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ABSTRACT

Prior-data fitted networks (PFNs) have recently been proposed as a promising way
to train tabular foundation models. PFNs are transformers that are pre-trained
on synthetic data generated from a prespecified prior distribution and that en-
able Bayesian inference through in-context learning. In this paper, we introduce
CausalFM, a comprehensive framework for training PFN-based foundation mod-
els in various causal inference settings. First, we formalize the construction of
Bayesian priors for causal inference based on structural causal models (SCMs) in a
principled way and derive necessary criteria for the validity of such priors. Building
on this, we propose a novel family of prior distributions using causality-inspired
Bayesian neural networks that enable CausalFM to perform Bayesian causal in-
ference in various settings, including for back-door, front-door, and instrumental
variable adjustment. Finally, we instantiate CausalFM and explicitly train models
to perform in-context learning in these settings. We show that CausalFM achieves
competitive in-context learning performance even when compared to baselines that
are specifically trained for the task at hand. In sum, our framework can be used as
a general recipe to train foundation models for various causal inference settings. In
contrast to the current state-of-the-art in causal inference, CausalFM offers a novel
paradigm with the potential to fundamentally change how practitioners perform
causal inference in medicine, economics, and other disciplines.

1 INTRODUCTION

Causal inference is a cornerstone of empirical research in disciplines such as economics (Angrist,
1990; Imbens & Angrist, 1994), medicine (Feuerriegel et al., 2024; Weberpals et al., 2025), and mar-
keting (Varian, 2016). It enables the estimation of causal effects from observational and randomized
data, which is essential for reliable decision-making (Kern et al., 2025). In personalized medicine,
for instance, it supports identifying the most effective treatment by predicting patient outcomes under
different therapeutic options.

In recent years, machine learning, and especially deep learning methods, have gained significant
traction in causal inference (Curth & van der Schaar, 2021; Ma et al., 2025; 2024; Melnychuk et al.,
2022; Schweisthal et al., 2023; Shalit et al., 2017a; Shi et al., 2019)). These methods offer several
advantages for causal effect estimation in practice, including the ability to handle large-scale and
high-dimensional datasets with complex confounding structures and to model heterogeneity of causal
effects (Feuerriegel et al., 2025). However, most existing approaches require retraining a model for
each new dataset. To this end, existing approaches lack the flexibility to perform inference for new
datasets without additional retraining, which limits their practicality in real-world settings.

Meanwhile, foundation models have emerged as a transformative paradigm in machine learning
(Devlin, 2018; Lahat et al., 2024; Touvron et al., 2023b;a), which offer a key advantage in that they
allow for flexible, test-time inference without retraining. These models are pre-trained on large
datasets and can generalize across tasks and domains. Examples include large language models
(LLMs) in natural language processing and vision transformers in computer vision. However, this
paradigm shift toward test-time inference has not yet had a comparable impact on causal inference.
Most current approaches in causal machine learning still rely on specialized models tailored to
specific tasks, requiring practitioners to manually select, train, and validate appropriate estimation
methods for each new dataset.
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In this paper, we propose a change to the paradigm for causal inference based on the idea of
foundation models trained for tabular causal inference. For this, we build on the recently proposed
prior-data fitted networks (PFNs) (Müller et al., 2022; Hollmann et al., 2023), which are transformers
pre-trained on purely synthetic datasets generated from a prespecified prior distribution. PFNs
enable Bayesian inference purely through in-context learning, allowing for flexible and efficient
predictions without requiring additional training for new tasks (Nagler, 2023). While recent works
have demonstrated the effectiveness of tabular foundation models based on PFNs for various tasks,
only two concurrent works have proposed PFNs tailored for causal inference (Balazadeh et al., 2025;
Robertson et al., 2025). However, these are either restricted to specific causal inference settings
(namely, only back-door adjustment) or do not offer identifiability guarantees.

We introduce CausalFM, a comprehensive framework for training PFN-based foundation models
for various causal inference settings. For this purpose, we introduce CausalFM priors: a novel
family of prior distributions based on structural causal models respecting the underlying causal
inference problem at hand. We first formalize and derive necessary criteria on how to construct
such SCM-based priors for causal inference in principle. Then, we propose a concrete instantiation
using Bayesian neural networks and provide a learning algorithm that leverages the SCM’s ability to
simulate interventional data to perform Bayesian inference in various causal inference settings.

Compared to classical causal inference methods, models trained based on our CausalFM offer the
following advantages: (i) There is no need for additional training for new datasets as our CausalFM
performs inference entirely through in-context learning, enabling fast and flexible deployment
across new datasets. (ii) The Bayesian nature of our CausalFM provides principled uncertainty
quantification, which is critical for downstream decision-making and for detecting situations with
poor treatment overlap. (iii) The model automatically learns to “select” an identifiability formula
based on the data distribution and task at hand. (iv) Our CausalFM builds upon rigorous identifiability
guarantees to ensure valid causal inference.

Our contributions1 are: (1) We formalize the constructions of priors based on structural causal models
(SCMs) for Bayesian causal inference and derive necessary conditions for their validity. (2) We
propose an explicit CausalFM prior based on Bayesian neural networks that are compatible with
the structure of the causal inference problem at hand. We also propose a learning algorithm to train
PFNs for causal inference problems that leverages our CausalFM prior to simulate counterfactuals
to mitigate the fundamental problem of causal inference. (3) We propose concrete instantiations of
our framework by training PFNs for estimating conditional average treatment effects (CATEs) in
different causal inference settings. We show empirically that CausalFM performs competitively and
outperforms current state-of-the-art CATE estimators on a variety of benchmarks.

2 RELATED WORK

We provide an overview of related literature streams. Additional related work is in Appendix A.

Amortized causal inference. Several recent papers pre-train large neural networks on synthetic
data so that they can solve causal tasks via in-context learning. Examples include causal discovery
(Mahajan et al., 2025), ATE estimation under unconfoundedness (Zhang et al., 2024), zero-shot- and
few-shot learning (Nilforoshan et al., 2023; Iwata & Chikahara, 2023), and reinforcement-learning
(Lee et al., 2023). These methods validate the feasibility of treating causal inference as an in-context
learning problem but remain restricted to specific causal inference settings, which typically do not
allow accommodating unobserved confounding.

Black-box causal inference (BBCI) (Bynum et al., 2025) proposes synthetically-pretrained models
to perform causal inference in a variety of settings. However, their approach is different: (i) BBCI
does not build upon a Bayesian framework. In contrast, building upon PFNs allows us to perform
approximate Bayesian causal inference and thus provide rigorous uncertainty quantification. (ii) The
proposed data-generating processes in BBCI are not tailored for high-dimensional causal inference
settings (as the authors mention in their Sec. 7). In contrast, our CausalFM prior leverages Bayesian
neural networks inspired by TabPFN (Hollmann et al., 2023) to create SCM-based prior distributions.
(iii) Beyond proposing a new method, we provide novel formalizations and theoretical results of
constructing valid SCM-based priors for Bayesian causal inference.

1Code is available at https://anonymous.4open.science/r/causal_foundation_model.
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Table 1: Overview of identifiability of PFN-
based frameworks for causal inference.

Framework Backdoor Frontdoor IV

CausalPFN Balazadeh et al. (2025) ✓ ✗ ✗
Do-PFN Robertson et al. (2025) ✓ ✗ ✗

Ours (CausalFM) ✓ ✓ ✓

PFNs for causal inference: We are aware of only
two concurrent works that propose PFN-based mod-
els for causal inference, but each with clear limi-
tations (see Figure 1): (i) (Balazadeh et al., 2025)
proposes a PFN similar to ours, but it is restricted to
only back-door adjustment, i.e., imposes the uncon-
foundedness assumption throughout their paper. In
contrast, we propose a framework for constructing PFN-based foundation models for a large class of
causal inference problems, including both front-door adjustment and instrumental variable settings
with unobserved confounding. (ii) Robertson et al. (2025) proposes to train a single PFN on various
different causal inference settings without providing identifiability assumptions to the model. We will
show later that the approach of Robertson et al. (2025) has a crucial drawback: because the causal
quantity of interest is not identified, the PFN learns a posterior that may never concentrate around
the true causal quantity, thus leading to asymptotically non-informative estimators. In contrast, we
propose to infuse our PFNs with identifiability assumptions required for informative causal inference.
As such, we follow established philosophy in causal inference that separates identifiability and
estimation steps (Kern et al., 2025; Pearl, 2009): the identifiability step should be established by
the practitioner using domain knowledge (e.g., establishing whether a certain variable is a valid
instrument), while the estimation step can be treated as a purely statistical learning problem.

3 PROBLEM SETUP

3.1 BACKGROUND ON PFNS

In tabular prediction problems, one considers a population (X,Y ) ∼ P ∈ P . Given a finite sample
Dn ∼ P of size n, the goal is to estimate the conditional distribution P(Y = y | X = x). PFNs
formulate this task in a Bayesian non-parametric way by placing a prior distribution Π on P , i.e.,
a prior over data-generating distributions (Müller et al., 2022; Nagler, 2023). Sampling proceeds
hierarchically via P ∼ Π and i.i.d. data (Xi, Yi) ∼ P. Then, Bayes’ rule yields the posterior
distribution Π(P | Dn) ∝ Π(Dn | P)Π(P), where Π(Dn | P) is the likelihood of the sample
Dn under P and ∝ denotes proportionality up to a multiplicative constant. The corresponding
posterior-predictive distribution is the probability of Y given test point x and observed data Dn, i.e.,

Π(Y | Dn, x) =

∫
P(Y | X = x)Π(P | Dn) dP. (1)

PFNs are neural networks qθ(Y | Dn, x) that parameterize the family of predictive posterior distri-
butions with trainable parameters θ. That is, PFNs map the entire dataset Dn and a query x to a
distribution over Y . In terms of architecture, PFNs are permutation-equivariant transformers (Ashish
Vaswani et al., 2017) as they allow for scalable training and leverage the attention mechanism to
effectively extract information from Dn. PFNs are trained by minimizing the negative log-likelihood
loss L(θ) = EN∼ΠN

[
EP∼Π

[
− log qθ(Y | X,DN )

]]
, where ΠN is a prior on the sample sizes. In

practice, we sample a sample size Nj ∼ ΠN , a probability distribution Pj ∼ Π, a dataset Dj
Nj

∼ Pj ,
and test points (xj , yj) ∼ Pj and then approximate the PFN loss via

L̂(θ) =
∑
j

[
− log qθ(yj | Dj

Nj
, xj)

]
, (2)

which is consistent for the exact posterior-predictive under regularity conditions (Nagler, 2023). Note
that all training data are synthetic, i.e., sampled from the prior Π. Furthermore, the trained PFN can
be deployed on arbitrary real datasets without further training.

3.2 TASK: CAUSAL INFERENCE

In this paper, we aim to extend PFNs to causal inference. Here, the main challenge is that the object of
interest is an interventional2 distribution Pint, yet we only observe data Dn ∼ Pobs from a potentially
different observational distribution (Pearl, 2009).

2Causal literature often distinguishes between interventional and counterfactual distributions. This is not
relevant for the methods of our paper, and we thus use interventional distribution as an umbrella term.
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Motivation. As an illustrative example, we consider a standard causal inference setting, called
backdoor adjustment, where the data comprise (X,A, Y ) ∼ Pobs, where X are patient covariates,
A is a treatment, and Y is an outcome of interest (van der Laan & Rubin, 2006). For example, in
medicine, X may contain treatment history or demographic attributes, A may be a medical treatment,
and Y a health outcome. Following the potential outcome framework (Rubin, 1974), let Y (a) denote
the outcome that would be realized under the treatment A = a. The interventional distribution is
thus over (X,A, Y (1)− Y (0)) ∼ Pint, and a common target functional is the conditional average
treatment effect (CATE) Q(x) = E

[
Y (1)− Y (0) | X = x

]
(Wager & Athey, 2018). The CATE

quantifies the expected benefit of providing treatment given the patient’s covariates.

