

000 FOUNDATION MODELS FOR CAUSAL INFERENCE VIA 001 PRIOR-DATA FITTED NETWORKS 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Prior-data fitted networks (PFNs) have recently been proposed as a promising way
007 to train tabular foundation models. PFNs are transformers that are pre-trained
008 on synthetic data generated from a prespecified prior distribution and that enable
009 Bayesian inference through in-context learning. In this paper, we introduce
010 *CausalFM*, a comprehensive framework for training PFN-based foundation models
011 in various causal inference settings. First, we formalize the construction of
012 Bayesian priors for causal inference based on structural causal models (SCMs) in a
013 principled way and derive necessary criteria for the validity of such priors. Building
014 on this, we propose a novel family of prior distributions using causality-inspired
015 Bayesian neural networks that enable CausalFM to perform Bayesian causal in-
016 ference in various settings, including for back-door, front-door, and instrumental
017 variable adjustment. Finally, we instantiate CausalFM and explicitly train models
018 to perform in-context learning in these settings. We show that CausalFM achieves
019 competitive in-context learning performance even when compared to baselines that
020 are specifically trained for the task at hand. In sum, our framework can be used as
021 a general recipe to train foundation models for various causal inference settings. In
022 contrast to the current state-of-the-art in causal inference, CausalFM offers a novel
023 paradigm with the potential to fundamentally change how practitioners perform
024 causal inference in medicine, economics, and other disciplines.

025 1 INTRODUCTION

026 Causal inference is a cornerstone of empirical research in disciplines such as economics (Angrist,
027 1990; Imbens & Angrist, 1994), medicine (Feuerriegel et al., 2024; Weberpals et al., 2025), and mar-
028 keting (Varian, 2016). It enables the estimation of causal effects from observational and randomized
029 data, which is essential for reliable decision-making (Kern et al., 2025). In personalized medicine,
030 for instance, it supports identifying the most effective treatment by predicting patient outcomes under
031 different therapeutic options.

032 In recent years, machine learning, and especially deep learning methods, have gained significant
033 traction in causal inference (Curth & van der Schaar, 2021; Ma et al., 2025; 2024; Melnychuk et al.,
034 2022; Schweisthal et al., 2023; Shalit et al., 2017a; Shi et al., 2019)). These methods offer several
035 advantages for causal effect estimation in practice, including the ability to handle large-scale and
036 high-dimensional datasets with complex confounding structures and to model heterogeneity of causal
037 effects (Feuerriegel et al., 2025). However, most existing approaches require retraining a model for
038 each new dataset. To this end, existing approaches lack the flexibility to perform inference for new
039 datasets without additional retraining, which limits their practicality in real-world settings.

040 Meanwhile, foundation models have emerged as a transformative paradigm in machine learning
041 (Devlin, 2018; Lahat et al., 2024; Touvron et al., 2023b;a), which offer a key advantage in that they
042 allow for flexible, test-time inference without retraining. These models are pre-trained on large
043 datasets and can generalize across tasks and domains. Examples include large language models
044 (LLMs) in natural language processing and vision transformers in computer vision. However, this
045 paradigm shift toward test-time inference has not yet had a comparable impact on causal inference.
046 Most current approaches in causal machine learning still rely on specialized models tailored to
047 specific tasks, requiring practitioners to manually select, train, and validate appropriate estimation
048 methods for each new dataset.

In this paper, we propose a change to the paradigm for causal inference based on the idea of foundation models trained for tabular causal inference. For this, we build on the recently proposed prior-data fitted networks (PFNs) (Müller et al., 2022; Hollmann et al., 2023), which are transformers pre-trained on purely synthetic datasets generated from a prespecified prior distribution. PFNs enable Bayesian inference purely through in-context learning, allowing for flexible and efficient predictions without requiring additional training for new tasks (Nagler, 2023). While recent works have demonstrated the effectiveness of tabular foundation models based on PFNs for various tasks, only two concurrent works have proposed PFNs tailored for causal inference (Balazadeh et al., 2025; Robertson et al., 2025). However, these are either restricted to specific causal inference settings (namely, **only** back-door adjustment) or do **not** offer identifiability guarantees.

We introduce CausalFM, a comprehensive framework for training PFN-based foundation models for various causal inference settings. For this purpose, we introduce CausalFM priors: a novel family of prior distributions based on structural causal models respecting the underlying causal inference problem at hand. We first formalize and derive necessary criteria on how to construct such SCM-based priors for causal inference in principle. Then, we propose a concrete instantiation using Bayesian neural networks and provide a learning algorithm that leverages the SCM’s ability to simulate interventional data to perform Bayesian inference in various causal inference settings.

Compared to classical causal inference methods, models trained based on our CausalFM offer the following advantages: (i) There is **no** need for additional training for new datasets as our CausalFM performs inference *entirely through in-context learning*, enabling fast and flexible deployment across new datasets. (ii) The Bayesian nature of our CausalFM provides *principled uncertainty quantification*, which is critical for downstream decision-making and for detecting situations with poor treatment overlap. (iii) The model *automatically* learns to “select” an identifiability formula based on the data distribution and task at hand. (iv) Our CausalFM builds upon rigorous identifiability guarantees to ensure valid causal inference.

Our **contributions**¹ are: (1) We formalize the constructions of priors based on structural causal models (SCMs) for Bayesian causal inference and derive necessary conditions for their validity. (2) We propose an explicit *CausalFM* prior based on Bayesian neural networks that are compatible with the structure of the causal inference problem at hand. We also propose a learning algorithm to train PFNs for causal inference problems that leverages our CausalFM prior to simulate counterfactuals to mitigate the fundamental problem of causal inference. (3) We propose concrete instantiations of our framework by training PFNs for estimating conditional average treatment effects (CATEs) in different causal inference settings. We show empirically that CausalFM performs competitively and outperforms current state-of-the-art CATE estimators on a variety of benchmarks.

2 RELATED WORK

We provide an overview of related literature streams. Additional related work is in Appendix A.

Amortized causal inference. Several recent papers pre-train large neural networks on synthetic data so that they can solve causal tasks via in-context learning. Examples include causal discovery (Mahajan et al., 2025), ATE estimation under unconfoundedness (Zhang et al., 2024), zero-shot- and few-shot learning (Nilforoshan et al., 2023; Iwata & Chikahara, 2023), and reinforcement-learning (Lee et al., 2023). These methods validate the feasibility of treating causal inference as an in-context learning problem but remain restricted to specific causal inference settings, which typically do **not** allow accommodating unobserved confounding.

Black-box causal inference (BBCI) (Bynum et al., 2025) proposes synthetically-pretrained models to perform causal inference in a variety of settings. However, their approach is different: (i) BBCI does *not* build upon a Bayesian framework. In contrast, building upon PFNs allows us to perform approximate Bayesian causal inference and thus provide rigorous uncertainty quantification. (ii) The proposed data-generating processes in BBCI are *not* tailored for high-dimensional causal inference settings (as the authors mention in their Sec. 7). In contrast, our CausalFM prior leverages Bayesian neural networks inspired by TabPFN (Hollmann et al., 2023) to create SCM-based prior distributions. (iii) Beyond proposing a new method, we provide novel formalizations and theoretical results of constructing valid SCM-based priors for Bayesian causal inference.

¹Code is available at https://anonymous.4open.science/r/causal_foundation_model.

108 **PFNs for causal inference:** We are aware of only
 109 two concurrent works that propose PFN-based mod-
 110 els for causal inference, but each with clear limi-
 111 tations (see Figure 1): (i) (Balazadeh et al., 2025)
 112 proposes a PFN similar to ours, but it is restricted to
 113 **only** back-door adjustment, i.e., imposes the uncon-
 114 foundedness assumption throughout their paper. In
 115 contrast, we propose a framework for constructing PFN-based foundation models for a *large* class of
 116 causal inference problems, *including both front-door adjustment and instrumental variable settings*
 117 *with unobserved confounding*. (ii) Robertson et al. (2025) proposes to train a *single* PFN on various
 118 different causal inference settings *without* providing identifiability assumptions to the model. We will
 119 show later that the approach of Robertson et al. (2025) has a crucial drawback: because the causal
 120 quantity of interest is **not** identified, the PFN learns a posterior that *may never concentrate around*
 121 *the true causal quantity, thus leading to asymptotically non-informative estimators*. In contrast, we
 122 propose to infuse our PFNs with identifiability assumptions required for informative causal inference.
 123 As such, we follow established philosophy in causal inference that separates identifiability and
 124 estimation steps (Kern et al., 2025; Pearl, 2009): the identifiability step should be established by
 125 the practitioner using domain knowledge (e.g., establishing whether a certain variable is a valid
 126 instrument), while the estimation step can be treated as a purely statistical learning problem.

