(t) = 7. (t), = VL (1) + VLO(1) < 2K]5(t) — 7. (B)]*.

The second term may be bounded by:

() = (I = 23(6) = 7(0), ~VLG(0) = 50) + IVLG(0) + 30 2 0,
25(8) = 73+ (1), ~VLAH) = 3(1) < (0) = I + IVLG0) + 5
In summary,
T2 < (1+260Q+ [ IVEQO) +5(0IP dnloo ),

then by Gronwall’s inequality:

t
Q< explt(1+2K)) [ [I9L60) + 401 dntro ).
0
using the fact that Qg = 0, and now we conclude by the fact that W3 (ps, pr) < Q. O

As the loss is arbitrary, it is not guaranteed that the action gap vanishes. For one, the smoothness assumption
on v means that eccentric losses cannot be fit exactly. However, as detailed in App. E, we can, in practice,
weaken the smoothness assumption to match a learned minimizing curve or the simpler cubic splines (motivated
by Rohbeck et al. (2025)). We also remark that optimizing this functional V is challenging in practice,
requiring learned interpolants as discussed in App. E, or modeling a drift potential directly as in JKOnet
(Bunne et al., 2022; Terpin et al., 2024). To conclude, we make use of a natural smoothness assumption on
the gradient descent path to prove a bound on AG.

Theorem 4. Define g(v,t) == ||VL(v) + #l||?>. Suppose for each (xq,z1) ~ m there exists a smooth

connecting curve ¥ s.t. supg<,;<1 9(3,t) < d for some § > 0 and length fol [[7¢]|> < T. If there exists
n>0d>0 s.t.

i V(’Vta;yt) > 2Fg(7at) fO?" g(’}/at) > m; and
2. V(v 9) < min{I'/6,T}g(v,1) if g(v,t) <6,

25



Under review as submission to TMLR

then supp<;<4 g(7x,t) < 21, where 7, is the Lagrangian-minimizing curve.

Proof of Theorem J. Suppose not, so that there exists tg € [0, 1] s.t. g(Va, to) = |5« (to) + VL1« (t0))[|* > 2n.
By continuity of v, and VL w.r.t. time, we have 0 < t' < ty s.t. for any ¢ € [t/, 0], g(7«,t) > n and ¢’ is
chosen s.t. g(7«,t") =n. By our assumption on 7, it’s natural that we look at the action under two different
cases. First, if g(7y«,t) > 71, we have:

A0 = [ OIF + V005 0)

to
> [ 01 + 20110 + VLo @) e
> |[7. (') — 7« (to)||> +2I'n > 2I'n.

Otherwise, we have by assumption that there exists a smooth connecting curve v s.t. dv(v) < d < 7, hence
1
A0 = [ IOIE + V0.0

1
§F+/H%®+Vﬁwwm%t
0
<T+6-T/6=2l.

By minimality of the Lagrangian-minimizing curve -,, we have a contradiction. Hence, for all times,
(v« t) < 21, implying the result. O

B Remark on weight initialization

By adapting a well-known result (Ambrosio et al., 2006, Prop. 9.3.2), we can quantify how the choice of
weight initialization affects the distribution of converged training weights.

Proposition 4. Further assume that L is A-convex. Given two different weight initializations péo) and

pél) on P(2) that evolves according to Eqn. 3, we have W2(p§°>,p,§”) < e_MWQ(p((JO),p((Jl)).

Proof of Prop. j. If L is A-convex, then by Ambrosio et al. (2006, Prop. 9.3.2), we have that L'(p) :=
fQ L(z) dp(z) is A-geodesically convex. Now, we see that Ambrosio et al. (2006, Thm. 11.1.4) applies, and we
get the desired inequality. O

The primary hurdle to applying Prop. 4 is that £ is rarely convex in the network parameters. For instance,
optimization of a multi-layer perceptron (MLP) is highly non-convex due to non-linear activations and the
product between hidden and outer layer weights. Interestingly, given a loss minimization problem on a MLP,
we have a corresponding convex optimization problem (Pilanci and Ergen, 2020), i.e. the loss objective is
convex in the network parameters and the two problems have identical optimal values. Therefore, with a
modified loss function £, if p) is distributed over its minimizers, e.g. gradient descent is used to solve the
convex minimization problem until convergence, we can apply Prop. 4 with A = 0 and £'(6,) = £(61) is
minimal for 6, ~ pf.

C Related works

Conditional flow matching. The CFM objective, where a conditional vector field is regressed to learn
probability paths from a source to target distribution, was first introduced in Lipman et al. (2023). The
CFM objective attempts to minimize the expected squared loss of a target conditional vector field (which is
conditioned on training data and generates a desired probability path) and an unconditional neural network.

26



Under review as submission to TMLR

The authors showed that optimizing the CFM objective is equivalent to optimizing the unconditional FM
objective. Moreover, the further work (Tong et al., 2024) highlighted that certain choices of parameters for
the probability paths led to the optimal conditional flow being equivalent to the optimal transport path
between the initial and target data distributions, thus resulting in shorter inference times. However, the
original formulations of flow matching assumed that the initial distributions were Gaussian. Pooladian et al.
(2023) extended the theory to arbitrary source distributions using minibatch sampling and proved a bound
on the variance of the gradient of the objective. Tong et al. (2024) showed that using the 2-Wasserstein
optimal transport map as the joint probability distribution of the initial and target data along with straight
conditional probability paths results in a marginal vector field that solves the dynamical optimal transport
problem between the initial and target distributions.

Neural network parameter generation. Due to the flexibility of neural network as function approx-
imators, it is natural to think that they could be applied to neural network weights. Denil et al. (2014)
paved the way for this exploration as their work provided evidence of the redundancy of most network
parameterizations, hence showing that paramter generation is a feasible objective. Later, Ha et al. (2017)
introduced Hypernetworks which use embeddings of weights of neural network layers to generate new weights
and apply their approach to dynamic weight generation of RNNs and LSTMs. A significant portion of our
paper’s unconditional parameter generation section builds upon the ideas from Peebles et al. (2022); Wang
et al. (2024) and the concurrent work of Soro et al. (2025) where the authors employ a latent diffusion model
to generate new parameters for trained image classification networks. More direct auto-encoding methods
have also seen success, for example Schiirholt et al. (2024) and Wang et al. (2025).

Weight generation for few-shot learning. Weight space generation is commonly employed as a meta-
learning algorithm. A prominent example in literature is for the task of few-shot learning. An early example
is Ravi and Larochelle (2017) who designed a meta-learner based on the computations in an LSTM cell.
Moreover, we may leverage the advancements in generative modeling for weight generation. Lee et al. (2023)
used transformers for in-context reinforcement learning, but we also see the works of Zhmoginov et al. (2022);
Hu et al. (2022); Kirsch et al. (2024); Fifty et al. (2024) use transformers and foundation models. More similar
to our method is the body of work on using diffusion models for weight generation (Du et al., 2023; Zhang
et al., 2024; Wang et al., 2024; Soro et al., 2025). These methods vary in their approach, some leveraging a
relationship between the gradient descent algorithm and the denoising step in diffusion models to design their
meta-learning algorithm. Others rely on the modeling capabilities of conditioned latent diffusion models to
learn the target distribution of weights. Most evaluations conducted were in-distribution tasks, i.e. tasks
sampled from the same data distribution as the training tasks, hence, there is room to explore adaptation for
out-of-distribution tasks.

D Stochastic formulation of weight evolution

D.1 Setup

The present formulation of gradient descent as gradient flow ignores the crucial role of noise within typical
neural network optimization schemes. Stochastic differential equations (SDEs) provides a way to model SGD
as a continuous-time process while taking into account the role of noise. Following Li et al. (2021), we write:

dX, = —VL(X,)dt + (a2 (X)) 2dW, (26)

where W, is the Wiener process, a > 0 is the learning rate, and 3(X) = E[(VL(X) — VL(X))(VL(X) —
VL(X))T]; here, £ is a random variable denoting the random batch of training data in the context of SGD.
We may then write the Fokker-Planck-Kolmogorov (FPK) equation

! 0?
v == E T (=Y2eT/?),
and the corresponding Schrédinger bridge (SB) problem
P*:= argmin Dk (P|Q) (27)

Po=po,P1=p1

27



Under review as submission to TMLR

where Q = Law(X) as governed by Eqn. 26.

D.2 Solution with known SB matching methods

We run into the issue of well-posedness if the noise covariance is not known a priori, and also if it depends on
the state X;. For now, we are aware of the work by Berlinghieri et al. (2025), which only assumes standard
SDE regularity conditions to optimize Eqn. 27. In particular, given a density over time A(-) and samples
from a random time ¢;, we may construct a state distribution at snapshots fti (). For our approximation, we
instead use an empirical time density fz() approximated from sampled timesteps, and a candidate SDE model
parameterized by 6, fg .. Training proceeds by using the maximum mean discrepancy (MMD) to quantify
the discrepancy between ho for and ho ft.