Identifiability. To estimate CATE from observational data, we need to impose identifiability as-
sumptions, which link the observational and the interventional distributions and allow us to express
Q as a functional of the observational distribution (Rosenbaum & Rubin, 1983). These are (i) con-
sistency: Y (A) = Y , (ii) positivity: Pobs(A = 1 | X = x) > 0, and (iii) Unconfoundedness:
Y (1), Y (0) ⊥⊥ A | X in Pint.

Generalized causal inference setting. In the following, we provide a generalized definition of a
causal inference setting, that allows us to reason about arbitrary causal inference settings and provide
generalized statements beyond the standard example above.
Definition 3.1. We define a causal inference setting is a tuple C =

(
O,Pobs × Pint, Q

)
, where

O collects the observed variables (and contains at least A and Y ); (Pobs,Pint) ∈ Pobs × Pint are
paired observational/interventional distributions over O that correspond to an intervention on A; and
Q(Pint) is a causal query that is identifiable, i.e. there exists a measurable functional Q̄ such that
Q(Pint) = Q̄(Pobs) for all Pobs,Pint) ∈ Pobs × Pint.

3.2.1 RUNNING EXAMPLES

■Example 1 (back-door adjustment). Here, we continue the example from above and define
O = (X,A, Y ) ∼ Pobs with binary A as above. Pobs × Pint contains all observational and
interventional distributions that satisfy consistency, positivity, and unconfoundedness. The causal
query is the CATE Q(Pint)(x) = E[Y (1)− Y (0) | X = x], which is identified as

Q̄(Pobs)(x) = EPobs
[Y | A = 1, X = x] − EPobs

[Y | A = 0, X = x]. (3)

Figure 1: C-DAGs compatible with
the three example causal inference set-
tings. Yellow variables are observed,
blue variables are unobserved, and red
variables are clusters of variables.

■Example 2 (front-door adjustment). Let O =
(X,A,M, Y ) ∼ Pobs, where X , A, and Y are defined
as above and M is a mediator between A and Y . Interven-
tional distributions are defined using potential outcomes,
i.e.,

(
X, A, M(1),M(0), Y (1,M(1)), Y (0,M(0))

)
∼

Pint, and the causal query of interest again the CATE
Q(Pint)(x) = EPint

[
Y (1,M(1)) − Y (0,M(0)) | X =

x
]
.

Identifiability assumptions. We restrict to pairs (Pobs,Pint)
that satisfy (i) consistency: Y = Y (A,M) and M = M(A); (ii) positivity: Pobs(A = a | X =
x) > 0 and Pobs(M = m | A = a,X = x) > 0; and (iii) front-door criterion M(a) ⊥⊥ A | X =
x, and Y (a′,m) ⊥⊥ M | A = a′, X = x. Under these assumptions, the CATE is identified and
Q̃ is given via the conditional version of Pearl’s front-door adjustment formula (Pearl, 2009).

■Example 3 (Instrumental variables). Let O = (X,Z,A, Y ) ∼ Pobs, where Z is an instrumental
variable that causes the treatment A but does not directly cause the outcome Y . The interventional
distribution is defined on

(
X,Z,A, Y (1), Y (0)

)
∼ Pint for a fixed treatment intervention A = a.

We are again interested in the CATE Q(Pint)(x) = E
[
Y (1)− Y (0) | X = x

]
.

Identifiability assumptions. We restrict to pairs (Pobs,Pint) that satisfy the following conditions
(Newey & Powell, 2003): (i): Additive structural equation: Y = f(X,A)+g(X,U), with (unknown)
functions f and g and unobserved confounder U , implying that Y does not directly depend on Z;
(ii) Independence: U ⊥⊥ Z | X; (iii) Relevance: Pobs(A | X = x, Z = z) > 0 is non-constant in z;
and (iv) Completeness: For every measurable g, if EPobs

[f(x,A) | X = x, Z = z] = 0 for all z, then
f(x,A) = 0 almost surely in Pobs. Then, the CATE can be shown to be identified via an integral
equation (Newey & Powell, 2003; Hartford et al., 2017).
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Research question: PFNs have shown to be an effective way to construct tabular foundation models.
However, a causal inference setting C comes with additional challenges, such as the distinction
between observational and interventional distribution as well as identifiability assumptions.

Research question

How can we train PFNs for a causal inference setting C that provides a Bayesian estimator of
Q(Pint) given an observational dataset Dn ∼ Pobs and some context (e.g., values x or a)?

In the following, we introduce CausalFM consisting of (i) appropriate prior distributions that allow
for approximating interventional predictive posterior distributions as in Eq. (2)(Section 4) and (ii) a
training algorithm for the underlying PNFS (see Section 5).

4 CAUSALFM: PRIORS

In this section, we construct prior distributions for CausalFM which are based upon identifiable
structural causal models (SCMs). We motivate and formalize our approach (Sec. 4.1, provide
necessary criteria for valid causal inference (Sec. 4.2), and finally provide a method for constructing
such priors in practice (Sec. 4.3). We also provide a complete toy example in Appendix B.

4.1 INTRODUCING SCM-BASED PRIORS

Naïve approach. A naïve approach for causal inference would construct a prior Π directly for the
observational distribution Pobs. If the posterior Π(Pobs | Dn) → P∗

obs converges to the ground-truth
observational distribution P∗

obs (i.e., satisfying a Bernstein-von-Mises theorem), we can obtain a
consistent Bayesian estimator of our causal query via Q̄(Π(Pobs | Dn)). Accordingly, we could train
a PFN qθ(Y | Dn, x) with the loss in Eq. (2) and estimate the CAPO via Q̄(qθ(Y | Dn, x)).

However, the above approach has drawbacks: (i) It requires knowledge of the identification formula Q̄,
which must be determined on a case-by-case basis depending on the causal inference setting C at hand.
This can be tedious or even hard to compute in practice. For example, the IV setting from Example 3
requires solving integral equations to compute Q̄ (Newey & Powell, 2003). (ii) Constructing a prior
for Pobs makes it harder control the distribution of the causal query Q directly. It has been shown
in the literature that this can lead to prior misspecification for Bayesian causal inference or slowly
converging posterior distributions (Linero & Antonelli, 2022).

Modeling the interventional distribution. Motivated by these drawbacks of constructing priors
for only Pobs, we propose to construct priors for observational-interventional distribution pairs
(Pobs,Pint), resulting in priors defined on Pobs×Pint. This addresses both drawbacks by (i) inducing
an interventional posterior distribution, thus only requiring knowledge of Q (not Q̄); and (ii) we will
see that priors on Pobs × Pint often allow to specify the prior distribution of Q(Pint)) directly. A
natural way to define distributions on Pobs × Pint is via structural causal models (SCMs).

Definition 4.1 (SCMs (Pearl, 2009)). A (semi-Markovian) structural causal model (SCM) S is a
tuple

(
Z,U, f,P

)
, where Z = (Z1, . . . , Zk) are observable endogenous variables, U collects latent

exogenous variables, f = {fZ1
, . . . , fZk

} contains structural assignments Zi = fZi
(pa(Zi)) with

parents pa(Zi) ⊆ Z ∪ U , and P is a joint distribution on U .

Every SCM induces a unique directed acyclic graph (DAG), GS by defining mapping of the parents
pa(Zi) to Zi with directed edges. We distinguish two types of latent variables Ui in GS : Ui is an
unobserved confounder if it is the parent of both A and Y , otherwise, we call it a noise variable.
Intuitively, an SCM is a simulator: we can draw latent variables U ∼ P and pass them through
structural functions f , resulting in an induced observational distribution PS

obs over Z. At the same
time, we can modify the SCM by intervening on a variable via do(A = a), i.e., fixing the variable and
then sampling from the SCM mechanism. This induces a corresponding interventional distribution
PS
int. We call an SCM S compatible with a causal inference setting C, if (PS

obs,PS
int) ∈ Pobs × Pint.

Definition 4.2 (C-SCM-Priors). A C-SCM-Prior is any probability measure Π(S) that puts all
its mass on SCMs compatible with C. Via the map S 7→ (PS

obs,PS
int) every such prior induces a

distribution Π
(
(Pobs,Pint)

)
on Pobs × Pint.

5
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Sampling from Π therefore amounts to sampling a random latent distribution P over U as well as
random functional assignments f . These can then be used to internally sample an observational
dataset Dn, i.e., there is a well-defined likelihood Π(Dn | S) induced by S. As a consequence, we
can define the posterior distribution over SCMs via Π(S | Dn) ∝ Π(Dn | S)Π(S), where ∝ denotes
proportionality up to a normalization constant.

Cluster-DAGs. Because an SCM-prior induces a distribution over possibly many DAGs, we
compress them into a shared structure. Given variables (Z,U), a Cluster-DAG (C-DAG) (Anand
et al., 2023)] is a DAG on clusters C1, . . . , Ck which are disjoint subsets of (Z,U). Each C-SCM-
Prior induces a unique C-DAG via the following algorithm: (i) draw an edge Ci→Cj whenever any
SCMs S with Π(S) > 0 contains some arrow from any node of Ci to any node of Cj and no SCM S
with Π(S) > 0 contains some arrow from any node of Cj to any node of Ci; (ii) merge Ci and Cj

whenever both directions occur across SCMs S with Π(S) > 0.

4.2 WELL-SPECIFIED PRIORS

The question is now how we should design our prior Π such that the induced posterior Π(S | Dn)
allows for valid Bayesian causal inference. We now define a key desirable property of such priors.
For this, we call a prior Π(S) well-specified for C if, for any true pair (P∗

obs,P∗
int) and every sample

Dn∼P∗
obs, it holds that

Q
(∫

PS
int Π(S | Dn) dS

)
−→ Q(P∗

int), n → ∞. (4)

In other words, a well-specified prior ensures that the causal query Q evaluated on the posterior-
predictive interventional distribution (PPID)

∫
PS
int Π(S | Dn) dS is a consistent estimator of the

causal target. If we were able to train a PFN to approximate the PPID of a well-specified prior, we
are sure that we can apply Q on this distribution and obtain a consistent estimator.

Identifiability. At this point, one may wonder why we only focus on priors for identifiable causal
inference settings. Indeed, a recently proposed method, called do-PFN (Robertson et al., 2025),
does not restrict its PFN priors to identifiable settings. The following result shows that, under weak
assumptions, such priors cannot be well-specified, leading to asymptotic inconsistency.
Theorem 4.3. Let Z be the set of all identifiability-violating SCMs S0 that satisfy PS0

obs ∈ Pobs

and Q
(
PS0

int

)
̸= Q̄

(
PS0

obs

)
. Assume that Q is a linear functional (e.g., the CATE) and that∫

Z Q(PS
int)Π(S) dS ≠ Q̄

(
PS0

obs

)
(non-identifiability doesn’t cancel out). Then, if Π(S) is well-

specified for C, it follows that Π(S ∈ Z) = 0.

Proof. See Appendix C.

4.3 CONSTRUCTING SCM-BASED PRIORS

C-DAG design. Our method for constructing priors assumes the knowledge of a well-specified
C-DAG Gc for C, meaning that Gc is induced by some well-specified C-SCM-Prior. Such C-DAGs
are usually known for most causal inference settings (see Fig. 1 for C-DAGs compatible with the
settings in Examples 1–3).

One point of ambiguity is the modeling of noise variables in C-DAGs. Here, we propose a practical
design rule: if Gc contains an unobserved confounder between A and Y , we only add one additional
noise variable to either A or Y . Conversely, if Gc is unconfounded, we add noise parents to both
A and Y (see Fig. 1). The reasoning is as follows: if Gc is unconfounded, we need to add noise
to both A and Y in order to ensure not restrict ourselves to degenerate observational distributions.
Conversely, any unobserved confounder U induces noise into both A and Y , thus removing the need
to add noise to both. However, it is still necessary to add one additional noise variable to either A
or Y since, otherwise, any unconfounded SCM compatible with Gc would need to be degenerate in
either A or Y . We provide a concrete toy example in Appendix B to illustrate this.