3 PROBLEM SETUP

3.1 BACKGROUND ON PFNS

131 In tabular prediction problems, one considers a population $(X, Y) \sim \mathbb{P} \in \mathcal{P}$. Given a finite sample
 132 $\mathcal{D}_n \sim \mathbb{P}$ of size n , the goal is to estimate the conditional distribution $\mathbb{P}(Y = y | X = x)$. PFNs
 133 formulate this task in a Bayesian non-parametric way by placing a prior distribution Π on \mathcal{P} , i.e.,
 134 *a prior over data-generating distributions* (Müller et al., 2022; Nagler, 2023). Sampling proceeds
 135 hierarchically via $\mathbb{P} \sim \Pi$ and i.i.d. data $(X_i, Y_i) \sim \mathbb{P}$. Then, Bayes’ rule yields the posterior
 136 distribution $\Pi(\mathbb{P} | \mathcal{D}_n) \propto \Pi(\mathcal{D}_n | \mathbb{P}) \Pi(\mathbb{P})$, where $\Pi(\mathcal{D}_n | \mathbb{P})$ is the likelihood of the sample
 137 \mathcal{D}_n under \mathbb{P} and \propto denotes proportionality up to a multiplicative constant. The corresponding
 138 *posterior-predictive distribution* is the probability of Y given test point x and observed data \mathcal{D}_n , i.e.,

$$\Pi(Y | \mathcal{D}_n, x) = \int \mathbb{P}(Y | X = x) \Pi(\mathbb{P} | \mathcal{D}_n) d\mathbb{P}. \quad (1)$$

141 PFNs are neural networks $q_\theta(Y | \mathcal{D}_n, x)$ that parameterize the family of predictive posterior distri-
 142 butions with trainable parameters θ . That is, PFNs map the entire dataset \mathcal{D}_n and a query x to a
 143 distribution over \mathcal{Y} . In terms of architecture, PFNs are permutation-equivariant transformers (Ashish
 144 Vaswani et al., 2017) as they allow for scalable training and leverage the attention mechanism to
 145 effectively extract information from \mathcal{D}_n . PFNs are trained by minimizing the negative log-likelihood
 146 loss $\mathcal{L}(\theta) = \mathbb{E}_{N \sim \Pi_N} [\mathbb{E}_{\mathbb{P} \sim \Pi} [-\log q_\theta(Y | X, \mathcal{D}_N)]]$, where Π_N is a prior on the sample sizes. In
 147 practice, we sample a sample size $N_j \sim \Pi_N$, a probability distribution $\mathbb{P}_j \sim \Pi$, a dataset $\mathcal{D}_{N_j}^j \sim \mathbb{P}_j$,
 148 and test points $(x_j, y_j) \sim \mathbb{P}_j$ and then approximate the PFN loss via

$$\hat{\mathcal{L}}(\theta) = \sum_j [-\log q_\theta(y_j | \mathcal{D}_{N_j}^j, x_j)], \quad (2)$$

152 which is consistent for the exact posterior-predictive under regularity conditions (Nagler, 2023). Note
 153 that *all* training data are synthetic, i.e., sampled from the prior Π . Furthermore, the trained PFN can
 154 be deployed on arbitrary real datasets *without* further training.

3.2 TASK: CAUSAL INFERENCE

157 In this paper, we aim to extend PFNs to causal inference. Here, the main challenge is that the object of
 158 interest is an *interventional*² distribution \mathbb{P}_{int} , yet we only observe data $\mathcal{D}_n \sim \mathbb{P}_{\text{obs}}$ from a potentially
 159 different *observational* distribution (Pearl, 2009).

161 ²Causal literature often distinguishes between interventional and counterfactual distributions. This is not
 162 relevant for the methods of our paper, and we thus use interventional distribution as an umbrella term.

Table 1: Overview of identifiability of PFN-based frameworks for causal inference.

Framework	Backdoor	Frontdoor	IV
CausalPFN Balazadeh et al. (2025)	✓	✗	✗
Do-PFN Robertson et al. (2025)	✓	✗	✗
Ours (CausalFM)	✓	✓	✓

162 **Motivation.** As an illustrative example, we consider a standard causal inference setting, called
 163 *backdoor adjustment*, where the data comprise $(X, A, Y) \sim \mathbb{P}_{\text{obs}}$, where X are patient covariates,
 164 A is a treatment, and Y is an outcome of interest (van der Laan & Rubin, 2006). For example, in
 165 medicine, X may contain treatment history or demographic attributes, A may be a medical treatment,
 166 and Y a health outcome. Following the potential outcome framework (Rubin, 1974), let $Y(a)$ denote
 167 the outcome that would be realized under the treatment $A = a$. The interventional distribution is
 168 thus over $(X, A, Y(1) - Y(0)) \sim \mathbb{P}_{\text{int}}$, and a common target functional is the *conditional average
 169 treatment effect (CATE)* $Q(x) = \mathbb{E}[Y(1) - Y(0) | X = x]$ (Wager & Athey, 2018). The CATE
 170 quantifies the expected benefit of providing treatment given the patient's covariates.

171 **Identifiability.** To estimate CATE from observational data, we need to impose *identifiability assumptions*,
 172 which link the observational and the interventional distributions and allow us to express
 173 Q as a functional of the observational distribution (Rosenbaum & Rubin, 1983). These are (i) consistency:
 174 $Y(A) = Y$, (ii) positivity: $\mathbb{P}_{\text{obs}}(A = 1 | X = x) > 0$, and (iii) Unconfoundedness:
 175 $Y(1), Y(0) \perp\!\!\!\perp A | X$ in \mathbb{P}_{int} .

176 **Generalized causal inference setting.** In the following, we provide a generalized definition of a
 177 causal inference setting, that allows us to reason about arbitrary causal inference settings and provide
 178 generalized statements beyond the standard example above.

179 **Definition 3.1.** We define a *causal inference setting* is a tuple $\mathcal{C} = (O, \mathcal{P}_{\text{obs}} \times \mathcal{P}_{\text{int}}, Q)$, where
 180 O collects the observed variables (and contains at least A and Y); $(\mathbb{P}_{\text{obs}}, \mathbb{P}_{\text{int}}) \in \mathcal{P}_{\text{obs}} \times \mathcal{P}_{\text{int}}$ are
 181 paired observational/interventional distributions over O that correspond to an intervention on A ; and
 182 $Q(\mathbb{P}_{\text{int}})$ is a causal query that is *identifiable*, i.e. there exists a measurable functional \bar{Q} such that
 183 $Q(\mathbb{P}_{\text{int}}) = \bar{Q}(\mathbb{P}_{\text{obs}})$ for all $\mathbb{P}_{\text{obs}}, \mathbb{P}_{\text{int}} \in \mathcal{P}_{\text{obs}} \times \mathcal{P}_{\text{int}}$.

185 3.2.1 RUNNING EXAMPLES

186 **■ Example 1 (back-door adjustment).** Here, we continue the example from above and define
 187 $O = (X, A, Y) \sim \mathbb{P}_{\text{obs}}$ with binary A as above. $\mathcal{P}_{\text{obs}} \times \mathcal{P}_{\text{int}}$ contains all observational and
 188 interventional distributions that satisfy consistency, positivity, and unconfoundedness. The causal
 189 query is the CATE $Q(\mathbb{P}_{\text{int}})(x) = \mathbb{E}[Y(1) - Y(0) | X = x]$, which is identified as

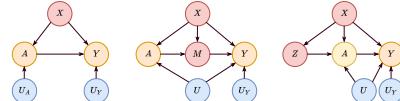
$$190 \bar{Q}(\mathbb{P}_{\text{obs}})(x) = \mathbb{E}_{\mathbb{P}_{\text{obs}}}[Y | A = 1, X = x] - \mathbb{E}_{\mathbb{P}_{\text{obs}}}[Y | A = 0, X = x]. \quad (3)$$

192 **■ Example 2 (front-door adjustment).** Let $O = (X, A, M, Y) \sim \mathbb{P}_{\text{obs}}$, where X , A , and Y are defined
 193 as above and M is a mediator between A and Y . Interventional distributions are defined using potential outcomes,
 194 i.e., $(X, A, M(1), M(0), Y(1, M(1)), Y(0, M(0))) \sim \mathbb{P}_{\text{int}}$, and the causal query of interest again the CATE
 195 $Q(\mathbb{P}_{\text{int}})(x) = \mathbb{E}_{\mathbb{P}_{\text{int}}}[Y(1, M(1)) - Y(0, M(0)) | X = x]$.

200 **Identifiability assumptions.** We restrict to pairs $(\mathbb{P}_{\text{obs}}, \mathbb{P}_{\text{int}})$ that satisfy (i) consistency: $Y = Y(A, M)$ and $M = M(A)$; (ii) positivity: $\mathbb{P}_{\text{obs}}(A = a | X = x) > 0$ and $\mathbb{P}_{\text{obs}}(M = m | A = a, X = x) > 0$; and (iii) front-door criterion $M(a) \perp\!\!\!\perp A | X = x$, and $Y(a', m) \perp\!\!\!\perp M | A = a', X = x$. Under these assumptions, the CATE is identified and Q is given via the conditional version of Pearl's front-door adjustment formula (Pearl, 2009).

206 **■ Example 3 (Instrumental variables).** Let $O = (X, Z, A, Y) \sim \mathbb{P}_{\text{obs}}$, where Z is an instrumental
 207 variable that causes the treatment A but does not directly cause the outcome Y . The interventional
 208 distribution is defined on $(X, Z, A, Y(1), Y(0)) \sim \mathbb{P}_{\text{int}}$ for a fixed treatment intervention $A = a$.
 209 We are again interested in the CATE $Q(\mathbb{P}_{\text{int}})(x) = \mathbb{E}[Y(1) - Y(0) | X = x]$.