To simplify the analysis and align with most SB approximation methods, take e; = aEx, [2(X¢)] to form the
approximation
4Y, = —VL(Y)dt + Ve dWi, (28)

and obtain the FPK .
Owpr =V - (VL) = EtAPto (29)

In this form, multi-marginal methods (Lavenant et al., 2024; Chen et al., 2023; Shen et al., 2025) may be
employed with intermediate weight samples as reference data.

Variational interpolants. The recent work by Shen et al. (2025) sheds some light directly onto the
problem of modeling gradient flows. This method allows us to specify a family of possible proxies e.g. those
induced by the SDE

dX, = VU, (X,)dt + vpdWy, (30)

where «, 8 are learnable parameters. This method is explored in the context of multi-marginal Schrodinger
bridges, but it is trivial to modify it for our purposes:

1. For i =0,...,K — 1, consider data anchors {9§ }iemv,) and {H{HI}]-G[NHI].

(a) Simulate forward to ¢;41 from {9§ }ien,) using Eqn. 30.
(b) Simulate backward to ¢; from {9{i+1}j€[Ni+1] using Eqn. 30.
(c) Use simulated samples to estimate the drift between ¢; and ¢;41.

2. Concatenate the estimated drifts and use Stage 2 of Alg. 1 in Shen et al. (2025) to fit a according to
the estimated drifts.

The diffusion parameter 3 can be estimated in an outer loop of the above algorithm, as suggested by Shen
et al. (2025), allowing us to match ¢;. By following this procedure for flow model training, we can vary our
interpolant within a natural family of path distributions, using data anchors to better inform training.

Generalized Schrodinger Bridge Matching. Due to the close relation with our analysis in Sec. 3.2, we
further discuss GSBM (Liu et al., 2024c¢) which employs entropic action matching as the inner loop objective.
In particular, given the reference process Eqn. 29, invoke Neklyudov et al. (2023, Prop. 3.1) to obtain a
unique entropic action satisfying the FPK equation Eqn. 29. However, in this case, we have a two level
optimization: (1) perform action matching to obtain the drift uf for a fixed reference path (py):eo,1), and
(2) optimize the marginals p; given the coupling pg’l evolved according to the learned drift uf in

dX; = uf (X;)dt + /e, dW;. (31)

Most relevant to us is the second stage which involves optimizing the marginal distributions. Given xg ~ pg
and z7 from Eqn. 31, we also obtain the intermediate states { X3, } for 0 < ¢; < --- < tx < 1. To parameterize
the marginals p;, we assume a Gaussian path p;(X;|xo, x1) = N (¢, 021), hence deferring our optimization
to py and oy. Liu et al. (2024c) uses 1-D splines with the control points {X;, } to obtain y; and a uniform

28



Under review as submission to TMLR

sampling of o; (with boundary conditions og = 07 = 0). Using this parameterization, we can compute the
minimization objective

! 1
7= [ Enstanan [3lECEIB + VX0 at (52)

to optimize the control points X;, and oy, , given some choice of V;(-).

Returning to the marginals p;, we wish to relate its evolution with Eqn. 28. Applying, for example, Du et al.
(2024, Prop. 3), we can write down the FPK equation

B () = —V - (po(x)ue () + %Aﬁt where w(z) = fu + % (;’Z - ;) (z — o). (33)

Therefore, our analogy to Eqn. 23 would be to choose our energy functional V' to minimize the gap

1
| BaesIVE@) + w@| Bt
0

E Interpolating paths

There are many variants of interpolating paths that have been used as reference in the flow matching literature.
Typically, the conditional probability path is of the form

pe(]z) = N(; pu(2), o7 (2)1) (34)

with the consideration that the boundary conditions are satisfied, i.e. [ po(z|z)dg(z) = po(z) and
J p1(z|2) dg(z) = p1(z). The simplest case by Tong et al. (2024) considers a linear interpolant i (zo, 1) =
txy + (1 — t)zo with a constant, small variance and ¢(xo,z1) = po(xo)p1(x1).

Since we are most concerned with the inducing vector field (see Eqn. 1), we would like a simple vector field
that induce the desired conditional probability path. The Gaussian path Eqn. 34 is known (Rohbeck et al.,
2025) to have flow

$u(w]2) = pu(2) + 04 (2) (W)

o0(2)

which, in fact, has a unique inducing vector field (Lipman et al., 2023)

un(alz) = 785 (2, () + 4 (2). (35)

The above suggests that if we have a desired interpolating path u;, the vector field to match is known from
Eqn. 35. Following, we discuss a few learned variants such as JKOnet (Bunne et al., 2022; Terpin et al.,
2024), gWOT (Lavenant et al., 2024), and a varying proxy by Shen et al. (2025). We close by discussing the
simple interpolants we use in our experiments.

JKOnet. Deceptively, we first discuss a learned method which does not produce interpolants per se, but
instead an energy functional J¢ used in a JKO scheme. Looking at the proof of Theorem 1 in App. A, we
see the relation of Eqn. 3 to a JKO flow. Indeed, J¢ attempts to approximate fQ L dp from samples of the
weight population by a neural network (Bunne et al., 2022; Terpin et al., 2024). As this is a learned method,
we incur some computational cost, but also we require a dense sampling of intermediate weights to construct
the necessary population samples. In return, we could even utilize this network as the meta-learner directly,
or use it as a reference for flow model training.

Lifted curves. In spline interpolation, it is best if data points correspond to different timesteps to better

capture the trajectory over time. If instead we have a sampling of population over time, it is more natural to
consider matching marginal path distributions. Lavenant et al. (2024) (gWOT) provides a framework for

29



Under review as submission to TMLR

exactly this. When we have data from N; samples at various time points ¢, {9{i}i€[ K], we may form the

empirical distribution
1
j=

To produce smoother interpolants, we also introduce a regularizer and Gaussian convolution with a kernel of
width h to obtain pft. Specifically, we minimize (by gradient descent) the convex functional

K
1 R
Fran(R) = 02Dy (RIW?) + 3 >t — til Dicn (7| Ry,

i=1

over a law on paths R € P(Q).

Data-dependent geodesics. Kapusniak et al. (2024) made use of a data-dependent metric to compute a
geodesic. In practice, the interpolant is obtained through training a neural network to minimize

Luntin (8) = Eontr[0,1], (o1 )~ 100 (K75 ) = K5, - (36)

Comparing with Eqn. 35, note that we are using a small, constant variance, so indeed we only match the
interpolant derivative. Moreover, as g is a data-dependent metric, its optimization towards a suitable proxy
path reduces to learning a parameterization of g w.r.t. the intermediate weights D. Here, we note the MFM
framework fits without issue into the proxy path framework of Sec. 3.2 primarily because geodesics are
presumed smooth in time. Intuitively, due to randomness in the training process, some intermediate weights
0 € D ought to be weighed less than others so that the induced geodesic v better matches the true loss
gradient.

Cubic splines. Following the recent work by Rohbeck et al. (2025), we can fit a cubic spline to conditional
data points and use this curve as the reference interpolant. Cubic splines are obtained by optimizing the
variational objective

ti
T, ..., Tk) = ar min 5(t)]|2 dt 37
wleo,m) =ars__min [ ) (37)

where x1, = y(tx) and H2([to,tx]) denotes the class of functions that has absolutely continuous first derivative
and weak second derivative on the interval [to,tx]. The conditioning data may be sampled, say from our
dataset D. Moreover, Rohbeck et al. (2025) considered class-conditional trajectories. In our setting, this could
mean weight trajectories from different training datasets. Thus, we sample intermediate weights (z§, ..., z5%),
where ¢ denotes the training set, and we may use techniques such as classifier-free guidance on vy to improve
training. Note that as the interpolant is entirely contingent on the intermediate distributions, and specifically
the intermediate samples, interpolant optimization cannot be done within this approach. Instead, we rely on
a faithful sampling D from the reference Eqn. 3 to provide a good proxy path.

Piecewise linear interpolants. We conclude by discussing the most straightforward method of incorpo-
rating conditional data. In particular, if we have points z = (xo, ..., 2k ) at times (to,...,tx), we have the

conditional vector field
K1

Tk41 — Tk
ut($|z) = ]CZ::O ml[tk)tk+l)(t)' (38)
Within our conceptual framework, we may write
1 1 K-1

1
1 T -
.12 o k+1 k2
5/0 EA[IVL(ve) + Al |7 dt = 5/0 1?:0: Lty tien) OB(ar aisn) v, @, VL) + m”

as the action gap. As the interpolant is entirely contingent on the intermediate distributions, and specifically
the intermediate samples, interpolant optimization cannot be done within this approach. However, this

30



Under review as submission to TMLR

approach has desirable limiting properties w.r.t. the sampling of D. In particular, recalling Eqn. 3, if we let
o :[0,1] x R? — R? be the flow of the drift in Eqn. 3, the expression

IV L() + DL = Tk

E
( ter1 — Uk

Th,Tht1) Pty ®(Oty g —1p )# Ptk |
goes to zero as typy1 — tx — 0. In other words, if the intermediate samples are drawn from the same training
trajectory, and are sampled with sufficient time-density, the gap can be made arbitrarily small.