Prior construction. We now propose a practical algorithm to construct C-SCM-priors. We assume
that we have access to a pair (Gc, I), where Gc is a well-specified C-DAG for C and I is a set of
constraints on SCMs S compatible with Gc ensuring that S is also compatible with C.

6
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■Example 1: back-door adjustment. The observable variables are (X,A, Y ) together with noise
variables. A compatible C-DAG is in Fig. 1 (left). The constraint set is I(S) = {PS

obs(A = a |
X = x) > 0}, ensuring that all SCMs satisfy the positivity assumption.

■Example 2: Front-door adjustment. Here, the observed variables are (X,A,M, Y ) with noise
variables and an unobserved confounder U between A and Y . A compatible C-DAG is in Fig. 1
(middle). The constraint set is I(S) = {PS

obs(A = a | X = x) > 0,PS
obs(M = m | X = x,A =

a) > 0}, ensuring positivity for both treatments and mediators.

■Example 3: Instrumental variables. The observed variables are (X,Z,A, Y ), augmented by noise
variables and an unobserved confounder U that is a joint parent of A and Y has no edge to the
instrument Z; see the compatible C-DAG in Fig. 1 (right). The constraint set is I(S) = {PS

obs(Z =
z | X = x) > 0, fS

Y (X,A,U) = fS(X,A) + gS(X,U)}.

Overall algorithm. Given (Gc, I), we propose to construct a prior distribution Π over SCMs as
follows: First, we order the clusters (C1, . . . , Ck) according to their hierarchy in the DAG (i.e., C1

has no parents). Then, we iterate over each cluster Ci as follows: if Ci only contains latent variables,
fix their distribution to a standard normal distribution via U (i) ∼ N

(
0, I

)
. If Ci is a cluster of

observed and latent variables, we assign a clustered Bayesian neural network (BNN) prior to Ci (see
below). If Ci only contains observed variables, we assign an observational BNN prior.

Clustered BNN prior. For clusters that contain both observed and latent variables, we leverage a
BNN-based prior inspired by TabPFN (Hollmann et al., 2023). This prior allows us to effectively
sample potentially high-dimensional clusters of variables for which the internal causal structure is
irrelevant to infer the causal query of interest. The prior is defined via

g
(i)
θ : pa(Ci) −→ Rr, θ ∼ ΠCi s.t. g(i)θ satisfying I(Sθ). (5)

We then sample random nodes from g
(i)
θ that coincide with observed nodes in Ci, while the remaining

nodes serve as latent noise within the cluster. This corresponds to applying the approach taking in
TabPFN (Hollmann et al., 2023) to clusters Ci in the C-DAG in which the causal structure does not
matter for estimating our causal query.

Observational BNN prior. If Ci contains only observed nodes, we define another BNN via

f
(i)
θ : pa(Ci) −→ R|Ci|, θ ∼ ΠCi subject to f

(i)
θ satisfying I(Sθ), (6)

and set Ci = f
(i)
θ

(
pa(Ci)

)
. The observed nodes within Ci thus correspond to the output of the neural

network and are not randomly subsampled neurons.

Example 1: back-door adjustment. Here, the data distribution P can be separated as follows:
(X,UX) ∼ PX with UX denoting noise variables withing the cluster X , UA ∼ PUA

, UY ∼ PUY
,

A = fA(X,UA), and Y = fA(X,A,UY ). Our algorithm proceeds as follows: PUA
and PUY

are
noise variables and are set to standard normal distributions. The cluster (X,UX) contains both noise
and observed variables, meaning that PX is sampled from an clustered BNN prior. Finally, A and
Y are observed variables meaning that fA and fY are sampled from observational BNN priors. We
refer to Appendix D.1 for full implementation details, including for Example 2 and 3.

Notes on identifiability. Our framework follows established causal inference philosophy and
separates identifiability from estimation (Pearl, 2009): the identifiability step (=choosing the causal
setting) requires careful modeling and usage of domain knowledge, while the estimation step can be
handed over to our CausalFM. If practitioners suspect identifiability assumptions may be violated,
we recommend performing causal sensitivity analysis (Dorn & Guo, 2022; Frauen et al., 2023) to
assess the extent of potential violations.

5 CAUSALFM: TRAINING

5.1 TRAINING ALGORITHM

We look at the case where the causal query Q(Pint(Y | X)) is a function of the conditional interven-
tional distribution Pint(Y | X) for some contextual observed variables X . This includes, e.g., the
CATE E[Y (1)− Y (0) | X] and CAPO E[Y (a) | X] from our running examples.
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Our goal is to train a PFN qθ(Y | x) to approximate the conditional PPID (posterior predictive
interventional distribution) Πint(Y | Dn, X = x) =

∫
PS
int(Y | X = x)Π(S | Dn) dS. Given an

SCM prior Π and a prior ΠN over sample sizes, we propose the following modified PFN loss

L(θ) = EN∼ΠN

[
ES∼Π

[
E(X,Y )∼PS

int

[
ED∼PS

obs

[
− log qθ(Y | X,DN )

]]]]
. (7)

Importantly, the dataset D is sampled from the observational distribution, while the pair (X,Y )
is sampled from the interventional distribution induced by a random SCM. This ensures that the
PFN will aim to predict the interventional outcome Y based on data following the observational
distribution. A similar loss has been proposed by Bynum et al. (2025), which, however, is only
based on the mean-squared error instead of the negative log-likelihood and thus does not allow an
interpretation for approximating the PPID in a Bayesian setting. In particular, modeling the entire
PPID allows us not only to provide point estimators of our causal query, but also to account for
uncertainty.

In practice, we sample the sample size Nj ∼ ΠN , an SCM Sj ∼ Π, and an observational dataset
Dj

Nj
∼ PSj

obs by sampling from the SCM. Then, we modify the SCM by performing the intervention

of interest (e.g., do(A = a)) and sample test points (xj , yj) ∼ PSj

int from the interventional SCM.
The approximated PFN-loss is then

L̂(θ) =
∑
j

[
− log qθ(yj | Dj

Nj
, xj)

]
. (8)

Finally, once qθ(Y | x) is trained, we can obtain an estimator for the causal query via Q(qθ(Y | X),
i.e., by applying the causal query on the approximated PPID by the PFN.

Example: back-door adjustment. Here, we sample a sample size Nj ∼ ΠN , an SCM Sj ∼ Π

from our constructed prior distribution Π and an observational dataset Dj
Nj

∼ PSj

obs. Then, we

perform two interventions do(A = 1) and do(A = 0) to obtain test points (xj , yj(1)−yj(0)) ∼ PSj

int.
The PFN loss becomes

L̂(θ) =
∑
j

[
− log qθ(yj(1)− yj(0) | Dj

Nj
, xj)

]
. (9)

Implementation details. Each observation is tokenized during embedding, with separate encoders
applied to observational variables. The resulting tokens are processed by a transformer-based PFN to
obtain representations, which are subsequently passed to a Gaussian mixture model (GMM) head.
Our implementation of qθ(Y | x) is based on the TabPFN architecture (Hollmann et al., 2023). We
train the model with a learning rate of 1e−3, weight decay 1e−5, batch size 16, and sequence length
1024 for up to 150 epochs. Training CausalFM on a single NVIDIA A100 GPU takes about 24
hours. Details on the data prior and generation details are provided in Appendix D.1, while the full
implementation is given in Appendix D.2.

6 EXPERIMENTS Table 2: Standard CATE estimation over 10 synthetic
datasets and Jobs dataset.

Method Synthetic Jobs

BASELINES (A): STANDARD CATE ESTIMATORS

S-learner (Künzel et al., 2019) 0.734 ± 0.16 0.697 ± 0.18

T-learner (Künzel et al., 2019) 0.661 ± 0.17 0.822 ± 0.18

TARNet (Shalit et al., 2017b) 0.854 ± 0.23 0.864 ± 0.24

DR-learner (Kennedy, 2023b) 0.765 ± 0.17 0.959 ± 0.18

RA-learner (Curth & van der Schaar, 2021) 0.609 ± 0.13 0.652 ± 0.15

X-learner (Künzel et al., 2019) 0.563 ± 0.15 0.802 ± 0.18

BASELINES (B): FOUNDATION MODELS-BASED METHODS

CausalPFN (Balazadeh et al., 2025) 0.557 ± 0.18 0.528 ± 0.16

DoPFN (Robertson et al., 2025) 0.586 ± 0.19 0.482 ± 0.20

CausalFM (ours) 0.515 ± 0.20 0.478 ± 0.18

Lower = better. Reported: PEHE (mean ± std). Top-three per column
are in blue, purple, orange.

We evaluate our method across three
causal inference settings: standard
CATE estimation, instrumental vari-
ables (IV), and front-door adjustment.

Evaluation metrics. We report the pre-
cision in estimating heterogeneous ef-
fects (PEHE) (Curth & van der Schaar,
2021; Hill, 2011), defined as the root
mean squared deviation between pre-
dicted and ground-truth CATE, to evalu-
ate the model performance on the CATE
estimation task.
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6.1 EVALUATION FOR STANDARD CATE SETTING

Baselines for standard CATE estimation. We consider a broad range of state-of-the-art methods
for the conditional treatment effect estimation from the literature: (1) S-learner (Künzel et al., 2019):
the S-learner is a model-agnostic learner that trains a single regression model by concatenating the
covariate and the treatment as input; (2) T-learner (Künzel et al., 2019): the T-learner is a model-
agnostic learner that trains separate regression models for treated and control groups; (3) X-learner
(Künzel et al., 2019): builds upon the T-learner by first imputing individual treatment effects in
each group and then fitting models to these pseudo-effects; (4) TARNet (Shalit et al., 2017b): using
representation learning to extract features of covariates and train separate branches for treated and
control groups with regularization; (5) DR-learner (Kennedy, 2023b): generates pseudo-outcomes
based on the doubly-robust AIPW estimator; (6) RA-learner (Curth & van der Schaar, 2021): uses a
regression-adjusted pseudo-outcome in the second stage. We also include two PFN-based foundation
models for treatment effect estimation: (7) CausalPFN (Balazadeh et al., 2025) and (8) DoPFN
(Robertson et al., 2025). Further implementation details are in Appendix D.3.

Table 3: IV setting for CATE estimation with binary
and continuous instrument variables.

Method Binary IV Continuous IV

BASELINES (A): STANDARD IV ESTIMATORS

KIV (Singh et al., 2019) 0.454 ± 0.16 0.577 ± 0.20

DRIV (Syrgkanis et al., 2019) 0.531 ± 0.18 0.693 ± 0.20

DeepIV (Hartford et al., 2017) 0.427 ± 0.15 0.516 ± 0.13

DeepGMM (Bennett et al., 2019) 0.503 ± 0.20 0.588 ± 0.21

DMLIV (Syrgkanis et al., 2019) 0.479 ± 0.23 0.618 ± 0.20

DFIV (Xu et al., 2021) 0.709 ± 0.29 0.583 ± 0.30

MRIV (Frauen & Feuerriegel, 2022) 0.688 ± 0.21 0.641 ± 0.24

BASELINES (B): FOUNDATION MODELS-BASED METHODS

DoPFN (Robertson et al., 2025) 0.523 ± 0.20 0.675 ± 0.37

CausalFM (ours) 0.422 ± 0.16 0.579 ± 0.21

Lower = better. Reported: PEHE (mean ± standard deviation). Top-
three per column are in blue, purple, orange.

Results on standard CATE estimation.
We benchmark our model on ten synthetic
datasets generated under diverse mecha-
nisms, with implementation details in Ap-
pendix D. In addition, we evaluate on a
semi-synthetic version of the Jobs dataset
(Smith & Todd, 2005), derived from the
widely used LaLonde study (LaLonde,
1986). Here, we generate outcomes to cre-
ate a semi-synthetic dataset and allow for
evaluation against ground-truth.

Table 2 reports the averaged PEHE across
the synthetic datasets (full results in the
Appendix) and the Jobs dataset. Our ex-
periments show that CausalFM achieves
competitive CATE estimation performance
across all benchmarks, without requiring model retraining.