210 **Identifiability assumptions.** We restrict to pairs $(\mathbb{P}_{\text{obs}}, \mathbb{P}_{\text{int}})$ that satisfy the following conditions
 211 (Newey & Powell, 2003): (i): Additive structural equation: $Y = f(X, A) + g(X, U)$, with (unknown)
 212 functions f and g and unobserved confounder U , implying that Y does not directly depend on Z ;
 213 (ii) Independence: $U \perp\!\!\!\perp Z | X$; (iii) Relevance: $\mathbb{P}_{\text{obs}}(A | X = x, Z = z) > 0$ is non-constant in z ;
 214 and (iv) Completeness: For every measurable g , if $\mathbb{E}_{\mathbb{P}_{\text{obs}}}[f(x, A) | X = x, Z = z] = 0$ for all z , then
 215 $f(x, A) = 0$ almost surely in \mathbb{P}_{obs} . Then, the CATE can be shown to be identified via an integral
 216 equation (Newey & Powell, 2003; Hartford et al., 2017).



196 **Figure 1: C-DAGs compatible with
 197 the three example causal inference settings.** Yellow variables are observed,
 198 blue variables are unobserved, and red variables are clusters of variables.

216 **Research question:** PFNs have shown to be an effective way to construct tabular foundation models.
 217 However, a causal inference setting \mathcal{C} comes with additional challenges, such as the distinction
 218 between observational and interventional distribution as well as identifiability assumptions.
 219

220 **Research question**

221 How can we train PFNs for a causal inference setting \mathcal{C} that provides a Bayesian estimator of
 222 $Q(\mathbb{P}_{\text{int}})$ given an observational dataset $\mathcal{D}_n \sim \mathbb{P}_{\text{obs}}$ and some context (e.g., values x or a)?
 223

224 In the following, we introduce CausalFM consisting of (i) appropriate prior distributions that allow
 225 for approximating *interventional* predictive posterior distributions as in Eq. (2)(Section 4) and (ii) a
 226 training algorithm for the underlying PNFS (see Section 5).
 227

228 **4 CAUSALFM: PRIORS**

231 In this section, we construct prior distributions for CausalFM which are based upon identifiable
 232 structural causal models (SCMs). We motivate and formalize our approach (Sec. 4.1, provide
 233 necessary criteria for valid causal inference (Sec. 4.2), and finally provide a method for constructing
 234 such priors in practice (Sec. 4.3). We also provide a complete toy example in Appendix B.
 235

236 **4.1 INTRODUCING SCM-BASED PRIORS**

237 **Naïve approach.** A naïve approach for causal inference would construct a prior Π directly for the
 238 observational distribution \mathbb{P}_{obs} . If the posterior $\Pi(\mathbb{P}_{\text{obs}} \mid \mathcal{D}_n) \rightarrow \mathbb{P}_{\text{obs}}^*$ converges to the ground-truth
 239 observational distribution $\mathbb{P}_{\text{obs}}^*$ (i.e., satisfying a Bernstein-von-Mises theorem), we can obtain a
 240 consistent Bayesian estimator of our causal query via $\bar{Q}(\Pi(\mathbb{P}_{\text{obs}} \mid \mathcal{D}_n))$. Accordingly, we *could* train
 241 a PFN $q_\theta(Y \mid \mathcal{D}_n, x)$ with the loss in Eq. (2) and estimate the CAPO via $\bar{Q}(q_\theta(Y \mid \mathcal{D}_n, x))$.
 242

243 *However*, the above approach has *drawbacks*: (i) It requires knowledge of the identification formula \bar{Q} ,
 244 which must be determined on a case-by-case basis depending on the causal inference setting \mathcal{C} at hand.
 245 This can be tedious or even hard to compute in practice. For example, the IV setting from Example 3
 246 requires solving integral equations to compute \bar{Q} (Newey & Powell, 2003). (ii) Constructing a prior
 247 for \mathbb{P}_{obs} makes it harder control the distribution of the causal query Q directly. It has been shown
 248 in the literature that this can lead to prior misspecification for Bayesian causal inference or slowly
 249 converging posterior distributions (Linero & Antonelli, 2022).

250 **Modeling the interventional distribution.** Motivated by these drawbacks of constructing priors
 251 for only \mathbb{P}_{obs} , we propose to construct priors for *observational-interventional distribution pairs*
 252 ($\mathbb{P}_{\text{obs}}, \mathbb{P}_{\text{int}}$), resulting in priors defined on $\mathcal{P}_{\text{obs}} \times \mathcal{P}_{\text{int}}$. This addresses both drawbacks by (i) inducing
 253 an *interventional posterior distribution*, thus only requiring knowledge of Q (not \bar{Q}); and (ii) we will
 254 see that priors on $\mathcal{P}_{\text{obs}} \times \mathcal{P}_{\text{int}}$ often allow to specify the prior distribution of $Q(\mathbb{P}_{\text{int}})$ directly. A
 255 natural way to define distributions on $\mathcal{P}_{\text{obs}} \times \mathcal{P}_{\text{int}}$ is via structural causal models (SCMs).
 256

257 **Definition 4.1** (SCMs (Pearl, 2009)). A (semi-Markovian) *structural causal model (SCM)* \mathcal{S} is a
 258 tuple (Z, U, f, \mathbb{P}) , where $Z = (Z_1, \dots, Z_k)$ are observable **endogenous** variables, U collects latent
 259 **exogenous** variables, $f = \{f_{Z_1}, \dots, f_{Z_k}\}$ contains structural assignments $Z_i = f_{Z_i}(pa(Z_i))$ with
 260 parents $pa(Z_i) \subseteq Z \cup U$, and \mathbb{P} is a joint distribution on U .
 261

262 Every SCM induces a unique directed acyclic graph (DAG), $\mathcal{G}^{\mathcal{S}}$ by defining mapping of the parents
 263 $pa(Z_i)$ to Z_i with directed edges. We distinguish two types of latent variables U_i in $\mathcal{G}^{\mathcal{S}}$: U_i is an
 264 *unobserved confounder* if it is the parent of both A and Y , otherwise, we call it a *noise variable*.
 265 Intuitively, an SCM is a simulator: we can draw latent variables $U \sim \mathbb{P}$ and pass them through
 266 structural functions f , resulting in an induced observational distribution $\mathbb{P}_{\text{obs}}^{\mathcal{S}}$ over Z . At the same
 267 time, we can modify the SCM by intervening on a variable via $do(A = a)$, i.e., fixing the variable and
 268 then sampling from the SCM mechanism. This induces a corresponding interventional distribution
 269 $\mathbb{P}_{\text{int}}^{\mathcal{S}}$. We call an SCM \mathcal{S} *compatible* with a causal inference setting \mathcal{C} , if $(\mathbb{P}_{\text{obs}}^{\mathcal{S}}, \mathbb{P}_{\text{int}}^{\mathcal{S}}) \in \mathcal{P}_{\text{obs}} \times \mathcal{P}_{\text{int}}$.
 270

271 **Definition 4.2** (\mathcal{C} -SCM-Priors). A \mathcal{C} -SCM-Prior is any probability measure $\Pi(\mathcal{S})$ that puts all
 272 its mass on SCMs compatible with \mathcal{C} . Via the map $\mathcal{S} \mapsto (\mathbb{P}_{\text{obs}}^{\mathcal{S}}, \mathbb{P}_{\text{int}}^{\mathcal{S}})$ every such prior induces a
 273 distribution $\Pi((\mathbb{P}_{\text{obs}}, \mathbb{P}_{\text{int}}))$ on $\mathcal{P}_{\text{obs}} \times \mathcal{P}_{\text{int}}$.
 274

Sampling from Π therefore amounts to sampling a random latent distribution \mathbb{P} over U as well as random functional assignments f . These can then be used to internally sample an observational dataset \mathcal{D}_n , i.e., there is a well-defined likelihood $\Pi(\mathcal{D}_n | \mathcal{S})$ induced by \mathcal{S} . As a consequence, we can define the posterior distribution over SCMs via $\Pi(\mathcal{S} | \mathcal{D}_n) \propto \Pi(\mathcal{D}_n | \mathcal{S})\Pi(\mathcal{S})$, where \propto denotes proportionality up to a normalization constant.

Cluster-DAGs. Because an SCM-prior induces a distribution over possibly many DAGs, we compress them into a shared structure. Given variables (Z, U) , a Cluster-DAG (C-DAG) (Anand et al., 2023)] is a DAG on clusters C_1, \dots, C_k which are disjoint subsets of (Z, U) . Each \mathcal{C} -SCM-Prior induces a unique C-DAG via the following algorithm: (i) draw an edge $C_i \rightarrow C_j$ whenever any SCMs \mathcal{S} with $\Pi(\mathcal{S}) > 0$ contains some arrow from any node of C_i to any node of C_j and no SCM \mathcal{S} with $\Pi(\mathcal{S}) > 0$ contains some arrow from any node of C_j to any node of C_i ; (ii) merge C_i and C_j whenever both directions occur across SCMs \mathcal{S} with $\Pi(\mathcal{S}) > 0$.