F Implementation details

Here, we expound on the implementation of our approach. See Figure 8 for a schematic of the training and
inference process.

F.1 Pre-trained model acquisition

Datasets and architectures. We conduct experiments on a wide range of datasets, including CIFAR-
10/100 (Krizhevsky and Hinton, 2009), STL-10 (Coates et al., 2011), Fashion-MNIST (Xiao et al., 2017),
CIFARI10.1 (Recht et al., 2019), and Camelyonl17 (Veeling et al., 2018). To evaluate our meta-model’s ability
to generate new subsets of network parameters, we conduct experiments on ResNet-18 (He et al., 2015b),
ViT-Base (Dosovitskiy et al., 2021), ConvNeXt-Tiny (Liu et al., 2022), the latter two are sourced from timm
Wightman (2019). As we shall detail below, small CNN architectures from a model zoo (Schiirholt et al.,
2022) are also used for full-model generations.

Model pre-training and checkpointing. For better control over the target distribution pq, in experiments
involving ResNet-18, ViT-Base, and ConvNeXt-Tiny, we pre-train these base models from scratch on their
respective datasets. We follow Wang et al. (2024) and train the base models until their accuracy stabilizes
(in practice, we train all base models for 100 epochs). Depending on the experiment, we save checkpoints
differently. If only the converged weights are needed, we save 200 weights at every iteration past 100 epochs.
Otherwise, if we require intermediate weights, then we specify the number of saving epochs and the number
of weights to save in such an epoch. For instance, we may have 100 save epochs and 100 saves per epoch,
meaning that we save at every training epoch and save weights in the first 100 iterations of each epoch.

Model zoo. The model zoo used for meta-training in the model retrieval setting, was sourced from
(Schiirholt et al., 2022). As the base model, we employed their CNN-medium architecture, which consists of
three convolutional layers and contains 10,000-11,000 parameters, depending on the number of input channels.
We pre-trained these models as described above.

F.2 Variational autoencoder

The variational autoencoder follows the implementation of Soro et al. (2025), which employs a UNet
architecture for auto-encoding. In particular, given a set of model weights {M;}¥ | we first flatten the
weights to obtain vectors w; € R%. For the sake of uniformity, we always zero-pad vectors to d = max; d;.
Alternatively, we allow for layer-wise vectorization: set a chunk size ¢ which corresponds to the weight
dimension of a network layer. Then, zero-pad w; to be a multiple of ¢, say d. This allows us to partition into
k equal length vectors w; € R/*. Typically, larger models benefit from layer-wise vectorization.

Subsequently, we train a VAE to obtain an embedding of such vectors by optimizing the objective:

Lyvag(0, 9) = —Ezq(zjw)log po(w|2) + SD k1 (q4(2|w)||p(2))] (39)

where w is the vectorized weights, z is the embedding we are learning, and py, g4 are the reconstruction and
posterior distributions respectively. Moreover, we fix the prior p(z) to be a (0,1)-Gaussian and the weight is
set to be 8 = 107°. For layer-wise vectorization, we simply change the input dimensions to match the chunk
size. Upon decoding, we concatenate the chunks to re-form the weight vector.

31



Under review as submission to TMLR

As for training, the VAE was trained with the objective in equation 39. Moreover, following p-diff (Wang
et al., 2024), we add Gaussian noise to the input and latent vector, i.e. given noise factors o;, and o4 with
encoder f, and decoder fg, we have

z = fd)(w +§2n)a w = f@(Z + glat) where gzn ~ N(Ovo—zan)7 glat ~ N(OvJZQatI)~

A new VAE is trained at every instantiation of the NM-CFM model as architectures often differ in their
input dimension for different experiments. However, they are trained with different objectives: the VAE is
trained to minimize reconstruction loss. In all experiments, we fix o;, = 0.001 and o;,; = 0.01.

Algorithm 1 Sampling Trajectories from Weight Tensor

Require: Number of save epochs Ne¢pochs, savepoints per epoch S, classifier size D, tensor of classifier weights
X € RNepoens XSXD pumber of time samples K < Nepochs-
Ensure: Sampled tensor W € REXSxD
: Flatten X to shape [Nepochs - S, D] > Assumes first dim. sorted by training iteration.
Sample K - S indices I uniformly from [0, NepochsS)
Extract X[I] and reshape to W € REXS*D
if add_noise then
W+ W+e > e~ N(0,1073)
end if
return W

F.3 Generative meta-model

Multi-marginal flow matching. Multi-marginal flow matching (MMFM) proceeds in the same regression
paradigm as flow matching models, with the difference being the regression target is now Eqn. 38 (piece-wise
linear interpolation). In practice, z = (o, ...,z ), where we have K = 3,4, or 5, as evaluated in Table 1,
and the elements of z are sampled from p;, ® -+ ® p;, constituted by samples obtained from base model
pre-training App. F.1. Typically, we save a lot more checkpoints than needed, and so we need to subsample
them by Algorithm 1 to create the training dataset. For better training, we may also choose to sample
weight initializations, i.e. xg € z, for each batch. This can be done easily by using torch.nn.init to reset
parameters of a module to the desired initialization, e.g. Kaiming uniform. In fact, sampling the weight
initialization is all that is required for the validation step.

JKOnet*. The dataloading aspect of JKOnet training is exactly the same as MMFM, so we focus our
attention to the training regiment. Following Terpin et al. (2024), we may formally write our loss as

Z / IVVoe,t) + (2esr — 20 /AP dr (004 (40)
DXRD

Recalling the gradient descent formula, the time argument is not necessary for this loss, but we found it
to improve empirical performance. Moreover, the (-, ) distribution is traditionally an optimal coupling
of consecutive marginals py,,py,,,, however, we have a more natural choice: z; and z;y1 ought to be
checkpoints saved consecutively during pre-training. Indeed, we found this to be the superior choice in terms
of performance. Moreover, an important note is in order: since JKOnet* expects x; to evolve by a gradient
flow, this imposes a condition on how the checkpoints are obtained. We found that meta-training only works
if pre-training is done using the SGD optimizer. Modern optimizers such as Adam notably fails for
JKOnet*. We also connect this point to the footnote in Table 2: just because the weights evolve by a gradient
flow does nmot mean that the encoded weights behave the same way. Indeed, model retrieval in latent space
fails when we use JKOnet*. This suggests an avenue for further research: construct an autoencoder that
preserves gradient flow in latent space, where preferably the latent gradient flow can be deduced/estimated
from the original gradient steps.

32



Under review as submission to TMLR

Table 6: Model architectures and hyperparameters. The JKOnet model uses the same UNet as NM-CFM
and NM-MMFM, but with the up-sampling section replaced by pooling and linear layers.
Weight Encoder (UNet)

Architecture VAE
Latent Space Size 4x4x4
Upsampling/Downsampling Layers 5
Channel Multiplication (per Downsampling Layer) (1, 1, 2, 2, 2)
ResNet Blocks (per Layer) 2
KL-Divergence Weight le-5
NM-CFM and NM-MMFM Model (UNet)
Input Size w/ VAE 4x4x4
Input Size w/o VAE variable
Upsampling/Downsampling Layers 4
Channel Multiplication (per Downsampling Layer) (2, 2, 2, 2)
ResNet Blocks (per Layer) 2

Architecture. The neural network used for flow matching is the UNet from D2NWG (Soro et al., 2025).
The specific hyperparameters used for the CFM model varies between experiments, so we leave this discussion
to the next section. For experiments such as model retrieval where we require a conditioning vector, this is
implemented by concatenating a context feature vector (e.g. images are passed into a CLIP encoder (Radford
et al., 2021), and optionally an attention module if we have a set of context images) to the last dimension
(same axis as the neural network parameters); of course, we ignore these extra features after the forward pass.

