TreeGen: A Bayesian Generative Model for
Hierarchies

Marcel Kollovieh'>? Nils Fleischmann* Filippo Guerranti'->3

Bertrand Charpentier* Stephan Giinnemann'->3*

! School of Computation, Information and Technology, Technical University of Munich
2 Munich Data Science Institute * Munich Center for Machine Learning * Pruna Al

Correspondence to: m.kollovieh@tum.de

Abstract

In this work, we introduce TreeGen, a novel generative framework modeling
distributions over hierarchies. We extend Bayesian Flow Networks (BFNs) to
enable transitions between probabilistic and discrete hierarchies parametrized via
categorical distributions. Our proposed scheduler provides smooth and consistent
entropy decay across varying numbers of categories. We empirically evaluate
TreeGen on the jet-clustering task in high-energy physics, demonstrating that it
consistently generates valid trees that adhere to physical constraints and closely
align with ground-truth log-likelihoods. Finally, by comparing TreeGen’s samples
to the exact posterior distribution and performing likelihood maximization via
rejection sampling, we demonstrate that TreeGen outperforms various baselines.

1 Introduction

Hierarchies are central to representing complex relationships across diverse domains. Consequently,
hierarchical clustering algorithms are core components in well-established machine libraries such
as scikit-learn [36], and find applications in a wide range of fields, spanning from phylogenetics
and particle physics to web and citation network analysis. In phylogenetics, for example, clustering
algorithms group organisms or genetic sequences based on similarity, helping to infer evolutionary
relationships [18]. Further, real-world systems, from neural representation [22] to citation networks
and web graphs [37] often exhibit hierarchical organization. Importantly, in high-energy physics,
agglomerative linkage algorithms are indispensable for jet clustering and provide insights into the
substructure of particle collisions [7].

Traditional hierarchical clustering algorithms operate primarily in an unsupervised setting. Agglomer-
ative methods greedily merge clusters with the shortest distance until only a single root remains [21].
Divisive algorithms work in a top-down approach and start with all points in a single cluster and
iteratively split them into smaller groups [43, 14]. More recent methods optimize global cost functions
via continuous relaxations, yet the setting remains unsupervised [11, 34, 9, 48, 30]. This is sensible
in many applications, as ground truth hierarchies are often unavailable for supervised training.

Jet clustering in high-energy physics is a prime example where supervised simulations are available,
yet traditional algorithms remain unsupervised. In particle accelerators, high-energy collisions
produce unstable particles that successively decay and split into more particles. This resulting spray
of particles, also known as a jet, is detected by particle detectors. The task in jet clustering is to
reconstruct the latent hierarchy that describes the splitting process from the observed constituents, i.e.,
leaves of the hierarchy [33]. Simulators are extensively used in this field to generate collision events
based on a physical model, enabling the creation of realistic hierarchy datasets for jet clustering [3, 4,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

12]. Yet, despite this availability, prevailing jet-clustering pipelines often still rely on unsupervised
algorithms [15, 46, 7, 17].

To address this problem, we introduce a novel generative model for hierarchies. Building on Bayesian
Flow Networks (BFNs) [19] and Bayesian Sample Inference (BSI) [31], our model explicitly models
the posterior distribution over hierarchies.

Our key contributions are summarized as follows:

* Generative Model for Hierarchies. We introduce TreeGen, a novel generative model
tailored to tree-structured data. The model transitions between probabilistic and discrete
hierarchies parametrized via categorical distributions.

* Entropy Scheduler for BFNs. We propose an alternative entropy scheduler for BFNs
that provides smooth transitions of categorical distributions from uniform to discrete states
across varying numbers of categories.

* Application to Jet Clustering. We demonstrate the practical effectiveness of our generative
model by applying it to the jet clustering task using data from the GINKGO simulator [12].

2 Background

2.1 Probabilistic Hierarchies

Let 7 be a rooted hierarchy, also called a tree, with
n leaves V = {vy,...,v,} and n’ internal nodes
7 = {zl,.. .. 7Zn/},.where Zp s thg root. We repre- p(z5171)
sent the hierarchy via two binary adjacency matrices:

Ac {01y, Be{0,1}", (1)

where the entry Aij encodes an edge from leaf v; p(z1]v1)

to internal node z;, and B;; encodes an edge from
internal node z; to internal node z;.

We enforce both matrices to be row-stochastic and
additionally constrain B to be upper triangular to
ensure they define a valid tree-structure. In the binary Fjgure 1: Example of a probabilistic hierarchy.

case, this means that each row contains exactly one The matrices represent A and B, respectively.
non-zero entry, while the last row of B is all zeros

because the root has no parent. These constraints guarantee that (A, B) encodes a valid rooted tree.

Following Ziigner et al. [48], we relax these matrices to probabilistic assignments:
A e [0’ 1]n><n/’ B e [0’ l]n,xnl’ (2)

while retaining the row-stochastic and upper-triangular constraints. We interpret each row of A and
B as a categorical distribution over parent assignments:

Ay =p(zj | vi), Bij =0p(zj | z), 3)

denoting the probability that internal node z; is the parent of leaf v; and the probability that z; is
the parent of internal node z;, respectively. Together, the matrices describe a probabilistic hierarchy
T = (A, B). By interpreting each row of a probabilistic hierarchy as a categorical distribution, we
can sample valid discrete hierarchies. An example of a probabilistic hierarchy is shown in Fig. 1.

2.2 Bayesian Flow Networks

Bayesian Flow Networks (BFNs) form a class of generative models that refine a belief over a target
sample via successive Bayesian updates [19]. Recently, Lienen et al. [31] proposed Bayesian Sample

Project page: cs.cit.tum.de/daml/treegen

https://www.cs.cit.tum.de/daml/treegen/

Inference (BSI), including BFNs in a more general framework, which we adopt here for notational
simplicity. BSI starts with an initial belief over € R” using a Gaussian prior with precision \,

p@) = N(p, A1), peRP, A>0,)

which is updated in a Bayesian manner: p(z | y) «x p(y |)p(x). At each step, we observe a noisy
measurement

y~Nx.a™), a>0, ®)
where « denotes the precision of the measurement. We compute the closed-form Gaussian posterior
Pl y) = N (22, (A +a)7), (©)

which converges towards the true as the precision)\ increases by a with each update. As we do not
have direct access to the sample noisy measurements y of @, we train a neural network & = fg(u, \)
to approximate x. The model is trained similarly to diffusion models [23] and minimizes the squared
error between & and the ground truth . However, unlike diffusion models, BFNs and BSI operate on
distributions rather than single samples. While BSI has considered the Gaussian case, it is not limited
to it, and we will consider categorical distributions in Sec. 3, as done by BFNs.

3 TreeGen: A Generative Model for Hierarchies

t=0 t=1/2 t=1
O—————— - - - - - O - — 0
fom —am
LML H [
®) ([I
] (] | |
[[

o

Figure 2: Overview of the TreeGen generation process. At each continuous time ¢ € [0, 1], the model
maintains a probabilistic hierarchy 7, applies a Bayesian-inspired update via a neural network and
noisy sample, and progressively reduces entropy until converging to a discrete hierarchy 7 at¢t = 1.

In this section, we present our main contribution: TreeGen, a Bayesian generative model designed
for hierarchies. TreeGen starts from a probabilistic hierarchy 7", which is iteratively updated via
Bayesian updates of observed noisy hierarchies until the entropy of the hierarchy is sufficiently
low and converges toward a discrete hierarchy. To obtain noisy observations, we design a neural
network trained to predict ground-truth discrete hierarchies. As such a hierarchy simply consists
of a collection of categorical variables (see Sec. 2.1), we first describe the framework for arbitrary
categorical distributions. While we derive update equations within the BSI framework [31], the
resulting Bayesian updates match those of BFNs [19] but follow from a simpler derivation. Compared
with standard BFNs, TreeGen instantiates a categorical BSI that uses the BFN update with explicit
precision control while introducing a different loss, omits auxiliary distributions, and extends the
parametrization to trees. We discuss these differences and provide detailed derivations in App. A.