4.2 WELL-SPECIFIED PRIORS

The question is now how we should design our prior Π such that the induced posterior $\Pi(\mathcal{S} | \mathcal{D}_n)$ allows for valid Bayesian causal inference. We now define a key desirable property of such priors. For this, we call a prior $\Pi(\mathcal{S})$ *well-specified* for \mathcal{C} if, for any true pair $(\mathbb{P}_{\text{obs}}^*, \mathbb{P}_{\text{int}}^*)$ and every sample $\mathcal{D}_n \sim \mathbb{P}_{\text{obs}}^*$, it holds that

$$Q\left(\int \mathbb{P}_{\text{int}}^S \Pi(\mathcal{S} | \mathcal{D}_n) d\mathcal{S}\right) \rightarrow Q(\mathbb{P}_{\text{int}}^*), \quad n \rightarrow \infty. \quad (4)$$

In other words, a well-specified prior ensures that the causal query Q evaluated on the *posterior-predictive interventional distribution* (PPID) $\int \mathbb{P}_{\text{int}}^S \Pi(\mathcal{S} | \mathcal{D}_n) d\mathcal{S}$ is a consistent estimator of the causal target. If we were able to train a PFN to approximate the PPID of a well-specified prior, we are sure that we can apply Q on this distribution and obtain a consistent estimator.

Identifiability. At this point, one may wonder why we only focus on priors for *identifiable* causal inference settings. Indeed, a recently proposed method, called *do-PFN* (Robertson et al., 2025), does not restrict its PFN priors to identifiable settings. The following result shows that, under weak assumptions, such priors *cannot* be well-specified, leading to asymptotic inconsistency.

Theorem 4.3. *Let \mathcal{Z} be the set of all identifiability-violating SCMs \mathcal{S}_0 that satisfy $\mathbb{P}_{\text{obs}}^{\mathcal{S}_0} \in \mathcal{P}_{\text{obs}}$ and $Q(\mathbb{P}_{\text{int}}^{\mathcal{S}_0}) \neq \bar{Q}(\mathbb{P}_{\text{obs}}^{\mathcal{S}_0})$. Assume that Q is a linear functional (e.g., the CATE) and that $\int_{\mathcal{Z}} Q(\mathbb{P}_{\text{int}}^S) \Pi(\mathcal{S}) d\mathcal{S} \neq Q(\mathbb{P}_{\text{obs}}^{\mathcal{S}_0})$ (non-identifiability doesn't cancel out). Then, if $\Pi(\mathcal{S})$ is well-specified for \mathcal{C} , it follows that $\Pi(\mathcal{S} \in \mathcal{Z}) = 0$.*

Proof. See Appendix C. □

4.3 CONSTRUCTING SCM-BASED PRIORS

C-DAG design. Our method for constructing priors assumes the knowledge of a well-specified C-DAG \mathcal{G}_c for \mathcal{C} , meaning that \mathcal{G}_c is induced by some well-specified \mathcal{C} -SCM-Prior. Such C-DAGs are usually known for most causal inference settings (see Fig. 1 for C-DAGs compatible with the settings in Examples 1–3).

One point of ambiguity is the modeling of noise variables in C-DAGs. Here, we propose a practical design rule: if \mathcal{G}_c contains an unobserved confounder between A and Y , we only add one additional noise variable to *either* A or Y . Conversely, if \mathcal{G}_c is unconfounded, we add noise parents to *both* A and Y (see Fig. 1). The reasoning is as follows: if \mathcal{G}_c is unconfounded, we need to add noise to both A and Y in order to ensure not restrict ourselves to degenerate observational distributions. Conversely, any unobserved confounder U induces noise into both A and Y , thus removing the need to add noise to both. However, it is still necessary to add *one* additional noise variable to either A or Y since, otherwise, any unconfounded SCM compatible with \mathcal{G}_c would need to be degenerate in either A or Y . We provide a concrete toy example in Appendix B to illustrate this.

Prior construction. We now propose a practical algorithm to construct \mathcal{C} -SCM-priors. We assume that we have access to a pair $(\mathcal{G}_c, \mathcal{I})$, where \mathcal{G}_c is a well-specified C-DAG for \mathcal{C} and \mathcal{I} is a set of constraints on SCMs \mathcal{S} compatible with \mathcal{G}_c ensuring that \mathcal{S} is also compatible with \mathcal{C} .

324 ■ **Example 1: back-door adjustment.** The observable variables are (X, A, Y) together with noise
 325 variables. A compatible C-DAG is in Fig. 1 (left). The constraint set is $\mathcal{I}(\mathcal{S}) = \{\mathbb{P}_{\text{obs}}^{\mathcal{S}}(A = a | X = x) > 0\}$, ensuring that all SCMs satisfy the positivity assumption.
 326

327 ■ **Example 2: Front-door adjustment.** Here, the observed variables are (X, A, M, Y) with noise
 328 variables and an unobserved confounder U between A and Y . A compatible C-DAG is in Fig. 1
 329 (middle). The constraint set is $\mathcal{I}(\mathcal{S}) = \{\mathbb{P}_{\text{obs}}^{\mathcal{S}}(A = a | X = x) > 0, \mathbb{P}_{\text{obs}}^{\mathcal{S}}(M = m | X = x, A = a) > 0\}$, ensuring positivity for both treatments and mediators.
 330

331 ■ **Example 3: Instrumental variables.** The observed variables are (X, Z, A, Y) , augmented by noise
 332 variables and an unobserved confounder U that is a joint parent of A and Y has no edge to the
 333 instrument Z ; see the compatible C-DAG in Fig. 1 (right). The constraint set is $\mathcal{I}(\mathcal{S}) = \{\mathbb{P}_{\text{obs}}^{\mathcal{S}}(Z = z | X = x) > 0, f_Y^{\mathcal{S}}(X, A, U) = f_Y^{\mathcal{S}}(X, A) + g^{\mathcal{S}}(X, U)\}$.
 334

335 **Overall algorithm.** Given $(\mathcal{G}_c, \mathcal{I})$, we propose to construct a prior distribution Π over SCMs as
 336 follows: First, we order the clusters (C_1, \dots, C_k) according to their hierarchy in the DAG (i.e., C_1
 337 has no parents). Then, we iterate over each cluster C_i as follows: if C_i only contains latent variables,
 338 fix their distribution to a standard normal distribution via $U^{(i)} \sim \mathcal{N}(0, \mathbf{I})$. If C_i is a cluster of
 339 observed and latent variables, we assign a clustered Bayesian neural network (BNN) prior to C_i (see
 340 below). If C_i only contains observed variables, we assign an observational BNN prior.
 341

342 **Clustered BNN prior.** For clusters that contain both observed and latent variables, we leverage a
 343 BNN-based prior inspired by TabPFN (Hollmann et al., 2023). This prior allows us to effectively
 344 sample potentially high-dimensional clusters of variables for which the internal causal structure is
 345 irrelevant to infer the causal query of interest. The prior is defined via

$$g_{\theta}^{(i)} : \text{pa}(C_i) \longrightarrow \mathbb{R}^r, \quad \theta \sim \Pi_{C_i} \quad \text{s.t. } g_{\theta}^{(i)} \text{ satisfying } \mathcal{I}(\mathcal{S}_{\theta}). \quad (5)$$

346 We then sample random nodes from $g_{\theta}^{(i)}$ that coincide with observed nodes in C_i , while the remaining
 347 nodes serve as latent noise within the cluster. This corresponds to applying the approach taking in
 348 TabPFN (Hollmann et al., 2023) to clusters C_i in the C-DAG in which the causal structure does not
 349 matter for estimating our causal query.
 350

351 **Observational BNN prior.** If C_i contains only observed nodes, we define another BNN via
 352

$$f_{\theta}^{(i)} : \text{pa}(C_i) \longrightarrow \mathbb{R}^{|C_i|}, \quad \theta \sim \Pi_{C_i} \quad \text{subject to } f_{\theta}^{(i)} \text{ satisfying } \mathcal{I}(\mathcal{S}_{\theta}), \quad (6)$$

353 and set $C_i = f_{\theta}^{(i)}(\text{pa}(C_i))$. The observed nodes within C_i thus correspond to the output of the neural
 354 network and are *not* randomly subsampled neurons.
 355

356 **Example 1: back-door adjustment.** Here, the data distribution \mathbb{P} can be separated as follows:
 357 $(X, U_X) \sim \mathbb{P}_X$ with U_X denoting noise variables within the cluster X , $U_A \sim \mathbb{P}_{U_A}$, $U_Y \sim \mathbb{P}_{U_Y}$,
 358 $A = f_A(X, U_A)$, and $Y = f_A(X, A, U_Y)$. Our algorithm proceeds as follows: \mathbb{P}_{U_A} and \mathbb{P}_{U_Y} are
 359 noise variables and are set to standard normal distributions. The cluster (X, U_X) contains both noise
 360 and observed variables, meaning that \mathbb{P}_X is sampled from a clustered BNN prior. Finally, A and
 361 Y are observed variables meaning that f_A and f_Y are sampled from observational BNN priors. We
 362 refer to Appendix D.1 for full implementation details, including for Example 2 and 3.
 363

364 **Notes on identifiability.** Our framework follows established causal inference philosophy and
 365 separates identifiability from estimation (Pearl, 2009): the identifiability step (=choosing the causal
 366 setting) requires careful modeling and usage of domain knowledge, while the estimation step can be
 367 handed over to our CausalFM. If practitioners suspect identifiability assumptions may be violated,
 368 we recommend performing causal sensitivity analysis (Dorn & Guo, 2022; Frauen et al., 2023) to
 369 assess the extent of potential violations.
 370

