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Abstract
The evolution of large language models001
(LLMs) has enhanced the planning capabili-002
ties of language agents in diverse real-world003
scenarios. Despite these advancements, the004
potential of LLM-powered agents to compre-005
hend ambiguous user instructions for reason-006
ing and decision-making is still under explo-007
ration. In this work, we introduce a new008
task, Proactive Agent Planning, which requires009
language agents to predict clarification needs010
based on user-agent conversation and agent-011
environment interaction, invoke external tools012
to collect valid information, and generate a013
plan to fulfill the user’s demands. To study this014
practical problem, we establish a new bench-015
mark dataset, Ask-before-Plan. To tackle016
the deficiency of LLMs in proactive plan-017
ning, we propose a novel multi-agent frame-018
work, Clarification-Execution-Planning (CEP),019
which consists of three agents specialized in020
clarification, execution, and planning. We in-021
troduce the trajectory tuning scheme for the022
clarification agent and static execution agent,023
as well as the memory recollection mechanism024
for the dynamic execution agent. Extensive025
evaluations and comprehensive analyses con-026
ducted on the Ask-before-Plan dataset validate027
the effectiveness of our proposed framework.1028

1 Introduction029

Since long, people have been engaged in a never-030

ending trek to devise intelligent agents cloning ap-031

pearance, behaviors, and even mindsets similar to032

human beings (Descartes and Cress, 1998; Drey-033

fus, 1992). The emergence of large language mod-034

els (LLMs) and their integration into autonomous035

agents exhibits the potential for logical reason-036

ing, decision-making, and problem-solving capa-037

bilities (Wang et al., 2023b; Xi et al., 2023). LLM-038

based language agents have been explored in var-039

ious real-world planning problems, such as travel040

1The data and code will be released via https://github.
com/anonymous.
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Figure 1: Illustrations of different problems.

planning (Xie et al., 2024), web navigation (Deng 041

et al., 2023a), online shopping (Yao et al., 2022), 042

etc. Nevertheless, they struggle to digest real- 043

world instructions from time to time, particularly 044

when the context is ambiguous or the user’s inten- 045

tion is unclear. Figure 1(a) exemplifies a case of 046

Agent Planning, where the language agent fails to 047

produce a desired plan when encountering an un- 048

clear user instruction. 049

Inspired by proactive information-seeking sys- 050

tems (Deng et al., 2023b; Liao et al., 2023) that 051

can proactively ask clarification questions for clar- 052

ifying the query uncertainty, latest studies on lan- 053

guage agents (Qian et al., 2024; Zhang et al., 2024) 054

emphasize intention clarifications by incorporat- 055

ing implicit intention understanding into down- 056

stream applications (Figure 1(b)). Despite their 057

effectiveness in clarifying the uncertainty within 058

user queries, there are several challenges that re- 059

main to be solved in agent planning scenarios: (1) 060

The exclusive reliance on query understanding for 061

clarification without considering the observations 062

from the environment interaction; and (2) The neg- 063

ligence of the effect of user intention disambigua- 064
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tion in subsequent planning.065

Given these important but neglected aspects, we066

formulate a novel task named Proactive Agent067

Planning. In addition to apprehending the user’s068

implicit intentions in proactive information seek-069

ing, Proactive Agent Planning further requires070

language agents to predict clarification needs de-071

pending on the environmental observations, in-072

voke external tools to collect valid information073

based on the user-agent conversation, and finalize074

decisions to accomplish the common goal condi-075

tioned on both user-agent conversation and agent-076

environment interaction history (Figure 1(c)). To077

study this practical problem, we first establish a078

new benchmark dataset, Ask-before-Plan, based079

on an agent planning dataset, TravelPlanner (Xie080

et al., 2024), which is used for evaluating the capa-081

bility of agents for real-world travel planning.082

To tackle the aforementioned challenges, we083

propose a novel multi-agent framework, named084

Clarification-Execution-Planning (CEP), to encom-085

pass user instruction clarification into downstream086

agent planning. Specifically, the CEP involves087

three agents with distinct roles in Clarification, Ex-088

ecution, and Planning. The Clarification agent is089

responsible for understanding the uncertainty of090

user instructions and asking users clarifying ques-091

tions to uncover their underlying intentions. The092

Execution agent leverages various tools to interact093

with the environment, gathering necessary infor-094

mation for the Clarification agent. The Planning095

agent produces the final plan by aggregating the096

clarification process for accomplishing the initial097

user instruction. To supplement the deficiency of098

simply prompting LLMs to ask clarification ques-099

tions or perform complex tool learning, we devise100

Trajectory Tuning for fine-tuning the clarification101

and execution agents. Furthermore, we employ102

self-reflection to improve the reasoning process of103

the execution agent. However, the redundancy of104

self-reflection in multi-turn conversations may in-105

crease the time complexity of inference and intro-106

duce more noise into the context. To this end,107

we propose the memory recollection mechanism108

to optimize the memory utility for the execution109

agent in long-context reasoning.110

In summary, our contributions are as follows:111

• We introduce a new and practical problem of112

Proactive Agent Planning to study the chal-113

lenges of LLM-powered language agents in han-114

dling unclear user instructions.115

• We propose a novel multi-agent framework, 116

namely CEP, which consists of clarification, ex- 117

ecution, and planning agents, to address the un- 118

derlying challenges in the Proactive Agent Plan- 119

ning problem. 120

• We construct the first dataset for studying Proac- 121

tive Agent Planning, namely Ask-before-Plan. 122

Extensive evaluations and comprehensive analy- 123

ses in diverse settings validate the effectiveness 124

of the proposed CEP framework. 125

2 Related Work 126

Language Agents Language-based agents (Xi 127

et al., 2023; Wang et al., 2023b) aim to perform 128

real-world tasks that require professional expertise 129

or extensive training by utilizing LLMs to conduct 130

reasoning (Yao et al., 2023; Shinn et al., 2023), 131

memory storage and retrieval (Wen et al., 2023; 132

Zhong et al., 2024), and tool use (Qin et al., 2024; 133

Schick et al., 2023). The rapid development and 134

application of language agents span various do- 135

mains, including web agents (Deng et al., 2023a; 136

Yao et al., 2022; Deng et al., 2024), game agents 137

(Wang et al., 2023a; Zhu et al., 2023), and medical 138

agents (Li et al., 2024a; Schmidgall et al., 2024), 139

etc. Existing studies typically assume that the user 140

instructions are clear enough for language agents 141

to execute the task, while the instructions tend to 142

be succinct and brief in actual scenarios, poten- 143

tially leading to ambiguity and uncertainty. 144

Asking Clarification Questions The problem 145

of asking clarification questions (Aliannejadi et al., 146

2021) typically involves two phases: Clarification 147

Need Prediction and Clarification Question Gener- 148

ation. Early studies develop ranking-based meth- 149

ods (Rao and Daumé III, 2018; Xu et al., 2019) 150

to select clarification questions from a candidate 151

pool, or apply end-to-end solutions (Deng et al., 152

2022) for generating questions on the fly. Re- 153

cently, LLMs have also been employed to gener- 154

ate clarifying questions (Kuhn et al., 2022; Deng 155

et al., 2023c; Zhang et al., 2024). Another line of 156

research investigates environmental reward feed- 157

back to formulate questions (Zamani et al., 2020; 158

Pyatkin et al., 2023; Andukuri et al., 2024). Qian 159

et al. (2024) explore how language agents under- 160

stand implicit user intentions but do not clarify 161

users’ needs based on their predefined preferences 162

and consider the whole language agent problem, 163

such as planning and task-solving. 164
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(2) Proactive Conversation Generation

Assets

Itinerary

Origin Cleveland             ❓

Destination by Arrive Days
Fort Myers on day 1
Tampa on day 3

Duration 5 days

Departure Date March 2nd, 2022

The number of People 6

Accommodation Preferences entire room, pets

Cuisine Preferences None

Transportation Preferences no self-driving

Budget $13,900 $2,401   ⚠ 

Minimal Budget: $2,642

Missing Details

Unfeasible Details

I am planning a 5-day trip for six individuals, starting on
March 2nd, 2022, from Cleveland. Our itinerary includes
visiting Fort Myers on the �rst day and Tampa on the third
day. We are looking for accommodations that offer an entire
room and are pet-friendly. Additionally, we prefer not to self-
drive during our trip. Our budget for this journey is $13,900.

Initial Query

(1) Indefinite Detail Formation

Simulated Dialogue

I am planning a 5-day trip for 6 individuals, starting on March 2nd,
2022. Our itinerary includes visiting Fort Myers on the 1st day and
Tampa on the 3rd day. We are looking for accommodations that offer
an entire room and are pet-friendly. Additionally, we prefer not to
self-drive during our trip. Our budget for this journey is $2401.

Where will you be departing from for this trip?

I will be departing from Cleveland.

It looks like the budget you've mentioned might not be

enough for your trip. Would you be open to adjusting your

budget to meet the minimum requirements for the itinerary

you've planned?

Absolutely, I'm willing to adjust the budget to ensure I can fully
experience everything on my itinerary. Let's make it $13,900 to cover all
the amazing activities and accommodations I have planned.

Figure 2: Data annotation process.

3 Ask-before-Plan Dataset165

Existing benchmarks on language agents either166

only focus on their capabilities of asking clarifi-167

cation questions, e.g., Tell Me More (Qian et al.,168

2024) and Clamber (Zhang et al., 2024), or sim-169

ply assume that all the user instructions are clear170

and explicit, e.g., TravelPlanner (Xie et al., 2024)171

and Mind2Web (Deng et al., 2023a). In order to172

integrally investigate agents’ competence in ask-173

ing clarification questions as well as planning and174

interacting with the environment, we construct175

the Ask-before-Plan dataset. Built on the Trav-176

elPlanner benchmark, our dataset incorporates un-177

certain user instructions that require clarifications178

into real-world travel planning scenarios.179

3.1 Annotation & Quality Control180

We aim to incorporate uncertain user instructions181

with proactive information-seeking dialogues into182

tool-augmented planning, allowing the agent to183

ask clarification questions when faced with am-184

biguous or vague user instructions. As shown in185

Figure 2, the dataset construction process is bifur-186

cated into the following two phases: (1) Indefinite187

Detail Formation, and (2) Proactive Conversa-188

tion Generation.189

Indefinite Detail Formation Each instruction190

in TravelPlanner precisely describes the task and191

all pertinent details. To produce unclear instruc-192

tions with indefinite details, we focus on two typ-193

ical scenarios observed in proactive information-194

seeking dialogues: (1) clarifying under-specified195

queries, and (2) managing over-specified queries196

(Wu et al., 2023; Deng et al., 2023b):197

1. We create the under-specified user instruction 198

with missing details based on attributes such as 199

origin, destination by arrival days, departure 200

date, duration, number of people, and budget, 201

by discarding corresponding information from 202

the original complete instruction. 203

2. To construct over-specified instructions, we de- 204

velop unfeasible details based on features such 205

as accommodation, cuisine, and transportation 206

preferences, destination by arrival days, and 207

budget. We exhaustively iterate over all pos- 208

sible values within the TravelPlanner environ- 209

ment to select those that lack directly matched 210

information for instruction rewriting. 211

Consequently, we range the size of indefinite de- 212

tails from 0 to 3 for each instruction to formu- 213

late the final dataset. Given the interdependencies 214

among these details, topological sort is employed 215

to reorder the details according to the dependency 216

graph, and the priority of each detail is assigned 217

accordingly. The descriptions of indefinite detail 218

creation and instruction modification are presented 219

in Appendix A.1. 220

Proactive Conversation Generation After ac- 221

quiring the revised instruction and selecting indef- 222

inite details, we utilize GPT-3.5 to simulate the 223

proactive conversation between users and agents. 224

In the user simulation, we adopt different tones, in- 225

cluding succinct and passionate response patterns. 226

To summarize, we follow the pipeline below to 227

generate the real-world conversation: 228

1. Ambiguity Observation: The description of 229

an unclarified indefinite detail is presented to 230

GPT-3.5 (Agent) as the observation. 231
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Train Test

Level
Easy 331 348
Medium 336 333
Hard 333 319

Duration
3 days 335 308
5 days 337 351
7 days 328 341

Missing Details

Origin 219 192
Destination by Arrival Days 379 360
The number of People 200 204
Duration 199 201
Departure Date 199 213
Budget 384 401
Total 1,204 1,183

Unfeasible Details

Destination by Arrival Days 189 176
Accommodation Preferences 182 185
Cuisine Preferences 18 20
Transportation Preferences 20 24
Budget 187 212
Total 596 617

Total # Dialogues 1,000 1,000
# Turns 2,800 2,800

Table 1: Dataset statistics of Ask-before-Plan.