6.2 EVALUATION FOR IV SETTING

Table 4: Front-door adjustment setting for
CATE estimation.

Method PEHE

BASELINES (A): STANDARD FRONT DOOR ADJUSTMENT

Plug-in front-door learner (Linear) Pearl (2009) 1.124 ± 0.28

Plug-in front-door learner (RF) Pearl (2009) 1.364 ± 0.52

Plug-in front-door learner (NN) Pearl (2009) 0.889 ± 0.38

BASELINES (B): FOUNDATION MODELS-BASED METHODS

DoPFN (Robertson et al., 2025) 1.274 ± 0.24

CausalFM (ours) 0.847 ± 0.34

Lower = better. Reported: PEHE (mean ± standard deviation).
Top-three per column are in blue, purple, orange.

Baselines for IV setting. We benchmark against
a broad set of state-of-the-art IV methods for
treatment effect estimation: (1) KIV (Singh
et al., 2019): a nonlinear extension of two-stage
least squares using kernel ridge regression with
feature maps; (2) DFIV (Xu et al., 2021): ex-
tends KIV by parameterizing feature maps with
neural networks trained iteratively; (3) DeepIV
(Hartford et al., 2017): a two-stage neural ap-
proach, first estimating the treatment distribu-
tion and then solving a counterfactual prediction
task; (4) DeepGMM (Bennett et al., 2019): for-
mulates IV estimation as a minimax game based
on the generalized method of moments, solved via adversarial training; (5) DMLIV (Syrgkanis
et al., 2019): a double machine learning framework that estimates nuisance functions and learns the
CATE by orthogonalized regression; (6) DRIV (Syrgkanis et al., 2019): a meta-learner combining
DMLIV with doubly robust pseudo-outcomes for improved stability; and (7) MRIV (Frauen &
Feuerriegel, 2022): a multiply robust framework for binary IVs that directly estimates CATE via
pseudo–outcome regression. For foundation model baselines, as CausalPFN (Balazadeh et al., 2025)
is only for back-door adjustment, we include DoPFN (Robertson et al., 2025).

Results on IV setting. We evaluate our models on datasets with varying confounding strengths.
Table 3 reports the averaged PEHE for binary and continuous IVs. Note that CausalPFN is not
designed for IV settings. In contrast, we find that our CausalFM consistently achieves comparable
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performance relative to standard IV estimators and outperforms biased alternatives. Importantly, in
contrast the the standard baselines, these results hold without requiring model retraining. Hence, this
confirms the flexibility of our approach to IV settings.

6.3 FRONT-DOOR ADJUSTMENT

We additionally evaluate our model under the front-door adjustment setting in Table 4. Due to space
constraints, details are provided in Appendix H.1. The experiments show the flexibility of our method
to perform causal inference in the front-door adjustment setting.

6.4 COMPUTATIONAL TIME
Table 5: Overall time comparison for standard
CATE setting.

Method Time (s)

BASELINES (A): STANDARD CATE ESTIMATORS

S-learner (Künzel et al., 2019) 2.76× 100

T-learner (Künzel et al., 2019) 3.21× 100

TARNet (Shalit et al., 2017b) 3.98× 100

DR-learner (Kennedy, 2023b) 1.78× 101

RA-learner (Curth & van der Schaar, 2021) 1.24× 101

X-learner (Künzel et al., 2019) 1.93× 101

BASELINES (B): FOUNDATION MODELS-BASED METHODS

CausalPFN (Balazadeh et al., 2025) 1.27× 100

DoPFN (Robertson et al., 2025) 2.31× 100

CausalFM (ours) 4.90× 10−1

Lower = better. Reported: Time in seconds.

We report computation time in this section. For
our method and other foundation-model-based
approaches, we show inference time since these
models do not need fine-tuning after pretraining.
For standard baselines, which must be trained
for each dataset separately, we report the average
total time per dataset, including both training
and inference. As shown in Tables 5 and 6, our
model is highly efficient.

6.5 ADDITIONAL EXPERIMENTS

Table 6: Overall time comparison for IV setting.

Method Time (s)

BASELINES (A): STANDARD IV ESTIMATORS

KIV (Singh et al., 2019) 3.24× 10−1

DRIV (Syrgkanis et al., 2019) 3.87× 101

DeepIV (Hartford et al., 2017) 1.27× 101

DeepGMM (Bennett et al., 2019) 1.85× 101

DMLIV (Syrgkanis et al., 2019) 1.85× 101

DFIV (Xu et al., 2021) 1.74× 101

MRIV (Frauen & Feuerriegel, 2022) 1.56× 101

BASELINES (B): FOUNDATION MODELS-BASED METHODS

DoPFN (Robertson et al., 2025) 6.53× 100

CausalFM (ours) 4.72× 10−1

Lower = better. Reported: Time in seconds.

Misspecification of causal settings. We con-
duct experiments to study the sensitivity to us-
ing an incorrect identifiability strategy. Specif-
ically, we generate data from (i) an IV SCM
and (ii) a front-door SCM (as in our main ex-
periments), and compare a model trained under
the correct identifiability design (IV or front-
door, respectively) with a model trained under
an incorrect back-door design. The results are
in Table 7. As expected, using a misspecified
identifiability strategy consistently worsens the
PEHE. This highlights the importance of includ-
ing the correct identifiability assumption into
the prior specification, which we propose for
CausalFM.

Table 7: Analysis of the effect of misspecified
identifiability strategies.

Data Generating SCM Strategy Identifiability Used PEHE

IV SCM Correct IV 0.422
Incorrect Back-door 0.489

Front-door SCM Correct Front-door 0.847
Incorrect Back-door 0.876

Prior design choices. We also analyze the ro-
bustness of our model to the choice of the prior.
For this, we vary the strength of unobserved
confounding in the data-generating process, con-
trolled by a parameter α ∈ [0, 1]. Due to space
constraints, the results in shown in Fig. 2 in
Appendix H.5. The experiments show that our
model remains robust as α increases.

6.6 DISCUSSION

Limitations and future work. The current evaluation is limited to synthetic and semi-synthetic
data due to the fundamental problem of missing potential outcomes on real-world data. For future
work, it will be interesting to investigate the performance of CausalFM in applied A/B experimental
setups to assess its empirical performance and robustness under real-world conditions. Additionally,
an important research direction will be to incorporate interpretability or fairness constraints into
CausalFM, which is crucial for reliable deployment in practice.
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Ethics statement.

Human subjects and IRB. This work does not involve experiments with human subjects. Our training
data are synthetically generated from prespecified SCM-based priors. For empirical evaluation, we
additionally use publicly available benchmark data (e.g., Jobs) where outcomes are generated in a
semi-synthetic manner following common practice; no identifiable personal information is introduced
by us. Accordingly, no IRB review was required for this study.

Data, privacy, and security. We do not collect, store, or release sensitive personal data. Public
datasets are used under their respective licenses, and our semi-synthetic outcome generation avoids re-
identification risks. We will document preprocessing and generation steps to support reproducibility.

Bias and potential harms. Causal estimators can be misused if applied outside the assumed identifica-
tion regime (e.g., back-door, front-door, IV) or under severe violations (e.g., weak instruments, lack
of overlap). To mitigate harm: (i) we make assumptions explicit and provide uncertainty quantifica-
tion; (ii) we advocate domain-expert validation and sensitivity checks before deployment; (iii) we
discourage high-stakes automated decision-making without human oversight.

Use of large language models (LLMs). We used LLM-based tools to assist with writing (clarity,
grammar) and for literature research. All claims were authored and verified by the authors; citations
were cross-checked against primary sources. No sensitive data were provided to LLM tools.

Reproducibility statement. We ensure reproducibility of our results by providing the full imple-
mentation and training scripts through an anonymous GitHub repository https://anonymous.
4open.science/r/causal_foundation_model. The repository contains the necessary
code to reproduce our experiments, along with instructions for dataset preparation, model training
and evaluation procedures. This setup allows independent researchers to replicate the reported results
and extend our work with minimal effort.
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A EXTENDED RELATED WORK

Prior-data-fitted networks (PFNs) as tabular foundation models. Foundation models are an
emerging paradigm that has revolutionized machine learning for various data modalities, particularly
language and vision tasks (Devlin, 2018; Lahat et al., 2024; Touvron et al., 2023b;a). The same
paradigm is now being explored for tabular data – a modality that underpins the large majority of
analyses in science and business (van Breugel & van der Schaar, 2024). Prior-data-fitted networks
(PFNs) (Müller et al., 2022) constitute a powerful approach to training tabular foundation models.
PFNs are large transformers trained on synthetic data to perform Bayesian inference through in-
context learning. TabPFN (Hollmann et al., 2023; 2025) scaled this idea by pairing the transformer
with a Bayesian neural network prior over structural causal models (SCMs) and demonstrating
state-of-the-art performance on various tabular benchmarks. Subsequent work extended PFNs to
time–series forecasting (Hoo et al., 2025) and analyzed their in-context learning abilities theoretically
(Nagler, 2023). Critically, all existing PFNs are trained only for predictive tasks and do not target
causal estimands; they therefore are not designed for causal inference of treatment effects, which is
the goal of our paper.

Treatment effect estimation. Causal inference, such as the estimation of average treatment effects,
originates from fields like econometrics (Imbens & Angrist, 1994; Angrist, 1990), statistics (van der
Laan & Rubin, 2006), and epidemiology (Robins, 1986; 1994). Machine learning methods have
been proposed to estimate heterogeneous effects to support personalized decision-making. One line
of work are frequentist methods, which often build on semiparametric theory (Robins et al., 1994;
Robins, 1999), yielding model-agnostic estimators that are doubly robust and Neyman-orthogonal
(van der Laan, 2006; Chernozhukov et al., 2018; Nie & Wager, 2021; Foster & Syrgkanis, 2023;
Kennedy, 2023a). Another line of work builds upon specific machine learning methods/ architectures
such as regression trees (Wager & Athey, 2018) or neural networks (Johansson et al., 2016; Shalit
et al., 2017a; Shi et al., 2019) and adopts them to causal inference. Bayesian alternatives include
Bayesian additive regression trees (Hahn et al., 2020) or Gaussian-process counterfactual regression
(Alaa & van der Schaar, 2017). However, all of the existing estimators above must be retrained for
every new dataset. In contrast, our CausalFM allows for pre-trained models to approximate Bayesian
causal inference.

A.1 DIFFERENCES BETWEEN CAUSALFM, CAUSALPFN, AND DO-PFN

Identifiability. CausalFM separates identifiability from estimation. The central motivation of
CausalFM is that causal identification (choosing an identifiable setting such as back-door, IV, or
front-door) must be handled before estimation. This mirrors classical causal inference practice and
ensures that the PFN only learns within an identifiable causal setting. Our reasoning for identifiability
is as follows:

(1) Asymptotically unbiased causal inference: As we show in Theorem 4.3, incorporating identifi-
ability assumptions into the prior is necessary for asymptotically unbiased causal inference. As a
consequence, methods that ignore identifiability assumptions yield biased causal effect estimates,
even if we collect large amounts of data. This is highly undesirable in practice.

(2) Informative predictive-posterior distributions: If we do not impose any assumption on the DGP,
it is well known that causal effect estimation is not just fundamentally biased, but also that this
bias can be of arbitrary size. For example, the backdoor-adjustment bias due to omitted unobserved
confounding can be written in closed form depending on confounding strength. Thus, if the PFN-
prior assigns positive probability mass for DGPs with arbitrary confounding strength, the predictive-
posterior must respect the possibility of arbitrarily biased treatment effects, thus rendering PFN-based
inference completely noninformative.