372 5 CAUSALFM: TRAINING

373 5.1 TRAINING ALGORITHM

374 We look at the case where the causal query $Q(\mathbb{P}_{\text{int}}(Y | X))$ is a function of the conditional intervention-
 375 al distribution $\mathbb{P}_{\text{int}}(Y | X)$ for some contextual observed variables X . This includes, e.g., the
 376 CATE $\mathbb{E}[Y(1) - Y(0) | X]$ and CAPO $\mathbb{E}[Y(a) | X]$ from our running examples.
 377

Our goal is to train a PFN $q_\theta(Y | x)$ to approximate the conditional PPID (posterior predictive interventional distribution) $\Pi_{\text{int}}(Y | \mathcal{D}_n, X = x) = \int \mathbb{P}_{\text{int}}^{\mathcal{S}}(Y | X = x) \Pi(\mathcal{S} | \mathcal{D}_n) d\mathcal{S}$. Given an SCM prior Π and a prior Π_N over sample sizes, we propose the following modified PFN loss

$$\mathcal{L}(\theta) = \mathbb{E}_{N \sim \Pi_N} [\mathbb{E}_{\mathcal{S} \sim \Pi} [\mathbb{E}_{(X, Y) \sim \mathbb{P}_{\text{int}}^{\mathcal{S}}} [\mathbb{E}_{\mathcal{D} \sim \mathbb{P}_{\text{obs}}^{\mathcal{S}}} [-\log q_\theta(Y | X, \mathcal{D}_N)]]]]. \quad (7)$$

Importantly, the dataset \mathcal{D} is sampled from the *observational* distribution, while the pair (X, Y) is sampled from the *interventional* distribution induced by a random SCM. This ensures that the PFN will aim to predict the interventional outcome Y based on data following the observational distribution. A similar loss has been proposed by Bynum et al. (2025), which, however, is only based on the mean-squared error instead of the negative log-likelihood and thus does not allow an interpretation for approximating the PPID in a Bayesian setting. In particular, modeling the entire PPID allows us not only to provide point estimators of our causal query, but also to account for uncertainty.

In practice, we sample the sample size $N_j \sim \Pi_N$, an SCM $\mathcal{S}_j \sim \Pi$, and an observational dataset $\mathcal{D}_{N_j}^j \sim \mathbb{P}_{\text{obs}}^{\mathcal{S}_j}$ by sampling from the SCM. Then, we modify the SCM by performing the intervention of interest (e.g., $\text{do}(A = a)$) and sample test points $(x_j, y_j) \sim \mathbb{P}_{\text{int}}^{\mathcal{S}_j}$ from the interventional SCM. The approximated PFN-loss is then

$$\hat{\mathcal{L}}(\theta) = \sum_j [-\log q_\theta(y_j | \mathcal{D}_{N_j}^j, x_j)]. \quad (8)$$

Finally, once $q_\theta(Y | x)$ is trained, we can obtain an estimator for the causal query via $Q(q_\theta(Y | X))$, i.e., by applying the causal query on the approximated PPID by the PFN.

Example: back-door adjustment. Here, we sample a sample size $N_j \sim \Pi_N$, an SCM $\mathcal{S}_j \sim \Pi$ from our constructed prior distribution Π and an observational dataset $\mathcal{D}_{N_j}^j \sim \mathbb{P}_{\text{obs}}^{\mathcal{S}_j}$. Then, we perform two interventions $\text{do}(A = 1)$ and $\text{do}(A = 0)$ to obtain test points $(x_j, y_j(1) - y_j(0)) \sim \mathbb{P}_{\text{int}}^{\mathcal{S}_j}$. The PFN loss becomes

$$\hat{\mathcal{L}}(\theta) = \sum_j [-\log q_\theta(y_j(1) - y_j(0) | \mathcal{D}_{N_j}^j, x_j)]. \quad (9)$$

Implementation details. Each observation is tokenized during embedding, with separate encoders applied to observational variables. The resulting tokens are processed by a transformer-based PFN to obtain representations, which are subsequently passed to a Gaussian mixture model (GMM) head. Our implementation of $q_\theta(Y | x)$ is based on the TabPFN architecture (Hollmann et al., 2023). We train the model with a learning rate of $1e-3$, weight decay $1e-5$, batch size 16, and sequence length 1024 for up to 150 epochs. Training CausalFM on a single NVIDIA A100 GPU takes about 24 hours. Details on the data prior and generation details are provided in Appendix D.1, while the full implementation is given in Appendix D.2.

6 EXPERIMENTS

We evaluate our method across three causal inference settings: standard CATE estimation, instrumental variables (IV), and front-door adjustment.

Evaluation metrics. We report the precision in estimating heterogeneous effects (PEHE) (Curth & van der Schaar, 2021; Hill, 2011), defined as the root mean squared deviation between predicted and ground-truth CATE, to evaluate the model performance on the CATE estimation task.

Table 2: **Standard CATE estimation** over 10 synthetic datasets and Jobs dataset.

Method	Synthetic	Jobs
BASELINES (A): STANDARD CATE ESTIMATORS		
S-learner (Künzel et al., 2019)	0.734 ± 0.16	0.697 ± 0.18
T-learner (Künzel et al., 2019)	0.661 ± 0.17	0.822 ± 0.18
TARNet (Shalit et al., 2017b)	0.854 ± 0.23	0.864 ± 0.24
DR-learner (Kennedy, 2023b)	0.765 ± 0.17	0.959 ± 0.18
RA-learner (Curth & van der Schaar, 2021)	0.609 ± 0.13	0.652 ± 0.15
X-learner (Künzel et al., 2019)	0.563 ± 0.15	0.802 ± 0.18
BASELINES (B): FOUNDATION MODELS-BASED METHODS		
CausalPFN (Balazadeh et al., 2025)	0.557 ± 0.18	0.528 ± 0.16
DoPFN (Robertson et al., 2025)	0.586 ± 0.19	0.482 ± 0.20
CausalFM (ours)	0.515 ± 0.20	0.478 ± 0.18

Lower = better. Reported: PEHE (mean \pm std). Top-three per column are in **blue**, **purple**, **orange**.

432 6.1 EVALUATION FOR STANDARD CATE SETTING
433

434 **Baselines for standard CATE estimation.** We consider a broad range of state-of-the-art methods
435 for the conditional treatment effect estimation from the literature: (1) **S-learner** (Künzel et al., 2019):
436 the S-learner is a model-agnostic learner that trains a single regression model by concatenating the
437 covariate and the treatment as input; (2) **T-learner** (Künzel et al., 2019): the T-learner is a model-
438 agnostic learner that trains separate regression models for treated and control groups; (3) **X-learner**
439 (Künzel et al., 2019): builds upon the T-learner by first imputing individual treatment effects in
440 each group and then fitting models to these pseudo-effects; (4) **TARNet** (Shalit et al., 2017b): using
441 representation learning to extract features of covariates and train separate branches for treated and
442 control groups with regularization; (5) **DR-learner** (Kennedy, 2023b): generates pseudo-outcomes
443 based on the doubly-robust AIPW estimator; (6) **RA-learner** (Curth & van der Schaar, 2021): uses a
444 regression-adjusted pseudo-outcome in the second stage. We also include two PFN-based foundation
445 models for treatment effect estimation: (7) **CausalPFN** (Balazadeh et al., 2025) and (8) **DoPFN**
446 (Robertson et al., 2025). Further implementation details are in Appendix D.3.

447 **Results on standard CATE estimation.**

448 We benchmark our model on ten synthetic
449 datasets generated under diverse mechanisms,
450 with implementation details in Appendix D. In addition, we evaluate on a
451 semi-synthetic version of the Jobs dataset
452 (Smith & Todd, 2005), derived from the
453 widely used LaLonde study (LaLonde,
454 1986). Here, we generate outcomes to create
455 a semi-synthetic dataset and allow for
456 evaluation against ground-truth.

457 Table 2 reports the averaged PEHE across
458 the synthetic datasets (full results in the
459 Appendix) and the Jobs dataset. Our ex-
460 periments show that CausalFM achieves
461 competitive CATE estimation performance
462 across all benchmarks, *without requiring model retraining*.

463 6.2 EVALUATION FOR IV SETTING
464

465 **Baselines for IV setting.** We benchmark against
466 a broad set of state-of-the-art IV methods for
467 treatment effect estimation: (1) **KIV** (Singh
468 et al., 2019): a nonlinear extension of two-stage
469 least squares using kernel ridge regression with
470 feature maps; (2) **DFIV** (Xu et al., 2021): ex-
471 tends KIV by parameterizing feature maps with
472 neural networks trained iteratively; (3) **DeepIV**
473 (Hartford et al., 2017): a two-stage neural ap-
474 proach, first estimating the treatment distribution
475 and then solving a counterfactual prediction
476 task; (4) **DeepGMM** (Bennett et al., 2019): for-
477 mulates IV estimation as a minimax game based
478 on the generalized method of moments, solved via
479 adversarial training; (5) **DMLIV** (Syrgkanis
480 et al., 2019): a double machine learning framework
481 that estimates nuisance functions and learns the
482 CATE by orthogonalized regression; (6) **DRIIV**
483 (Syrgkanis et al., 2019): a meta-learner combining
484 DMLIV with doubly robust pseudo-outcomes for im-
485 proved stability; and (7) **MRIV** (Frauen &
486 Feuerriegel, 2022): a multiply robust framework for
487 binary IVs that directly estimates CATE via
488 pseudo-outcome regression. For foundation model baselines, as CausalPFN (Balazadeh et al., 2025)
489 is only for back-door adjustment, we include DoPFN (Robertson et al., 2025).