Objective and prior. Our goal is to infer an unknown sample z € {1,..., K}. We encode our
current belief about that sample via a categorical prior, i.e.,

p(x:k):wk, 7T:(7T1,...,7TK)€AK,1, (7)
where A is the K-simplex, i.e., 7 > 0 and Zk e = 1.
Noisy observation. Assume we have access to a noisy measurement vector y = (y1,...,yx)

sampled from a multinomial distribution with m =)", ¥ trials and class probabilities &, which we
model as a mixture between the ground-truth Dirac distribution e, and uniform noise:

0=we, +(1—w)+1, 0<w<1. (8)

e, is the one-hot encoding of x and w defines a signal-noise trade-off: w = 1 yields perfectly
informative counts, while w = 0 gives pure uniform noise.

The conditional likelihood for z = k is

ply |2 = k) = o (12) " ()" ©
J

Bayes update. After observing y, we can update our belief on z, i.e., parameters 7r via Bayes’ rule:

_ _ Py |z =kw)m

By canceling the common multinomial coefficients, we obtain a softmax-type expression:

'Yk wK

=k == f= 14— 11
ple=Fk|y,w) SR T (11

We can express this equivalently in vectorized form:
Trpost = softmax (log 7w + y log 7'). (12)
This form shows that the observation contributes an additive vector y log 7’ to our belief before the

softmax normalization. This form also allows simple aggregation of sequential updates.

Sequential updates. With multiple independent observations {y ¥}V, and constant w, the poste-
rior update simplifies to:

N
7N = softmax(log 7» + log 7’ Z y@). (13)
i=1

Thus, the class probabilities are aggregated by addition in log-space.

Gaussian interpretation. For a large observation count m, the Central Limit Theorem implies that
the rescaled sum of counts is approximately Gaussian. This allows us to rewrite the Bayesian update
using a Gaussian-distributed variable and in continuous time:

m = softmax (log my—1 +), 2y ~ N ((n — ap—1)Keg, (0 — ay—1)KI). (14)

Due to the additive aggregation in log-space (see Eq. (13)), we can summarize multiple Bayesian
updates into a single one, i.e., the step from g to 7ry:

™= softmaux(zt)7 zi ~ N (o Key, o, K1), (15)

where o represents the accumulated signal. Note that we omitted log 7 as it is constant and the
softmax operation is shift invariant. Consequently, the log-evidence in the softmax follows a Gaussian
and is parametrized with a;. The recovered updates equal those of Graves et al. [19].

Distribution of 7r;. Following the categorical BFN formulation, we represent the belief vector at
time ¢ as the softmax of latent Gaussian logits, 7w, = softmax(z;) conditioned on the ground-truth
class . This results in the distribution:

p(my | mi—1,X%) :/5(7rt — softmax (zt)) p(z¢ | X, p, 1) dzg, (16)

Furthermore, we can model the marginal of 7r; directly without intermediate steps:

p(re | x) :/5(7rt — softmax(z;)) p(z: | x, o) dzy. (17

Both distributions are trivial to sample by drawing z; from the corresponding Gaussian and applying
the softmax. During generation, the true class x is unknown, so we replace it with a proxy & =
fe(m,t) predicted by our neural network and approximate the one-step transition by py(m; |
m—1) = p(m | fo(me,t)), which recovers the distribution of 7r; when fg(7r;,t) successfully
predicts z. Unlike the BFN update, this allows us to control the precision directly.

Training of the neural network fg(7;,¢). Our goal is to train the network to recover the original
sample x from a categorical distribution ;. Therefore, at each training step we draw a ground-truth
sample z from the dataset D and a timestep ¢~/ (0, 1), then sample the corresponding distribution 7,
according to Eq.(15). The network receives 7r; and ¢ as inputs, and outputs a categorical distribution,
aiming to concentrate all probability mass on the true class z. We optimize the parameters 6 by
minimizing the expected cross-entropy loss:

L(0) = Epud tmtd (0,1), 700 ~pi () {CELOSS(fe(ﬂ't,t), 33)}, (18)

where CELoss denotes the cross-entropy loss between the predicted categories and the ground-truth
label. The nested expectation is approximated with Monte-Carlo samples of z, ¢, and 7; in each
minibatch, and gradients are propagated through the network to update 6.

Entropy scheduler. During generation, —K—4 —K=28 K =16 — K —32
we want the entropy of mr; to decrease Quadratic
smoothly from its maximum (uniform)

value to zero (one-hot). If we draw —

Zy NN(O{tKe;mOétKI), J_:/ 0.5 -

7 = softmax(z), =

Logarithmic

then the entropy of 7, is a monotone func- 00—
tion of ;. While BENs [19] chose a; = 0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 04 06 08 1.0
Ct?, the constant C requires retuning when ¢ t

the number of classes K* changes. We in- Fjgure 3: Comparison of entropy schedulers. The plots

stead propose show the expected normalized entropy of the categor-
C +alog, K ical belief m; over time ¢, for varying class counts K.
o = T K In(1 1), (19) Left: the quadratic schedule used in standard BFNs.

Right: our proposed log-based schedule, which yields

for t € [0,1], which yields an approxi- - an approximately linear decay across different K .
mately linear decay of expected normalized

entropy (see Fig. 3) while ensuring 7 is uniform and m; = e,. Because our experiments span
hierarchies with varying numbers of classes (see Sec. 2.1), this scheduler enables us to use the same
hyperparameters across all sizes of hierarchies.

Adaptation to hierarchies. Extending the categorical generation from a single random variable
to an entire hierarchy means treating every row of (A, B) as its own categorical distribution, while
updating all rows jointly so that the resulting sample is a valid hierarchy. Concretely, we model the n
rows of A and the n’ rows of the upper-triangular matrix B as categorical distributions, where each
class represents a parent choice for a node. Note that K, i.e., the number of possible parents, varies
with hierarchy size and across rows of B due to the upper-triangular structure. This parametrization
induces a distribution over rooted trees (hierarchies) and substantially reduces the search space
compared to arbitrary graph generation. Accordingly, fy takes the current probabilistic hierarchy
T: = (A4, By) and outputs a discrete proposal 7. This prediction is then used to update the current
belief, i.e., the probabilistic hierarchy, using Eq. (15). We show algorithms for sampling and training
in Algs. 1 and 2, respectively.

Algorithm 1 Sampling with TreeGen Algorithm 2 Training TreeGen
input: Neural network fg, entropy schedule oy input: Dataset D, neural network fy, entropy
for ¢ € [0, 1], sampling steps N schedule o for ¢ €0, 1], training steps N

output: Discrete hierarchy 77 1: forn =1to N do
1. To=1/K 2: T ~D,t~U0,1)
2: for ¢tin {1/n,...,1} do 3z~ NoKT, K1) > Eq. (15)
3 T < fo(Ti—yn,t —1/n) > Evaluate fp 4: T; < softmax(z;) > Eq. (15)
4: Zy ~ N(ath', atKI) > Eq. (15) 5: T+ Jo(Te, t) > Evaluate fy
5 T: + softmax(z;) > Eq. (15) 6: L+ CE(T, 7') > Compute loss
6: end for 7: 0+ 0—-—nVeL > Gradient step
7: return 77 8: end for

4 Experiments

In this section, we present our empirical results on the jet-clustering task. Our primary goal is
to demonstrate the effectiveness of TreeGen in generating valid hierarchies adhering to the true
data distribution. We compare TreeGen against various baselines and test how well the generated
hierarchies approximate the ground-truth posterior distributions.