(3) Clear separation between domain knowledge and statistical inference: One might argue that a
possible remedy would be to restrict the PFN prior only to DGPs with somewhat “weak” identifiability
violations (e.g., weak unobserved confounding). However, we argue that this would correspond
to assumptions/ domain knowledge on the DGP, similar to those in our paper, that must be made
transparent for practitioners and could also possibly be violated.
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In short, our paper follows established causal inference philosophy and separates identifiability from
estimation: the identifiability step (choosing the causal setting) requires careful modeling and usage
of domain knowledge, while the estimation step can be handed over to our CausalFM. If practitioners
suspect identifiability assumptions may be violated, we recommend performing causal sensitivity
analysis to assess the extent of potential violations.

In contrast, CausalPFN implicitly assumes only back-door adjustment and therefore cannot handle IV
or front-door, resulting in bias under unobserved confounding. Do-PFN mixes many causal graphs in
a single prior without conditioning on which setting is identifiable, which, as our Theorem 4.3 shows,
can lead to asymptotically biased estimates and non-informative posteriors.

Prior construction. This philosophy requires a fundamentally different prior construction. Because
identifiability is encoded at the level of causal structure, CausalFM introduces C-SCM priors and
C-DAGs that enforce the assumptions required by each identifiability strategy. Do-PFN does not
encode identifiability constraints into the prior family for their prior construction. CausalPFN is
restricted solely to back-door adjustment.

Theoretical guarantees. Beyond this framework, we contribute new theoretical results showing
that identifiability must be incorporated into PFN priors. Theorem 4.3 proves that if a PFN prior
places nonzero mass on SCMs that violate the identifiability conditions of the chosen setting, then
the resulting posterior predictive interventional distribution is necessarily misspecified and cannot
yield consistent causal effect estimates, even with infinite data. This explains the empirical behavior
of Do-PFN, which may return non-informative posteriors when its prior includes SCMs with strong
unobserved confounding and no valid instruments. Our theoretical results show that this issue is
structural, not merely an implementation detail.

Empirical performance. Empirically, our model outperforms others in different settings. Besides,
we also have experiments showing the necessity to have the correct identifiability assumption in the
prior specification.
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B EXAMPLE FOR SCM-PRIORS

Here, we consider the IV setting from Example 3 with additional normality assumption and empty
X = ∅, i.e., observational distribution (Z,A, Y ) ∼ Pobs. Let us consider the following class of
SCMs:

U ∼ N (0, 1), ϵZ ∼ N (0, 1), ϵA ∼ N (0, 1), ϵY ∼ N (0, 1), (10)
Z = αϵZ ,+κU A = βZ + δϵA + γU, Y = ζA+ ηU + θϵY , (11)

where U is an unobserved confounder between A and Y , and ϵZ , ϵA, ϵY are noise variables, and α,
β, γ, δ, ζ, η, and θ are scalars describing the functional dependences between observed and noise
variables. Our causal query is Q(Pint) = E[Y (1)] = ζ.

General approach. The class of SCMs above is compatible with the linear IV setting whenever
it holds that κ = 0 (independence assumption from Example 3). Hence, we can specify a prior
distribution over this class of SCMs by specifying a distribution Π over (α, β, γ, δ, ζ, η, θ) and setting
κ = 0. Note that this automatically specifies a distribution over Pobs (by sampling from the SCM)
and Pint (by intervening and setting A = 1 in the SCM). Interestingly, this addresses the two
drawbacks of observational priors from above as follows: (i) During the PFN training we can sample
Dn ∼ Pobs and y(1) ∼ Pint and thus fit qθ(y(1) | Dn) for the interventional outcome (see Sec. 5 for
details). For estimating the causal query we can thus use Q(qθ(y(1) | Dn)) and do not need access
to the potentially unknown Q̄. (ii) We can directly control the marginal prior distribution of ζ, thus
remedying the above drawbacks and allowing us more control to incorporate prior information of our
causal query.

Adding identifiability assumptions to the prior. A key question is whether we should actually
impose the identifiability assumption κ = 0 when constructing a prior. A different approach would
be to also put a prior on κ, thus taking account the possibility of identifiability violations in the prior.
Such an approach has been proposed by (Robertson et al., 2025), where the authors construct a prior
over many possible causal inference settings simultaneously. However, as we show in the following,
this would make consistent Bayesian estimation of the causal query of interest impossible, confirming
Theorem 4.3.

Lemma B.1. Let S∗ = (α∗, β∗, δ∗, γ∗, ζ∗, η∗, θ∗, κ∗ = 0) be an identified ground-truth SCM. Then
for any causal target ζ ̸= ζ∗ there exists another SCM S = (α, β, γ, δ, ζ, η, θ, κ) with κ ̸= 0 that
induces the same observational distribution as S∗.

Proof. See Appendix C.

Lemma B.1 has an important consequence: if our prior Π puts positive probability mass on all
possible combinations of (α, β, γ, δ, ζ, η, θ, κ), the corresponding posterior Π(· | Dn) will even for
n → ∞ put positive probability mass on any ζ ∈ R, thus being completely non-informative about
the causal target quantity. As a consequence, any Bayesian point estimator using such a prior (e.g., as
in under the approach (Robertson et al., 2025)) will be asymptotically biased.

In contrast, we present a different approach to circumvent the above problems: namely, we propose to
construct PFN-priors that incorporate assumptions that allow for identifiability of the causal target
quantity (e.g., setting κ = 0 in the above example). As such, we follow established philosophy in
causal inference that separates identifiability and estimation steps (Pearl, 2009): the identifiability
step should be established by the practitioner using domain knowledge (e.g., establishing whether a
certain variable is a valid instrument). Once identifiability has been established, we can use Bayesian
modeling and PFN-based models for the estimation step.

Which noise variables to model? A key question that remains is what classes of SCMs we can use
to specify priors for the causal inference setting C at hand. Indeed, the class of SCMs is non-unique:
as suggested in the main paper, it is not necessary to specify both noise variables ϵA and ϵY .

Lemma B.2. Let S∗ = (α∗, β∗, γ∗, δ∗, ζ∗, η∗, θ∗) be a fixed SCM from the above class with Var∗(A |
z) > 0 and Var∗(Y | a) > 0 for all z, a. Then, there exist unique SCMs S1 = (α1, β1, γ1, δ1 =
0, ζ1, η1, θ1) and S2 = (α2, β2, γ2, δ2, ζ2, η2, θ2 = 0) that induce the same observational distribution
as S∗ and thus the same causal query ζ1 = ζ2 = ζ∗. However, whenever it holds that both δ = 0
and θ = 0, there exists an SCM S∗ for which ζ ̸= ζ∗.
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Proof. See Appendix C.

Lemma B.2 implies that it suffices to specify priors over SCMs without either treatment noise ϵA or
outcome noise ϵY . However, if we remove both, there exist interventional distributions for which the
prior will never put probability mass on the ground-truth causal query, rendering Bayesian inference
inconsistent. In the following, we generalize this result to arbitrary SCMs and causal inference
settings.
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C PROOFS

C.1 PROOF OF THEOREM 4.3

Proof of Theorem 4.3. Assume that Π(S0 ∈ Z) = w0 > 0. Let
E(PZ

obs) := {S : PZ
obs = PS0

obs}
denote the observational equivalence class of Z . In other words, E(PZ

obs) contains exactly those
SCMs that give rise to the same observational distribution as the models in Z .

Choose any pair of distributions (PW
obs,PW

int) ∈ Pobs ×Pint induced by an SCM W with Π(W) > 0
and satisfying PW

obs = PZ
obs. Such an SCM W exists by definition of the equivalence class and has

positive prior mass by assumption. By identifiability of the causal inference setting C, it then holds
for any S0 ∈ Z that

Q(PW
int) = Q̄(PW

obs) = Q̄(PS0

obs) ̸= Q(PS0

int). (12)
The key point here is that identifiability fixes the target functional Q uniquely from the observational
distribution, and therefore the value obtained under W must differ from the one induced by S0

whenever the latter does not agree with the identified functional.

Now draw data Dn ∼ PW
obs. For every S ∈ E(PZ

obs), the observational likelihoods coincide for
all n because all such models produce the same observational distribution. Hence, the Bayes
factors between any two models in E(PZ

obs) are always equal to 1, regardless of the sample size.
Consequently,

Π
(
S | Dn

)
∝ Π(S) for all S ∈ E(PZ

obs), all n.
Thus, within the equivalence class, the posterior simply mirrors the prior. Outside the equivalence
class, however, the likelihood is misspecified, and therefore we know that Π(S|Dn) → 0 for
S /∈ E(PZ

obs) as n → ∞.

We now examine the posterior predictive functional. By the above concentration behavior, we have

Q

(∫
PS
int Π(S | Dn) dS

)
→

∫
E(PS0

obs)

Q(PS
int)Π(S) dS, (13)

because only models in the equivalence class retain non-vanishing posterior mass.

Within that class, a fraction w0 of the prior mass lies on Z , so we can decompose the above limit as∫
E(PS0

obs)

Q(PS
int)Π(S) dS = w0

∫
Z
Q(PS

int)Π(S) dS + (1− w0)Q
(
PW
int

)
, (14)

where the remaining mass (1− w0) is assigned to models observationally equivalent to Z but not in
Z itself. By (12), the resulting limit cannot equal Q(PW

int). Hence,∫
E(PS0

obs)

Q(PS
int)Π(S) dS ̸= Q

(
PW
int

)
,

which shows that Π is not well-specified for C.

C.2 PROOF OF LEMMA B.1 (LINEAR IV)

Proof of Lemma B.1. We prove that for any ζ ̸= ζ∗, there exists an SCM S = (α, β, γ, δ, ζ, η, θ, κ ̸=
0) that induces the same observational distribution as S∗.

Step 1: Observational distribution of S∗

The observational distribution is characterized by the covariance matrix Σ∗ of (Z∗, A∗, Y ∗):
Var(Z∗) = (α∗)2 (15)

Cov(Z∗, A∗) = (α∗)2β∗ (16)

Var(A∗) = (α∗β∗)2 + (δ∗)2 + (γ∗)2 (17)

Cov(Z∗, Y ∗) = ζ∗(α∗)2β∗ (18)

Cov(A∗, Y ∗) = ζ∗[(α∗β∗)2 + (δ∗)2 + (γ∗)2] + η∗γ∗ (19)

Var(Y ∗) = ζ∗2[(α∗β∗)2 + (δ∗)2 + (γ∗)2] + 2ζ∗η∗γ∗ + (η∗)2 + (θ∗)2 (20)
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Step 2: Construction of alternative SCM S

The covariance matrix Σ has elements:

Var(Z) = α2 + κ2 (21)

Cov(Z,A) = α2β + κ(κβ + γ) (22)

Var(A) = (αβ)2 + (κβ + γ)2 + δ2 (23)

Cov(Z, Y ) = ζ(α2β + κ(κβ + γ)) + ηκ (24)

Cov(A, Y ) = ζ[(αβ)2 + (κβ + γ)2 + δ2] + η(κβ + γ) (25)

Var(Y ) = ζ2[(αβ)2 + (κβ + γ)2 + δ2] + 2ζη(κβ + γ) + η2 + θ2 (26)

Step 3: Parameter matching

To achieve Σ = Σ∗, we need:

α2 + κ2 = (α∗)2 (27)

α2β + κ(κβ + γ) = (α∗)2β∗ (28)

(αβ)2 + (κβ + γ)2 + δ2 = (α∗β∗)2 + (δ∗)2 + (γ∗)2 (29)

ζ(α2β + κ(κβ + γ)) + ηκ = ζ∗(α∗)2β∗ (30)

ζ[(αβ)2 + (κβ + γ)2 + δ2] + η(κβ + γ) = ζ∗[(α∗β∗)2 + (δ∗)2 + (γ∗)2] + η∗γ∗

(31)

ζ2[(αβ)2 + (κβ + γ)2 + δ2] + 2ζη(κβ + γ) + η2 + θ2 = (Var(Y ∗)) (32)

Step 4: Solution construction

We choose κ ̸= 0 such that |κ| < |α∗|. We set

α =
√
(α∗)2 − κ2, (33)

β =
(α∗)2β∗

α2 + κ2
= β∗ (from (27) and (28)), (34)

δ = δ∗, (35)

κβ + γ = ±
√
(γ∗)2 − (α∗β∗)2 + (αβ)2 (from (29)). (36)

Since αβ = αβ∗ = α
α∗α

∗β∗, we have .