490 **Results on IV setting.** We evaluate our models on datasets with varying confounding strengths.
491 Table 3 reports the averaged PEHE for binary and continuous IVs. Note that CausalPFN is *not*
492 designed for IV settings. In contrast, we find that our CausalFM consistently achieves comparable

493 Table 3: **IV setting** for CATE estimation with binary
494 and continuous instrument variables.

Method	Binary IV	Continuous IV
BASELINES (A): STANDARD IV ESTIMATORS		
KIV (Singh et al., 2019)	0.454 \pm 0.16	0.577 \pm 0.20
DRIV (Syrgkanis et al., 2019)	0.531 \pm 0.18	0.693 \pm 0.20
DeepIV (Hartford et al., 2017)	0.427 \pm 0.15	0.516 \pm 0.13
DeepGMM (Bennett et al., 2019)	0.503 \pm 0.20	0.588 \pm 0.21
DMLIV (Syrgkanis et al., 2019)	0.479 \pm 0.23	0.618 \pm 0.20
DFIV (Xu et al., 2021)	0.709 \pm 0.29	0.583 \pm 0.30
MRIV (Frauen & Feuerriegel, 2022)	0.688 \pm 0.21	0.641 \pm 0.24
BASELINES (B): FOUNDATION MODELS-BASED METHODS		
DoPFN (Robertson et al., 2025)	0.523 \pm 0.20	0.675 \pm 0.37
CausalFM (ours)	0.422 \pm 0.16	0.579 \pm 0.21

495 Lower = better. Reported: PEHE (mean \pm standard deviation). Top-
496 three per column are in blue, purple, orange.

497 Table 4: **Front-door adjustment setting** for
498 CATE estimation.

Method	PEHE
BASELINES (A): STANDARD FRONT DOOR ADJUSTMENT	
Plug-in front-door learner (Linear) Pearl (2009)	1.124 \pm 0.28
Plug-in front-door learner (RF) Pearl (2009)	1.364 \pm 0.52
Plug-in front-door learner (NN) Pearl (2009)	0.889 \pm 0.38
BASELINES (B): FOUNDATION MODELS-BASED METHODS	
DoPFN (Robertson et al., 2025)	1.274 \pm 0.24
CausalFM (ours)	0.847 \pm 0.34

499 Lower = better. Reported: PEHE (mean \pm standard deviation).

500 Top-three per column are in blue, purple, orange.

486 performance relative to standard IV estimators and outperforms biased alternatives. Importantly, in
 487 contrast the the standard baselines, these results hold *without requiring model retraining*. Hence, this
 488 confirms the flexibility of our approach to IV settings.
 489

490 6.3 FRONT-DOOR ADJUSTMENT

492 We additionally evaluate our model under the front-door adjustment setting in Table 4. Due to space
 493 constraints, details are provided in Appendix H.1. The experiments show the flexibility of our method
 494 to perform causal inference in the front-door adjustment setting.

495 6.4 COMPUTATIONAL TIME

498 We report computation time in this section. For
 499 our method and other foundation-model-based
 500 approaches, we show inference time since these
 501 models do not need fine-tuning after pretraining.
 502 For standard baselines, which must be trained
 503 for each dataset separately, we report the average
 504 total time per dataset, including both training
 505 and inference. As shown in Tables 5 and 6, our
 506 model is highly efficient.

507 6.5 ADDITIONAL EXPERIMENTS

509 **Misspecification of causal settings.** We con-
 510 duct experiments to study the sensitivity to us-
 511 ing an incorrect identifiability strategy. Speci-
 512 fically, we generate data from (i) an IV SCM
 513 and (ii) a front-door SCM (as in our main
 514 experiments), and compare a model trained under
 515 the correct identifiability design (IV or front-
 516 door, respectively) with a model trained under
 517 an incorrect back-door design. The results are
 518 in Table 7. As expected, using a misspecified
 519 identifiability strategy consistently worsens the
 520 PEHE. This highlights the importance of includ-
 521 ing the correct identifiability assumption into
 522 the prior specification, which we propose for
 523 CausalFM.

524 **Prior design choices.** We also analyze the ro-
 525 bustness of our model to the choice of the prior.
 526 For this, we vary the strength of unobserved
 527 confounding in the data-generating process, con-
 528 trolled by a parameter $\alpha \in [0, 1]$. Due to space
 529 constraints, the results in shown in Fig. 2 in
 530 Appendix H.5. The experiments show that our
 531 model remains robust as α increases.

532 6.6 DISCUSSION

533 **Limitations and future work.** The current evalua-
 534 tion is limited to synthetic and semi-synthetic
 535 data due to the fundamental problem of missing potential outcomes on real-world data. For future
 536 work, it will be interesting to investigate the performance of CausalFM in applied A/B experimental
 537 setups to assess its empirical performance and robustness under real-world conditions. Additionally,
 538 an important research direction will be to incorporate interpretability or fairness constraints into
 539 CausalFM, which is crucial for reliable deployment in practice.

Table 5: Overall time comparison for standard CATE setting.

Method	Time (s)
BASELINES (A): STANDARD CATE ESTIMATORS	
S-learner (Künzel et al., 2019)	2.76×10^0
T-learner (Künzel et al., 2019)	3.21×10^0
TARNet (Shalit et al., 2017b)	3.98×10^0
DR-learner (Kennedy, 2023b)	1.78×10^1
RA-learner (Curt & van der Schaar, 2021)	1.24×10^1
X-learner (Künzel et al., 2019)	1.93×10^1
BASELINES (B): FOUNDATION MODELS-BASED METHODS	
CausalPFN (Balazadeh et al., 2025)	1.27×10^0
DoPFN (Robertson et al., 2025)	2.31×10^0
CausalFM (ours)	4.90×10^{-1}

Lower = better. Reported: Time in seconds.

Table 6: Overall time comparison for IV setting.

Method	Time (s)
BASELINES (A): STANDARD IV ESTIMATORS	
KIV (Singh et al., 2019)	3.24×10^{-1}
DRIV (Syrgkanis et al., 2019)	3.87×10^1
DeepIV (Hartford et al., 2017)	1.27×10^1
DeepGMM (Bennett et al., 2019)	1.85×10^1
DMLIV (Syrgkanis et al., 2019)	1.85×10^1
DFIV (Xu et al., 2021)	1.74×10^1
MRIV (Frauen & Feuerriegel, 2022)	1.56×10^1
BASELINES (B): FOUNDATION MODELS-BASED METHODS	
DoPFN (Robertson et al., 2025)	6.53×10^0
CausalFM (ours)	4.72×10^{-1}

Lower = better. Reported: Time in seconds.

Table 7: Analysis of the effect of misspecified identifiability strategies.

Data Generating SCM	Strategy	Identifiability Used	PEHE
IV SCM	Correct	IV	0.422
	Incorrect	Back-door	0.489
Front-door SCM	Correct	Front-door	0.847
	Incorrect	Back-door	0.876

540 Ethics statement.

541
542 *Human subjects and IRB.* This work does not involve experiments with human subjects. Our training
543 data are *synthetically* generated from prespecified SCM-based priors. For empirical evaluation, we
544 additionally use publicly available benchmark data (e.g., Jobs) where outcomes are generated in a
545 semi-synthetic manner following common practice; no identifiable personal information is introduced
546 by us. Accordingly, no IRB review was required for this study.

547 *Data, privacy, and security.* We do not collect, store, or release sensitive personal data. Public
548 datasets are used under their respective licenses, and our semi-synthetic outcome generation avoids re-
549 identification risks. We will document preprocessing and generation steps to support reproducibility.

550 *Bias and potential harms.* Causal estimators can be misused if applied outside the assumed identifica-
551 tion regime (e.g., back-door, front-door, IV) or under severe violations (e.g., weak instruments, lack
552 of overlap). To mitigate harm: (i) we make assumptions explicit and provide uncertainty quantifica-
553 tion; (ii) we advocate domain-expert validation and sensitivity checks before deployment; (iii) we
554 discourage high-stakes automated decision-making without human oversight.

555 *Use of large language models (LLMs).* We used LLM-based tools to assist with writing (clarity,
556 grammar) and for literature research. All claims were authored and verified by the authors; citations
557 were cross-checked against primary sources. No sensitive data were provided to LLM tools.

558
559 **560 Reproducibility statement.** We ensure reproducibility of our results by providing the full imple-
561 mentation and training scripts through an anonymous GitHub repository https://anonymous.4open.science/r/causal_foundation_model. The repository contains the necessary
562 code to reproduce our experiments, along with instructions for dataset preparation, model training
563 and evaluation procedures. This setup allows independent researchers to replicate the reported results
564 and extend our work with minimal effort.

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Ahmed M. Alaa and Mihaela van der Schaar. Bayesian inference of individualized treatment effects
597 using multi-task Gaussian processes. In *NeurIPS*, 2017.

598 Tara V. Anand, Adele H. Ribeiro, Jin Tian, and Elias Bareinboim. Causal effect identification in
599 cluster dags. In *AAAI*, 2023.