F.4 Reward fine-tuning
Adjoint matching with o, = 1073.  We start in Domingo-Enrich et al. (2025, App. C.5). As we are using
NM-CFM, let Yy ~ pg and Y7 ~ p1, then we may write
v(z,t) =Kl Y1 + Yo | © = Y1 + 5 Y0)
& (z — BiYo)
Qg

& , G
= Lo+ (B — —LB)EYy | 2 = ar Y1 + BiYo),
Qg Qi

= E| + 6:Yo | & = Y1 + B Y] (41)

using the fact that Y7 = (x — 5:Yy)/az. On a practical note, we typically have oy = ¢, 8 =1 —¢. A central
piece of the theory consists of relating this vector field v with the score function s(x,t). We note that once
this relationship is established with o, then the rest of the adjoint matching derivation follows. The crucial
step is in writing the score function; following from Domingo-Enrich et al. (2025, Eqn. 92),

_ Elpir (#[Y1) Vlog pyys (2[Y1)] exp(—|lz — aMi[]*/267)

t) = h YY) = 42
s(z,t) (@) ,  where py;(z|Y7) (27 32)D/? (42)
It suffices to change py|;:
exp(—||z — a,Y1]|?/(204)?) T — o Yh
pt|1(I|Y1) = (27TO'752)D/2 = VIngt\l(xD/l) = - o_tg (43)

and combine with Eqn. 42 to obtain s(x,t) = —3E[Yy | # = 3:Yo + o, Y1]/0?. Further combining with Eqn.
41, we have the correspondence

. . . 2 B (v(z,t) — o
v(x,t) = Mo (atﬁt - Bt) U—ts(x,t) — s(x,t) = . - ) (44)
a aP )G (5 i)
Concluding, we may thus write the SDE that mirrors Domingo-Enrich et al. (2025, Eqn. 6):
dXt = b(Xt, t) dt + E(t) dBt

. . . 2 45
= [O‘tw +5(x,1) ((atm - &) %y e<t>2/2)] dt + €(t) dB;. )

Qi (677 /Bt

33



Under review as submission to TMLR

Algorithm 2 Deterministic adjoint matching for fine-tuning flow models

Require: Pre-trained FM velocity field v%*5¢, step size h, number of fine-tuning iterations N, trajectory
batch size M, dataset batch size m, initialized v/t = v?%%¢  cross-entropy loss L.
Ensure: Reward fine-tuned FM velocity field v/?.
1: fornel0,...,N —1] do

2: Sample M trajectories X = (X;)o<t<1 with an Euler solver with step size h and Xy ~ po.

3: {(zi,y:)}y ~D > Sample from classifier dataset
4: For each of the M trajectories, evaluate classifier on predicted weights

5: ((X1) = >0 L(NNETx, (%), yi)- > ¢(X7) is a vector of size M
6: ay_p = @y + hal Vx,v°%¢( Xy, 1), a1 = Vx, 0(X1) > Backward solve the lean adjoint ODE
7: Detach from computation graphs: X; = stopgrad(X;) and a, = stopgrad(a;).

80 Lanr(0) = Yyeqon1om 108 (X t) — (0P%5(X,, 1) — @) |2,

9: Compute VoL o) and optimize as usual.

10: end for

Deterministic in practice. The key quantity in adjoint matching is the memory-less schedule given as
e(t) = v/2n;, where reading from Eqn. 45, n; = (g—zﬁt ,Bt) . Plugging in oy = ¢, f =1 —t, we have

(t) = %2"3((1 1) = \/m — o, ﬁ

Following the suggestions in Domingo-Enrich et al. (2025 App. H), we add a small value h to both terms

in the denominator. In practice, this means that < 10, whereas o, = 1073. Looking at the adjoint

t(l D
matching algorithm, this clearly presents a problem of scale. We found in practice that a deterministic
variant, i.e. €(t) = 0 works well in our evaluations. To formulate this modified algorithm, note that our
primary objective is to optimize over the control u in dX; = (b(Xy,t) + e(t)u(X¢,t)) dt + €(t) dB;. The original
formulation includes the correction term to the drift, and defines v/*(x,t) as
1t ay
b(x,t) + e(t)u(x, t) = 20" (x, t) — —a.
Qi
We simplify by instead defining b(z,t) = v***¢(z,t) and v/t(x,t) = b(z,t) + u(z,t). Consequently, this
simplifies the adjoint ODE and the regression target, leading to Algorithm 2.

Multi-marginal adjoint matching. Since this paper touches upon multi-marginal flow matching in its
experiments, we think it natural to extend the adjoint matching computations to the multi-marginal setting.
In this section, we provide the derivations and leave experimentation to future work. Suppose we are given
z = (Yo,...,Yk) at times (to,...,tx) C [0,1], we first need to find an expression for a sampled point x
analagous to z = 5;Yy + a,Y1. Motivated by Eqn. 38, define

K—1
t—1t
r= > [(1= s + 58 Vial1p, 0 (1), where s = ——F (46)
P ter1 — Uk
Differentiating w.r.t. ¢, we indeed get u;(x|z) in Eqn. 38; moreover, to simplify notatoin, set r( ) =1 (k).
The key insight is that only one of the terms in Eqn. 46 is non-zero for any ¢ € [0, 1], therefore
Z 1 tk7tk+1 [ " )Yk + SE Yit1 | x}
(k)
— (k) (k)T =T Y
- ; l[tk,tk-+1)(t)E Tt Yk? + St T | (47)

() (k)
k 5 k

34



Under review as submission to TMLR

Like before, the key step is to relate the velocity v and the score function. Note that the backward conditional
probabilty is now

P 33| Z ]—[tk,tk_H pt|t+1(x|Yk+1) (48)
where again we use oy:
(k) 270 2 (k)
exp(—|lr — sy ' Yia1l||7/20 T — 8 Yii1
Pefe1 (@[Yis1) = Cl (%;z)p/g Fron) Viog pyji1(2|Yes1) = —;72+- (49)
t t

Since E, V are linear, we may move around the sum as we please. Therefore, analagous to the CFM case:

- sV
— = 3 | T

At this point, it is a matter of using the same trick as in Eqn. 47: there must be at most one k € [0, ..., K —1]
such that E[Y} | 2] = —o?2s(z, t)/r . Therefore,

s7 ot (8w
t) = Z 1[tk,tk+1)(t) ( ) x + (k) )Tt - rt S(Z‘, t)
k t

r(k)
Z 1[tk,tk+1 [Yk | x] (50)

| s
o i "
t) = Z l[tk,tk+1)(t) P . U(Iat) - mx
k o} (sfmrt( S )> 5t

Now recall that

dt (Xt7 ) — dXt = <’U(Xt,t) + 6(35(17,15)) dt"‘E(t) dBt

as given in Domingo-Enrich et al. (2025, Eqns. 3, 4). Let b(X;,t) denote the drift term in the SDE above.
Plugging in v and s from Eqn. 51, we find

k)

K1 of < i — 7"@)

e = Z 1[tk,t1€+1)(t) r(k) . (52)
t

Therefore, the memory-less noise schedule €(t) = /2n; yields

o(k)
S
b(X,,t) Zlm,tw [%(Xt,) fk)th

and by analogy we define the v¥* via a control function u:

K—

()
Sy
b( ) + 6 — 1 tk7tk+1) lQUft(x t) - (k)l“| : (53)

,_-

F.5 Practical considerations and scaling

Thus far, our method has been demonstrated on small CNN models (on the order of 10,000 parameters), and
a natural direction for future work is extending it to larger network architectures. For instance, the collection
of training trajectories, detailed in App. F.1, requires about 2 hours of base model training (NVIDIA A40
GPU) and 1 GB of storage per downstream dataset (e.g. CIFAR10). The meta-model itself comes to about
4M parameters with slight deviations caused by differences in base model size (e.g. MNIST classifiers are
slightly smaller than CIFAR10 classifiers); more generally, it scales linearly with the number of parameters of

35



Under review as submission to TMLR

the base model. The modular nature of our framework, however, provides multiple avenues for improving
scalability. One promising path is leveraging the growing number of publicly available model zoos for larger
architectures (Falk et al., 2025; Schiirholt et al., 2025), which would reduce both training time, and possibly
storage requirements if models can be streamed on demand. Another direction is the incorporation of
encoding schemes such as VAEs, which have proven critical in scaling weight-space learning to architectures
like ResNet-18 and Vision Transformers (Schiirholt et al., 2024; Wang et al., 2025). Furthermore, when only
weight embeddings are needed for training, storage costs can be further reduced by pre-computing and saving
embeddings directly, rather than full model weights.

G Further experiments

In this section, we explore in depth the design choices that

were made concerning the generative model. In particular, we

bring to light some upsides of flow matching over prior diffusion ———
methods (Soro et al., 2025), evaluate each approach’s ability e
to model weight trajectories, and examine the effects of weight 21 - m
space symmetry (Hecht-Nielsen, 1990; Chen et al., 1993).

Mock VAE Latent Space with Standard Normal Contours

°  Pdata

G.1 Parameter symmetries

In this section, we detail two methods for incorporating param-
eter symmetries into the modeling framework. As mentioned

in the main text, the symmetries we investigate involve permu- -1
tation (Hecht-Nielsen, 1990) and scaling (Chen et al., 1993) of
neurons in a neural network. We proceed with two approaches:  _,|

weight alignment and equivariant architectures.