We evaluate TreeGen on hierarchies derived from the GINKGO dataset, focusing on QCD and W
jets. More specifically, our experiments focus on the conditional generation p(7 | X), where X are
leaf features. Finally, we conduct ablation studies to analyze the impact of key design choices in our
method in App. C.

4.1 Experimental Setup

Datasets. Our evaluation uses five datasets obtained with the GINKGO jet shower generator [12]:
QCD jets: QCD-S, QCD-M, QCD-L, and W-Boson jets: W-S, W-M. All five share the same root
four-momentum pl;., and decay rate), but vary in the shower cut-off Ay, controlling the final jet
size. The datasets have A, € {4.0%, 1.12, 0.6%} and contain hierarchies with at most 19 (small),
59 (medium), and 99 (large) nodes. Each dataset consists of 100,000 hierarchies. Split into 98,000
hierarchies for training and 1,000 for validation and testing. In our setup, the leaves of the hierarchies
correspond to the observed particles with features X, while internal nodes are latent and to be inferred
via the sampled hierarchy 7. Fig. 8 shows the leaf-count distribution for the three QCD datasets. We
provide more details about the datasets and task in App. B.2.

Baselines. We benchmark the generative capabilities of TreeGen against various baselines. We
include CatFlow [16] and (standard) Bayesian Flow Networks (BFNs) [19] representing state-of-the-
art generative models for categorical data. Furthermore, we compare to greedy clustering approaches
and the ground-truth posterior obtained via cluster trellis [33]. Finally, we compare to the CA [15, 46],
kr [17], and anti-k7 [7] algorithms in App. C, representing traditional jet clustering algorithms. All
generative baselines share the tree assumption (see Sec. 2.1), while the agglomerative algorithms are
tailored to jet clustering and restricted to binary hierarchies. We describe the baselines in more detail
in App. B.5.

Evaluation metrics. To assess the performance of the generative model, we employ two metrics.
First, we compute the — valid hierarchies — fraction of generated hierarchies that satisfy dataset-
specific constraints, i.e., required physical properties. Second, we assess how well the sampled
hierarchies match the data distribution by comparing their log-likelihoods to those of the ground-truth
hierarchies. Specifically, we compute the ratio of log-likelihoods of each generated hierarchy to its
corresponding ground-truth counterpart and report the average ratio over the test set. A ratio close
to one indicates that the model closely approximates the true data distribution. We discuss further
details about both metrics in App. B.6.

Practical considerations. TreeGen requires an architecture that predicts a hierarchy given a
probabilistic hierarchy as input. This structure makes it suitable for a Graph Transformer [38]. We
fix n’ = n — 1, i.e., one parent for every non-root node, as we operate on binary hierarchies. We
depict the high-level architecture in Fig. 4 and provide more details in App. B.3 and discuss node and
edge features in App. B.4. We train all models using Adam [28] with a learning rate of 0.0001 and
gradient clipping set to 0.5 for 50 epochs. For generation, all models use 1000 steps, except for the
ablation in Fig. 7, where all use 100. We provide an overview of all hyperparameters in App. B.1.
Finally, we report the mean and standard deviation of four random seeds for all experiments to ensure
reproducibility.

4.2 Results

Hierarchy generation. We report the fraction of valid trees and log-likelihoods in Tab. 1. TreeGen
generates nearly perfect trees in every case, achieving > 0.93 validity and likelihood ratios close
to one, consistently outperforming baselines across all datasets. By contrast, CatFlow and BFN
deteriorate rapidly as jet size grows: on the medium QCD set, their valid-tree fractions drop to
0.24 and 0.65, respectively. We attribute CatFlow’s inferior performance to its flow leaving the

Feature Generation Graph Transformer Prediction

Momentum Head
—_— Conservation
— — (X 1] —

H+E-4 e

I [
.D[: Angular D.D
I:l.l: —_ Features D.D
m_= O
u R :]

t —_ [X X]

Figure 4: TreeGen model architecture. Node and edge features (structural and physics-inspired) are
derived from the current probabilistic hierarchy, then processed by a Graph Transformer to predict
the parameters of the final hierarchy 77 .

probability simplex: intermediate states can violate the categorical constraints that define a valid jet
hierarchy. The Bayesian-based approaches BFN and TreeGen remain on the simplex throughout
generation by design. These results show that TreeGen’s successfully scales to larger, more complex
jets, consistently maintaining both the highest validity and the best log-likelihood fractions.

Table 1: Evaluation metrics for different models across datasets. Best scores in bold.

CatFlow BFN TreeGen
Valid Frac. (1) LLH Frac. Valid Frac. () LLH Frac. Valid Frac. (1) LLH Frac.

QCD-S 0.752+0.014 0.972+0.002 0.941+0.003 0.982+0.000 0.997+0.001 1.003+0.002
QCD-M 0.236+0.016 0.882+0.003 0.64540.040 0.936+0.002 0.977+0.010 0.994-+0.002

Dataset

QCD-L - - 0.416+0.036 0.898+0.002 0.943+0.016 0.975+0.001
W-S 0.604+0.014 0.937+0.007 0.851+0.014 0.965+0.001 0.994+0.002 1.006+0.001
W-M - - 0.341+0.054 0.886+0.002 0.930+0.024 0.980+0.004

Furthermore, Fig. 5 visualizes the per-tree log-likelihoods: each dot compares the log-likelihood of
the ground-truth hierarchy (x-axis) with the log-likelihood of the hierarchy generated by our model
(y-axis). TreeGen’s points cluster along the diagonal, indicating alignment with the true distributions.
This confirms that TreeGen not only produces more valid hierarchies but faithfully reproduces the
likelihoods of the ground-truth.

QCD-S QCD-M QCD-L
o
55 B
2 i 91
: 8
= o 47 o 4 73
I =
N 39 | z
= 63 S
= o4)
e 2 5
= o 317 49 2
g3 £
= | 23 27 z
o S 35 Z,
= |
T T T T T T T T 15 T T T T 21
—70 —60 —50 —40 —30 —150 —100 —50 —200 —150 —100 —50
log p(Ttrutn) log p(Ttruin) log p(Ttrun)

Figure 5: Scatter plot of log-likelihoods. Each point corresponds to a test hierarchy: the x-axis shows
the log-likelihood of true hierarchy, and the y-axis shows the log-likelihood hierarchy generated by
TreeGen, demonstrating close alignment across varying hierarchy sizes.

Posterior distribution. While our reported quan-
titative metrics demonstrate that TreeGen produces
reasonable hierarchies, they do not directly assess
how well it approximates the true posterior p(7 |
X). To complement our evaluation, we employ the
cluster trellis data structure [33] to draw exact sam-
ples from the posterior. This enables us to com-
pare these samples with those generated by TreeGen.
Since the computational complexity of cluster trel-
lis scales exponentially as O(3"), this evaluation is
only feasible for the QCD-S dataset, which contains
hierarchies of up to 20 nodes. For each of the 1000
test hierarchies, we draw one sample from the true
posterior via cluster trellis and one from TreeGen.