2. Question Generation: A question is generated232

to inquire about the indefinite detail based on233

the initial instruction and observation.234

3. Draft Answer: The draft answer is provided to235

GPT-3.5 (User) to guide the clarification of the236

indefinite detail.237

4. Natural Response Generation: A natural user238

response is generated based on the question and239

the draft answer.240

5. Quality Control: The human examiner verifies241

that the question covers the indefinite detail and242

that the response provides clarification.243

The detailed implementation of these simulations,244

including the prompts used, is documented in Ap-245

pendix A.2. The methodology achieved a pass rate246

of 87.2% on the human examination.247

3.2 Dataset Statistics248

After the dataset construction, we obtain 1,000249

samples for both the training and testing datasets.250

Indefinite details were randomly selected from251

11 distinct candidate types, as previously defined.252

The distribution of indefinite detail sizes is struc-253

tured as follows: 10% of the data contains no in-254

definite details, and 30% of the data includes 1,255

2, or 3 indefinite details each. The overall dataset256

statistics are presented in Table 1. The environ-257

ment setting is presented in Appendix A.3.258

3.3 Problem Definition259

Regarding the problem of Proactive Agent Plan-260

ning, given an initial user instruction q0 poten-261

tially containing T vague or unfeasible details,262

D = {d1, . . . , dT }, we define three subtasks:263

• Clarification Need Prediction & Clar- 264

ification Question Generation: For a 265

user-agent dialogue up to t − 1 turns, 266

we define the conversation history, 267

Ct−1 = {(q0), (a1, q1), . . . , (at−1, qt−1)}, the 268

agent-environment interaction history based on 269

Ct−1, denoted as Et−1 = {f1, o1, . . . , fn, on}, 270

where fi is the function call and oi is the obser- 271

vation from the environment, and the unclarified 272

detail set for this turn, Dt = {dt+1, . . . , dT }. 273

The clarification agent is tasked with predicting 274

a binary label bt, indicating the need for clari- 275

fication based on the vagueness and feasibility 276

of environmental responses Et−1, and eliciting 277

unclarified details in Dt by generating a clarifi- 278

cation question at if needed. The conversation 279

will advance according to the topological prior- 280

ity assigned to each detail, with those sharing 281

the same priority addressed randomly. 282

• Tool Learning: Given the ongoing conversation 283

Ct = {(q0), (a1, q1), . . . , (at−1, qt−1), at}, the 284

agent needs to generate the complete interaction 285

chain Ei−1
t = {f1, o1, . . . , fi−1, oi−1} within 286

the present information. A correct function call 287

is defined as having accurate function names and 288

valid parameters. This stage is used to interact 289

with the environment as well as provide observa- 290

tion for the next-turn clarification. 291

• Agent Planning: Upon completion of the clari- 292

fied dialogue Ct and the last interaction history 293

Et, the planning agent must generate a valid 294

plan in JSON format with pre-defined fields 295

such as day, current city, transportation, etc. 296

4 Method 297

We introduce our multi-agent framework, namely 298

Clarification-Execution-Planning (CEP), which 299

consists of three agents: clarification agent, 300

execution agent, and planning agent. 301

Specifically, we investigate two settings of exe- 302

cution agents to interact with the environment us- 303

ing tools, namely static and dynamic interaction. 304

For the static interaction, the agent needs to gener- 305

ate the whole valid interaction of tool calls Ei−1
t 306

based on the current conversation Ct in one-step 307

inference. We regard the dynamic interaction as a 308

multi-step inference. In this situation, the agent is 309

expected to generate one action fi depending on 310

the current conversation Ct, with previous interac- 311

tion history Ei−1
t = {f1, o1, . . . , fi−1, oi−1}. 312
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Figure 3: Overview of the CEP framework.

As illustrated in Figure 3, we introduce the tra-313

jectory tuning scheme for the clarification agent314

and static execution agent, along with memory rec-315

ollection for the dynamic execution agent. Finally,316

the planning agent generates a valid plan based on317

the conversation history and interaction results.318

4.1 Trajectory Tuning319

Concerning the status quo, LLMs struggle to320

spontaneously clarify users’ intentions during the321

conversation (Deng et al., 2023b) and accurately322

obtain necessary information via tool utilization323

without hallucination (Li et al., 2024b), even af-324

ter the instruction tuning or providing the well-325

crafted prompts. To resolve these issues and align326

the current language-based agents with our task,327

we propose to use the trajectory (Ct−1, Et−1) to328

finetune the clarification agent and the execution329

agent in the static setting. We sample t− 1 details330

according to topological order (see Appendix A.1)331

to craft Ct−1 and derive the valid interaction chain332

Et−1 from Ct−1 based on ground truth.333

Clarification Agent As introduced in Section334

3.3, there are two steps to be achieved for the clar-335

ification agent: (1) Clarification Need Prediction.336

In this step, the agent generates a boolean indica-337

tor bt to predict the need for clarification based on338

the ongoing conversation Ct−1 and the last turn339

interaction Et−1. (2) Clarification Question Gen-340

eration. If bt is true, the model needs to gener-341

ate a clarifying question at for a specific detail342

dt. In this case, we create a conversation sequence343

[fprompt(Ct−1, Et−1, bt), at
[bt=1]] and tokenize it344

into the input tokens xt, where fprompt(·) is a func-345

tion to apply the prompt template.346

Static Execution Agent In the tool learning sub-347

task, we apply trajectory tuning for the static set-348

ting. Given the current-turn conversation Ct and349

the complete interaction chain Et, we construct350

the sequence [fprompt(Ct), Et] and transform it351

into the input xt.352

Training Objective Finally, we train the agent 353

using the trajectory sequence xt for turn t in the 354

autoregressive manner: 355

L = max
θ

1

|T |
∑T

t=1

∑Nt

i=1
logP t

θ(x
t
i|xt

<i) (1) 356

where θ denotes the model parameter to be learned, 357

T denotes the number of total conversation turns, 358

and Nt denotes the number of tokens in turn t. 359

4.2 Memory Recollection 360

In view of dynamic tool interaction, Reflexion 361

(Shinn et al., 2023) has been validated as an effec- 362

tive approach to improve the reasoning capability 363

of LLMs by incorporating the self-reflective feed- 364

back into the ReAct framework (Yao et al., 2023). 365

However, when applying this approach to Proac- 366

tive Agent Planning, there is a potential issue: the 367

dynamic execution agent may encounter similar 368

types of exceptions and repeatedly generate iden- 369

tical rationales across different turns. To alleviate 370

this disadvantage, we introduce the Memory Rec- 371

ollection mechanism to reuse self-reflective feed- 372

back from previous turns. 373

Given the conversation context Ct at turn t, the 374

execution agent generates a tool call fi during 375

the i-th interaction, based on previous interactions 376

Ei−1
t and all reflective text in the memory bank Ri

t, 377

i.e., fi = LLM(Ct, E
i−1
t , Ri

t). When fi is invalid, 378

the agent will generate a rationale ri and store it 379

into Ri+1
t for self-reflection at the next interaction: 380

Ri+1
t =

{
Ri

t if fi is valid
concat(Ri

t, ri) else
(2) 381

Given that Ct shares common clarified details 382

across different turns, the memory recollection ac- 383

cumulates the reflective feedback from previous 384

turns, i.e., Rt+1 = Rt. This mechanism not only 385

prevents the model from repeating mistakes in his- 386

tory turns but also reduces the inference time for 387

upcoming turns. The theoretical time complexity 388

analysis and corresponding experimental results 389

are presented in Appendix C.1. 390

4.3 Overall Framework 391

Given the conversation Ct of turn t, the execution 392

agent first generates the whole interaction chain 393

Et. Next, based on Ct and Et, the clarification 394

agent is required to predict the clarification need 395

and ask a question about a detail from Dt if nec- 396

essary. If all indefinite details have been recov- 397

ered by the clarification agent, the planner agent 398
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will generate a valid plan in the format of JSON,399

based on the conversation CT and the interaction400

ET from CT .401

5 Experiment402

5.1 Experimental Setups403

Baselines We adopt the following baselines for404

subtasks in the problem of Proactive Agent Plan-405

ning: (1) Clarification: We first design a rule-406

based environment-only method and adopt two407

conversation-only methods, including Proactive408

and Proactive CoT (ProCoT) (Deng et al., 2023c),409

as baselines. For the reason that there is no ex-410

isting approach that concurrently considers the en-411

vironment and conversation when asking clarifica-412

tion questions, we further directly prompt the GPT-413

3.5 with the conversation history and interaction414

log as a baseline. (2) Tool learning: We adopt the415

general brute-force algorithm and three baselines,416

including Direct prompting for the static execution417

setting as well as ReAct (Yao et al., 2023) and Re-418

flexion (Shinn et al., 2023) for the dynamic set-419

ting. (3) Planning: Our baselines include Direct420

prompting, Zero-shot CoT (Kojima et al., 2023)421

for static settings, as well as ReAct (Yao et al.,422

2023) and Reflexion (Shinn et al., 2023) for dy-423

namic settings.2 Additionally, Greedy Search is424

included as a baseline for comparison. Details of425

these baselines are presented in Appendix B.1.426

Evaluation Metrics Similarly, we employ eval-427

uation metrics for the three subtasks as follows:428

(1) In the clarification subtask, Clarification Ac-429

curacy (Clarif. Acc) is adopted for evaluating430

the performance of Clarification Need Prediction,431

and meanwhile, we setup three metrics to score432

the quality of clarification question generation, in-433

cluding Rule-based, BLEU, and GPT scores. (2)434

For the tool learning subtask, following previ-435

ous studies (Wang et al., 2024), we also adopt436

the same metrics for evaluation, including Well-437

formed, API Match, and Correctness. Further-438

more, we add two metrics to assess the Repeat439

Rate and Pass Rate of tool use. (3) Concerning440

the planning subtask, we also adopt the same eval-441

uation metrics as TravelPlanner (Xie et al., 2024),442

including Delivery Rate, Commonsense Pass Rate,443

Hard Constraint Pass Rate, and Final Pass Rate.444

Details of these evaluation metrics are presented445

in Appendix B.2.446

2ReAct and Reflexion are not tested for Mistral-7B due to
the inability to generate valid JSON plans.