Alignment to a reference. This approach involves choosing - -2 - 0 i : 3
a reference base model and aligning the permutation of the

layers of base models in the training and evaluation sets; we Figure 5: Mock visualization of VAE latent
use Git Re-Basin (Ainsworth et al., 2023) for this task. We space in D2NWG. Although the interpolant
perform few-step inference and trajectory modeling with this

) ) (dotted line connecting zp to z1) does not
setup, as shown in Table 7 and Figure 7.

follow the reference trajectory pg — p1 —
- = Pdata, the points on the line reside

MonomialNFN as a meta-model. In this section, we sub- (ithin the data manifold.

situte the UNet for the equivariant architecture MonomialNFN
(Tran et al., 2024), which accounts for both permutation and
scaling symmetries. The network design largely follows from
the designs in Zhou et al. (2023); Tran et al. (2024). We start with a Gaussian Fourier Transformation with a
mapping size of 16 and scale of 3. Then, we encode the features with a IOSinusoidalEncoding. The encoded
features are passed into 4 MonomialNFN layers, employing a residual connection, of hidden dimension 32.
Before every layer, we add a time-conditioned HyperNetwork (Sitzmann et al., 2020), similar to the time
embedding layers of the UNet architecture. Finally, a last MonomialNFN layer is used to reduce the channel
down to 1. We used a batch size of 32, and for optimization, we instantiate an AdamW optimizer with
learning rate 10~3 and weight decay 10~2 for 1000 epochs. As we have explored few-step inference and
trajectory modeling with layer alignment above, we focus on reward fine-tuning and evaluating the support
of classifier weights as done in App. H.4, as shown in Table 8.

G.2 Few-step inference

In this experiment, we wish to evaluate the inference capability of the generative meta-models under strained
conditions, in this case, one-step and two-step inference of CNN3 base models. To further distinguish the flow
matching framework, we also test NM-CFM with a Gaussian source distribution (as opposed to Kaiming
uniform). As comparison, we have the diffusion baseline from D2NWG (Soro et al., 2025).

36



Under review as submission to TMLR

Table 7: Mean validation accuracy over 10 runs of unconditional generation for CIFAR10 and MNIST using
just one or two inference steps. We include results where the NM-CFM source distribution is a standard

Gaussian, as well as training runs where we aligned the layers to a reference model. Best mean accuracies are
bolded, second-best underlined.

One-step Two-step
CIFAR10 MNIST CIFAR10 MNIST
D2NWG 51.36 £4.64 93.42+2.39 50.54+4.75 93.44+2.35
D2NWG-Aligned 55.47+5.06 95.944+0.80 55.23+5.24 95.96+0.81
NM-CFM w/ Gauss 26.72+5.81 50.83+13.71 47.46+10.99 88.60+21.9
NM-CFM-Aligned w/ Gauss  25.63+4.04 55.75+17.72 49.15+5.18 96.07 £ 3.02
NM-CFM 49.75+£3.07 96.64+1.06 62.98+0.47 98.11+0.19
NM-CFM-Aligned 57.18 +2.34 97.89+0.53 63.27+0.34 98.62 +0.04
CIFAR10 MNIST
S s S i ouss
—#- NM-CFM-gauss 40 ~&- NM-CFM-gauss
w & D2NWG

&~ D2NWG
& JKONet
&~ NM-MMFM
& NMCFM

&~ JKONet

& NM-MMFM
—&— NM-CFM

w
8

20

Wasserstein Distance x 100
Wasserstein Distance x 100

s

Index

CIFAR10

System

System

& NM-MMFM-gauss 12 &~ NM-MMFM-gauss
~&- D2NWG &~ D2NWG
&~ JKONet & JKONet
8 & NM-MMFM 10 & NM-MMFM

& NM-CFM &~ NM-CFM

Wasserstein Distance x 100
Wasserstein Distance x 100
By

Figure 6: Mean Wasserstein-1 distance (x100) between reference and generated intermediate marginals over

5 seeds of unconditional generation. We also provide plots excluding NM-CFM w/ Gauss due to its deviation
from the rest.

Table 7 shows that NAM-CFM mostly outperforms D2NWG in the standard and aligned settings (see below
for description). Moreover, we see a clear advantage when using Kaiming uniform (the weight initialization
used during base model pre-training) over the standard Gaussian. Concerning parameter symmetries, Table 7
shows considerable improvements, especially on CIFAR10 tests, indicating that alignment helps in compute-
constrained environments. The disparity between source distributions for the NM-CFM approach can be
explained by the distance between the Gaussian and trained weights distribution (see index 0 of the bottom
row plots in Figure 6). In contrast, the VAE loss includes a KL divergence term which regularizes the latent
space towards a standard Gaussian (Eqn. 39).

37



Under review as submission to TMLR

CIFAR10 MNIST
7

System

System
&~ D2NWG-align 12

&~ D2NWG-align

& JKONet-align %~ JKONet-align
6 &~ NM-MMFM-align & NM-MMFM-align
- D2NWG

—$- D2NWG
~$— JKONet
- NM-MMFM

~&— JKONet
& NM-MMFM

Wasserstein Distance x 100
Wasserstein Distance x 100
o

CIFAR10 CIFAR10

System 10
—& D2NWG-align &~ D2NWG-align
&~ NM-MMFM-align-gauss &~ NM-MMFM-align-gauss
& NM-MMFM-gauss & NM-MMFM-gauss
—&- D2NWG - D2NWG
8

System

Wasserstein Distance x 100
Wasserstein Distance x 100

°
~

3 3
Index Index

Figure 7: Mean Wasserstein-1 distance (x100) between reference and generated intermediate marginals
over 5 seeds of unconditional generation, excluding NM-CFM results, illustrating the effect of permutation

alignment on the training and validation data. Due to the high W; distances resulting from NM-CFM, we
exclude them in the comparison.

G.3 Trajectory modeling

In this experiment, we evaluate the ability of different approaches to model the weight trajectory. As decided
in Section 5, we used NM-MMFM(3) and NM-JKO(4) as representatives for this method. Moreover, in the
interest of fairness, we divide the trajectory into 5 buckets, and so the MMFM and JKO methods would need
to interpolate between training distributions. Once again, our baseline is D2NWG where the VAE is trained
on full trajectory weights at each batch iteration. See Figure 6 for results.

Interestingly, we find that the Wj-distance of the generated trajectory to be consistently lower in D2NWG vs.
NM-CFM, but both methods lag behind MMFM and JKO which explicitly models the weight trajectory.
We suspect the D2NWG performance is because of the latent space which is trained to encode trajectory
data. Thus, even if the interpolated weights do not follow the expected trajectory, it still lands on the data
manifold; see Figure 5. Concerning parameter symmetries, Figure 7 shows a more modest improvement in
the intermediate indices, e.g. indices 1-3, where D2NWG improves significantly, but happens to degrade in
later indices, crucially where downstream evaluation takes place. We hypothesize that the improvement for
D2NWG arises due to autoencoder underfitting. Indeed, the autoencoder only take parameters as input
and is trained to reconstruct it, however, the NM-CFM models take in an extra time parameter that helps
distinguish between the different parameter distributions.

G.4 Reward fine-tuning: support of classifier weights

We first note that for symmetry to hold, we had to remove the MaxPool2d layers that were previously included
in the CNN architecture, hence the different validation accuracy. This can be seen as a downside of current
equivariant architectures.

38



Under review as submission to TMLR

Intuitively, if we equate data in the same equivalence class, then the effective support of classifier weights
ought to expand, thus improving generalization to prediction on corrupted data. This intuition turns out
to be false, as seen in Table 8. It shows that the new architecture in fact degrades the validation accuracy,
which is most evident in the Corruption Level 2 column. We hypothesize this is because the members of the
equivalence class are separated by a considerable distance and they do not correspond to meaningful regions
of weight space that influence generalization on corrupted datasets. Empirically, this reinforces the findings
of a recent work (Zeng et al., 2025). Moreover, when using equivariant architectures, we forgo the basic
Gaussian noise augmentation, which may be more beneficial for slight corruption in downstream task data.

Table 8: Mean validation accuracy over five generated classifiers after reward fine-tuning on increasingly
corrupted datasets. The -MoNFN suffix indicates that network made use of the MonomialNFN (Tran et al.,
2024) architecture instead of the UNet. The arrow ’—’ indicates the accuracy before (left) and after (right)
reward fine-tuning.

CIFARI10
Corruption Level 0 1 2
SGD fine-tuning 55.68 — 55.96 52.47 — 54.00 19.79 — 42.54

NM-CFM-GaussAug 54.52+0.56 — 54.65+0.57 51.624+0.56 — 52.43 +£0.72 19.45+1.06 — 30.06 £ 0.80
NM-CFM-MoNFN 54.09+£0.73 — 54.17+1.70 50.94+2.02 — 51.50£1.01 19.76 +£1.62 — 27.03 £ 1.65

MNIST
Corruption Level 0 1 2
SGD fine-tuning 92.55 — 93.65 86.92 — 91.19 9.51 — 87.64

NM-CFM-GaussAug 92.63+0.18 — 92.65+0.18 86.224+0.73 — 88.74+0.29 9.51 £0.01 — 30.36 +5.78
NM-CFM-MoNFN 92.06 £0.33 — 92.23+3.48 83.524+2.05 — 85.61£5.58 9.51+0.00 — 18.09 +2.52

G.5 Discussion
G.5.1 Failure cases

In this section, we note specific failure cases and discuss possible explanations.