We visualize and compare the empirical distributions
over the log-likelihoods using histograms in Fig. 6.
The empirical distribution produced by our genera-
tive model successfully captures the key characteris-

[True Posterior [TreeGen (Ours)

30
740_
=
§ 50
20
2
60
70
Figure 6: Histogram of posterior log-

likelihoods. Distributions of logp(T | X)
for true hierarchies versus TreeGen-sampled
hierarchies, demonstrating that TreeGen suc-
cessfully approximates the full posterior.

tics of the true posterior distribution. This further validates TreeGen’s ability to accurately learn and

represent hierarchical structures.

Likelihood Maximization. While sampling from
TreeGen provides diverse plausible reconstructions,
many applications require a single high-likelihood
hierarchy. Our model’s non-deterministic nature
allows us to resample hierarchies multiple times.
To this end, we perform approximate MAP infer-
ence via rejection sampling. More specifically, for
each jet event X, we draw N independent hier-
archies {7;}Y, ~ po(T | X), compute their log-
likelihoods log p(7;), and select the sample with the
highest value. We benchmark this against a deter-
ministic greedy agglomerative linkage algorithm that
merges clusters by maximizing local likelihood gains.
In Fig. 7, we show how the log-likelihood grows with
the number of samples /N compared to the generative
baselines and the greedy algorithm.

We observe that the log-likelihood obtained by Tree-
Gen exceeds that of the greedy agglomerative base-
line after only 16 samples and consistently outper-
forms CatFlow and BFN, demonstrating that our

CatFlow
== == Greedy

== TreeGen (Ours)
=== BFN

log p(T)

T T T T T T
0 10 20 30 40 50

Number of Samples

Figure 7: Likelihood maximization. Maxi-
mum log-likelihood obtained by drawing N
candidate hierarchies from TreeGen and the
log-likelihood of the deterministic greedy re-
construction. TreeGen outperforms the base-
line within a few samples.

samples not only concentrate around higher-probability hierarchies but also capture diversity beyond
a single greedy pass. Note that both this rejection-sampling MAP procedure and the greedy likelihood
clustering assume access to the exact likelihood, which is often unknown or intractable for realistic
collision data. Nevertheless, this experiment highlights the practical benefit of our model’s ability
to sample multiple hierarchies, enabling improved reconstruction quality whenever quantitative

evaluations are available.

Scheduler comparison.

We compare our scheduler, pro-

Table 2: Scheduler ablation on validity

posed in Sec. 3, with the BFN scheduler [19] across differ- and LLH fraction.

ent C. Following Graves et al. [19], we include C' = 0.75
and C' = 3.0. Additionally, we test C' = 6.0 and C' = 9.0.

The results on QCD-S are shown in Tab. 2.

As we observe, the scheduler of Graves et al. [19] is highly
sensitive to C. While C' = 0.75 highly degrades validity,
larger values result in matching performance to ours.

Scheduler Valid Frac. (1) LLH Frac.

Ours 0.997 +£0.001 1.003 + 0.002
C=0.75 0.410 +£0.019 0.990 + 0.002
C=3.0 0.989 +0.001 1.002 + 0.002
C=6.0 0.994 +0.001 1.003 + 0.002
C=9.0 0.992 +0.004 1.002 + 0.001

5 Related Work

5.1 Hierarchical Clustering

Agglomerative algorithms iteratively merge clusters based on the shortest distance, building a
hierarchy from individual points until converged to a single cluster. Different choices to define the
inter-cluster distance give rise to various linkage algorithms [21]. Divisive algorithms proceed in
reverse and build hierarchies by splitting a single cluster, containing all points, into smaller and
smaller clusters, e.g., by repeatedly applying the k-means algorithm [43] or spectral clustering [14].

Recently proposed cost functions, such as the Dasgupta cost [14] and the Tree Sampling Divergence
(TSD) [10], have enabled global optimization across the entire hierarchy. While these cost functions
remain infeasible to optimize directly, various continuous relaxations have been proposed to allow
for gradient-based optimization [11, 34, 9, 48, 30]. These methods then optimize relaxed objectives.

Similar to hierarchical clustering algorithms, TreeGen aims to infer hierarchies and shares the same
parametrization for probabilistic hierarchies as Ziigner et al. [48] and Kollovieh et al. [30]. However,
we focus on a supervised setting and learn a distribution of hierarchies, whereas the former focuses
on inferring hierarchies based on heuristics or objective functions.

5.2 Jet Clustering

Jet clustering is a well-studied task in high-energy physics. Initially, cone algorithms [5], which select
the most energetic particles and group all particles within a cone around them, were employed for this
task. However, these algorithms were sensitive to low-energy particles [29]. This limitation led to the
development of sequential recombination clustering algorithms, which are instances of agglomerative
hierarchical clustering. Different algorithms in this class, such as the Cambridge/Aachen algorithm
[15, 46], the k7 algorithm [17], and the anti-kp algorithm [7], differ in how they combine angular
proximity and energy of particles into a distance measure.

Recently, the development of the GINKGO simulator [12] introduced a new class of algorithms that
use this simulator to assess the likelihood of splits in the hierarchy, aiming to find the hierarchy with
the maximum likelihood [6, 20, 33, 13]. Among those, cluster trellis [33] is most similar to our
method as it enables sampling from the exact posterior distribution for small hierarchies. However,
our model learns directly from simulator-generated data without requiring likelihood evaluations at
inference time, which allows it to be applied with any black-box simulator. Finally, Yang et al. [47]
propose a variational-inference method for jet clustering on the GINKGO dataset.

5.3 Generative Models

Our work builds on recent advances in generative modeling, particularly diffusion and flow-matching
frameworks. Diffusion models add random noise to data and then learn to reverse this diffusion
process to generate samples starting from noise [39, 23, 40, 41]. Flow matching generalizes this
idea by directly learning an ODE that transforms data to noise via regression of vector fields [32].
Furthermore, Graves et al. [19] introduced BFNs, another related generative framework that maintains
and updates a probability distribution during generation in a Bayesian manner rather than acting
directly on the sample. Atkinson et al. [1] proposed an ODE-based BFN sampling algorithm that
replaces aggregated previous predictions with the most recent prediction, also providing explicit
precision control, similar to ours.

Generative models for discrete data are particularly relevant to our approach since hierarchies are
discrete structures. One class of such models maintains discreteness throughout the generative
process. Various approaches have adapted diffusion models to discrete data [24, 2, 8]. Recent flow
matching approaches confine the generative process in continuous space. For example, Dirichlet
Flow Matching [42] constrains the process on the probability simplex, while CatFlow [16] removes
this constraint, allowing values outside the simplex. Our approach belongs to the former category, as
we build upon the BFN framework, transitioning between categorical distributions.

Prior work, such as the junction tree autoencoder [25], modeled trees in an autoregressive fashion
for molecule generation. Other approaches used diffusion and flow matching for general graph
generation [35, 26, 45, 16]. Unlike these, however, our framework explicitly parametrizes valid
hierarchies (rather than distributions over all graphs), substantially reducing the search space.

6 Conclusion

In this work, we introduced TreeGen, a novel generative model learning hierarchies from distributions
building upon the BFN [19] and BSI [31] framework. By proposing an entropy scheduler, we are
able to model categorical variables smoothly across a varying number of classes. The intermediate
states of the generation process are probabilistic hierarchies, which we used to derive meaningful
features, improving generative performance.

We assessed TreeGen on a high-energy jet simulator benchmark and found that close to 100% of the
generated hierarchies adhere to their corresponding physical properties. Moreover, by comparing the
likelihoods of conditionally generated hierarchies to those of the ground truth, we demonstrated that
our model is able to successfully approximate the posterior distribution.

Limitations and future work. A core component of our generative model is a graph transformer
whose computational complexity increases quadratically with the number of nodes. This issue arises
from the densely connected probabilistic hierarchies during generation.