Clarif. Acc Rule-based Score GPT Score

Micro Macro Micro Macro
BLEU

Micro Macro

Environment-only 70.4 17.7 21.5 8.1 1.0 40.1 19.4

Conversation-only

Proactive (GPT-3.5) 62.3 6.1 9.7 3.4 3.7 0.9 0
ProCoT (GPT-3.5) 33.7 10.6 3.3 2.6 2.2 2.4 1.8

Environment + Conversation

Direct (GPT-3.5) 47.0 16.9 20.8 17.4 8.2 8.6 6.2
CEP (Mistral-7B) 82.8 51.7 54.2 37.0 44.5 73.1 58.6
CEP (LLaMA-3-8B) 99.4 98.2 69.7 55.8 57.2 85.8 77.0

Table 2: Evaluation of clarification.

Implementation Details For all experiments in- 447

volving GPT-3.5, we use gpt-3.5-turbo-0125. 448

Mistral-7B and LLaMA-3-8B are adopted for fine- 449

tuning and inference. More implementation de- 450

tails are presented in Appendix B.3. 451

5.2 Overall Evaluation 452

We list our experiments on clarification, tool learn- 453

ing, and planning subtasks, shown in Tables 2, 3, 454

4. To assess the capability of agents on these three 455

subtasks individually, we use the ground truth of 456

prior subtasks as input for the subsequent sub- 457

task. Evaluations of the integral framework are 458

discussed in Section 5.2.4. 459

5.2.1 Evaluation on Clarification 460

From Table 2, the results of the environment-only 461

method surpass those of two conversation-only 462

methods, pointing out the importance of using en- 463

vironment observation as a supervised signal in 464

clarification for language agents. 465

Comparing two conversation-only methods, 466

Proactive performs well in turn-grained (Mi- 467

cro Clarif. Acc), while ProCoT strengthens 468

in instance-grained clarification (Macro Clarif. 469

Acc). Upon careful inspection, we observe that 470

Proactive prefers to clarify the user’s instruction, 471

whereas ProCoT tends to directly execute the 472

instruction, which is discussed in Section 5.3. 473

Besides, ProCoT performs better in clarification 474

question generation with higher GPT scores. 475

For approaches using both environment and 476

conversation observations, Direct (GPT-3.5) sur- 477

passes conversation-only methods in question 478

quality and macro clarification accuracy. However, 479

it still performs worse than the environment-only 480

method, regardless of Clarification Need Predic- 481

tion or Clarification Question Generation. Finally, 482

our proposed CEP framework with either Mistral- 483

7B or LLaMA-3-8B outperforms all other meth- 484

ods. Specifically, finetuned LLaMA-3-8B is better 485
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Well-formed
API

Match
Repeat
Rate

Correctness Pass Rate

P R F1 Micro Macro

Brute-force 100 98.8 0 77.2 90.3 81.9 45.7 22.0

Static Setting

Direct (GPT-3.5) 99.9 88.9 0.07 72.8 62.0 64.7 7.1 2.3
CEP (Mistral-7B) 99.4 93.4 0.15 91.7 90.1 90.1 57.6 27.3
CEP (LLaMA-3-8B) 100 99.3 0.04 97.9 98.1 97.9 89.0 78.4

Dynamic Setting

ReAct (GPT-3.5) 66.2 33.3 14.3 42.8 15.6 21.1 1.4 0
Reflexion (GPT-3.5) 70.5 42.2 11.1 44.4 18.6 24.0 1.0 0
CEP (GPT-3.5) 73.3 45.3 9.8 45.0 19.2 24.7 1.1 0

ReAct (Mistral-7B) 49.0 50.0 11.8 58.1 24.6 32.3 1.2 0
Reflexion (Mistral-7B) 48.1 46.3 15.6 54.2 21.8 28.8 1.2 0
CEP (Mistral-7B) 46.9 42.4 18.1 49.0 19.5 25.6 1.3 0

Table 3: Evaluation of tool learning.

than finetuned Mistral-7B, mainly due to the larger486

parameter size and better pretraining data.487

5.2.2 Evaluation on Tool Learning488

As shown in Table 3, we evaluate tool learning in489

two settings, namely static and dynamic.490

Discussion on Static vs. Dynamic Settings491

First of all, Brute-force outperforms all methods492

in the dynamic setting. In general, agents in the493

dynamic setting represent worse results compared494

with agents in the static setting, indicating that in495

a complex environment similar to the real-world496

situation, agents are more likely to fail to handle497

different exceptions during the interaction.498

Comparison on Static Setting In the static set-499

ting, we observe the same phenomenon in the clar-500

ification subtask, i.e., LLaMA-3-8B performs bet-501

ter, and even surpasses the Brute-force baseline.502

Zero-shot GPT-3.5 presents the undesired perfor-503

mance on API match, correctness, and pass rate.504

Comparison on Dynamic Setting In the dy-505

namic setting, due to the input token limitation506

of LLaMA-3-8B, we could only conduct experi-507

ments over GPT-3.5 and Mistral-7B for three dif-508

ferent strategies. We find that GPT-3.5 is prone509

to generating actions without syntax errors. But510

when it comes to evaluating the quality of the gen-511

erated actions, Mistral performs better. Secondly,512

we find the performance degradation trend of Mis-513

tral from the strategy ReAct to our proposed mem-514

ory recollection mechanism, which is in contrast515

to the observation we find in GPT-3.5, probably516

because of the reasoning ability drops when pro-517

cessing the context with length over 8K. The re-518

sults of GPT-3.5 prove the effectiveness of mem-519

ory recollection. It can also be concluded that in a520

dynamic setting, all agents fail to consistently gen-521

erate correct actions throughout the entire interac-522

Commonsense Hard Constraint
Delivery

Rate
Pass Rate Pass Rate Final

Pass RateMicro Macro Micro Macro

Greedy Search 100 76.9 0 64.5 46.7 0

Direct (Mistral-7B) 86.6 44.8 0.4 4.0 0.9 0
CoT (Mistral-7B) 61.5 29.8 0 2.4 0.1 0

Direct (GPT-3.5) 98.6 63.7 0.7 19.0 5.1 0.1
CoT (GPT-3.5) 77.5 50.0 0.6 16.2 5.2 0
ReAct (GPT-3.5) 68.7 38.0 0 3.2 0.6 0
Reflexion (GPT-3.5) 61.5 33.9 0 3.1 0.4 0

Table 4: Evaluation of planning.

Clarification

Clarif. Acc Rule-based Score GPT Score

Micro Macro Micro Macro Micro Macro

CEPindependent (LLaMA-3-8B) 99.4 98.2 69.7 55.8 85.8 77.0
CEPintegral (LLaMA-3-8B) 97.3 92.9 68.4 54.7 85.1 76.0

Planning

Delivery
Rate

Commonsense
Pass Rate

Hard Constraint
Pass Rate

Final
Pass Rate

Micro Macro Micro Macro

CEPintegral 98.8 64.3 1.0 19.2 5.0 0.1
CEPintegral w/o Clarification 93.3 53.3 0.3 8.4 3.1 0

Table 5: Evaluation of the integral framework.

tion. More analysis on dynamic execution agents 523

is presented in Appendix C. 524

5.2.3 Evaluation on Planning 525

In the planning task, greedy search achieves a de- 526

livery rate of 100% and meets most constraints, 527

but this does not result in a valid plan. For Mis- 528

tral, we only test the Direct and CoT strategies 529

because the agent gets trapped in a fail-retry loop 530

when using ReAct and Reflexion. This scenario 531

mirrors the performance drop observed in the tool 532

learning task with a super-long context. For GPT- 533

3.5, we observe the same trend in TravelPlanner 534

(Xie et al., 2024), the performance degrades from 535

direct prompting to Reflexion, demonstrating the 536

difficulty for most advanced agents to finish the 537

planning task. Among these results, only GPT-3.5 538

with direct prompting successfully generates one 539

passed plan out of 1,000 samples in the test set, in- 540

dicating the significant challenge of this problem. 541

5.2.4 Evaluation on the Integral Framework 542

Finally, we evaluate the integral CEP framework 543

holistically rather than assessing the performance 544

of each subtask independently. To this end, we 545

adopt the execution interactions generated by the 546

SOTA model in Table 3, CEP (LLaMA-3-8B), for 547

the subsequent clarification and the final planning. 548

Results are reported in Table 5. 549

As for the clarification subtask, we use CEP 550

(LLaMA-3-8B) based on the environment interac- 551

tion generated by the execution agent and the cur- 552
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Figure 4: Analysis of clarification recall.

rent conversation history. Compared to the version553

supervised by ground-truth data, i.e., CEPindependent554

(LLaMA-3-8B), the performance of CEPintegral555

(LLaMA-3-8B) slightly drops due to incorrectly-556

predicted tool usage, highlighting the robustness557

of our proposed CEP framework.558

For the final planning subtask, we analyze the559

effect of user intention disambiguation by ablating560

the clarification agent. We adopt the best planning561

model from Table 4, i.e., Direct (GPT-3.5), as the562

planning agent. Specifically, we feed the initial563

instruction without clarification into the planning564

agent, denoted as w/o Clarification, for compari-565

son. The observations indicate that the planning566

agent fails to formulate valid plans without clari-567

fication, stating that user intention understanding568

is essential for effective plan delivery and meeting569

constraints. To intuitively illustrate the importance570

of clarification in agent planning, we present a de-571

tailed case study in Appendix D.572

5.3 Detailed Analysis573

Analysis of Clarification Recall We further ex-574

amine the clarification accuracy from two an-575

gles: clearness and vagueness judgment recall576

(definitions are presented in Appendix B.2). It577

can be observed from Figure 4 that: (1) CEP578

(LLaMA-3-8B) outperforms all other methods in579

both clearness and vagueness judgment. (2) Proac-580

tive (conversation-only) and environment-only ap-581

proaches are inclined to request clarification, in-582

dicating that these agents struggle to make accu-583

rate judgments when either type of observation584

is absent. (3) ProCoT and Direct (GPT-3.5) tend585

to not clarify the conversation, suggesting that586

full observations or invoking agents to engage in587

deeper reasoning might bring about hallucinations588

in judgment. (4) Mistral-7B performs worse than589

LLaMA-3-8B in both clearness and vagueness590

judgment, correlating with findings from static591

tool learning that LLaMA-3-8B’s larger parame-592

ter size and better pretraining data lead to superior593

performance.594

Constraint Type
Greedy Search CEPintegral CEPintegral w/o Clarif.

Easy Medium Hard Easy Medium Hard Easy Medium Hard

Commonsense Constraint

Within Sandbox 100 100 100 38.8 38.1 42.3 23.6 22.2 21.0
Complete Information 100 100 100 89.7 89.8 74.6 67.0 55.0 48.0
Within Current City 100 100 100 69.8 76.3 77.7 62.9 64.3 62.1
Reasonable City Route 100 100 100 68.7 74.2 67.4 31.6 25.8 28.5
Diverse Restaurants 0 0 0 65.2 69.4 72.4 66.7 72.1 73.7
Diverse Attractions 100 100 100 93.1 93.7 92.2 89.7 90.4 89.0
Non-conf. Transportation 93.4 92.5 91.8 74.4 70.3 89.3 64.9 55.6 68.0
Minimum Nights Stay 20.4 24.9 22.9 6.0 5.1 6.0 31.6 30.0 34.5

Hard Constraint

Budget 99.7 99.4 100 5.2 7.8 2.5 3.4 4.8 0.9
Accommodation - 41.3 32.0 - 33.8 34.8 - 16.4 14.4
Cuisine - 5.9 0 - 32.8 19.8 - 8.4 8.4
Transportation - - 55.0 - - 37.2 - - 15.6

Table 6: Analysis of plan constraints.