αβ)2 =
α2

(α∗)2
(α∗β∗)2 =

(α∗)2 − κ2

(α∗)2
(α∗β∗)2. (37)

Therefore, we have

κβ + γ = ±

√
(γ∗)2 +

κ2

(α∗)2
(α∗β∗)2. (38)

From Eq. (30) and Eq. (31), we can solve for η via

η =
ζ∗(α∗)2β∗ − ζ(α2β + κ(κβ + γ))

κ
. (39)

Finally, θ is determined from Eq. (32).

Step 5: Existence Verification

The system has 8 parameters (α, β, γ, δ, ζ, η, θ, κ) and 6 constraints (the 6 unique entries of the
covariance matrix). Since ζ ̸= ζ∗ is fixed and κ ̸= 0 is chosen, we have 6 remaining parameters
for 6 constraints. The key observation is that the introduction of confounding (κ ̸= 0) creates
additional correlation structures that can compensate for the change in the causal effect ζ, allowing
the observational distribution to remain unchanged.
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Proof of Lemma B.2. Let S = (α, β, γ, δ, ζ, η, θ) be any SCM from the linear IV class in Eq. (10).
Then, the following coefficients are identified via observational data alone:

α =
√
Var(Z), (40a)

β = E[Y | Z = 1], (40b)

ζ =
ζβ

β
=

E[ζ(β + δϵA)]− E[ζ(δϵA)]
β

=
E[Y | Z = 1]− E[Y | Z = 0]

E[A|Z = 1]− E[A|Z = 0]
(40c)

as well as the combination of coefficients

δ2 + γ2 = Var(A | Z), and η2 + θ2 = Var(Y | A) (41)

and the back-door adjustment

E[Y | A = 1]− E[Y | A = 0] = ζ + η(E[U | A = 1]− E[U | A = 0]) (42)

= ζ +
ηγ

γ2 + δ2 + (βα)2
. (43)

Note that the back-door adjustment is biased for ζ due to unobserved confounding.

Noiseless treatment case. Let now S∗ = (α∗, β∗, γ∗, δ∗, ζ∗, η∗, θ∗) denote an arbitrary fixed SCM
from the linear IV class. We start by constructing S1 = (α1, β1, γ1, δ1 = 0, ζ1, η1, θ1) such that
PS1

obs = PS∗

obs. Because of Eq. (40), we set

α1 = α∗, β1 = β∗, ζ1 = ζ∗. (44)

Furthermore, setting δ1 = 0 implies due to Eq. (41) that

γ2
1 = δ∗2 + γ∗2. (45)

Due to Eq. (42), it must holds that
η1γ1

γ2
1 + (β1α1)2

=
η∗γ∗

δ∗2 + γ∗2 + (β∗α∗)2
, (46)

which implies that

η21 =
η∗2γ∗2

δ∗2 + γ∗2
. (47)

Finally, due to Eq. (41), we yield

θ21 = η∗2 + θ∗2 − η∗2γ∗2

δ∗2 + γ∗2
, (48)

which means that every parameter of S1 has a unique solution in terms of parameters of S∗ under the
constraints of preserving the observational distribution.

Noiseless outcome case. We now construct S2 = (α2, β2, γ2, δ2, ζ2, η2, θ2 = 0) such that PS2

obs =

PS∗

obs. Again, Eq. (40) implies that

α2 = α∗, β2 = β∗, ζ2 = ζ∗, (49)

and setting θ2 = 0 implies due to Eq. (41) that

η22 = η∗2 + θ∗2. (50)

Due to Eq. (42), it must holds that ηγ
γ2+δ2+(βα)2 = ηγ

δ∗2+γ∗2+(β∗α∗)2
which implies that

γ2
2 =

η∗2γ∗2

η∗2 + θ∗2
. (51)

Finally, due to Eq. (41), we have

δ2 = η∗2 + γ∗2 − η∗2γ∗2

η∗2 + θ∗2
, (52)

which means that every parameter of S2 has a unique solution in terms of parameters of S∗ under the
constraints of preserving the observational distribution.
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D IMPLEMENTATION DETAILS

D.1 IMPLEMENTATION DETAILS OF DATA PRIOR

Data Prior. (i) For each covariate cluster Ci containing latent nodes, we sample a random MLP-style
graph over pa (Ci) by drawing biases and edge-weights from ΠCi

and then pruning edges at random
to ensure acyclicity. We evaluate this graph with tanh activations and noise (from normal, uniform,
Laplace, or logistic distribution) to produce continuous features, then apply randomized thresholds
to discretize or binarize a subset, yielding mixed-type covariates via our unstructured BNN prior.
(ii) For treatment (and outcome) clusters Cj of purely observed nodes, we instantiate a second BNN
f
(j)
θ over pa (Cj) (with θ ∼ ΠCj

and the same acyclicity constraint). We forward-propagate the
covariates through f

(j)
θ with injected noise to compute a scalar propensity score, then threshold to

assign a binary treatment. We forward-propagate both covariates and treatment to obtain potential
outcomes. The resulting treatment (and outcome) are sampled from our structured BNN prior.

We sample covariates from a DAG-structured SCM by drawing a random MLP-like directed graph and
assigning each node a bias, edge weights sampled from prior distributions. The resulting MLP-like
graph is transformed into a DAG by randomly dropping edges, and structural equations with tanh
activations and heterogeneous noise distributions (normal, uniform, Laplace, or logistic) generate
continuous features. Then we apply a randomized feature transformation that discretizes some
features and binarizes others, yielding mixed-type covariates. Next, we assign binary treatments via
a separate randomly instantiated MLP and forward-propagate each covariate with injected noise to
compute a propensity score.

Input format. CausalFM operates as an in-context learner like other foundation models, meaning
it approximates Bayesian inference by conditioning on a dataset provided in its context window.
Therefore, it requires an entire dataset to make predictions for specific query samples. (1) Input
structure: The model accepts a dataset Dn = {(xi, ai, yi)}ni=1 acting as the context (or support set)
and a query point xquery (or a batch of query points). (2) Mechanism: The transformer processes the
entire sequence of observed data Dn using self-attention to extract context-dependent representations.
It then outputs the posterior predictive distribution for the causal quantity (e.g., CATE given the
context Dn and the specific query xquery . (3) Comparison to fine-tuning baselines: In practice,
standard baselines require an explicit training phase on a training set before evaluation. In contrast,
CausalFM takes the “training” data as the input context (support set) and directly generates predictions
for the test data (query set) in a single forward pass.

D.2 IMPLEMENTATION DETAILS OF OUR METHOD

We encode observational data as tokens, and the embedded tokens are then processed through a
transformer where attention is applied between the observations. We use transformer-based PFN as
an encoder to extract a task- or context-dependent representation from input data. This representation
is then passed to a Gaussian mixture model (GMM) head, which predicts the parameters of a
GMM, including mixture weights, means, and standard deviations. The model outputs a mixture
distribution over the target variable, and is trained end-to-end using the negative log-likelihood (NLL)
of the observed targets under the predicted GMM. This enables uncertainty-aware and multi-modal
predictions while leveraging the few-shot generalization capabilities of our model.

We instantiate a per-feature transformer tailored to CATE estimation. For a mini-batch with sequence
length S = Ssupp + Squery (query set followed by support set). Confounders X ∈ RS×B×Fx ,
treatment A ∈ RS×B×Fa , and factual outcomes Y ∈ RS×B×Fy are encoded as tokens. To prevent
label leakage, we split at Ssupp = ⌊0.8S⌋ and set At = NaN and Yt = NaN for t ≥ Ssupp (on the
query set). The model thus observes (X,A, Y ) on support steps and learn to infer CATEs for the
query set from X only.

The X stream uses a feature encoder, while A and Y pass through a NaN-indicator handler followed
by feature projections. We concatenate the three streams along the token axis to obtain H0 ∈
RB×S×(Fg+2)×E , add a feature-token positional embedding, and process H0 with L transformer
encoder blocks (self-attention only). We pool over tokens to produce feature Z ∈ RB×S×E . After
lightweight MLP maps Z to a scalar, a 1D K-component GMM head outputs mixture parameters
(π, µ, σ) via π = softmax(Wπz/T ), µ = Wµz, σ = softplus(Wσz) + ε, for each z ∈ RE . Our
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training loss is the Gaussian-mixture negative log-likelihood (GMM-NLL). We thus obtain the
distribution

p(τ | x) =
K∑

k=1

πk(x)N
(
µk(x), σ

2
k(x)

)
(53)

And the CATE can be computed through

τ̂(x) = E[τ | x] =
K∑

k=1

πk(x)µk(x) (54)

We use embedding size E = 128, nheads = 4, feed-forward dimension 4E, L = 10 encoder layers,
GELU activations, and feature grouping size = 1 (per-feature tokens). For the GMM head we set
K = 5, temperature T = 1.0, and variance floor ε = 10−3. We train with Adam (learning rate 10−3,
weight decay 10−5), batch size 16, and up to 150 epochs. We use early stopping on validation loss.
Empirically, the total training time for causalFM model is about 24 hours on an NVIDIA A100 GPU.

We implement our CausalFM using PyTorch. Our model implementation builds upon the TabPFN
architecture (Hollmann et al., 2023) from https://github.com/PriorLabs/TabPFN/
tree/main.

D.3 IMPLEMENTATION DETAILS OF BASELINES

For the standard CATE setting baselines, we follow the implementation from https://github.
com/AliciaCurth/CATENets/tree/main for most of the CATE estimators, including S-
learner (Künzel et al., 2019), T-learner (Künzel et al., 2019), TARNet (Shalit et al., 2017b), X-
leaner (Künzel et al., 2019), DR-learner (Kennedy, 2023b), RA-learner (Curth & van der Schaar,
2021). For the foundation model baselines, we follow the author implementation from https:
//github.com/vdblm/CausalPFN/tree/main for CausalPFN (Balazadeh et al., 2025); we
follow the author implementation from https://github.com/jr2021/Do-PFN for DoPFN
(Robertson et al., 2025).

For the IV setting, we follow the implementation from https://github.com/
DennisFrauen/MRIV-Net/tree/main/models for the most of the IV methods, in-
cluding KIV (Singh et al., 2019), DFIV (Xu et al., 2021), DeepIV (Hartford et al., 2017), DeepGMM
(Bennett et al., 2019), DMLIV (Syrgkanis et al., 2019). For each dataset and method, we evaluated 5
repetitions, each with a different random seed. All methods used the same train-test split.
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E SYNTHETIC DATA GENERATION FOR THE STANDARD CATE ESTIMATION
SETTING

We construct the standard CATE estimation datasets by sampling covariates X , treatment A, and
continuous outcomes Y . The design induces rich nonlinearity while preserving strong ignorability
(A ⊥⊥ {Y (0), Y (1)} | X).

E.1 COVARIATES VIA A DAG-STRUCTURED SCM

We first sample a layered directed graph (an MLP-like DAG), then evaluate a structural causal model
(SCM) on its nodes and expose a random subset as observed features.

Graph. Sample number of layers LX and hidden size HX from simple discrete priors (see “Hyper-
parameters” below). Build a layered graph with HX nodes per layer and fully connect layer ℓ to ℓ+1.
Randomly drop a fraction pXdrop of inter-layer edges to sparsify while keeping acyclicity.

Node equations and noise. For each node j, sample weights {wjk}k∈pa(j), bias bj , and an
exogenous noise distribution εj ∼ Dj , where Dj is drawn from a meta-prior over {Normal, Uniform,
Laplace, Logistic} with a random scale. Nodes are evaluated in topological order:

sj =
∑

k∈pa(j)

wjk xk + bj + εj , xj = tanh(sj), (55)

with the convention
∑

k∈∅(·) = 0 for roots. Let UX = {εj} denote the collection of all node noises.