To this end, we have evaluated TreeGen on GINKGO [12] as it provides analytical likelihood com-
putations. Immediate extensions include evaluating TreeGen on different simulators [3, 4] and
experimental, i.e., real-world jet datasets, where measurement noise and detector effects introduce
additional complexity. TreeGen naturally extends to non-binary trees by adjusting the number of
internal nodes n’ (for binary trees n — 1). Potential strategies include sampling n’ (as in molecule
generation) [45]; predicting n’ using a classifier similar to Kerrigan et al. [27]; or setting a larger n’
and pruning unused internal nodes, as done in hierarchical clustering [48]. Finally, one could explore
alternative hierarchy parameterizations enforcing strict binary-tree constraints or improving both
computational efficiency and likelihoods.

Contributions

MK developed the project idea, derived the theory, implemented the core method, and wrote the
manuscript. NF implemented most of the experimental pipeline (data loading, features, backbone,
baselines, training, and evaluation) and assisted with the manuscript. FG supervised the neural
network architecture design. BS contributed to conceiving the initial idea. SG contributed to the
method design and provided overall scientific guidance. All authors discussed results, both theoretical
and empirical, and revised the manuscript.

Acknowledgments

We thank Johanna Sommer for valuable feedback on the idea and Marten Lienen for help with the
background section.

10

References

[1] Timothy Atkinson, Thomas D Barrett, Scott Cameron, Bora Guloglu, Matthew Greenig, Char-
lie B Tan, Louis Robinson, Alex Graves, Liviu Copoiu, and Alexandre Laterre. Protein sequence
modelling with bayesian flow networks. Nature Communications, 16(1):3197, 2025.

[2] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in neural information
processing systems, 34:17981-17993, 2021.

[3] Johannes Bellm, Stefan Gieseke, David Grellscheid, Simon Plétzer, Michael Rauch, Christian
Reuschle, Peter Richardson, Peter Schichtel, Michael H Seymour, Andrzej Siédmok, et al.
Herwig 7.0/herwig++ 3.0 release note. The European Physical Journal C, 76:1-8, 2016.

[4

—_

Christian Bierlich, Smita Chakraborty, Nishita Desai, Leif Gellersen, Ilkka Helenius, Philip Ilten,
Leif Lonnblad, Stephen Mrenna, Stefan Prestel, Christian Tobias Preuss, et al. A comprehensive
guide to the physics and usage of pythia 8.3. SciPost Physics Codebases, page 008, 2022.

[5] Gerald C Blazey, Jay R Dittmann, Stephen D Ellis, V Daniel Elvira, K Frame, S Grinstein,
Robert Hirosky, R Piegaia, H Schellman, R Snihur, et al. Run ii jet physics: proceedings of the
run ii qcd and weak boson physics workshop. arXiv preprint hep-ex/0005012, 2000.

[6] Johann Brehmer, Sebastian Macaluso, Duccio Pappadopulo, and Kyle Cranmer. Hierarchical
clustering in particle physics through reinforcement learning. arXiv preprint arXiv:2011.08191,
2020.

[7] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. The anti-kt jet clustering algorithm.
Journal of High Energy Physics, 2008(04):063, 2008.

[8] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis,
and Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in
Neural Information Processing Systems, 35:28266-28279, 2022.

[9] Ines Chami, Albert Gu, Vaggos Chatziafratis, and Christopher Ré. From trees to continuous
embeddings and back: Hyperbolic hierarchical clustering. Advances in Neural Information
Processing Systems, 33:15065-15076, 2020.

[10] Bertrand Charpentier and Thomas Bonald. Tree sampling divergence: an information-theoretic
metric for hierarchical graph clustering. In ZJCAI-19, 2019.

[11] Giovanni Chierchia and Benjamin Perret. Ultrametric fitting by gradient descent. Advances in
neural information processing systems, 32, 2019.

[12] Kyle Cranmer, Sebastian Macaluso, and Duccio Pappadopulo. Toy generative model for
jets. URL https://github.com/SebastianMacaluso/ginkgo/blob/master/notes/
toyshower_v4.pdf.

[13] Kyle Cranmer, Matthew Drnevich, Sebastian Macaluso, and Duccio Pappadopulo. Reframing
jet physics with new computational methods. In EPJ Web of Conferences, volume 251, page
03059. EDP Sciences, 2021.

[14] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing, pages 118-127, 2016.

[15] YuL Dokshitzer, GD Leder, S Moretti, and BR Webber. Better jet clustering algorithms. Journal
of High Energy Physics, 1997(08):001, 1997.

[16] Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-
Willem van de Meent. Variational flow matching for graph generation. Advances in Neural
Information Processing Systems, 37:11735-11764, 2024.

[17] Stephen D Ellis and Davison E Soper. Successive combination jet algorithm for hadron
collisions. Physical Review D, 48(7):3160, 1993.

[18] J. Felsenstein. Inferring phylogenies. Sinauer Associates, 2003.

11

https://github.com/SebastianMacaluso/ginkgo/blob/master/notes/toyshower_v4.pdf
https://github.com/SebastianMacaluso/ginkgo/blob/master/notes/toyshower_v4.pdf

[19] Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian
flow networks. arXiv preprint arXiv:2308.07037, 2023.

[20] Craig S Greenberg, Sebastian Macaluso, Nicholas Monath, Avinava Dubey, Patrick Flaherty,
Manzil Zaheer, Amr Ahmed, Kyle Cranmer, and Andrew McCallum. Exact and approximate
hierarchical clustering using a. In Uncertainty in Artificial Intelligence, pages 2061-2071.
PMLR, 2021.

[21] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements
of statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[22] Geoffrey Hinton. How to represent part-whole hierarchies in a neural network. Neural
Computation, 35(3):413-452, 2023.

[23] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840-6851, 2020.

[24] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. Advances in neural
information processing systems, 34:12454—12465, 2021.

[25] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pages 2323-2332.
PMLR, 2018.

[26] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via
the system of stochastic differential equations. In International conference on machine learning,
pages 10362-10383. PMLR, 2022.

[27] Gavin Kerrigan, Kai Nelson, and Padhraic Smyth. Eventflow: Forecasting temporal point
processes with flow matching. arXiv preprint arXiv:2410.07430, 2024.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[29] Roman Kogler, Benjamin Nachman, Alexander Schmidt, Lily Asquith, Emma Winkels, Mario
Campanelli, Chris Delitzsch, Philip Harris, Andreas Hinzmann, Deepak Kar, et al. Jet substruc-
ture at the large hadron collider. Reviews of Modern Physics, 91(4):045003, 2019.

[30] Marcel Kollovieh, Bertrand Charpentier, Daniel Ziigner, and Stephan Giinnemann. Expected
probabilistic hierarchies. Advances in Neural Information Processing Systems, 37:13818-13850,
2024.

[31] Marten Lienen, Marcel Kollovieh, and Stephan Giinnemann. Generative modeling with bayesian
sample inference. arXiv preprint arXiv:2502.07580, 2025.

[32] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[33] Sebastian Macaluso, Craig Greenberg, Nicholas Monath, Ji Ah Lee, Patrick Flaherty, Kyle
Cranmer, Andrew McGregor, and Andrew McCallum. Cluster trellis: Data structures &
algorithms for exact inference in hierarchical clustering. In International Conference on
Artificial Intelligence and Statistics, pages 2467-2475. PMLR, 2021.

[34] Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, and Amr Ahmed. Gradient-
based hierarchical clustering using continuous representations of trees in hyperbolic space. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 714-722, 2019.

[35] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.

Permutation invariant graph generation via score-based generative modeling. In International
conference on artificial intelligence and statistics, pages 4474-4484. PMLR, 2020.