Analysis of Planning Constraints We report 595

the detailed planning constraint pass rates for 596

Greedy Search, CEPintegral with and without clari- 597

fication in Table 6. The description of these con- 598

straints is shown in Appendix B.2. Our findings in- 599

clude: (1) Compared to Greedy Search, CEPintegral 600

underperforms on most constraints except for di- 601

verse restaurants and cuisine, highlighting the lim- 602

itations of off-the-shelf language agents in Proac- 603

tive Agent Planning. (2) Clarification plays a criti- 604

cal role in enabling agents to meet most common- 605

sense and all hard constraints, as evidenced by the 606

lower pass rates of CEPintegral without clarification. 607

However, an exception is the constraint minimum 608

nights stay, which checks whether the accommo- 609

dation options entailed in a plan satisfy the mini- 610

mum night requirements. This constraint demands 611

mathematical understanding of the plan, while the 612

lengthy context of clarification dialogues may in- 613

troduce some noise into the planning process. 614

6 Conclusion 615

In this work, we introduce a new and practical 616

problem of Proactive Agent Planning to address 617

the challenges faced by LLM-powered language 618

agents in handling unclear user instructions. To 619

tackle these obstacles, we propose a novel multi- 620

agent framework, CEP, which consists of clari- 621

fication, execution, and planning agents. This 622

framework features trajectory tuning and memory 623

recollection to address challenges faced by cur- 624

rent agents in requesting clarifications and execut- 625

ing tools within lengthy conversation contexts and 626

complex environmental interactions. Additionally, 627

we construct the first dataset specifically for study- 628

ing the concerned problem, named Ask-before- 629

Plan. Extensive evaluations and comprehensive 630

analyses across diverse settings substantiate the ef- 631

fectiveness of the proposed CEP framework. 632
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Limitations633

User Simulation To simplify the evaluation on634

the clarification subtask, we employ static user635

simulation rather than real-time user simulation636

for dialogues. This approach allows us to focus ex-637

clusively on evaluating the agent’s ability for clar-638

ification question generation, without the latent in-639

terference from incorrect user simulation. We be-640

lieve that our proposed task could be easily ex-641

tended to include dynamic real-time user simula-642

tion in future work.643

Agent Planning The effectiveness of our pro-644

posed framework, CEP, has not been verified on645

other benchmarks, as we are the first to intro-646

duce the problem of Proactive Agent Planning647

and there are no other suitable datasets available.648

In addition, while cooperation and division of la-649

bor among different LLM-based agents improve650

planning capabilities in uncertain situations (Song651

et al., 2024; Xie and Zou, 2024), our work does652

not thoroughly explore this. Our primary goal is653

to establish and benchmark this new and practical654

problem, as well as leave room for future research655

on this challenging problem.656

Ethical Consideration657

The Ask-before-Plan dataset was built from the658

TravelPlanner dataset (Xie et al., 2024), which is659

publicly available. We have obtained permission660

from the authors of TravelPlanner to utilize the661

dataset for further construction.662
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A Dataset Specifications871

To adapt TravelPlanner to our proposed task, we872

modify the dataset and environment for proactive873

information seeking. In the following sections, we874

share our implementation of the Ask-before-Plan875

dataset along with the environment.876

A.1 Indefinite Detail Formation877

To simplify the dataset and tailor it to our task,878

we specify the destination cities and related arrival879

days, rather than providing the destination state880

and the number of cities to visit. In this case, we881

present only the departure date for each data sam-882

ple in lieu of the date range. Besides, we combine883

the room type and the house rule under local con-884

straints as the accommodation. Table 7 shows the885

description of elements in the dataset. To construct886

the unfeasible details, we apply the following pro-887

cedures for each feature:888

• Accommodation: We search all combinations of889

room types and house rules for every destination890

in the environment to identify candidates with891

no matching information, and then randomly se-892

lect one of these accommodation preferences as893

the unfeasible detail.894

• Cuisine: We iterate all possible cuisine prefer-895

ences in each destination. If some cuisine pref-896

erences are not available in any destination, we897

randomly choose one of them as the unfeasible 898

detail. 899

• Transportation: We assign the preference "No 900

flight" or "No self-driving" as the unfeasible de- 901

tail if the corresponding transportation mode is 902

not available for the route described in the in- 903

struction. It is guaranteed in the environment 904

that both preferences will not be unavailable si- 905

multaneously. 906

• Destination by Arrival Days: We randomly mod- 907

ify one of the destinations to be unreachable 908

from the previous city in the travel route. To 909

preserve the consistency of destinations, cities 910

within the same state as the original destination 911

are preferentially chosen for modification. 912

• Budget: We begin by estimating the lower 913

bound of the budget for the user’s travel plan 914

by summing the accommodation and transporta- 915

tion expenses. To determine the minimum ac- 916

commodation cost, we select the least expensive 917

accommodation in the given city that satisfies 918

the minimum nights constraint. The minimum 919

transportation cost is calculated by choosing the 920

cheapest option between "No flight" and "No 921

self-driving". Ultimately, we subtract a random 922

integer, ranging from 10 to 10% of the final esti- 923

mated lower bound, from the total approximate 924

budget. 925

Upon obtaining all the indefinite details, we select 926

between 0 and 3 for each instruction. Afterwards, 927

we apply the topological sort algorithm, based on 928

the directed acyclic graph illustrated in Figure 5, 929

to regulate the dependency between these details. 930

Eventually, we utilize the prompts outlined in E.1 931

and employ gpt-3.5-turbo-0125 to rewrite the 932

original instruction. 933

Origin

Destination by Arrival Days
Departure Date

Duration

Destination by Arrival Days
Budget

Budget

Number of People

Accommodation

Cuisine

Transportation

Unfeasible DetailsNode: Missing Details

Figure 5: Dependency graph for indefinite details.

A.2 Proactive Conversation Generation 934

We apply gpt-3.5-turbo-0125 to implement 935

conversation generation, with the specific prompts 936

11
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Destination by Arrival Days
Definition: An array depicts the destination city with the day to arrive.
Example in the Natural Language Instruction: We plan to visit Dallas on the 1st day and Houston on the 3rd day...

Duration
Definition: The number of travel days.
Example in the Natural Language Instruction: We are planning a 3-day trip...

Departure Date
Definition: Date of departure from the origin city.
Example in the Natural Language Instruction: Would you be able to organize a trip on March 18th, 2022...

Number of People
Definition: The total number of individuals on the trip.
Example in the Natural Language Instruction: Please organize a trip for 2 individuals...

Budget
Definition: The budget for the trip in integers.
Example in the Natural Language Instruction: ... we have a budget of $1600...

Origin
Definition: The departure city of the trip.
Example in the Natural Language Instruction: Would you mind creating a travel plan starting from St. Louis...

Accommodation
Definition: An optional array describes the accommodation preferences, consisting of the room type and the house rule.
Possible values for the room type include "shared room", "not shared room", "private room", and "entire room". Possible
values for the house rule include "parties", "smoking", "children under 10", "pets", and "visitors".
Example in the Natural Language Instruction: ... Our accommodation preference is a place that allows parties...

Transportation
Definition: An optional string indicates transportation preferences, such as "No flight" and "No self-driving".
Example in the Natural Language Instruction: ... Additionally, we prefer not to use flights for transportation...

Cuisine
Definition: An optional array represents cuisine preferences, with possible values including "Chinese", "American", "Ital-
ian", "Mexican", "Indian", "Mediterranean", and "French".
Example in the Natural Language Instruction: ... We are interested in exploring Chinese, Indian, Mexican, and Italian
cuisines...

Table 7: Description of elements in the dataset.

utilized detailed in Section E.1. Notably, to ac-937

curately guide GPT-3.5 in generating role-playing938

dialogues, we incorporate both XML and Python-939

type structures into the prompts. In the quality940

control phase, we initially use keyword matching941

to ensure that relevant keywords are included in942

both the questions and responses. Finally, we se-943

lect 20% of the data points at random for proof-944

reading.945

A.3 Environment Settings946

To align the TravelPlanner environment with our947

proposed task, we modify it by removing tools948

such as NotebookWrite and CitySearch. We intro-949

duce a new tool named BudgetEstimator to accom-950

modate the unfeasible detail, budget. Furthermore,951

we adjust the required parameters of each tool to952

better suit our dataset setup. The description of 953

modified tools in our environment is as follows: 954

• AccommodationSearch: Instead of merely 955

searching for accommodation options in the 956

specified city, an optional parameter, filters, is 957

introduced to describe the user’s accommoda- 958

tion preferences. This parameter corresponds di- 959

rectly to the dataset element accommodation. 960

• RestaurantSearch: We add an optional parame- 961

ter, cuisines, to capture the user’s culinary prefer- 962

ences, corresponding to the dataset element cui- 963

sine. This enhancement enables the tool to list 964

all restaurants in the selected city and verify the 965

availability of the user’s preferred cuisine. 966

• BudgetEstimator: This tool is used to calculate 967
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the minimum budget required for the trip based968