600 Joshua D. Angrist. Lifetime earnings and the vietnam era draft lotter: Evidence from social security
601 administrative records. *The American Economic Review*, 80(3):313–336, 1990.

602 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
603 Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.

604 Vahid Balazadeh, Hamidreza Kamkari, Valentin Thomas, Benson Li, Junwei Ma, Jesse C. Cresswell,
605 and Rahul G. Krishnan. Causalpfn: Amortized causal effect estimation via in-context learning.
606 *arXiv preprint*, arXiv:2506.07918, 2025. URL <http://arxiv.org/pdf/2506.07918v1.pdf>.

607 Andrew Bennett, Nathan Kallus, and Tobias Schnabel. Deep generalized method of moments for
608 instrumental variable analysis. In *NeurIPS*, 2019. URL <http://arxiv.org/pdf/1905.12495v2.pdf>.

609 Lucius E. J. Bynum, Aahlad Manas Puli, Diego Herrero-Quevedo, Nhi Nguyen, Carlos Fernandez-
610 Granda, Kyunghyun Cho, and Rajesh Ranganath. Black box causal inference: Effect estimation via
611 meta prediction. *arXiv preprint*, arXiv:2503.05985, 2025. URL <http://arxiv.org/pdf/2503.05985v1.pdf>.

612 Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney
613 Newey, and James M. Robins. Double/debiased machine learning for treatment and structural
614 parameters. *The Econometrics Journal*, 21(1):C1–C68, 2018. ISSN 1368-4221. doi: 10.1111/ectj.12097.

615 Alicia Curth and Mihaela van der Schaar. Nonparametric estimation of heterogeneous treatment
616 effects: From theory to learning algorithms. In *AISTATS*, 2021.

617 Alicia Curth and Mihaela van der Schaar. Nonparametric estimation of heterogeneous treatment
618 effects: From theory to learning algorithms. In *International Conference on Artificial Intelligence
619 and Statistics*, 2021.

620 Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv
621 preprint arXiv:1810.04805*, 2018.

622 Jacob Dorn and Kevin Guo. Sharp sensitivity analysis for inverse propensity weighting via quantile
623 balancing. *Journal of the American Statistical Association*, 2022. URL <http://arxiv.org/pdf/2102.04543v2.pdf>.

624 Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Alicia
625 Curth, Stefan Bauer, Niki Kilbertus, Isaac S. Kohane, and Mihaela van der Schaar. Causal machine
626 learning for predicting treatment outcomes. *Nature Medicine*, 2024.

627 Stefan Feuerriegel, Yash Raj Shrestha, and Georg Von Krogh. A new machine learning approach
628 answers what-if questions. *MIT Sloan Management Review*, 66(3):65–69, 2025.

629 Dylan J. Foster and Vasilis Syrgkanis. Orthogonal statistical learning. *The Annals of Statistics*, 53(3):
630 879–908, 2023. ISSN 0090-5364. URL <http://arxiv.org/pdf/1901.09036v3.pdf>.

631 Dennis Frauen and Stefan Feuerriegel. Estimating individual treatment effects under unobserved
632 confounding using binary instruments. In *ICLR*, 2022.

633 Dennis Frauen, Valentyn Melnychuk, and Stefan Feuerriegel. Sharp bounds for generalized causal
634 sensitivity analysis. In *NeurIPS*, 2023.

635 P. Richard Hahn, Jared S. Murray, and Carlos Carvalho. Bayesian regression tree models for causal
636 inference: regularization, confounding, and heterogeneous effects. *Bayesian Analysis*, 15(3):
637 965–1056, 2020. URL <http://arxiv.org/pdf/1706.09523v4.pdf>.

648 Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for
 649 counterfactual prediction. In *ICML*, 2017.

650

651 Jennifer L. Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational*
 652 *and Graphical Statistics*, 20(1):217–240, 2011.

653

654 Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
 655 that solves small tabular classification problems in a second. In *ICLR*, 2023. URL <http://arxiv.org/pdf/2207.01848v6>.

656

657 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
 658 Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
 659 foundation model. *Nature*, 637(8045):319–326, 2025. doi: 10.1038/s41586-024-08328-6.

660

661 Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. The tabular foundation model tabPFN
 662 outperforms specialized time series forecasting models based on simple features. *arXiv preprint*,
 663 arXiv:2501.02945, 2025. URL <http://arxiv.org/pdf/2501.02945v2>.

664

665 Guido W. Imbens and Joshua D. Angrist. Identification and estimation of local average treatment
 666 effects. *Econometrica*, 62(2):467–475, 1994.

667

668 Tomoharu Iwata and Yoichi Chikahara. Meta-learning for heterogeneous treatment effect estimation
 669 with closed-form solvers. *arXiv preprint*, arXiv:2305.11353, 2023. URL <http://arxiv.org/pdf/2305.11353v1>.

670

671 Fredrik D. Johansson, Uri Shalit, and David Sonntag. Learning representations for counterfactual
 672 inference. In *ICML*, 2016.

673

674 Edward H. Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects.
 675 *Electronic Journal of Statistics*, 17(2):3008–3049, 2023a.

676

677 Edward H. Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects.
 678 *Electronic Journal of Statistics*, 17(2):3008–3049, 2023b.

679

680 Christoph Kern, Unai Fischer-Abaigar, Jonas Schweisthal, Dennis Frauen, Rayid Ghani, Stefan
 681 Feuerriegel, Mihaela van der Schaar, and Frauke Kreuter. Algorithms for reliable decision-making
 682 need causal reasoning. *Nature Computational Science*, 2025.

683

684 Sören R. Küngel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating
 685 heterogeneous treatment effects using machine learning. *Proceedings of the National Academy of
 686 Sciences*, 116(10):4156–4165, 2019.

687

688 Adi Lahat, Kassem Sharif, Narmin Zoabi, Yonatan Shneor Patt, Yousra Sharif, Lior Fisher, Uria
 689 Shani, Mohamad Arow, Roni Levin, and Eyal Klang. Assessing generative pretrained transformers
 690 (gpt) in clinical decision-making: comparative analysis of gpt-3.5 and gpt-4. *Journal of medical
 691 Internet research*, 26:e54571, 2024.

692

693 Robert J LaLonde. Evaluating the econometric evaluations of training programs with experimental
 694 data. *The American economic review*, pp. 604–620, 1986.

695

696 Jonathan N. Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsesa Finn, Ofir Nachum, and
 697 Emma Brunskill. Supervised pretraining can learn in context reinforcement learning. In *NeurIPS*,
 2023.

698

699 Antonio R. Linero and Joseph L. Antonelli. The how and why of bayesian nonparametric causal
 700 inference. *Wiley Interdisciplinary Reviews: Computational Statistics*, 15(1):e1583, 2022. URL
<http://arxiv.org/pdf/2111.03897v2>.

701

702 Yuchen Ma, Valentyn Melnychuk, Jonas Schweisthal, and Stefan Feuerriegel. DiffPO: A causal
 703 diffusion model for learning distributions of potential outcomes. In *NeurIPS*, 2024.

704

705 Yuchen Ma, Jonas Schweisthal, Hengrui Zhang, and Stefan Feuerriegel. A diffusion-based method
 706 for learning the multi-outcome distribution of medical treatments. In *KDD*, 2025.

702 Divyat Mahajan, Jannes Gladrow, Agrin Hilmkil, Cheng Zhang, and Meyer Scetbon. Zero-shot
 703 learning of causal models. *arXiv preprint*, arXiv:2410.06128, 2025. URL <http://arxiv.org/pdf/2410.06128v2.pdf>.

704

705 Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. Causal transformer for estimating
 706 counterfactual outcomes. In *ICML*, 2022. URL <http://arxiv.org/pdf/2204.07258v2.pdf>.

707

708 Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
 709 Transformers can do bayesian inference. In *ICLR*, 2022. URL <http://arxiv.org/pdf/2112.10510v7.pdf>.

710

711

712 Thomas Nagler. Statistical foundations of prior-data fitted networks. In *ICML*, 2023.

713

714 Whitney K. Newey and James L. Powell. Instrumental variable estimation of nonparametric models.
 715 *Econometrica*, 71(5):1565–1578, 2003.

716

717 Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika*,
 718 108(2):299–319, 2021. ISSN 0006-3444.

719

720 Hamed Nilforoshan, Michael Moor, Yusuf Roohani, Yining Chen, Anja Surina, Michihiro Yasunaga,
 721 Sara Oblak, and Jure Leskovec. Zero-shot causal learning. In *NeurIPS*, 2023.

722

723 Judea Pearl. *Causality*. Cambridge University Press, New York City, 2009. ISBN 9780521895606.

724

725 Jake Robertson, Arik Reuter, Siyuan Guo, Noah Hollmann, Frank Hutter, and Bernhard Schölkopf.
 726 Do-pfn: In-context learning for causal effect estimation. *arXiv preprint*, arXiv:2506.06039, 2025.
 727 URL <http://arxiv.org/pdf/2506.06039v1.pdf>.

728

729 James M. Robins. A new approach to causal inference in mortality studies with a sustained exposure
 730 period: Application to control of the healthy worker survivor effect. *Mathematical Modelling*, 7:
 731 1393–1512, 1986.