Gaussian NM-JKO. In prior experiments, we also attempted to use the Gaussian distribution as the
source distribution in the NM-JKO approach, but we observed failure (i.e. validation accuracy no better
than chance) in all trials. We suspect this has to do with JKOnet’s sensitivity to changes in scale given that
the model output is simply a scalar value. Indeed, since the standard deviation and norm of parameters
distributed by a Gaussian is considerably higher (about 10 — 100x) than the initialization (Kaiming uniform)
or the converged weights, JKOnet would need to effectuate a large gradient V,V (x,t) at small times ¢, and
suddenly transition to small adjustments after the first intermediate distribution (for NM-JKO(4) this would
be t = 0.2).

Stochasticity levels. When employing NM-CFM on a latent space created by a VAE, we observe good
performance with a standard deviation o = 0.1 when sampling the interpolant x; ~ py(z|xo,z1). However,
this fails completely when applied to the raw weight space, where we instead set ¢ = 1073. This clearly
indicates that to generate performant base models, the parameters cannot deviate by much from the converged
parameters (at least for the CNN architecture).

Diffusion models on weight space. We also attempted to use the diffusion model from D2NWG directly
on weight space (i.e. D2NWG without the VAE component). We observe some decrease in the loss but found
it to be at least an order of magnitude higher than the NM-CFM loss and the validation accuracy did not
exceed 20%. We hypothesize that this relates to the issue of stochasticity discussed above. With NM-CFM,
one has greater control over the level of stochasticity as opposed to a diffusion model. Indeed, the forward
process of diffusion requires noising towards a Gaussian distribution and so there is a clear tradeoff when
we decrease the beta noise schedule (5;)¢cjo,7): if B¢ is made small for a greater number of timesteps, then

39



Under review as submission to TMLR

the forward process will not reach a proper Gaussian distribution. Consequently, this adversely affects the
reverse (inference) process as the model will have a poor understanding of the source distribution.

G.5.2 Conclusion

From these results, several key observations emerge. First, given that diffusion models fail when applied
directly in weight space—and considering the results in Table 7—we see clear advantages in end-generation
precision when using an FM model over prior diffusion-based approaches. In particular, the ability to control
the level of stochasticity appears important for achieving high base-model validation accuracy (see failure
cases above). Second, the flexibility in choosing the source distribution also substantially affects the accuracy
with which weight-space trajectories are modeled, as illustrated in Figure 6. This further supports the use
of (MM)FM, which can accurately model weight-space data without requiring an autoencoder. Lastly, we
observe that although layer alignment of permutation states helps simplify the training distribution resulting
in easier training (see Table 7 and Figure 7), in the usual case of inference, where we use 100 steps instead of
1 or 2, and when modeling weight trajectory, the improvements are quite modest as our current architecture
has the capacity to fit the training data well. In fact, when we move on to using equivariant architectures, we
find that in the case of reward fine-tuning, this degrades downstream performance.

Table 9: Best validation accuracy of unconditional NM generation for various datasets. orig denotes base
models trained conventionally by SGD and p-diff those generated with p-diff (Wang et al., 2024). We focus
on generating just the batch norm parameters.

Base Models

CIFAR100

CIFAR10

MNIST

STL10

orig.

NM  p-diff.

orig.

NM  p-diff.

orig. NM p-diff

orig. NM p-diff

ResNet-18
ViT-base

71.45 71.42 71.40
85.95 85.86 85.85
85.06 85.12 85.17

94.54 94.36 94.36
98.20 98.11 98.12
98.03 97.89 97.90

99.68 99.65 99.65
99.41 99.38 99.36
99.42 99.41 99.40

62.00 62.00 62.24
96.15 95.77 95.80
95.95 95.63 95.63

ConvNext-tiny

H Experimental details and further results

In this section, we provide further experimental details such as hyperparameters and computation times,
alongside some extra results.

H.1 Unconditional generation

Unconditional generation involves two stages: first is the training of base models. We choose a Resnet18,
ViT-B, ConvNext-tiny, and CNN3 for our base models and provide the training parameters in Table 10. Next,
we train the generative meta-model; Table 11 lists the training settings. We found that in most cases, the
autoencoder and NM-CFM converge after 1000 epochs. One should note that when using Kaiming uniform
for the source py, it is also necessary to train the autoencoder on this distribution. On a NVIDIA A40 card,
we estimate training time to be around 2 hours when the VAE is used. Un-encoded training generally takes
double that time. Inference requires less than 1 minute to complete for both encoded and un-encoded runs,
and it takes a few seconds to go through the validation set to compute the classification accuracy. Notably,
the JKO runs were about 2x as fast since the model output is a scalar. This means we can compress
inputs through the downsampling layers of the UNet, leading to a smaller parameter count. Extra results are
presented in Table 9.

Remark on generating batch norm parameters. In order to reduce the target parameter count, we
restrict ourselves to the batch norm parameters for larger architectures as in Table 9. We train base models
in the same way as App. F.1 suggests, but for training we only save state_dict tensors with bn in the key.
The rest of the model is saved for evaluation: after generating batch norm parameters, we impute these
parameters back into the trained base models and validate as usual.

40



Under review as submission to TMLR

Table 10: Task training settings. Note that only CNN3 was evaluated for MMFM and JKOnet experiments,
so it’s the only model type with non-zero Num. of save epochs and Savepoints per epoch.

Model Type ResNet18 ViT & ConvNext CNN
Optimizer SGD AdamW SGD
Initial training LR 0.1 1x 104 0.1
Training scheduler MultiStepLR  CosineAnnealingLR MultiStepLR
Layer params. saved Last 2 BN layers Last 2 BN layers All layers
Num. of save epochs 0 0 100
Savepoints per epoch 0 0 100
Num. final weights saved 200 200 200
Saved parameter count 2048 3072 [10565, 12743]
Training epochs 100 100 100
Batch Size 64 128 128
Support Set Query Image

Conditioning

Encoded
data

e

3 7.

p(o|—=

Figure 8: A schematic of the training process of NM-CFM w/ VAE for conditional generation. Given a set of
pre-trained target weights and a support set of images, we apply the conditioned flow model to pushforward
a sample of the latent prior towards encoded target weights. The decoder is used during inference where we
start from a sample of the latent prior and pushforward towards the target distribution with a trained vector
field vy (-, t; y) where y is the support set embedding.

H.2 Model retrieval

For each dataset, we first sample 30 images as representatives, and then pre-compute its CLIP (Radford
et al., 2021) embeddings. We then have a choice of how to aggregate the 30 embeddings. In our case, we use
a light multi-head attention module and a linear layer to compress the context into a vector. Generally, we
maintain the feature dimension—the version of CLIP we use returns a 768-dimensional vector. To condition
the flow/diffusion model with this context, we concatenate to the channel dimension if we are using a VAE,
or to the last dimension otherwise. One should note that the number of parameters differ between datasets;
for instance, the three-channel datasets have slightly more parameters than their one-channel counterparts.
Hence, we apply a simple zero-padding to standardize the input dimension. On a NVIDIA A40 card, we
estimate a training time of 2 hours for the VAE and 3 hours for the CFM to achieve our level of accuracy (w/
VAE) and about 5 hours un-encoded. Inference times remain the same as in unconditional generation.

H.3 Downstream initialization

In this evaluation, we obtain weights from model retrieval (albeit trained with weights before convergence),
and fine-tune on their corresponding dataset, i.e. if we retrieve an MNIST classifier, we fine-tune on MNIST
and K/I—N\IST Fine-tuning is done conventionally with the task training settings in Table 10. The corruption
of datasets is done by applying the following transformations: random horizontal flip, random rotation (max
15 deg), color jittering, Gaussian blur (kernel size of 3, o € [0.1,2.0]).

41



Under review as submission to TMLR

Table 11: Training settings for modules in the unconditional generation experiment. The number of JKOnet
inference steps depends on the number of intermediate marginal distributions we are modeling.

Model Type Autoencoder CFM w/ AE MMFM JKOnet
Optimizer AdamW AdamW AdamW AdamW
(LR, weight decay)  (le-4, 2e-6) (le-4, 2e-6) (3e-4, 2¢-6) (5e-3, 2¢-6)
Num. inference steps n/a 100 100 variable
Weight initialization n/a Kaiming uniform Kaiming uniform Kaiming uniform
Epochs 500 1000 1000 1000
Batch size 64 64 64 64

H.4 Reward fine-tuning

Training settings. For the corresponding experiments, we used an AdamW optimizer with learning rate
2 x 1075 and weight decay 5 x 10™*. We use a trajectory batch size of 8 (denoted M in Algorithm 2) and a
dataset batch size m = 128/512 depending on the dataset. We also clip gradients at norm 1.0 and set the
number of fine-tuning iterations to 150. We use a cosine annealing scheduler with 7,,;, = 1075, The step size
was set to h = 0.025, meaning our trajectory consists of 40 timesteps. As suggested in Domingo-Enrich et al.
(2025, App. H), we only evaluated gradients at 20 out of 40 timesteps: 10 of the last timesteps and a uniform
sample of 10 from the first 30 timesteps.