12

[36] Fabian Pedregosa, Ga€l Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825-2830,
2011.

[37] Erzsébet Ravasz and Albert .aszl6 Barabdsi. Hierarchical organization in complex networks.
Physical review. E, Statistical, nonlinear, and soft matter physics, 67 2 Pt 2:026112, 2002.

[38] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-supervised classification. arXiv
preprint arXiv:2009.03509, 2020.

[39] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256-2265. pmlr, 2015.

[40] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[41] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[42] Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay,
and Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. In
International Conference on Machine Learning, pages 46495-46513. PMLR, 2024.

[43] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document clustering
techniques. 2000.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[45] Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. In ICLR, 2023.

[46] Markus Wobisch and Thorsten Wengler. Hadronization corrections to jet cross sections in
deep-inelastic scattering. arXiv preprint hep-ph/9907280, 1999.

[47] Hanming Yang, Antonio Khalil Moretti, Sebastian Macaluso, Philippe Chlenski, Christian A.
Naesseth, and Itsik Pe’er. Variational pseudo marginal methods for jet reconstruction in particle
physics. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

[48] Daniel Ziigner, Bertrand Charpentier, Morgane Ayle, Sascha Geringer, and Stephan Giinnemann.
End-to-end learning of probabilistic hierarchies on graphs. In International Conference on
Learning Representations, 2021.

13

A Theory

In the following, we will provide derivations for equations Egs. (13) to (15). Both theorems build on
the theory of Bayesian Flow Networks and summarize the derivations from Graves et al. [19].

Theorem A.l. Letx € {1,..., K} have prior ©©) € Ag_,. For each updatei = 1,..., N we

observe y() = (y%i), ceey y&?) € NK, with total count m =", y,(cl) sampled from
m)! m—yx Yk
ply |z =kw) = 0 y'(l_T“’) (1_7“’ +w) , w e (0,1). (20)
i Y

Then the posterior after N sequential Bayesian updates is
) = softmax (log 7@ 4 ylog 77’), 21
N ()

where ' := 1+ % and'y the sum of N samples, i.e,y =3 ", y"*.

Proof. We prove by induction on V.

Base case (/N = 1). By Bayes’ rule for a single observation y(l),

7r,(€1) =plz=k|yV;w) (22)

ply® | & = k;w)r”

= (23)
Shopy® |z = Ksw)m)
& 1)
m! —w MY —w Y (0)
Mo el PR el m 9
- YK m [ﬂ]m*yfﬁ) [l |]yff/) (0) 9
K=1 15, y;! UK r® TYW Mg
m v
[L]” (1+4£)"
(25)
&)
—wm K Ypr 0
)k (1) 0
™ _(0)
__mhm (26)
K R ON
Dopr=1 T M
= softmax (log 7 4y iog ") - 27
Thus, 7Y = softmax (log w(®) + y(1) log 7’) matching the formula as Sy =y,
Inductive step. Assume the statement holds for some N > 1:
7Tl(€N) = softmax (log w0 + {Zf\il y(i)} log w’)k.
After receiving y(N 1) we update:
(N+1) (N)
"y
7T}(€N-&-1) _ (') Ty (28)

() !
NGO o

14

We insert the inductive hypothesis for 7T](€N)Z

D (V)
ﬂz(cNﬂ) = ()7 m, (29)

(N+1) (N
TR

J

(')

JVHD €XP (log 771(@0) + log 7’ Z;Nﬂ yli”)

N
Z exp(log Wéo) +logn’ Z yéi))
0 i=1

= S (30)
Z(W')yﬁN“) exp(logm” +log’ .7, ")

N
I Z exp(log Tl'éo) + log 7’ Z y/))
¢

i=1

_ exp(log m +logn [L vy + o)) (31)

N
Z exp (10g 7T§0) + log 7’ [Z yjz) n y§N+1)])

J i=1
B exp(log 7r,(€0) + log 7’ Zf\gl y,(cb))
N+1

Z exp (log 7r§0) + log 7’ Z y]@)
j i=1

. (32)

Because Zf\il y,(:) + y,iNH) = Zf\fll y,(f), the numerator and denominator are exactly the softmax

with the sum taken to N+1. Hence

ﬂ,(cNH) = softmax (1og w0 4+ [Z?D{l y(i)] log W’)k, (33)

Thus, #(N+1) = softmax (log w0 4 [Z?D{l y(i)} log ﬂ") completing the induction. O

Theorem A.2. Fix K > 2and w € (0,1). Let x € {1,..., K} have prior 7o € Ag_1. At each
time step t € N an observation y*) € N¥ with Dok y](:) = m is drawn from

(t)

m! o v
Py [z =k,w) = Hy(t)'(le) (17“) +W) :
iYi

and Aoy == oy — a1 = mw?.

K
Define v’ :=1+ 1w

Then the following posterior approximations hold for m — oc:

1. Single-step update. Given m,_1, T can be approximated using a Gaussian random vector:

T~ softmax(log 1 + zt), Zy ~ N(AatKez, AothI). (34)

2. Aggregated update. T, can be approximated using a Gaussian random vector directly:

7y ~ softmax(z;), z; ~ N(a;Key, a; KT). (15)

Proof. (i) Single step. Conditioned on z, the vector y(*) is multinomial with parameters m and
probabilities

O:wex+(1—w)%1. (35)
The Central Limit Theorem yields:

y® — s N (mwe, + (1 — w)L1,m diag(6) — 667). (36)

m—r oo

15

By applying a mean-field approximation diag(0) — 00" =~ %I and noting that log 7’ ~ wK since
w — 0, we obtain:

Yy logr’ —4— N (mw?Ke, +w(l — w)1, mw?KT). (37)

m— o0

Since the softmax operation is shift-invariant, we can drop the constant w(1 — w)1 and define
z; ~ N (mw?Ke,, mw?KI). Plugged into the update, we obtain 7, = softmax(log m¢_1 + ;)
matching Eq. (14).

(ii) Aggregation. The vectors zy, .. ., z; are conditionally i.i.d. Gaussians; their sum is Gaussian
with mean Zi:l Ao Ke, = a; Ke, and covariance 22:1 Ao; K1 = o; K1. Because a constant

vector can be subtracted inside the softmax, the factor log 7wy drops out, yielding 7; = softmax(z;)
with the stated distribution. O

A.1 Differences to BFNs.

While there is a different theoretical perspective between TreeGen and BFNs, both models build on
the same Bayesian update. The key differences mostly occur in the sampling and training procedure.
TreeGen performs the following update during sampling:

7 = fo(m—1,t — 1) (38)
ze ~ N (0 K7, 0, K1) (39)
7 = softmax(z;). (40)
In contrast, BFNs perform:
7 = fo(m—1,t — 1) 41
2~ N (G KR, G KT) (42)
7 = softmax(m_1 + 2¢). (43)

Furthermore, BFNs optimize their framework using the following objective:

‘C(Q) = EazwD,twl/{(O,l)ﬁﬂ'twpt(ﬂt|x) [%”f@(ﬂ-ta t) - ea:H%:|) (44)

while TreeGen use the loss presented in Sec. 3.

16

B Experiment Details

B.1 Hyperparameters
We provide an overview of the training and model hyperparameters in Tab. 3.

Table 3: Hyperparameters of TreeGen.

Training Sampling Graph-Transformer Upscaler Prediction Head
LR Epochs Grad. Clip EMA Steps Layers Dim(h) Heads NodeLayers Edge Layers Layers
Value 107* 50 0.5 0.9999 1000 4 64 2 1 3 2

All experiments are conducted on A100 GPUs.