on the cheapest accommodation and transporta-969

tion options. The parameters include the depar-970

ture city, destination cities, dates of arrival in971

each city, and the number of people.972

B Details of Experimental Setups973

B.1 Baselines974

We describe the details of the adopted baselines.975

The prompts for the clarification, execution, and976

planning subtasks are exhibited in Sections E.2,977

E.3, and E.4.978

Clarification For the clarification subtask, we979

adopt the following baselines:980

• Environment-only: To implement the generation981

of clarification questions based on environmen-982

tal feedback, we prepare predefined questions983

tailored to two scenarios: one where a tool invo-984

cation is not recorded in the interaction log, and985

another where a tool invocation suggests that986

the current travel plan conversation is infeasible.987

For each interaction history, if one of these sce-988

narios occurs, we add the corresponding ques-989

tions to the candidate pool and finally sample990

one question from this pool to ask the user.991

• Proactive (Deng et al., 2023c): This method pro-992

vides alternative choices for agents to decide993

whether to ask a question for disambiguation or994

take no action.995

• ProCoT (Deng et al., 2023c): This approach dis-996

tinguishes itself from the Proactive baseline by997

involving reasoning about the next action prior998

to making a decision.999

• Direct: Given the conversation history and the1000

current interaction log, the agent is prompted to1001

finish Clarification Need Prediction and Clarifi-1002

cation Question Generation without additional1003

strategies.1004

In Clarification Need Prediction, we record the1005

first "Yes" or "No" from the agent’s response as the1006

final judgment. If the response does not contain1007

"Yes" or "No", we consider the prediction to be1008

"No".1009

Execution We adopt the following baselines in1010

the execution subtask:1011

• Brute-force: We provide the brute-force solu- 1012

tion, as a representative of the traditional algo- 1013

rithm, for the execution subtask. As the name 1014

suggests, this solution invokes all tools, regard- 1015

less of syntax correctness, based on the informa- 1016

tion from the conversation history. 1017

• Direct: In this method, the agent is prompted to 1018

generate all possible tool invocations according 1019

to the conversation history. For GPT-3.5, we pro- 1020

vide an example to enable in-context learning. 1021

• ReAct (Yao et al., 2023): This prompting strat- 1022

egy necessitates that the agent integrate envi- 1023

ronmental observations into its reasoning pro- 1024

cess. In the execution subtask, the ReAct agent 1025

produces step-by-step tool commands based on 1026

the conversation history and its previous inter- 1027

actions with the environment, cycling through 1028

thought, action, and observation. 1029

• Reflexion (Shinn et al., 2023): This approach is 1030

similar to ReAct, but the agent is required to re- 1031

flect on the incorrect tool invocations and pro- 1032

vide a high-level explanation of the error in or- 1033

der to improve its reasoning. 1034

Planning We use the same baseline setting as de- 1035

scribed in the TravelPlanner sole-planning mode, 1036

which is outlined as follows: 1037

• Greedy Search: We borrow the greedy search al- 1038

gorithm from TravelPlanner and adapt it to our 1039

planning subtask. To illustrate, we remove des- 1040

tination selection since our dataset specifies the 1041

city to visit for 5- or 7-day travel plans. 1042

• Direct: In this baseline, the agent directly gener- 1043

ates the plan given the conversation and interac- 1044

tion history. 1045

• CoT (Kojima et al., 2023): Compared with the 1046

direct baseline, we add the prompt "Let’s think 1047

step by step" to elicit reasoning capability. 1048

• ReAct (Yao et al., 2023): Similar to ReAct in 1049

the execution subtask, we only provide the agent 1050

with a cost calculation environment to assist in 1051

generating the travel plan. 1052

• Reflexion (Shinn et al., 2023): Based on ReAct, 1053

we introduce the self-reflection module, similar 1054

to the execution subtask, for guiding the agent to 1055

generate a valid travel plan. 1056
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Unlike TravelPlanner, which first generates a1057

natural language plan and then uses GPT-4 to con-1058

vert it into a JSON format, our planning subtask1059

requires directly generating a JSON travel plan.1060

B.2 Evaluation Metrics1061

Considering the conversational nature of clarifica-1062

tion and execution subtasks, we introduce two dif-1063

ferent evaluation strategies: micro and macro. The1064

micro strategy calculates the average per conver-1065

sation turn, whereas the macro strategy calculates1066

the average per data sample. In the planning sub-1067

task, the definition of micro and macro strategies1068

is consistent with TravelPlanner (Xie et al., 2024),1069

which is the ratio of passed constraints to the to-1070

tal number of constraints and the ratio of passed1071

constraints among all tested plans, respectively.1072

Clarification We incorporate the following met-1073

rics to evaluate the clarification subtask:1074

• Clarification Accuracy: The percentage of cor-1075

rect Clarification Need Prediction. A prediction1076

is considered correct if the agent accurately iden-1077

tifies when a conversation requires clarification.1078

• Clearness Recall: The ratio of conversation1079

turns predicted to be clear to the total number of1080

turns that do not require clarification. This mea-1081

sures the agent’s ability to identify unambiguous1082

user inquiries.1083

• Vagueness Recall: The ratio of conversation1084

turns predicted to be vague to the total number1085

of turns that require clarification. This metric1086

evaluates the agent’s capability to identify am-1087

biguous user inquiries.1088

• Rule-based Score: The percentage of generated1089

questions containing the predefined keywords1090

for respective indefinite details.1091

• BLEU (Papineni et al., 2002): This metric mea-1092

sures the similarity between the generated ques-1093

tion and the ground truth in terms of n-gram1094

overlap. We set the maximum n-gram order to1095

4 without smoothing.1096

• GPT Score: We utilize the OpenAI model1097

gpt-4-turbo-2024-04-09 with zero tempera-1098

ture to judge the correctness of the generated1099

questions. Prompts are shown in Section E.2.1100

Note that the last three metrics are exclusively1101

used to assess the correctness of the generated1102

questions. Consequently, we perform these cal- 1103

culations only when the Clarification Need Pre- 1104

diction is correct. Given that multiple indefinite 1105

details may require clarification within a single 1106

conversation turn, for these metrics, we calculate 1107

the highest score across all candidate indefinite de- 1108

tails. 1109

Execution For conversation turn t, we denote 1110

the generated tool calls as F t
gen and the ground 1111

truth tool calls as F t
gt. We define set(·) as a func- 1112

tion that eliminates duplicate elements from an ar- 1113

ray. Following Wang et al. (2024), the metrics for 1114

the execution subtask are as follows: 1115

• Well-formed: The percentage of F t
gen without 1116

syntax errors. 1117

• API Match: This metric calculates the ratio 1118

of matched API names between set(F t
gen) and 1119

set(F t
gt) to the total number in set(F t

gt). 1120

• Repeat Rate: The percentage of repeated tool 1121

calls in F t
gen. 1122

• Correctness: We measure the precision, recall, 1123

and F1 score between set(F t
gen) and set(F t

gt). 1124

• Pass Rate: This metric in the micro strategy 1125

evaluates the full match of tool execution, i.e., 1126

set(F t
gen) = set(F t

gt). This macro metric evalu- 1127

ates that ∀t, set(F t
gen) = set(F t

gt). 1128

Planning In this subtask, we adapt the evalua- 1129

tion metrics from TravelPlanner (Xie et al., 2024) 1130

to our setting, shown as follows: 1131

• Delivery Rate: The percentage of valid JSON 1132

plans within a limited interaction step. 1133

• Commonsense Constraint Pass Rate: This met- 1134

ric evaluates whether the planning agent could 1135

incorporate commonsense, incorporating within 1136

sandbox, complete information, within current 1137

city, reasonable city route, diverse restaurants, 1138

diverse attractions, non-conflict transportation, 1139

minimum nights stay into the plan without ex- 1140

plicit instructions. 1141

• Hard Constraint Pass Rate: This metric mea- 1142

sures whether a generated plan satisfies all hard 1143

constraints, including budget, accommodation, 1144

cuisine, transportation. 1145

• Final Pass Rate: The metric reports the percent- 1146

age of valid JSON plans that satisfy all con- 1147

straints. 1148
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To differentiate, we combine the hard constraints1149

room rule and room type from TravelPlanner into1150

accommodation to fit our dataset. Since we spec-1151

ify the destinations and their arrival days in our1152

dataset, we do not evaluate the number of visit-1153

ing cities or the state of destinations in our com-1154

monsense constraint assessment. Additionally, the1155

minimum nights stay constraint in our setting is de-1156

signed to verify whether the accommodation op-1157

tion provided by the agent aligns with the user’s1158

expected duration of stay in a city.1159

B.3 Implementation Details1160

We choose Mistral-7B-Instruct-v0.23 and Llama-1161

3-8B-Instruct4 for finetuning and inference using a1162

single NVIDIA A5000 24GB. To facilitate finetun-1163

ing, we apply LoRA (Hu et al., 2022) in 4-bit quan-1164

tization and train for 5 epoches with a maximum1165

context length of 4096. To optimize the open-1166

source LLM inference, FP8 E5M2 KV Cache (Mi-1167

cikevicius et al., 2022) is exploited.1168

In dynamic execution and planning evaluations,1169

we exclude LLaMA-3-8B due to the limited con-1170

text window length. To maximize the utilization of1171

the context window, we truncate the environment1172

feedback in Clarification and Execution subtasks1173

to 3 items. In terms of dynamic prompting strate-1174

gies such as ReAct and Reflexion, we set the max-1175

imum interaction steps to 30 and the maximum ac-1176

tion retries to 3. Our temperature is set to 0 for all1177

experiments.1178

For the integral framework, we feed the clarifi-1179

cation need prediction and execution interactions1180

generated by CEP (LLaMA-3-8B), along with the1181

ground truth conversation, into the final planning.1182

C Additional Study on Dynamic1183

Execution Agents1184

We discuss the time complexity and execution sta-1185

tus of the dynamic execution agents in this section.1186

C.1 Analysis of Time Complexity1187

To precisely outline the memory recollection, let1188

Ct denote the conversation at turn t, associated1189

with the clarified detail set D′
t = {d0, d1, . . . , dt},1190

where d0 pertains to the details entailed in the1191

initial query q0. It can be observed that Ct−11192

3https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

4https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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Figure 6: Average runtime and steps in dynamic execu-
tion.

and Ct share the common clarified details, de- 1193

fined as D′
t − D′

t−1 = {d0, d1, . . . , dt−1}. We 1194

postulate that an agent, operating under determin- 1195

istic parameters, consistently replicates specific 1196

errors when invoking tools on these shared de- 1197

tails. In the Reflexion framework, if the ratio- 1198

nales generated during conversation turn t are rep- 1199

resented by Rt, then the cumulative number of 1200

generated rationales across T turns is expressed 1201

as
∑T

t=1 |Rt|. Conversely, in memory recollec- 1202

tion, as we reuse the past rationales, this can be 1203

reduced to maxTt=1 |Rt| = |RT |. In conclusion, 1204

the memory recollection mechanism effectively re- 1205

duces the number of generated rationales, thereby 1206

diminishing the time complexity of rationale infer- 1207

ence from linear to constant time. 1208

Figure 6 showcases a comparison in average 1209

runtime and execution steps between ReAct, Re- 1210

flexion, and Memory Recollection. We observe 1211

that Reflexion consumes more time than ReAct for 1212

both Mistral-7B and GPT-3.5, while the Memory 1213

Recollection module alleviates this effect. More- 1214

over, Mistral-7B, on average, takes longer infer- 1215

ence time than GPT-3.5. We also examine the 1216

mean execution steps per iteration for Mistral-7B 1217

and GPT-3.5, revealing a starkly contrasting trend: 1218

Mistral-7B shows a decrease in steps from ReAct 1219

to Memory Recollection, while GPT-3.5 exhibits 1220

an increase. This phenomenon, detailed in Table 1221

3, suggests that more execution steps lead to im- 1222

proved performance, as the agent engages more 1223

with the environment and gathers more informa- 1224

tion. 1225

C.2 Analysis of Execution Status 1226

Figure 7 presents the distribution of each execu- 1227

tion status for Mistral-7B and GPT-3.5. From a 1228

holistic perspective, we notice that Reflexion elim- 1229

inates the errors consisting of Invalid API, Retry 1230

Limit Exceeded, and Invalid Parameters. In the 1231

case of Mistral-7B, prompting strategies like Re- 1232

flexion and Memory Recollection lead to lower 1233
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Success and Finish rates, while the probability of1234