Training tricks. We also introduce a few tricks. First, Algorithm 2 suggests that we must take a fine-tuning
step every time we sample a dataset batch. We instead opt to average the starting lean adjoint a; over 3
batch samples; we found this to result in more stable training losses. In fact, this is all the iterations done
per epoch, so if N = 150, we only have 450 batch iterations total. Moreover, as a; is the gradient of a
classifier loss, we experimented with treating it like a stochastic gradient descent step, which means including
a learning rate, momentum, and weight decay parameter. To clarify, this involves saving the a; values from
previous training iterations. It does not seem to help much, other than the learning rate. We set the reward
learning rate to 1.5 and momentum to 0.01.

Padding regularization. Another trick specific to NM-CFM-AIl is to use padding regularization. As
mentioned in the model retrieval section, zero-padding is applied to standardize the input dimension given the
variability between dataset classifiers. This trick indexes the padded elements in the input tensor and adds
its £o-norm to the loss, thus coercing it towards zero. Notably, this is an implicit method of conditioning on
the dataset. For example, if we are regularizing more elements of the input, that suggests we are classifying
on a one-channel dataset since these classifiers require more padding.

Weight augmentation. In our experiments, we also tried augmenting the network weight data acquired
from pre-training in an attempt to expand supp p;. This is done by simple Gaussian noise (o = 5 x 1073),
dropout (p = 0.02), and mix-up. Recall that mix-up involves sampling a data pair (w1, ws) and an interpolation
parameter a ~ Uniform|0, 1], and returning an interpolation (1 — a)wy + aws.

Corruption levels. As part of our experiments to get a sense of the width of classifier supports, we applied
increasing corruption to the base datasets. The transformations are as follows:

1. Level 1: random horizontal flip, random rotation (max 15 deg).
2. Level 2: Level 1 + color jittering, and Gaussian blur (kernel size of 3 and o € [0.1,2.0]).

3. Level 3: Level 2 + random erasing with p = 0.5, scale in [0.2, 0.5], and ratio in [0.3, 3.3].

Support of classifier weights. To get a sense of how the weight distributions change as the dataset
changes, see Table 12. In this experiment, we reward fine-tuned the NM-CFM meta-model on increasingly
corrupted versions of the base training dataset. The affect of the corruption is noticeable on the support as
reward fine-tuning, which is constrained within the support set, fails to reach the accuracy of conventional

42



Under review as submission to TMLR

Table 12: Mean validation accuracy over five generated classifiers after reward fine-tuning on increasingly
corrupted datasets. The -All suffix indicates that the CFM was trained on classifiers of CIFAR10, STL10,
MNIST, and FMNIST, whereas +A indicates weight augmentation, and +P indicates regularization on
padded values. The arrow '—’ indicates the accuracy before (left) and after (right) reward fine-tuning.

CIFARI10
Corruption Level 0 1 2
SGD fine-tuning 63.38 — 63.38 59.93 — 60.91 24.18 — 49.90

NM-CFM
NM-CFM-All
NM-CFM-All+A
NM-CFM-AI+-P
NM-CFM-All+A+P

62.53 £0.02 — 63.33+0.08
28.92+11.19 — 61.90 £0.22
45.07 £15.64 — 56.24 £1.65
50.18 +18.49 — 60.29 £ 0.62
39.25+17.68 — 58.85+1.33

58.65+£0.22 — 60.34 +£0.76
23.57+16.43 — 57.65+0.91
37.563+£15.16 — 55.99+1.17
51.36 £14.51 — 56.64+1.14
41.59 £15.05 — 55.91+1.79

24.84+0.93 — 34.15+0.74
22.72+1.56 — 34.59£1.88
19.89+4.11 — 32.44+£1.73
21.84+3.69 — 33.97+1.23
19.21 +£3.30 — 33.79 +2.00

MNIST
Corruption Level 0 1 2
SGD fine-tuning 98.93 — 98.93 96.58 — 97.78 18.8 — 97.55

NM-CFM
NM-CFM-All
NM-CFM-AII4+-A
NM-CFM-AI4-P
NM-CFM-All+A+P

98.52 £0.01 — 98.794+0.04
60.77 +27.58 — 97.56 £ 1.20
37.67+£37.07 — 95.84+0.53
30.28 +33.54 — 95.72 £ 1.03
27.57 £34.27 — 95.88+0.35

95.87+£0.01 — 97.01 +£2.27
35.74+£27.14 — 59.324+27.88
49.42 +£37.93 — 92.50 £8.99
49.24 £38.96 — 94.65+0.41
58.32 £38.92 — 94.59+0.30

15.68 £0.17 — 91.21 +3.05
26.68 +22.11 — 65.40 £+ 34.17
11.14 +4.65 — 35.32 £28.25
28.54 +24.07 — 78.87 £21.20

12.68 £6.16 — 88.64 £ 3.92

Table 13: Mean validation accuracy over five generated classifiers after reward fine-tuning on four datasets.
The -All suffix indicates that the CFM was trained on classifiers of CIFAR10, STL10, MNIST, and FMNIST,
whereas +A indicates weight augmentation, and +P indicates regularization on padded values. The arrow
'—’ indicates the accuracy before (left) and after (right) reward fine-tuning.

CIFARI10 STL10 MNIST FMNIST

NM-CFM-All
NM-CFM-All4+A
NM-CFM-Al+P
NM-CFM-All+A+P

28.924+11.19 — 61.90+£0.22 42.21 +£11.68 — 52.63 +0.14 60.77 £27.58 — 97.56 +1.20 43.12 £+ 34.22 — 88.49 +1.09
45.07+15.64 — 56.24 +£1.65 27.21 +11.44 — 50.66 +1.71 37.67 +£37.07 — 95.84+£0.53 55.49 +33.85 — 85.65 +2.76
50.18 +£18.49 — 60.29 £0.62 22.05+6.32 — 52.11+£0.36 30.28 +33.54 — 95.72+1.03 32.07+£29.62 — 86.93 +1.97
39.254+17.68 — 58.85+1.33 21.27+£5.06 — 50.49 £0.77 27.57 +34.27 — 95.88 +0.35 46.20 +34.08 — 84.21 +5.30

fine-tuning. This holds true even for mild corruption schemes, suggesting the ideal classifier support on the
corrupted set has little intersection with the original support, indicating narrowness of the set. To see that
different classifiers have mostly disjoint supports, we try expanding supp p?**® by training on classifiers for
different datasets. To verify this, we trained a new NM-CFM model on classifiers for different datasets without
any context conditioning. Since the fine-tuned target distribution ought to classify only one dataset, the hope
is for fine-tuning to redirect the velocity field towards this one classifier distribution. This intuition turns
out to be insufficient, as shown by the NM-CFM-AIl rows in the table, further supporting our hypothesis.
Moreover, this result holds with weight augmentations. The results also suggest that context conditioning is
necessary for consistent validation accuracies, as convincingly shown in the MNIST case. Indeed, the padding
regularization is an implicit form of context conditioning as the MNIST classifiers—expecting one-channel
images—are slightly smaller than the 3-channel dataset classifiers. Further reinforcing our hypothesis, we
also provide results of a NM-CFM model trained on all four datasets fine-tuned to generate classifiers for
each in Table 13.

Computation times. On a NVIDIA A40 GPU, one full training run takes about 2 and a half hours.
During evaluation, we sample generated weights 5 times and validate on the test dataset; this test completes
in under 5 minutes.

43



Under review as submission to TMLR

Table 14: True positive rate at the 5% significance level (TPR@5) and area under receiver operating
characteristic curve (AUROC) for detection of harmful covariate shift on CIFAR10.1 and Camelyonl7. We
test on both the disagreement rate (DAR) and the entropy, setting A = £/(|Q| 4 1). The best result for each
column and our method are bolded.

TPRQ5 CIFARI10 Camelyon

Q| 10 20 50 10 20 50
Detectron (DAR), k =1 0 0 0 0 .10+.10 0
Detectron (DAR), k match 0 0 0 30+.15 .20+.13 .50 +.17
Meta-detectron (DAR) 33+.13  47+.13 .27+.12 .80+.11 .40+.13 .42+.15
Detectron (Entropy), x = 1 .60+.17 .40+.16 .504+.17 0 0 0
Detectron (Entropy), x match ~ .50+.17 .104+.10 .204+.13 .104.10 0 0
Meta-detectron (Entropy) .274+.12 .93+.07 .93 +.07 0 0 274+ .12
AUROC CIFAR10 Camelyon

Q| 10 20 50 10 20 50
Detectron (DAR), k =1 0.515 0.595 0.485 0.590 0.595 0.795
Detectron (DAR), k match 0.495 0.485 0.560 0.690 0.795 0.935
Meta-detectron (DAR) 0.849 0.838 0.938 0.900 0.760 0.806
Detectron (Entropy), x =1 0.740 0.695 0.850 0.345 0.610 0.720

Detectron (Entropy), x match 0.735 0.730 0.820 0.510 0.455 0.600
Meta-detectron (Entropy) 0.716 0.987 0.996 0.747 0.836 0.847

Table 15: In-distribution validation accuracy before and after reward fine-tuning.