B.2 Datasets

We simulate five jet-shower datasets using the GINKGO generator [12]. Three contain QCD jets
(QCD-S, QCD-M, QCD-L), and two describe W-boson jets (W-S, W-M). All sets share a common
decay rate \ and differ only in the shower cut-off A, € {4.0%, 1.12, 0.6%}, which controls the tree
sizes: up to 19 nodes for S, 59 for M, and 99 for L. Each dataset contains 10° binary hierarchies,
split into 98,000 training examples and 1,000 each for validation and test. Fig. 8 plots the leaf-count
distributions of the three QCD samples, illustrating how the cut-off controls the final hierarchy size.
Inside every hierarchy, the nodes, i.e., an energy-momentum vector specifies particles:

p' = (Ea Pzs Py pz)v (45)

which contains the energy E and momentum (p,, py,p-). In our setting, we only observe the leaves
and infer the hierarchy, i.e., the structure of internal nodes.

QCD-S QCD-M QCD-L
0.06

0.08

0.06

0.04

0.02

6 8 10 20 20 40

Number of Leaves Number of Leaves Number of Leaves

Figure 8: Histogram of the number of leaves for the three different QCD datasets.

In our setup, the tree corresponds to a splitting process. A parent node splits into its children. The
root corresponds to the initial particle, while the leaves represent the observed particles. We aim to
reconstruct the splitting process, i.e., find the edges of the tree by inferring the parent—child edges
given the leaves.

B.3 Architecture

The input to our neural network is a probabilistic hierarchy with n + n’ nodes, representing leaves
and internal nodes, i.e., 7 € [0, 1](»*7)*("+n") "Qur architecture consists of three components: (i)
the feature generation (discussed in App. B.4) , (ii) a graph transformer, and (iii) a prediction head.

Graph Transformer. Given h-dimensional node and edge features, denoted as X &€ R(n+n)xh
and E € R™*", respectively, we iteratively update node features X () at layer [given X (=1 E,
and the edges of the hierarchy as adjacency matrix A € {0, 1}(”+”,)X("+"/). We use the graph
transformer proposed by Shi et al. [38] as our backbone with four layers, two attention heads, and a
hidden dimension of 64 (Tab. 3).

17

Prediction head. Our goal is to predict parent probabilities, i.e., edge probabilities from the node
representations of the graph-transformer. Therefore, we apply a prediction head to each child-parent
pair (v;, z;) to obtain a logit for the corresponding edge and apply a softmax over all outgoing edges
of the child.

The prediction head concatenates the latent representations of the child and the parent together with
the corresponding edge features. These are then passed through a small MLP to obtain the logits as
depicted in Fig. 9.

Batch Norm . Batch Norm
. Linear
Zj — | Linear Layer + Laver + -
Leaky ReLU 2y Leaky ReLU

Figure 9: Prediction head. The prediction head processes the representations of child-parent pairs
(vi, z;), together with their corresponding edge features, and predicts single logit.

B.4 Feature Generation

To model probabilistic hierarchies effectively, we extract a diverse set of features. We first introduce
features encoding structural and uncertainty-related information such as node type, entropy, and
ancestor probabilities (App. B.4.1). We then present physically-inspired features, which capture
domain-specific properties like momentum, rapidity, and invariant mass (App. B.4.2). Finally, we
project raw features into the hidden space used by the network (App. B.4.3).

B.4.1 Features for Probabilistic Hierarchies

In this section, we present node and edge features that can be derived from probabilistic hierarchies
and aid the network in obtaining global features. We use the equations and sampling procedure from
Ziigner et al. [48].

Node Type. If nodes have children, they are categorized as internal nodes; otherwise, as leaves. We
represent this with a binary feature. Furthermore, we introduce a binary feature identifying the root,
as it is the only node without a parent.

Node Entropy. We model each node’s parent assignment as a categorical distribution over its
candidate parents and derive two features: (i) the number of candidate parents and (ii) a normalized
entropy quantifying uncertainty. Specifically, we compute:

/
n

1
H(Vl) = — log(n/) Z Aij 10g Aija (46)
j=1
1 a

Clog(n' — (i + 1)) Pt

The logarithmic normalizers match the number of candidate parents in each case, scaling the entropy
to [0, 1].

Expected Children. For each internal node z;, we include the expected number of children
under the tree sampling procedure (A, B) ~ p A,B as a feature. Under p 4 g, this equals the total

18

probability that z; is chosen as the parent of each leaf and each earlier internal node j < k:

n k—1
E [nenita(z)] = ZP(Zk | vi) + ZP(Zk | 25) (48)
i=1 =1
n k-1
= Z A + ZBjk, (49)
i=1 =1

where A; and B; denote the parent of leaf v; and internal node z;, respectively. The equalities follow
from the linearity of expectation and E[I[X = k]] = Pr(X = k).

Sibling Probability. We encode the sibling relation, i.e., whether two nodes share the same parent,
by its probability under the tree-sampling procedure as edge features. For leaves v; and v;, we
compute the probability by:

’
n

p (v; and v; are siblings) = ZP(Zk | vi,zi | V) (50)
k=1

=> oz | vi) plzx | v5) (51)
k=1

= AiAj, (52)
k=1

where we used the independence of parent draws in the sampling procedure. For internal nodes, we
compute this quantity using B, summing only over feasible parents.

Ancestor Features. We use two ancestor-based features. (i) Ancestor probability as an edge feature
for an internal node z;, and a node v;, let P := p(z;, € anc(v;)) denote the probability—under the
tree-sampling procedure—that z;, is an ancestor of v;. (ii) Expected number of ancestors as a node
feature, which equals the node’s expected depth.

For a leaf v;, we compute the expected number of ancestors as:

E[nane (vi)] = E | Y Tzx € anc(vi)] (53)
k=1
= » p(zx € anc(v;)) (54)
k=1
—- 5 Py (55)
k=1

The computation for internal nodes follows analogously, using the matrix panc,

For a pair of nodes, we also compute the (expected) number of shared ancestors as a similarity
measure. As we cannot derive an exact expression due to the dependence between the ancestor
probabilities p(z;, € anc(v;)) and p(z, € anc(v;)), we use an independence approximation:

Elnanc(vi, ;)] =) Pi PiE. (56)
k=1

The computation of P and P** follows Ziigner et al. [48].

Hierarchy size. As the hierarchies can vary in size within the datasets, we include the hierarchy
size, i.e., the number of nodes, as a feature.

19

Time embeddings. In addition to the probabilistic hierarchies and their derived features, we include
the time ¢ € [0, 1] as input to the network. We use a 10-dimensional sinusoidal positional encoding
as done in the transformer architecture [44]. We concatenate these embeddings to the node features.

B.4.2 Physically Inspired Features

In addition to the task-agnostic features described above, we include physically inspired features
tailored to jet clustering. Each node in the hierarchy corresponds to a particle and is described by its
four-momentum vector

pﬂ = (Evpmapyvpz)a (57)

which serves as the basis for our physics-derived features. The momentum p' = (p,, py, p-) is defined
in three spatial directions: the z-axis is aligned with the beam (beamline), and the plane spanned by
the two axes orthogonal to z is the transverse plane.

Y Y

Figure 10: Illustration of the transverse momentum pr and the azimuth ¢ (left), and the angle 6§
between the momentum vectors of two particles (right).

Transverse Momentum. The transverse plane is crucial for analyzing the dynamics of particle
interactions and scatterings. A key quantity in this context is the transverse momentum:

pr = \/P2 +pZ, (58)

Angular Features. Following the anti-k7 algorithm, we compute the azimuth ¢ and the rapidity y,
which define the pairwise distance measure used by the algorithm. The azimuth ¢ is measured in the
transverse plane and is computed as:

which we include as a node feature.