exceptions such as API Limit Exceeded and Null1235

Action rises. This is in line with our observation1236

in Table 3. In contrast, the performance improve-1237

ments of GPT-3.5 are reflected in higher Success1238

and Finish rates, and lower error rates.1239

D Case Study1240

We display two detailed case studies to explore the1241

impact of clarification on subsequent planning sub-1242

tasks. We compare plans generated by CEPintegral1243

with and without clarification in Tables 8 and 9.1244

Note that each table includes the initial user in-1245

struction, the type of indefinite detail, the question1246

generated by finetuned LLaMA-3-8B, the ground1247

truth response, and the planning outcome. Dis-1248

crepancies resulting from the clarification are high-1249

lighted in yellow. From Table 8, it is evident that1250

without asking for the missing destination detail,1251

the agent incorrectly confines the itinerary to the1252

origin city, Nashville, on the first day, leading to a1253

confusing itinerary. In Table 9, if the agent over-1254

looks that the previously specified accommodation1255

preferences in Houston are unavailable and fails1256

to inquire about the user’s opinion, an incomplete 1257

travel plan will be generated. 1258

E Prompt List 1259

E.1 Data Annotation 1260

We present the prompts for original instruction re- 1261

vision during the indefinite detail formation stage 1262

in Table 10. Prompts and examples involved in 1263

proactive conversation generation are shown in Ta- 1264

bles 11, 12, and 13. 1265

E.2 Clarification Subtask 1266

Since the clarification subtask necessitates the in- 1267

teraction history from the execution stage as input, 1268

we provide the relevant tool description in Snippet 1269

1. Prompts of conversation-only methods, includ- 1270

ing Proactive and ProCoT, as well as the direct 1271

strategy, are exhibited in Snippets 2 and 3. Fur- 1272

thermore, we also specify the prompts for GPT-4 1273

evaluation in Table 14. 1274

E.3 Execution Subtask 1275

The tool description used in execution is show- 1276

cased in Snippet 4. We demonstrate the prompts 1277

for static and dynamic settings in Snippets 5 and 1278

7. The error prompts for dynamic interaction are 1279

presented in Snippet 6. 1280

E.4 Planning Subtask 1281

The prompts for static planning, dynamic plan- 1282

ning, and errors in dynamic interaction are dis- 1283

played in Snippets 8, 10, and 9. 1284
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Instruction: Could you suggest a 5-day travel itinerary for a solo traveler starting from Nashville, departing on March 13th,
2022, with a budget of $2123?
Missing Detail: Destination by arrival days.
Question: Which cities are you interested in visiting during your 5-day trip, and on which specific days do you plan to
arrive in each city?
Response: I can’t wait to explore the vibrant streets of San Diego on day 1 and then soak up the glitz and glamour of Los
Angeles on day 3!

CEPintegral CEPintegral w/o Clarification

Day 1 1

Current City from Nashville to San Diego Nashville

Transportation Flight Number: F3973475, from Nashville to
San Diego, Departure Time: 09:14, Arrival
Time: 11:22, Cost: $485

N/A

Breakfast Open Yard, San Diego Biscuit Love Gulch, Nashville

Attraction Cabrillo National Monument, San Diego; La
Jolla Shores Park, San Diego

Country Music Hall of Fame and Museum,
Nashville; Ryman Auditorium, Nashville

Lunch Bikaner Sweets, San Diego Hattie B’s Hot Chicken, Nashville

Dinner Chawlas 2, San Diego Martin’s Bar-B-Que Joint, Nashville

Accommodation Spacious Room in Large 2 Bedroom Prewar
Apartment, San Diego

Cozy Loft in East Nashville, Nashville

Table 8: Comparison of travel plans for the missing detail, destination by arrival days.

Instruction: I am planning a solo trip starting from Bloomington. The itinerary includes visiting Dallas on day 1, Amarillo
on day 3, and Houston on day 5. I will be departing on March 5th, 2022. I am looking for shared room accommodations
that allow pets.
Unfeasible Detail: Accommodation.
Question: It seems like the accommodation preferences you’ve specified might not be feasible for this trip. Is there a
different type of accommodation you would consider for your solo trip?
Response: Any accommodation preference is acceptable.

CEPintegral CEPintegral w/o Clarification

Day 5 5

Current City from Amarillo to Houston from Amarillo to Houston

Transportation Flight Number: F3822285, from Amarillo to
Houston, Departure Time: 06:31, Arrival Time:
08:05, Cost: $103

Taxi: from Amarillo to Houston, Duration: 8
hours 49 mins, Distance: 965 km, Cost: 965

Breakfast N/A Jalapenos, Houston

Attraction Downtown Aquarium, Houston; Space Center
Houston, Houston

Downtown Aquarium, Houston; Space Center
Houston, Houston

Lunch Jalapenos, Houston The BrewMaster - The Mix Fine Dine, Houston

Dinner Royal Mart, Houston "Pebble Street, Houston

Accommodation Superhost 3 bedroom DISCOUNT, Houston N/A

Table 9: Comparison of travel plans for the unfeasible detail, accommodation.
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Role Content

system Given a JSON with data where ’org’ denotes the departure city, ’dest’ contains the destination cities to be
visited along with the arrival day, and ’housing’ contains the room type and house rules. Please generate a
natural language query beginning with ’{begin_word}’ and including the arrival day if available.

user JSON:
{"org": "Gulfport", "dest": ["Charlotte on day 1"], "departure_date": "2022-03-05", "budget": 1800}
QUERY:

assistant Please design a travel plan from Gulfport heading to Charlotte on day 1, departing on March 5th, 2022, with a
budget of $1800.

user JSON:
{"org": "Omaha", "days": 5, "people_number": 7, "housing": ["pets"], "budget": 35300}
QUERY:

assistant Could you provide a 5-day travel itinerary for a group of seven, starting in Omaha? Our budget is set at $35,300,
and it’s essential that our accommodations be pet-friendly since we’re bringing our pets.

user JSON:
{"dest": ["Atlanta on day 1", "Augusta on day 3", "Savannah on day 5"], "days": 7, "departure_date": "2022-
03-01", "people_number": 2, "housing": ["entire room", "parties"], "cuisine": ["Italian", "Indian"], "transporta-
tion": "no self-driving"}
QUERY:

assistant I’m looking for a week-long trip for 2 individuals. We plan to visit Atlanta on the 1st day, Augusta on the 3rd
day, and Savannah on the 5th day. For accommodations, we’d prefer an entire room that allows parties. We
intend to depart on March 1st, 2022, and will navigate our journey without self-driving. In terms of food, we’re
enthusiasts of Italian food, and we’d also appreciate indulging in genuine Indian cuisine.

Table 10: Prompts for original instruction revision.

Type System Message

Missing Detail Observation You are an intelligent agent designed to interact with users to clarify and specify their
requests. When given a user’s initial query and a specific detail that is missing, your task
is to generate a natural, conversational question to obtain that specific missing information
from the user. Your response should use coreference or omission to refer back to the initial
query, minimizing direct repetition of its details.

Unfeasible Detail Observation You are an intelligent agent designed to interact with users to clarify and specify their re-
quests based on the search results from external tools. When a user’s initial query includes
unfeasible details, as determined by these search results, your task is to inform the user
that the initial query cannot be fulfilled due to these details. Then, generate a natural, con-
versational question to obtain an alternative option from the user. Your response should
use coreference or omission to refer back to the initial query, minimizing direct repetition
of its details.

Succinct User Response You are an intelligent agent designed to act as a real human user talking to a travel agent.
When asked for details or clarifications about your travel plans, reply succinctly and di-
rectly using only the provided draft answers, ensuring your responses are natural, human-
like, and creative without repeating the question.

Passionate User Response You are an intelligent agent designed to act as a real human user talking to a travel
agent. When asked for details or clarifications about your travel plans, reply diversely
and passionately using only the provided draft answers, ensuring your responses are natu-
ral, human-like, and creative without repeating the question.

Table 11: System messages for simulated conversations.
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Destination by Arrival Days
Instruction: Could you provide a 5-day travel itinerary for a group of seven, starting in Omaha? Our budget is set at
$35,300, and it’s essential that our accommodations be pet-friendly since we’re bringing our pets.
Observation: <missing_detail> Destinations and arrive days of the trip </missing_detail>
Question: Could you specify which cities you plan to visit during the trip, and the specific days you plan to arrive in each
city?
Thought: <draft_answer> destinations_and_arrive_days = ... </draft_answer>
Answer: We plan to go Seattle on the 1st day.

Duration
Instruction: Please design a travel plan departing from Gulfport and heading to Charlotte on day 1, departing on March
5th, 2022, with a budget of $1800.
Observation: <missing_detail> Number of days for the trip </missing_detail>
Question: Sorry for the confusion, but could you please clarify the number of days you plan to spend on this trip?
Thought: <draft_answer> number_of_days_for_trip = ... </draft_answer>
Answer: 5 day.

Departure Date
Instruction: I’m looking for a week-long trip for 2 individuals. We plan to visit Atlanta on the 1st day, Augusta on the 3rd
day, and Savannah on the 5th day. For accommodations, we’d prefer an entire room that allows parties. We don’t like
driving during our journey.
Observation: <missing_detail> Departure date of the trip </missing_detail>
Question: I think I missed the departure date for your trip. Could you provide that information?
Thought: <draft_answer> departure_date = ... </draft_answer>
Answer: March 1st, 2022.

Number of People
Instruction: Could you provide a 5-day travel itinerary, starting in Omaha? Our budget is set at $35,300, and it’s essential
that our accommodations be pet-friendly since we’re bringing our pets.
Observation: <missing_detail> Number of people on the trip </missing_detail>
Question: I’m not sure about the number of people in your group. Would you mind sharing that information?
Thought: <draft_answer> total_number_of_people_including_me = ... </draft_answer>
Answer: We are a group of seven.

Budget
Instruction: Please design a travel plan departing from Gulfport and heading to Charlotte on day 1, departing on March
5th, 2022.
Observation: <missing_detail> Budget of the trip </missing_detail>
Question: It seems you haven’t mentioned the expected budget for this trip. Could you provide that information?
Thought: <draft_answer> budget_of_trip = ... </draft_answer>
Answer: Our budget for this trip is $36,000.

Origin
Instruction: We plan to visit South Bend on the 1st day, Ithaca on the 3rd day departing on March 5th, 2022 for a 5-day trip.
Our budget is $1800.
Observation: <missing_detail> Departure city of the trip </missing_detail>
Question: Sorry, I am not sure about the departure city for your trip. Could you provide that information?
Thought: <draft_answer> departure_city = ... </draft_answer>
Answer: Ann Arbor.

Table 12: Examples of missing details in proactive conversation generation.
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Budget
Instruction: Could you provide a 5-day travel itinerary for a group of seven, starting in Omaha? Our budget is set at
$35,300, and it’s essential that our accommodations be pet-friendly since we’re bringing our pets.
Observation: <search_result> The current budget ... is not sufficient for the trip. The minimum budget required is ...
</search_result>
Question: It seems like the budget you’ve mentioned might be insufficient for your trip. Would you be open to considering a
higher budget?
Thought: <draft_answer> Adjust the budget to ... </draft_answer>
Answer: My Budget could be $40,000.

Accommodation
Instruction: Please design a travel plan departing from Gulfport and heading to Charlotte on day 1, departing on March
5th, 2022. I prefer to stay in private rooms that allow parties.
Observation: <search_result> The current accommodation preference ... is not available for the trip. </search_result>
Question: The accommodation preference you’ve mentioned might be a bit restrictive. Would you be open to considering
other options?
Thought: <draft_answer> ... </draft_answer>
Answer: Sure, how about any rooms that allow parties?

Transportation
Instruction: I’m looking for a week-long trip for 2 individuals. We plan to visit Atlanta on the 1st day, Augusta on the 3rd
day, and Savannah on the 5th day. For accommodations, we’d prefer an entire room that allows parties. We don’t like
driving during our journey.
Observation: <search_result> The current transportation preference ... is not available for the trip. </search_result>
Question: It seems like navigating the entire trip without self-driving might be quite challenging. Would you be open to
considering other transportation options?
Thought: <draft_answer> ... </draft_answer>
Answer: Any transportation preference is acceptable.