CIFAR10
Q| 10 20 50

Meta-detectron (P*) 61.81+£0.17 — 61.014+0.14 60.97 £0.16 — 60.494+0.25 60.64 £0.19 — 60.32 £ 0.30
Meta-detectron (Q)  60.8440.27 — 60.854+0.27 61.614+0.30 — 61.114+0.13 60.90+0.15 — 61.154+0.28

Camelyon
Q| 10 20 50

Meta-detectron (P*) 92.7540.24 — 91.384+0.72 92.8440.21 — 91.714+0.59 92.634+0.15 — 92.39 4+0.22
Meta-detectron (Q)  92.85+£0.27 — 92.47+0.21 92.60£0.19 — 92.444+0.34 93.03 £0.18 — 92.70 £0.42

H.5 Detecting harmful covariate shifts

Training. The only settings that were changed from reward fine-tuning is the learning rate, which is
now 1.5 x 107° and the number of fine-tuning epochs N = 100. The computation time varies between
CIFARI10 and Camelyon17. The former completes in 2 hours, whereas the latter requires 3 and a half hours.
The difference stems from the higher image resolution of Camelyon17, resulting in more parameters in the
classifier.

Choosing A. Following the exposition in Ginsberg et al. (2023), the choice of A can be motivated by a
counting argument. We suppose that agreeing with the base classifier on a sample of P incurs a reward of 1
and disagreeing on a sample of Q incurs a reward of A. Originally, to encourage agreement of P as the primary
objective, A is set so that the reward obtained from disagreeing on all samples of Q is less than agreeing on
just one sample of P, i.e. A|Q| < 1, giving A = IQI% However, this argument can be generalized slightly. As
reward fine-tuning is a more conservative approach, we want to increase the reward for disagreeing on Q. For
instance, we may want the reward obtained from disagreeing on all samples of Q to be about the same as
agreeing on x > 0 samples of P. This gives A = /(|Q| + 1) as the £4.. weight.

Choosing k. We tried k = 1,3,6,9,|Q| + 1 for Camelyonl7 and « = 1, 32,40, 50, |Q| 4+ 1 for CIFAR. We
ran two experiments with different weight settings. In our fixed run, seen in Tables 14 and 15, we used k = 4
for Camelyonl7 and k = 32 for CIFAR10. The reason for the lower x values for Camelyonl7 stems from
the number of classes: recall that Camelyonl7 is requires a binary classifier, whereas there are 10 classes

44



Under review as submission to TMLR

in the CIFAR10 dataset. The dataset batch size also matters: we used a batch size of 128 for Camelyon17
(as the images are larger) and 512 for CIFAR10. In the run where we varied k over the sample size |Q|, we
started at a reference point: xk = 32 for CIFAR10 at |Q| = 20 and scaled naturally, i.e. x = 16 when |Q| = 10
and k = 80 when |Q| = 50. Likewise, we used the reference k = 4 for Camelyonl7 at |Q| = 20 and scaled
accordingly.

Shift detection test. We used a standard two-sample test identical to Ginsberg et al. (2023). Given the
original P and the unknown Q, we would like to rule out the null hypothesis P = Q at the 5% significance
level by comparing two statistics: entropy and the disagreement rate. The definition of entropy we use
measures uncertainty over classes in the logits.

N
Entropy(z) = Zﬁc log p. where p =

c=1

(@) + 9(a) -
2

where f is our base classifier and g is the generated classifier. In contrast to Detectron, we do not use CDC
ensembles in our method. We use a Kolmogorov-Smirnov test to compute the p-value for covariate shift on
the entropy distributions, comparing gp- and gq. Intuitively, when Q is out-of-distribution, the generated
classifier predicts with high entropy on Q and low on P*.

Regarding the disagreement rate, the null hypothesis is represented by E[¢q] < E[¢p+] where ¢ is the
disagreement rate and expectation is taken over trial seeds. This comes from the idea that its easier to learn
to reject from a distribution that is not in the training set (since the base classifier f will also be unsure). The
test result is considered significant at a% when ¢q is greater than the (1 — ) quantile of ¢p~. In practice
a = 5%.

Further results. See Tables 14 and 15 for the results when « is fixed. We also show more plots in Figures
9 and 10.

45



Under review as submission to TMLR

—— DAR AUROC — Praainloss [45 — DAR AUROC — Pirainloss | o
—— Entropy AUROC Qtrain loss — Entropy AUROC Q train loss
10 20 10
2.0
08 35 08
o 8 o 158
206 3 304 o6 2
H £ S <
2 g £ g
£ [
25 10
0.4 s 04
20 0s
02 02
T
15 }
0.0 0.0 00
[ 50 100 150 200 250 0 50 100 150 200 250
Batch Iteration Batch Iteration
18
—— DAR AUROC — Ptrain loss — DARAUROC — Ptrain loss
— Entropy AUROC Qtrain loss [ *© — Entropy AUROC Qurainloss | |
10 10
35 14
08 08 }
12
30y 2
g 4 g g
g o6 < €06 - o2
E £ E s
2 £ = £
25 08
0.4 04
06
2.0
0.2 0.2 —\‘-\ 0.4
15 - 02
0.0 0.0
[ 50 100 150 200 250 0 50 100 200 250
Batch Iteration Batch Iteration
—— DAR AUROC — Prainloss |, o — DARAUROC — Ptrain loss
—— Entropy AUROC Q train loss —— Entropy AUROC Qtrainloss [ 1.4
1.0 3 1.0
4.0 | 12
08 b 08
35 10
8 3 3 g
2os < 2o s s
2 / 308 2 8 8
0.4 N 04
/ 25 0.6
02 02 04
20 _—
0.0 0.0 0.2
[ 50 100 150 200 250 [ 50 100 150 200 250

Batch lteration

Batch Iteration

Figure 9: Plots illustrating how AUROC and /4. evolves over reward fine-tuning iterations for CIFAR10 and
Camelyonl7 when |Q| = 10, 20, 50 for varying k ordered from top to bottom.

46



Under review as submission to TMLR

Figure 10: Plots illustrating how AUROC and #.4. evolves over reward fine-tuning iterations for CIFAR10

0.8

0.2

0.0

4.
—— DAR AUROC —— P train loss s
—— Entropy AUROC ~~ Qtrain loss
/\6(\1/\ 4.0
\/ \//\’ .
W 303
g
25
\ 2.0
15
50 1 150 200 250
Batch Iteration
— DAR AUROC —— P train loss
— Entropy AUROC ~—— Qurainloss [ 40
\Y \/ \/ 2oy
S
\ 2.0
15
50 1 150 200 250
Batch lteration
—— DAR AUROC —— Ptrain loss
— Entropy AUROC ~— Qtrainloss 4.0
/< \/\ N~ s
Y/ v 3
3
=
X 257
[—
2.0
- - 15

Batch lteration

150 200

—— DAR AUROC —— P train loss
—— Entropy AUROC ~~— Qtrain loss
§ % V
0.8
- \[ v \/
E
0.4 V
— —
0.0
50 1 150 200 250
Batch Iteration
—— DAR AUROC —— P train loss
—— Entropy AUROC ~~— Qtrain loss 1
) \/\ /7
0.8 A /
x 0.6
NV
E V / VN
) /><
0.2 -
0.0
50 1 150 200 250
Batch Iteration
—— DAR AUROC —— P train loss
—— Entropy AUROC ~~ Qtrain loss
1.0

A\

A\

A%

08
8 /
g 0s
]
2

Y

SN
\'\{

0 150 24
Batch Iteration

and Camelyonl7 when |Q| = 10, 20, 50 for fized x ordered from top to bottom.

Figure 11: Samples of P* (top) and Q (bottom) from the CIFAR10 (left) and Camelyon17 (right) evaluation

of Meta-Detectron.

Train Loss

Train Loss

3
8
Train Loss



	Introduction
	Preliminaries
	Modeling Weight Trajectories
	The continuity equation on neural network parameters
	Approximating Eqn. 3
	The action gap
	Approximating Eqn. 3 in practice
	Learned proxy matching


	Methods
	Architectural modules
	Detecting harmful covariate shifts

	Experiments
	Generative modeling desiderata
	Reward fine-tuning
	Detecting harmful covariate shifts

	Related work
	Conclusion, Limitations, and Future Work
	Further Theory
	Proof of Theorem 1
	Proofs of Sec. 3.2.2
	Extended Sec. 3.2.3

	Remark on weight initialization
	Related works
	Stochastic formulation of weight evolution
	Setup
	Solution with known SB matching methods

	Interpolating paths
	Implementation details
	Pre-trained model acquisition
	Variational autoencoder
	Generative meta-model
	Reward fine-tuning
	Practical considerations and scaling

	Further experiments
	Parameter symmetries
	Few-step inference
	Trajectory modeling
	Reward fine-tuning: support of classifier weights
	Discussion
	Failure cases
	Conclusion


	Experimental details and further results
	Unconditional generation
	Model retrieval
	Downstream initialization
	Reward fine-tuning
	Detecting harmful covariate shifts