¢ := arctan <p“”) . (59)

Dy
The rapidity y is related to the angle of a particle relative to the beamline. It is especially useful in
high-energy physics as it remains approximately invariant under boosts along the beam axis:

1 E+p.
= — I .
Yy QOg(Ep) (60)

We include ¢ and y as node features and, analogously to the anti-kp algorithm, use their differences
as edge features:

A= ¢ — ¢ and Ay =y —y; (61)
As an additional edge feature, we use the angle 6, which accounts for all momentum components and
is given by:

T
6 = arccos <_,plpi> , (62)
(1912175112

where § = (pa, py,p-) is the momentum vector of a particle. We illustrate the angles ¢ and ¢ in
Fig. 10.

20

Invariant Mass. Finally, we use the squared invariant mass, which represents the intrinsic mass of
a particle independent of its motion or reference frame:

A=E?—(p2 +p,+p2) (63)

This property plays a crucial role in the splits within our hierarchies. As discussed in Section B.2, the
invariant mass of a parent particle must be greater than the sum of the invariant masses of its children.
Hence, for any internal node z;, with children v; and z;:

VA, > VA + VA, (64)

In the probabilistic setting, we relax this condition to

n k-1
VA, > > AuVAL+ > BiV/A,,. (65)
i=1 j=1

We use the difference between the invariant mass of the parent node and the weighted sum of the
invariant masses of its children as a node feature. Additionally, we include binary variables whether
A,, exceeds the cut thresholds and whether it’s larger than 0.

We also derive edge features from this constraint. For each pair of nodes, we compute the energy-
momentum vector of their potential parent and calculate the difference between the invariant mass
of this potential parent and the sum of the invariant masses of the two children. This edge feature
effectively quantifies the plausibility of the nodes being siblings.

B.4.3 Feature Upscaling

To align inputs with the hidden size h and stabilize training, we normalize node features with batch
normalization, apply a linear layer, and then a LeakyReLU. Because the backbone does not update
edge features, we process them using three successive blocks. The upscaling block is shown in
Fig. 11. These serve as input to our backbone (see App. B.3).

E—> Batch Norm Leaky ReLU | —

Figure 11: Feature Upscaler. The feature upscaler processes the input features and maps them to the
hidden dimension h.

B.5 Baselines

In the following, we give a short description of the baselines. Both generative models operate on
probabilistic hierarchies, just like TreeGen. We keep architecture, features, training, and sampling
parameters consistent.

Bayesian Flow Networks (BFNs). The most related baselines are standard BFNs. We discuss
details and differences to our model in App. A. For the implementation, we keep it as similar as
possible to TreeGen. While we use our proposed entropy scheduler as explained in Sec. 3, we perform
training and sampling as described by Graves et al. [19].

CatFlow. CatFlow [16] is a flow-matching model that evolves samples on the probability simplex
by integrating an ODE whose vector field is parametrized by a neural network. Training uses a
cross-entropy loss to predict the ground-truth hierarchy from noisy ones, similar to TreeGen. Two
key differences remain: (i) CatFlow’s trajectories are not constrained to stay on the simplex during
integration. We use a Gaussian prior with mean and standard deviation of 0.25, clipped at 10~ to
enable the computation of all features, and (ii) the generative process is deterministic once the prior
sample is fixed.

21

anti-k; jet clustering algorithm. The anti-k; is a well-established algorithm [7]. It iteratively
merges the two entities, i.e., particles or pseudojets, with the smallest pairwise distances d;;. The dis-
tances are computed based on the transverse momentum, azimuth angle, and rapidity (see App. B.4).

B.6 Maetrics

We report two complementary, physics-aware metrics.

Valid Hierarchy Percentage (Valid Fraction). A hierarchy is valid if it satisfies three conditions:

(i) itis a binary decay tree
(i) at every internal node the invariant mass exceeds those of the sum of the children

(iii) the squared invariant mass of each internal particle exceeds the dataset-specific cut-off.

For every generated hierarchy, we check these conditions and return the percentage that are valid.

Ratio of Log-Likelihoods (LLH Fraction). Physical plausibility does not guarantee that samples
follow the data distribution. Leveraging the Ginkgo simulator, we compute the log-likelihood of
each generated hierarchy ({,.,) and of its ground-truth counterpart (¢..). We report the average ratio
fwe/t,, Over the test set. A value close to one indicates that the generative model aligns with the target
distribution.

22

C Additional Results

C.1 Feature ablation

In the following, we ablate core features discussed in App. B.4 on QCD-S. We start with a base model
that neither uses features from the ancestor nor physical properties. The results are shown in Tab. 4.

Table 4: Ablation of ancestor and physically inspired features.

Model Valid Frac. (1) LLH Frac.

Base model 0.56340.004 0.93740.002
+ Ancestor Features 0.56440.001 0.93940.001
+ 4-Momentum + Angular Features ~ 0.645+0.021 0.982+0.001
+ Invariant Mass 0.99740.001 1.003+0.002

We observe that the base model only provides 56.3% of valid trees. While including the ances-
tor features only provides marginal improvements, the physically inspired features yield major
improvements.

C.2 Comparison to clustering algorithms.

In Tab. 5, we compare TreeGen to the CA [15, 46], k; [17], and anti-k; [7] jet clustering algorithm.
As we observe, TreeGen consistently outperforms the traditional clustering algorithms in terms of

Table 5: Comparison between clustering algorithms and TreeGen. Best scores in bold.

CA ky anti-k; TreeGen
Valid(t) LLH Valid(f) LLH Valid(t) LLH Valid (1) LLH

QCD-S 0.416 0.989 0.302 1.029 0.840 0.873 0.997 +0.001 1.003 £0.002
QCD-M 0.088 0.987 0.050 1.050 0.552 0.752 0.977 £o0.010 0.994 +0.002
QCD-L 0.025 0.978 0.008 1.065 0.440 0.636 0.943 +0.016 0.975 +0.001

Dataset

valid hierarchies. In terms of likelihood, the k; algorithm achieves slightly higher scores.

23

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose TreeGen in Sec. 3 and demonstrate its performance empirically
on the jet clustering task in Sec. 4

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a separate limitations paragraph in Sec. 6 and discuss potential
future work. All assumptions are stated when applicable.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

24

Answer: [Yes]
Justification: We discuss theoretical properties and assumptions in App. A.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our algorithm in Sec. 3 and the experimental setup in Sec. 4.
Furthermore, we specify our architecture and features in App. B.3 and App. B.4. All
hyperparameters are listed in App. B.1

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

25

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is available on the project page and contains instructions to reproduce
the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experimental details are specified in Sec. 4 and App. B.1.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Our results include standard deviations computed over four seeds.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We specify the compute resources in App. B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We read the code of ethics and our paper conform with it.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper proposes a generative model for hierarchies empirically evaluated
on the jet clustering task that does not have direct societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

27

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not pose risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the Ginkgo simulator.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

28

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not include research with human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not include research with human subjects or crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our method does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Probabilistic Hierarchies
	Bayesian Flow Networks

	TreeGen: A Generative Model for Hierarchies
	Experiments
	Experimental Setup
	Results

	Related Work
	Hierarchical Clustering
	Jet Clustering
	Generative Models

	Conclusion
	Theory
	Differences to BFNs.

	Experiment Details
	Hyperparameters
	Datasets
	Architecture
	Feature Generation
	Features for Probabilistic Hierarchies
	Physically Inspired Features
	Feature Upscaling

	Baselines
	Metrics

	Additional Results
	Feature ablation
	Comparison to clustering algorithms.