Cuisine
Instruction: Could you provide a 5-day travel itinerary for a group of seven, starting in Omaha? We plan to go Seattle on
the 1st day. We enjoy Chinese and Italian cuisine.
Observation: <search_result> The current cuisine preference ... is not available in any of the cities you plan to visit.
</search_result>
Question: Sorry, I do not find any Chinese restaurants in cities you plan to visit. Could you provide alternative cuisine
preferences?
Thought: <draft_answer> ... </draft_answer>
Answer: I am open to any cuisine preference.

Destination by Arrival Days
Instruction: We plan to visit South Bend on the 1st day, Ithaca on the 3rd day departing from Richmond on March 5th, 2022
for a 5-day trip. Our budget is $1800.
Observation: <search_result> ... is unreachable by all available transportation methods. </search_result>
Question: Sorry, I couldn’t find a way to arrive in Ithca. Could you provide an alternative destination?
Thought: <draft_answer> My alternative destination is ... </draft_answer>
Answer: Charlotte could be my alternative destination.

Table 13: Examples of unfeasible details in proactive conversation generation.

Message Type Content

System Message You are a helpful assistant skilled at evaluating questions.

User Message for Missing Details Please check if the following question exclusively asks for [...], rather than [...].
Provide a simple "Yes" or "No" answer.
Question: [...]

User Message for Unfeasible Details Please check if the question indicates that the initial [...] is/are unfeasible and re-
quests changes to the [...], rather than [...]. Provide a simple "Yes" or "No" answer.
Question: [...]

Table 14: Prompts for clarification evaluation.
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SNIPPET 1: TOOL DESCRIPTION IN CLARIFICATION

1. AccommodationSearch(city, filters)
− Description: Discover accommodations in your desired city with specific filters.
− Parameters:

− city (str, required): The name of the city where you’re seeking accommodation.
− filters (list[str], required): A list of filters to refine your search. Choices include "shared room", "not shared room
", "private room", "entire room", "parties", "smoking", "children under 10", "pets", "visitors". If the user does not
specify any accommodation filters, assign an empty list "[]" to the parameter.

2. RestaurantSearch(city, cuisines)
− Description: List all restaurants in your chosen city, regardless of cuisine type, and check if any of the cuisines you
specify are unavailable there.
− Parameters:

− city (str, required): The name of the city where you’re seeking restaurants.
− cuisines (list[str], required): A list of desired cuisines to check for availability. Available options include "
Chinese", "American", "Italian", "Mexican", "Indian", "Mediterranean", and "French". If the user does not specify
any cuisines, assign an empty list "[]" to the parameter.

3. AttractionSearch(city)
− Description: Find attractions in a city of your choice.
− Parameters:

− city (str, required): The name of the city where you’re seeking attractions.

4. DistanceMatrix(origin, destination, mode)
− Description: Estimate the distance, time, and cost between two cities.
− Parameters:

− origin (str, required): The departure city of your journey.
− destination (str, required): The destination city of your journey.
− mode (str, required): The method of transportation. Choices include "self−driving" and "taxi".

5. FlightSearch(origin, destination, date):
− Description: A flight information retrieval tool.
− Parameters:

− origin (str, required): The city you’ll be flying out from.
− destination (str, required): The city you aim to reach.
− date (str, required): The date of your travel in "YYYY−MM−DD" format.

6. BudgetEstimator(origin, destination, dates, people_number)
− Description: Calculate the minimal estimated budget for the trip. Use this tool to verify if the budget provided by
the user is sufficient.
− Parameters:

− origin (str, required): The departure city of your trip.
− destination (list[str], required): A list of cities you plan to visit during your trip.
− dates (list[str], required): A list of dates corresponding to the departure from the origin and each of the
destinations. The first date is the departure from the origin, and each subsequent date corresponds to the departure
from the respective city in the destination list. The last date in this list is the departure from the final destination
back to the origin city. All dates should be formatted as "YYYY−MM−DD".
− people_number (int, required): The number of people on the trip.
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SNIPPET 2: CONVERSATION-ONLY PROMPTS

System Message

Your current task is to determine the user’s intentions and satisfy their needs based on the provided conversation
between the user and the assistant.

Proactive User Message

Conversation: [...]
Based on the conversation, you have two options: ask a clarifying question or take no action. Choose the appropriate
option to formulate your answer, starting with either "The clarifying question is" or "No action should be taken".

Note that if the user does not specify details regarding accommodation, cuisine, or transportation in the initial query,
it indicates that the user does not have specific preferences that need clarification in the following conversation.

ProCoT User Message

Conversation: [...]
Based on the conversation, first determine whether the user’s request is ambiguous. A request is ambiguous if it
contains missing or unfeasible details. If it is ambiguous, ask a clarifying question. If it is not ambiguous, no action
is needed. Your response should start with an analysis of the ambiguity and then conclude with either "Therefore,
the request is not ambiguous. No action should be taken." or "Therefore, the request is ambiguous. The clarifying
question is". Note that if the user does not specify details regarding accommodation, cuisine, or transportation in the
initial query, it indicates that the user does not have specific preferences that need clarification in the following
conversation.
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SNIPPET 3: DIRECT CLARIFICATION PROMPTS

System Message

Your current task is to determine the user’s intentions and satisfy their needs based on the provided conversation
between the user and the assistant, along with the interaction trajectory involving tool use between the agent and the
environment. The interaction trajectory includes the following tools:

[tool description]

If certain tools are not called in the interaction trajectory, it indicates a lack of the required parameters needed to call
those tools. For each category, including accommodations, dining, attractions, transportation, and budget, at least

one relevant tool should be used during the interaction to gather sufficient information to help the user provide a
clear and feasible request. Note that if the user does not specify details regarding accommodation, cuisine, or
transportation in the initial query, it indicates that the user does not have specific preferences that need clarification
in the following conversation.

Clarification Need Prediction

Conversation: [...]
Interaction trajectory: [...]
Please determine whether the user’s request needs clarification. A request needs clarification if the user’s intention
contains missing or unfeasible details based on the tool parameters and call results in the interaction trajectory. If the
user’s intention requires clarification, answer "Yes"; if it is clear and feasible, answer "No".

Answer:

Clarification Question Generation

Please ask the user one clarification question to gather more information about a specific detail. Do not attempt to
solve the task.
Question:

1287

22



SNIPPET 4: TOOL DESCRIPTION IN EXECUTION

1. AccommodationSearch(city, filters)
− Description: Discover accommodations in your desired city with specific filters.
− Parameters:

− city (str, required): The name of the city where you’re seeking accommodation.
− filters (list[str], required): A list of filters to refine your search. Choices include "shared room", "not shared room
", "private room", "entire room", "parties", "smoking", "children under 10", "pets", "visitors". If the user does not
specify any accommodation filters, assign an empty list "[]" to the parameter.

− Example: AccommodationSearch("Berlin", ["private room", "parties"]) would return private rooms in Berlin that
allow parties.

2. RestaurantSearch(city, cuisines)
− Description: List all restaurants in your chosen city, regardless of cuisine type, and check if any of the cuisines you
specify are unavailable there.
− Parameters:

− city (str, required): The name of the city where you’re seeking restaurants.
− cuisines (list[str], required): A list of desired cuisines to check for availability. Available options include "
Chinese", "American", "Italian", "Mexican", "Indian", "Mediterranean", and "French". If the user does not specify
any cuisines, assign an empty list "[]" to the parameter.

− Example: RestaurantSearch("Dublin", ["Chinese", "Italian", "French"]) returns all restaurants in Dublin and
informs you if any of the Chinese, Italian, or French cuisines are unavailable.

3. AttractionSearch(city)
− Description: Find attractions in a city of your choice.
− Parameters:

− city (str, required): The name of the city where you’re seeking attractions.
− Example: AttractionSearch("London") would return attractions in London.

4. DistanceMatrix(origin, destination, mode)
− Description: Estimate the distance, time, and cost between two cities.
− Parameters:

− origin (str, required): The departure city of your journey.
− destination (str, required): The destination city of your journey.
− mode (str, required): The method of transportation. Choices include "self−driving" and "taxi".

− Example: DistanceMatrix("Paris", "Lyon", "self−driving") would provide driving distance, time, and cost between
Paris and Lyon.

5. FlightSearch(origin, destination, date):
− Description: A flight information retrieval tool.
− Parameters:

− origin (str, required): The city you’ll be flying out from.
− destination (str, required): The city you aim to reach.
− date (str, required): The date of your travel in "YYYY−MM−DD" format.

− Example: FlightSearch("New York", "London", "2022−10−01") would fetch flights from New York to London on
October 1, 2022.

6. BudgetEstimator(origin, destination, dates, people_number)
− Description: Calculate the minimal estimated budget for the trip. Use this tool to verify if the budget provided by
the user is sufficient.
− Parameters:

− origin (str, required): The departure city of your trip.
− destination (list[str], required): A list of cities you plan to visit during your trip.
− dates (list[str], required): A list of dates corresponding to the departure from the origin and each of the
destinations. The first date is the departure from the origin, and each subsequent date corresponds to the departure
from the respective city in the destination list. The last date in this list is the departure from the final destination
back to the origin city. All dates should be formatted as "YYYY−MM−DD".
− people_number (int, required): The number of people on the trip.

− Example: BudgetEstimator("London", ["Paris", "Rome", "Madrid"], ["2022−09−01", "2022−09−05",
"2022−09−10", "2022−09−15"], 2) would return the minimal estimated budget for a trip from London to Paris, from
Paris to Rome, from Rome to Madrid, and from Madrid back to London on September 1, 5, 10, and 15, 2022,
respectively, for two people.
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SNIPPET 5: STATIC EXECUTION PROMPTS

System Message

Based on the provided conversation between the user and the assistant, generate function calls to collect valid
information related to accommodations, dining, attractions, transportation, and budget. The available functions are
detailed below:

[tool description]

Please ensure that nested function use is avoided, escape symbols are not included in the string, and functions are
only called when all required parameters are available. Your response should include all available function calls,
specifying both the function name and its parameters, with each function on a separate line.

Example

Conversation: [{’user’: ’Could you create a 3−day travel plan for 7 people from Ithaca to Portland on day 1, from
March 8th, 2022?’}, {’assistant’: ’Sorry, I couldn\’t find a way to arrive in Portland. Could you provide an
alternative destination?’}, {’user’: ’Charlotte.’}]

Response:
AccommodationSearch("Charlotte", [])
RestaurantSearch("Charlotte", [])
AttractionSearch("Charlotte")
DistanceMatrix("Ithaca", "Charlotte", "taxi")
DistanceMatrix("Ithaca", "Charlotte", "self−driving")
FlightSearch("Ithaca", "Charlotte", "2022−03−08")
DistanceMatrix("Charlotte", "Ithaca", "taxi")
DistanceMatrix("Charlotte", "Ithaca", "self−driving")
FlightSearch("Charlotte", "Ithaca", "2022−03−10")
BudgetEstimator("Ithaca", ["Charlotte"], ["2022−03−08", "2022−03−10"], 7)

User Message

Conversation: [...]
Response:
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SNIPPET 6: ERROR PROMPTS IN DYNAMIC EXECUTION

Invalid Action

Invalid action: [...]. Valid actions include AccommodationSearch(city, filters), RestaurantSearch(city, cuisines),
AttractionSearch(city), DistanceMatrix(origin, destination, mode), FlightSearch(origin, destination, date),
BudgetEstimator(origin, destination, dates, people_number), and Finish(). Do not include any comment or
description in the action.