Observed features. Sample a feature index set F ⊆ V with |F| = d uniformly from all graph
nodes. A single observation X ∈ Rd is obtained by re-sampling UX , evaluating (55) over the DAG,
and reading out X = (xj)j∈F . Each sample uses independent UX .

Feature typing and transformations (Optional). Each selected feature xj is assigned a random
type from {continuous, binary, categorical}. Continuous features are kept in their raw form xj ∈
(−1, 1). Binary features are obtained by mapping xj through a logistic function and drawing a
Bernoulli sample. For categorical features, we first sample a base distribution π0 ∈ ∆K−1 over K
categories from a Dirichlet prior. To make the distribution depend on the DAG value xj , we introduce
a fixed direction vector v ∈ RK (normalized) and scale α > 0, and form

π(xj) = softmax
(
log π0 + αxj v

)
. (56)

The observed categorical feature is then sampled as Xi ∼ Categorical(π(xj)).

E.2 TREATMENT ASSIGNMENT

Given X , we compute a stochastic logit via a feed-forward network with layer-wise exogenous noise
and then sample a Bernoulli treatment A ∼ fA(X,UA).

Network. Sample depth LA≥3 and hidden width HA. Let h(0) = X ∈ Rd be the input layer. For
hidden layers ℓ = 1, . . . , LA − 1,

s(ℓ) = W (ℓ)h(ℓ−1) + b(ℓ) + ε(ℓ), h(ℓ) = tanh
(
s(ℓ)

)
, (57)

and the (scalar) output logit

sA = w⊤h(LA−1) + b + ε(LA). (58)

We define the propensity p = σ(sA) and sample

A ∼ Bernoulli(p). (59)

Let UA =
(
ε(ℓ)

LA

ℓ=1, , UB

)
collect all exogenous noises of the network and the random variable UB

used for the Bernoulli sampling.
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E.3 CONTINUOUS OUTCOME

For each unit, we compute the potential outcomes Y (0) and Y (1) using the same exogenous noise
UY .

Network. Sample depth LY ≥3 and width HY ; optionally drop a fraction pYdrop of hidden edges to
induce sparsity. For a given treatment level a ∈ {0, 1}, the input is X and A, then for hidden layers

t(ℓ)(a) = V (ℓ)h(ℓ−1)(a) + c(ℓ) + ξ(ℓ), h(ℓ)(a) = tanh
(
t(ℓ)(a)

)
, (60)

with h(0)(a) = [X, a], and the scalar output logit

Y (a) = v⊤h(LY −1)(a) + c + ξ(LY ). (61)

The factual outcome is
Y = AY (1) + (1−A)Y (0) (62)

Let UY = {ξ(ℓ)}LY

ℓ=1 denote outcome-network noises; the same UY is reused when constructing Y (0)
and Y (1) for the same unit.

E.4 INDEPENDENCE AND IDENTIFICATION

All exogenous noises are sampled independently across mechanisms and samples: UX ⊥ UA ⊥ UY

and i.i.d. across units. Hence strong ignorability holds:

A ⊥⊥ {Y (0), Y (1)} | X, 0 < Pr(A=1 | X) < 1, (63)

with overlap ensured by the sigmoid in (58) to (59).

E.5 HYPERPARAMETERS AND PRIORS (AS USED IN OUR CODE)

We use simple, reproducible priors for architecture, weights, and noises:

• Covariate DAG: LX ∼ Unif{3, 4, 5, 6}, HX ∼ Unif{15, . . . , 40}, edge-drop pXdrop=0.5.

• Treatment net: LA ∼ Unif{3, 4}, HA ∼ Unif{8, . . . , 20}.
• Outcome net: LY ∼ Unif{3, 4, 5}, HY ∼ Unif{10, . . . , 25}, edge-drop pYdrop=0.4.

• Weights/biases: i.i.d. w, b ∼ N (0, σ2
w) with task-specific σw.

• Node noises: for each node, draw a type in {Normal, Uniform, Laplace, Logistic} and
a scale from a wide range; sample fresh noises per unit and layer as in (55), (57)–(58),
(60)–(61).

• Activation: tanh for all hidden layers; output layers are linear (logits).
• Features observed: choose F uniformly at random from all DAG nodes, |F| = d.

E.6 GENERATION PIPELINE

For each dataset:

1. Sample the covariate DAG, parameters, and noises; for each unit, evaluate the DAG in
topological order to obtain X by reading nodes in F .

2. Given X , construct the treatment network with UA to get p and sample A ∼ Bernoulli(p).
3. For outcomes, sample UY once per unit and use it to compute Y (0) and Y (1) via (61).

E.7 SYNTHETIC DATASETS SIZE

We sample 10000 synthetic training datasets from data prior with different data generation mechanism.
Each training datasets contain 1024 data samples. The feature dimensions are also different across
the datasets, ranging from 10 to 100. The features are mixed data type with continuous, binary and
categorical.
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F SYNTHETIC DATA GENERATION FOR THE INSTRUMENTAL VARIABLES (IV)
SETTING

We aim at estimating CATEs from observational data under unobserved confounding using IVs.
In contrast to the standard CATE setting, where strong unconfoundedness holds, our IV datasets
intentionally violate unconfoundedness by introducing an unobserved confounder U that affects both
treatment A and outcome Y . Identification is instead driven by an instrument Z that (i) is relevant
for A, (ii) has no direct path to Y beyond A (exclusion), and (iii) is conditionally independent of U
given X .

Key differences vs. standard CATE. (i) Ignorability is broken: A ⊥̸⊥ {Y (0), Y (1)} | X due
to U → A and U → Y . (ii) We introduce an instrument Z with Z ⊥ U | X , Z ⊥̸⊥ A | X ,
and no Z → Y edge (exclusion). (iii) Outcomes are generated via an additive structural form
Y = f(X,A) + g(X,U) + εY with f and g deterministic neural networks; the same εY is reused
across Y (0) and Y (1) for a unit to ensure counterfactual consistency.

F.1 COVARIATES AND LATENT CONFOUNDERS VIA A DAG-STRUCTURED SCM

We reuse the DAG-SCM from the standard setting to produce a wide set of base variables W , then
split it into observed covariates X and unobserved confounders U . Thus we have different strength
of the unobserved confounders from weak to sufficiently strong.

Graph and node equations. Sample number of layers LX and hidden size HX , build a layered
DAG (fully connect layer ℓ to ℓ+1), and drop a fraction pXdrop of inter-layer edges to sparsify. For
each node j, sample weights {wjk}k∈pa(j), bias bj , and a node-specific exogenous noise εj ∼ Dj

(type and scale drawn once per node). Evaluate in topological order

sj =
∑

k∈pa(j)

wjk vk + bj + εj , vj = tanh(sj). (64)

Draw a feature index set for W = (vj) with |W | = dX+dmax
U , and then sample the actual confounder

dimension dU ∈ {2, . . . , 5} uniformly. Split U ∈ RdU from the first dU coordinates of W,X ∈
RdX from the next dX coordinates. Node noises {εj} are drawn independently per unit.

F.2 INSTRUMENT VARIABLE

We generate Z from X only, ensuring Z ⊥ U | X by construction and precluding any direct U → Z
path. Let ϕZ be a feed-forward network with input X and no layer-wise exogenous noise; the network
parameters are sampled once per dataset and then fixed. For a unit with covariates X ,

sZ = ϕZ(X), Z =

{
Bernoulli

(
σ(sZ)

)
, binary instrument,

sZ , continuous instrument.
(65)

We randomly choose between the binary and continuous variants when creating datasets. Relevance
is induced via the Z → A path in the treatment mechanism below.

Note that the instrument variable Z has a direct influence on the treatment A, but does not have a
direct effect on the outcome Y .

F.3 TREATMENT VARIABLE

Given (X,Z,U), treatment is generated via a deterministic network ϕA followed by a Bernoulli draw.
There is no layer-wise noise inside ϕA; the only randomness is the terminal Bernoulli. For a unit,

sA = ϕA

(
[X;Z;U ]

)
, p = σ(sA), A ∼ Bernoulli(p). (66)

This introduces U → A and hence breaks ignorability, while maintaining Z ⊥ U | X and Z → A
relevance.
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F.4 OUTCOME VARIABLES

The instrument variable Z has no direct effect on the outcomes. Outcomes are generated additively
from a treatment channel f and a confounding channel g, both deterministic MLPs with inputs [X;A]
and [X;U ], respectively. Let εY ∼ N (0, σ2

Y ) be an i.i.d. scalar noise drawn once per unit,

Y (a) = f
(
X, a

)
+ g(X,U) + εY , a ∈ {0, 1}, (67)

Y = AY (1) + (1−A)Y (0). (68)
By construction there is no Z → Y edge (exclusion), since Z influences Y only through A.

F.5 INDEPENDENCE AND IDENTIFICATION (IV)

All exogenous noises are sampled independently across units and mechanisms. The IV conditions
hold by construction,

(Independence) Z ⊥ U | X, (69)
(Exclusion) Y (a) depends on X, a, U and εY only (no Z), (70)
(Relevance) Z ⊥̸⊥ A | X. (71)

F.6 HYPERPARAMETERS AND PRIORS

We use simple priors mirroring our implementation:

• DAG-SCM for (X,U): LX ∼ Unif{2, 3, 4, 5}, HX ∼ Unif{10, . . . , 50}, edge-drop
pXdrop=0.4; node noises εj draw a type in {Normal, Uniform, Laplace, Logistic} with
random scale.

• Instrument net ϕZ: depth LZ ≥ 3, width HZ ∼ Unif{8, . . . , 30}; output is either
Bernoulli with σ(sZ) (binary Z) or real-valued sZ (continuous Z); no layer-wise noise.

• Treatment net ϕA: depth LA ≥ 3, width HA ∼ Unif{8, . . . , 30}; no layer-wise noise;
A ∼ Bernoulli(σ(sA)).

• Outcome nets f, g: depths Lf , Lg ∼ Unif{3, . . . , 6}, widths Hf , Hg ∼
Unif{10, . . . , 25}; εY ∼ N (0, σ2

Y ) with σY = 0.5 by default.
• Weights/biases: i.i.d. w, b ∼ N (0, 1) sampled once per dataset; tanh activations.
• Strength: dU ∼ Unif{2, . . . , 5}.

F.7 GENERATION PIPELINE (IV)

For each dataset, we execute:

1. Sample the covariate DAG and parameters; for each unit, evaluate (64) to obtain a wide
matrix then split it into (U,X).

2. Given X , compute the instrument Z via (65) (binary or continuous and mixed).
3. Given (X,Z,U), compute the treatment propensity p = σ(sA) via (66) and sample A ∼

Bernoulli(p).
4. Draw a single εY per unit and compute Y (0), Y (1) using (67); set the factual outcome

by (68).

This yields datasets matching the classical IV graph and enabling evaluation of IV estimators.
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G SYNTHETIC DATA GENERATION FOR THE FRONT-DOOR–ADJUSTED SETTING

G.1 FRONT-DOOR ADJUSTMENT DATASETS

We next construct datasets satisfying the front-door criterion. Besides covariates X , treatment A,
and continuous outcomes Y , we introduce a mediator M . The design ensures that A affects Y only
through M (no direct A→Y path), U (unobserved) confounds A and Y but does not affect M .

Covariates via a DAG-structured SCM. Identical to the standard setting: we sample a layered
DAG, draw node-wise weights/biases/noise, evaluate in topological order as in (55), and expose d
node values as observed features X ∈ Rd. Independent exogenous noises UX={εj} are re-sampled
per unit.

Latent confounders. From the same SCM evaluation we also retain q additional node values as
unobserved confounders U ∈ Rq (not revealed to learners). These induce confounding between A
and Y .