Invalid Parameters

Invalid parameters for [action]. Please ensure that all parameters are provided in the correct format.

Null Action

Your action has been filtered due to content restrictions. Please ensure your action does not begin with [’\n’, ’
Thought’, ’Action’, ’Observation’]. Ensure that the action is permitted in this environment, and try again.

1290

24



SNIPPET 7: DYNAMIC EXECUTION PROMPTS

System Message

Based on the provided conversation between the user and the assistant, collect valid information related to
accommodations, dining, attractions, transportation, and budget. Solve this task by alternating between "Thought", "
Action", and "Observation" steps. "Thought" can reason about the current situation, and "Action" can have 7
different types:

[tool description]

7. Finish()
− Description: Use this function to indicate the task’s completion once all the necessary information has been
collected.
− Example: Call Finish() after gathering all necessary information related to accommodations, dining, attractions,
transportation, and budget.

Please ensure that nested function use is avoided, escape symbols are not included in the string, and functions are
only called when all required parameters are available. Each action should call a single function once, using the
valid function name and all required parameters. You should take as many steps as possible until you have gathered
the necessary information to complete the task using Finish(). If the user’s request is vague or infeasible, avoid
making assumptions and strictly use the provided information. Do not add any description or comment to the action.
Additionally, do not include line breaks in your response.

User Message for ReAct

Conversation: [...]
[...]

User Message for Reflexion

In previous attempts, you tried to use tools to interact with the environment to gather valid information on
accommodations, dining, attractions, transportation, and budget given the user−assistant conversation but were
unsuccessful. The reflections below offer suggestions to help you avoid past mistakes. Use these insights to refine
your strategy for effectively and efficiently utilizing tools to collect the necessary information.
Reflections:
[...]
Conversation: [...]
[...]

Self-reflection Generation

You are an advanced reasoning agent capable of self−improvement through reflection. You will review a previous
attempt where you failed to effectively utilize a tool to gather valid information about accommodations, dining,
attractions, transportation, and budget given the user−assistant conversation. Analyze the reasons for the mistake,
referencing the tool documentation, the observation, and the action you have taken. Then, formulate a concise, high−
level explanation to address and prevent similar errors in the future. Keep your reflections in complete sentences
without any line breaks.

Tool documentation:
[...]
Ensure that each action uses only one non−nested tool and contains no comments or descriptions.

Observation: [...]
Action: [...]

Reflection:
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SNIPPET 8: STATIC PLANNING PROMPTS

System Message

You are a proficient planner tasked with generating a detailed travel plan in JSON format, which is an array of
objects, based on the interaction trajectory and the user−assistant conversation. Your plan must strictly adhere to the
format provided in the example, incorporating specific details such as flight numbers (e.g., "F0123456"), restaurant
names, and accommodation names. Ensure all information in your plan is derived solely from the provided data and
aligns with common sense. Attraction visits and meals are expected to be diverse. Use the symbol "−" for
unnecessary details, such as "eat at home" or "on the road". For instance, you do not need to plan after returning to
the departure city. When traveling to two cities in one day, ensure that "current_city" aligns with the format "from A
to B" in the example. If transportation details indicate a journey from one city to another (e.g., from A to B), update
the "current_city" to the destination city (in this case, B) the following day. Use ";" to separate different attractions,

formatting each as "Name, City". Make sure all flight numbers and costs are appended with a colon (e.g., "Flight
Number:" and "Cost:"), consistent with the example. Your JSON plan should include the following fields: ["day", "
current_city", "transportation", "breakfast", "attraction", "lunch", "dinner", "accommodation"]. Escape symbols
should be used in the string when necessary. Additionally, remove any "$" symbols and comments from the plan.

***** Example *****
Conversation: [{’user’: ’Could you create a 3−day travel plan for 7 people from Ithaca to Portland on day 1, from
March 8th, 2022?’}, {’assistant’: ’Sorry, I couldn’t find a way to arrive in Portland. Could you provide an alternative
destination?’}, {’user’: ’Charlotte.’}, {’assistant’: ’It seems you haven’t mentioned the expected budget for this trip.
Could you provide that information?’}, {’user’: ’Yes, my expected budget is $30,200.’}]

Travel Plan: [{"day": 1, "current_city": "from Ithaca to Charlotte", "transportation": "Flight Number: F3633405,
from Ithaca to Charlotte, Departure Time: 05:38, Arrival Time: 08:10", "breakfast": "Nagaland’s Kitchen, Charlotte
", "attraction": "The Charlotte Museum of History, Charlotte;", "lunch": "Cafe Maple Street, Charlotte", "dinner": "
Bombay Vada Pav, Charlotte", "accommodation": "Affordable Spacious Refurbished Room in Bushwick!, Charlotte
"}, {"day": 2, "current_city": "Charlotte", "transportation": "−", "breakfast": "Olive Tree Cafe, Charlotte", "attraction
": "The Mint Museum, Charlotte;Romare Bearden Park, Charlotte;", "lunch": "Birbal Ji Dhaba, Charlotte", "dinner":
"Pind Balluchi, Charlotte", "accommodation": "Affordable Spacious Refurbished Room in Bushwick!, Charlotte"},

{"day": 3, "current_city": "from Charlotte to Ithaca", "transportation": "Flight Number: F3786160, from Charlotte to
Ithaca, Departure Time: 20:48, Arrival Time: 22:34", "breakfast": "Subway, Charlotte", "attraction": "Books

Monument, Charlotte;", "lunch": "Olive Tree Cafe, Charlotte", "dinner": "Kylin Skybar, Charlotte", "
accommodation": "−"}]
***** Example Ends *****

User Message for Direct

Interaction trajectory: [...]
Conversation: [...]
Travel Plan:

User Message for Zero-shot CoT

Interaction trajectory: [...]
Conversation: [...]
Travel Plan: Let’s think step by step. First,
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SNIPPET 9: ERROR PROMPTS IN DYNAMIC PLANNING

Invalid Plan

The subplan cannot be parsed into JSON format; please check. Only a one−day plan is supported.

Error Plan

The subplan cannot be parsed into JSON format due to the syntax error; please check.

Invalid Action

Invalid action. Valid actions include CostEnquiry(subplan) and Finish(final_json_plan). Please ensure that the
parameter is provided in the correct format. Do not include any comments, descriptions, or line breaks in your
response.
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SNIPPET 10: DYNAMIC PLANNING PROMPTS

System Message

You are a proficient planner tasked with generating a detailed travel plan in JSON format, which is an array of
objects, based on the interaction trajectory and the user−assistant conversation. Your plan must strictly adhere to the
format provided in the example, incorporating specific details such as flight numbers (e.g., "F0123456"), restaurant
names, and accommodation names. Ensure all information in your plan is derived solely from the provided data and
aligns with common sense. Attraction visits and meals are expected to be diverse. Use the symbol "−" for
unnecessary details, such as "eat at home" or "on the road". For instance, you do not need to plan after returning to
the departure city. When traveling to two cities in one day, ensure that "current_city" aligns with the format "from A
to B" in the example. If transportation details indicate a journey from one city to another (e.g., from A to B), update
the "current_city" to the destination city (in this case, B) the following day. Use ";" to separate different attractions,

formatting each as "Name, City". Make sure all flight numbers and costs are appended with a colon (e.g., "Flight
Number:" and "Cost:"), consistent with the example. Your JSON plan should include the following fields: ["day", "
current_city", "transportation", "breakfast", "attraction", "lunch", "dinner", "accommodation"]. Escape symbols
should be used in the string when necessary. Additionally, remove any "$" symbols and comments from the plan.
Solve this task by alternating between "Thought", "Action", and "Observation" steps. The "Thought" phase involves
reasoning about the current situation. The "Action" phase can be of two types:
1. CostEnquiry(subplan): This function calculates the cost of a detailed subplan, for which you need to input the
number of people and plan in JSON format. The subplan should encompass a complete one−day plan and include
the following fields: ["people_number", "day", "current_city", "transportation", "breakfast", "attraction", "lunch", "
dinner", "accommodation"]. An example will be provided for reference.
2. Finish(final_json_plan): Use this function to indicate the completion of the task. You must submit a final,
complete plan in JSON as the argument.

***** Example *****
Conversation: [{’user’: ’Could you create a 3−day travel plan for 7 people from Ithaca to Portland on day 1, from
March 8th, 2022?’}, {’assistant’: ’Sorry, I couldn’t find a way to arrive in Portland. Could you provide an alternative
destination?’}, {’user’: ’Charlotte.’}, {’assistant’: ’It seems you haven’t mentioned the expected budget for this trip.
Could you provide that information?’}, {’user’: ’Yes, my expected budget is $30,200.’}]

You can call CostEnquiry like CostEnquiry({"people_number": 7, "day": 1, "current_city": "from Ithaca to Charlotte
", "transportation": "Flight Number: F3633405, from Ithaca to Charlotte, Departure Time: 05:38, Arrival Time:
08:10", "breakfast": "Nagaland’s Kitchen, Charlotte", "attraction": "The Charlotte Museum of History, Charlotte", "
lunch": "Cafe Maple Street, Charlotte", "dinner": "Bombay Vada Pav, Charlotte", "accommodation": "Affordable
Spacious Refurbished Room in Bushwick!, Charlotte"})
You can call Finish like Finish([{"day": 1, "current_city": "from Ithaca to Charlotte", "transportation": "Flight
Number: F3633405, from Ithaca to Charlotte, Departure Time: 05:38, Arrival Time: 08:10", "breakfast": "Nagaland’
s Kitchen, Charlotte", "attraction": "The Charlotte Museum of History, Charlotte;", "lunch": "Cafe Maple Street,
Charlotte", "dinner": "Bombay Vada Pav, Charlotte", "accommodation": "Affordable Spacious Refurbished Room in
Bushwick!, Charlotte"}, {"day": 2, "current_city": "Charlotte", "transportation": "−", "breakfast": "Olive Tree Cafe,

Charlotte", "attraction": "The Mint Museum, Charlotte;Romare Bearden Park, Charlotte;", "lunch": "Birbal Ji Dhaba
, Charlotte", "dinner": "Pind Balluchi, Charlotte", "accommodation": "Affordable Spacious Refurbished Room in
Bushwick!, Charlotte"}, {"day": 3, "current_city": "from Charlotte to Ithaca", "transportation": "Flight Number:
F3786160, from Charlotte to Ithaca, Departure Time: 20:48, Arrival Time: 22:34", "breakfast": "Subway, Charlotte",
"attraction": "Books Monument, Charlotte;", "lunch": "Olive Tree Cafe, Charlotte", "dinner": "Kylin Skybar,

Charlotte", "accommodation": "−"}])
***** Example Ends *****

You must use Finish(final_json_plan) to indicate that you have finished the task. Each action only calls one function
once, without any comments or descriptions. Do not include line breaks in your response.

User Message for React

Interaction trajectory: [...]
Conversation: [...]
[...]

User Message for Reflexion

You have attempted to give a subplan before and failed. The following reflection(s) give a suggestion to avoid failing
to answer the query in the same way you did previously. Use them to improve your strategy for correctly planning.

Reflections:
[...]
Interaction trajectory: [...]
Conversation: [...]
[...]
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