G.1.1 TREATMENT ASSIGNMENT WITH LATENT CONFOUNDING

Given (X,U), we sample a feed-forward network and generate treatment. Let LA≥3 and HA be the
depth and width, respectively. With h(0) = [X,U ],

s
(ℓ)
A = W

(ℓ)
A h(ℓ−1) + b

(ℓ)
A , h(ℓ) = tanh

(
s
(ℓ)
A

)
, ℓ = 1, . . . , LA − 1, (72)

and scalar logit

s̃A = w⊤
Ah

(LA−1) + bA, p = σ(s̃A), A ∼ Bernoulli(p). (73)

G.1.2 MEDIATOR MECHANISM

The mediator is generated from (X,A) only, thereby enforcing the front-door exclusion U ↛ M .
Let LM ≥3, HM be depth and width, with input g(0) = [X,A],

r(ℓ) = W
(ℓ)
M g(ℓ−1) + b

(ℓ)
M + ε

(ℓ)
M , g(ℓ) = tanh

(
r(ℓ)

)
, ℓ = 1, . . . , LM − 1, (74)

and scalar output

M = w⊤
Mg(LM−1) + bM + ε

(LM )
M . (75)

We denote UM = {ε(ℓ)M }LM

ℓ=1.

G.1.3 OUTCOME VARIABLE

Outcomes are constructed to satisfy A → M → Y as the only causal path from A to Y , while
allowing U → Y and X → Y . We decompose Y into an M -path component and a confounding
component:

Mediator path: r
(ℓ)
Y = V (ℓ)[h(ℓ−1)] + c(ℓ) + ξ(ℓ), h(0) = [X,M ], h(ℓ) = tanh(r

(ℓ)
Y ),

R(X,M) = v⊤h(LY −1) + c + ξ(LY ), (76)

Confounding path: G(X,U) = ṽ⊤h̃(LG−1) + c̃ + ξ̃(LG), h̃(0) = [X,U ], h̃(ℓ) = tanh(·),
(77)

and define the potential outcomes

Y (a) = R
(
X, M(a)

)
+ G(X,U) + ϵY , M(a) computed from (74)–(75) with A=a. (78)

The factual outcome is Y = AY (1)+(1−A)Y (0). By construction there is no direct A→Y edge;
A influences Y solely via M .
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G.1.4 HYPERPARAMETERS AND PRIORS

• Covariate DAG: LX ∼ Unif{3, 4, 5, 6}, HX ∼ Unif{15, . . . , 40}, edge-drop pXdrop=0.5;
node noises drawn per-node from {Normal, Uniform, Laplace, Logistic} with random scale.

• Treatment net (Eq. (72)–(73)): LA ∼ Unif{3, 4}, HA ∼ Unif{8, . . . , 20}.
• Mediator net (Eq. (74)–(75)): LM ∼ Unif{3, 4}, HM ∼ Unif{8, . . . , 20}.
• Outcome nets (Eq. (76)–(78)): LY , LG ∼ Unif{3, 4, 5}, widths ∼ Unif{10, . . . , 25};

additive Gaussian ϵY with task-specific scale.
• Weights/biases: i.i.d. N (0, σ2

w); tanh nonlinearity.

G.1.5 GENERATION PIPELINE

For each dataset:

1. Sample the covariate DAG and evaluate to obtain (X,U) (observed X , hidden U ).
2. Compute p(A=1 | X,U) via (72)–(73) and sample A.
3. Evaluate the mediator M from (X,A) using (74)–(75).
4. Sample UY once per unit and compute Y (0) and Y (1) via (78) by first obtaining M(0) and

M(1) from the mediator net; set Y = AY (1)+(1−A)Y (0).
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H ADDITIONAL EXPERIMENTS

H.1 EVALUATION IN THE FRONT-DOOR ADJUSTMENT SETTING

H.1.1 BASELINES FOR FRONT-DOOR ADJUSTMENT SETTING

In contrast to the standard CATE or IV settings, there are few established baselines for the front-
door case. Identification in this setting is enabled through Pearl’s front-door formula (Pearl, 2009).
The natural baseline is therefore the plug-in front-door learner, which estimates the necessary
nuisance components, i.e., P (M | A,X), P (A | X), and E[Y | M,X] and substitutes them into
the identification formula to recover causal quantities. To assess the role of model flexibility in
estimating these nuisance functions, we implement the plug-in learner with different regression
methods, including linear regression, Random Forests, and neural networks.

H.1.2 RESULTS FOR FRONT-DOOR ADJUSTMENT SETTING

Table 4 reports the averaged PEHE across datasets. We observe that CausalFM achieves competitive
CATE estimation. Importantly, these results hold without requiring model retraining for our model,
demonstrating the adaptability of our approach to the front-door setting.

H.2 ADDITIONAL RESULTS ON THE STANDARD CATE ESTIMATION

We report the detailed standard CATE estimation on 10 synthetic datasets in Table 8. We show our
method gives the best estimation on most of the datasets.

Table 8: Standard CATE estimation on 10 synthetic datasets.

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

BASELINES (A): STANDARD CATE ESTIMATORS

S-learner (Künzel et al., 2019) 0.725 0.583 0.752 0.829 0.614 0.892 0.858 0.421 0.680 0.985
T-learner (Künzel et al., 2019) 0.652 0.496 0.666 0.746 0.552 0.849 0.761 0.357 0.608 0.931
TARNet (Shalit et al., 2017b) 0.769 0.779 0.817 0.984 0.640 0.938 1.405 0.505 0.736 0.968
RA-learner (Curth & van der Schaar, 2021) 0.620 0.421 0.644 0.706 0.523 0.808 0.646 0.353 0.613 0.759
X-learner (Künzel et al., 2019) 0.574 0.400 0.614 0.634 0.381 0.713 0.686 0.302 0.549 0.779
DR-learner (Kennedy, 2023b) 0.783 0.533 0.767 0.947 0.867 0.882 0.791 0.4230 0.653 0.998

BASELINES (B): FOUNDATION MODELS-BASED METHODS

CausalPFN (Balazadeh et al., 2025) 0.493 0.489 0.585 0.743 0.413 0.615 0.950 0.288 0.453 0.544
DoPFN (Robertson et al., 2025) 0.417 0.313 0.228 0.679 0.591 0.475 0.497 0.551 0.610 0.827

CausalFM (ours) 0.454 0.487 0.515 0.677 0.204 0.618 0.950 0.278 0.442 0.532
Reported: PEHE (Lower = better, best in bold).

H.3 RESULTS ON OTHER DATASETS

Table 9: Standard CATE estimation on ACIC2016
datasets. Reported: PEHE (mean ± std.)

Method PEHE

BASELINES (A): STANDARD CATE ESTIMATORS

S-learner (Künzel et al., 2019) 1.191 ± 0.15

T-learner (Künzel et al., 2019) 1.143 ± 0.14

TARNet (Shalit et al., 2017b) 0.934 ± 0.15

RA-learner (Curth & van der Schaar, 2021) 0.762 ± 0.14

X-learner (Künzel et al., 2019) 0.519 ± 0.16

DR-learner (Kennedy, 2023b) 1.485 ± 0.18

BASELINES (B): FOUNDATION MODELS-BASED METHODS

CausalPFN (Balazadeh et al., 2025) 0.239 ± 0.11

DoPFN (Robertson et al., 2025) 0.857 ± 0.36

CausalFM (ours) 0.638 ± 0.32

Lower = better (best in bold)

In the following, we present detailed results
of the experiments with ACIC 2016 datasets.
We follow CausalPFN Balazadeh et al. (2025)
obtaining data from https://github.
com/BiomedSciAI/causallib/tree/
master/causallib/datasets/data/
acic_challenge_2016 to evaluate on 10
different datasets with various data generation
mechanism. The treatment and outcome were
simulated from real-world data corresponding
to 4802 individuals and 58 covariates. Table 9
shows the results of the CATE estimation.
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H.4 ADDITIONAL RESULTS FOR THE IV SETTING

Table 10: IV setting for CATE estimation with binary instrument variable reported with PEHE.
Results for benchmarking model performance across 10 different datasets under various confounding
strength.

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

BASELINES (A): STANDARD CATE ESTIMATORS

TARNet (Shalit et al., 2017b) 0.789 0.790 0.799 0.789 0.831 0.673 0.582 0.978 0.735 0.642
DR-learner (Kennedy, 2023b) 1.517 1.071 1.022 0.901 0.754 0.676 0.646 1.009 0.664 0.781

BASELINES (B): STANDARD IV ESTIMATORS

KIV (Singh et al., 2019) 0.660 0.344 0.340 0.394 0.544 0.460 0.299 0.731 0.532 0.241
DFIV (Xu et al., 2021) 0.654 0.245 1.022 0.459 1.145 0.770 0.741 0.366 0.971 0.717
DeepIV (Hartford et al., 2017) 0.614 0.300 0.310 0.372 0.514 0.404 0.309 0.706 0.510 0.235
DeepGMM (Bennett et al., 2019) 0.704 0.403 0.440 0.599 0.569 0.486 0.292 0.737 0.566 0.232
DMLIV (Syrgkanis et al., 2019) 0.712 0.379 0.361 0.433 0.548 0.450 0.293 0.722 0.549 0.344
DRIV (Syrgkanis et al., 2019) 0.869 0.470 0.353 0.368 0.565 0.448 0.272 0.715 0.587 0.667
MRIV (Frauen & Feuerriegel, 2022) 0.759 0.632 0.698 1.011 0.348 0.860 0.929 0.707 0.562 0.380

BASELINES (C): FOUNDATION MODEL-BASED

DoPFN (Robertson et al., 2025) 0.776 0.265 0.370 0.382 0.552 0.819 0.499 0.794 0.534 0.242

CausalFM (ours) 0.586 0.224 0.374 0.310 0.543 0.464 0.250 0.701 0.553 0.217
Reported: PEHE (mean ± standard deviation.) Lower = better (best in bold).

Table 11: IV setting for CATE estimation with continuous instrument variable reported with PEHE.
Results for benchmarking model performance across 10 different datasets under various confounding
strength.

Method D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

BASELINES (A): STANDARD CATE ESTIMATORS

TARNet (Shalit et al., 2017b) 0.943 0.825 1.025 0.458 1.007 1.316 0.848 1.004 0.825 0.884
DR-learner (Kennedy, 2023b) 1.038 1.055 0.946 0.533 0.955 1.071 1.109 1.502 1.258 0.888

BASELINES (B): STANDARD IV ESTIMATORS

KIV (Singh et al., 2019) 0.509 0.567 0.699 0.178 0.533 0.948 0.420 0.811 0.602 0.506
DFIV (Xu et al., 2021) 0.526 0.574 0.691 0.171 0.532 0.991 0.428 0.800 0.609 0.506
DeepIV (Hartford et al., 2017) 0.484 0.539 0.664 0.169 0.506 0.901 0.399 0.770 0.572 0.481
DeepGMM (Bennett et al., 2019) 0.543 0.581 0.682 0.165 0.532 1.035 0.437 0.789 0.615 0.505
DMLIV (Syrgkanis et al., 2019) 0.518 0.642 0.701 0.181 0.600 1.009 0.574 0.813 0.611 0.537
DRIV (Syrgkanis et al., 2019) 0.633 0.705 0.870 0.279 0.663 0.873 0.523 1.009 0.749 0.630
MRIV (Frauen & Feuerriegel, 2022) 0.579 0.631 0.760 0.189 0.586 1.091 0.471 0.880 0.669 0.556

BASELINES (C): FOUNDATION MODEL-BASED

DoPFN (Robertson et al., 2025) 0.471 0.528 0.787 0.322 0.649 1.723 0.416 0.588 0.722 0.545

CausalFM (ours) 0.515 0.600 0.704 0.152 0.538 0.934 0.414 0.826 0.600 0.509
Reported: PEHE (mean ± standard deviation.) Lower = better (best in bold).

H.5 CHOICE OF PRIOR
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Figure 2: Robustness of our model to
difference choices of the prior.

We also analyze the robustness of our model to different
choices of the prior. In particular, we vary the strength of
unobserved confounding in the data-generating process,
controlled by a parameter α ∈ [0, 1]. The results in Fig. 2
show that our model remains robust as α increases. This
again confirms the strong performance of CausalFM.
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