732

733 James M. Robins. Correcting for non-compliance in randomized trials using structural nested mean
 734 models. *Communications in Statistics - Theory and Methods*, 23(8):2379–2412, 1994. ISSN
 735 0361-0926. doi: 10.1080/03610929408831393.

736

737 James M. Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of reversion coefficients when
 738 some regressors are not always observed. *Journal of the American Statistical Association*, 89(427):
 739 846–688, 1994.

740

741 Paul R. Rosenbaum and Donald B. Rubin. The central role of the propensity score in observational
 742 studies for causal effects. *Biometrika*, 70(1):41–55, 1983. ISSN 0006-3444. doi: 10.1093/biomet/70.1.41.

743

744 Donald B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
 745 *Journal of Educational Psychology*, 66(5):688–701, 1974. ISSN 0022-0663. doi: 10.1037/h0037350.

746

747 Jonas Schweisthal, Dennis Frauen, Valentyn Melnychuk, and Stefan Feuerriegel. Reliable off-policy
 748 learning for dosage combinations. In *NeurIPS*, 2023.

749

750 Uri Shalit, Fredrik D. Johansson, and David Sontag. Estimating individual treatment effect: General-
 751 ization bounds and algorithms. In *ICML*, 2017a.

752

753 Uri Shalit, Fredrik D. Johansson, and David Sontag. Estimating individual treatment effect: General-
 754 ization bounds and algorithms. In *International Conference on Machine Learning*, 2017b.

755

Claudia Shi, David M. Blei, and Victor Veitch. Adapting neural networks for the estimation of
 756 treatment effects. In *NeurIPS*, 2019.

756 Rahul Singh, Maneesh Sahani, and Arthur Gretton. Kernel instrumental variable regression. In
 757 *NeurIPS*, 2019.

758

759 Jeffrey A Smith and Petra E Todd. Does matching overcome lalonde's critique of nonexperimental
 760 estimators? *Journal of econometrics*, 125(1-2):305–353, 2005.

761 Vasilis Syrgkanis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, and Greg Lewis.
 762 Machine learning estimation of heterogeneous treatment effects with instruments. In *NeurIPS*,
 763 2019.

764

765 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 766 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 767 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

768 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 769 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 770 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

771

772 Boris van Breugel and Mihaela van der Schaar. Why tabular foundation models should be a research
 773 priority. In *ICML*, 2024. URL <http://arxiv.org/pdf/2405.01147v2>.

774

775 Mark J. van der Laan. Statistical inference for variable importance. *The International Journal of
 Biostatistics*, 2(1):1–31, 2006.

776

777 Mark J. van der Laan and Donald B. Rubin. Targeted maximum likelihood learning. *The International
 Journal of Biostatistics*, 2(1), 2006.

778

779 Hal R. Varian. Causal inference in economics and marketing. *Proceedings of the National Academy
 of Sciences (PNAS)*, 113(27):7310–7315, 2016. doi: 10.1073/pnas.1510479113.

780

781 Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
 782 random forests. *Journal of the American Statistical Association*, 113(523):1228–1242, 2018. doi:
 783 10.1080/01621459.2017.1319839.

784

785 Janick Weerpals, Stefan Feuerriegel, Mihaela van der Schaar, and Kenneth L. Kehl. Opportunities
 786 for causal machine learning in precision oncology. *NEJM AI*, 2025.

787

788 Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, and Arthur Gretton.
 789 Learning deep features in instrumental variable regression. In *ICLR*, 2021. URL <http://arxiv.org/pdf/2010.07154v3>.

790

791 Jiaqi Zhang, Joel Jennings, Agril Hilmkril, Nick Pawlowski, Cheng Zhang, and Chao Ma. Towards
 792 causal foundation model: On duality between optimal balancing and attention. *arXiv preprint*,
 793 arXiv:2310.00809, 2024.

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A EXTENDED RELATED WORK
811

812 **Prior-data-fitted networks (PFNs) as tabular foundation models.** Foundation models are an
813 emerging paradigm that has revolutionized machine learning for various data modalities, particularly
814 language and vision tasks (Devlin, 2018; Lahat et al., 2024; Touvron et al., 2023b;a). The same
815 paradigm is now being explored for tabular data – a modality that underpins the large majority of
816 analyses in science and business (van Breugel & van der Schaar, 2024). Prior-data-fitted networks
817 (PFNs) (Müller et al., 2022) constitute a powerful approach to training tabular foundation models.
818 PFNs are large transformers trained on synthetic data to perform Bayesian inference through in-
819 context learning. TabPFN (Hollmann et al., 2023; 2025) scaled this idea by pairing the transformer
820 with a Bayesian neural network prior over structural causal models (SCMs) and demonstrating
821 state-of-the-art performance on various tabular benchmarks. Subsequent work extended PFNs to
822 time-series forecasting (Hoo et al., 2025) and analyzed their in-context learning abilities theoretically
823 (Nagler, 2023). Critically, all existing PFNs are trained *only* for *predictive* tasks and do **not** target
824 causal estimands; they therefore are **not** designed for causal inference of treatment effects, which is
825 the goal of our paper.

826 **Treatment effect estimation.** Causal inference, such as the estimation of average treatment effects,
827 originates from fields like econometrics (Imbens & Angrist, 1994; Angrist, 1990), statistics (van der
828 Laan & Rubin, 2006), and epidemiology (Robins, 1986; 1994). Machine learning methods have
829 been proposed to estimate *heterogeneous* effects to support personalized decision-making. One line
830 of work are frequentist methods, which often build on semiparametric theory (Robins et al., 1994;
831 Robins, 1999), yielding model-agnostic estimators that are doubly robust and Neyman-orthogonal
832 (van der Laan, 2006; Chernozhukov et al., 2018; Nie & Wager, 2021; Foster & Syrgkanis, 2023;
833 Kennedy, 2023a). Another line of work builds upon specific machine learning methods/ architectures
834 such as regression trees (Wager & Athey, 2018) or neural networks (Johansson et al., 2016; Shalit
835 et al., 2017a; Shi et al., 2019) and adopts them to causal inference. Bayesian alternatives include
836 Bayesian additive regression trees (Hahn et al., 2020) or Gaussian-process counterfactual regression
837 (Alaa & van der Schaar, 2017). However, all of the existing estimators above must be *retrained* for
838 every new dataset. In contrast, our CausalFM allows for pre-trained models to approximate Bayesian
839 causal inference.

840
841 A.1 DIFFERENCES BETWEEN CAUSALFM, CAUSALPFN, AND DO-PFN
842

843 **Identifiability.** CausalFM separates identifiability from estimation. The central motivation of
844 CausalFM is that causal identification (choosing an identifiable setting such as back-door, IV, or
845 front-door) must be handled before estimation. This mirrors classical causal inference practice and
846 ensures that the PFN *only* learns within an identifiable causal setting. Our reasoning for identifiability
847 is as follows:

848 (1) Asymptotically unbiased causal inference: As we show in Theorem 4.3, incorporating identifi-
849 ability assumptions into the prior is *necessary* for asymptotically unbiased causal inference. As a
850 consequence, methods that ignore identifiability assumptions yield biased causal effect estimates,
851 even if we collect large amounts of data. This is highly undesirable in practice.

852 (2) Informative predictive-posterior distributions: If we do not impose any assumption on the DGP,
853 it is well known that causal effect estimation is not just fundamentally biased, but also that this
854 bias can be of arbitrary size. For example, the backdoor-adjustment bias due to omitted unobserved
855 confounding can be written in closed form depending on confounding strength. Thus, if the PFN-
856 prior assigns positive probability mass for DGPs with arbitrary confounding strength, the predictive-
857 posterior must respect the possibility of arbitrarily biased treatment effects, thus rendering PFN-based
858 inference completely noninformative.

859 (3) Clear separation between domain knowledge and statistical inference: One might argue that a
860 possible remedy would be to restrict the PFN prior only to DGPs with somewhat “weak” identifiability
861 violations (e.g., weak unobserved confounding). However, we argue that this would correspond
862 to assumptions/ domain knowledge on the DGP, similar to those in our paper, that must be made
863 transparent for practitioners and could also possibly be violated.

864 In short, our paper follows established causal inference philosophy and separates identifiability from
 865 estimation: the identifiability step (choosing the causal setting) requires careful modeling and usage
 866 of domain knowledge, while the estimation step can be handed over to our CausalFM. If practitioners
 867 suspect identifiability assumptions may be violated, we recommend performing causal sensitivity
 868 analysis to assess the extent of potential violations.

869 In contrast, CausalPFN implicitly assumes *only* back-door adjustment and therefore *cannot* handle IV
 870 or front-door, resulting in bias under unobserved confounding. Do-PFN mixes many causal graphs in
 871 a single prior without conditioning on which setting is identifiable, which, as our Theorem 4.3 shows,
 872 can lead to asymptotically *biased* estimates and non-informative posteriors.

873 **Prior construction.** This philosophy requires a fundamentally different prior construction. Because
 874 identifiability is encoded at the level of causal structure, CausalFM introduces C-SCM priors and
 875 C-DAGs that enforce the assumptions required by each identifiability strategy. Do-PFN does *not*
 876 encode identifiability constraints into the prior family for their prior construction. CausalPFN is
 877 *restricted* solely to back-door adjustment.

878 **Theoretical guarantees.** Beyond this framework, we contribute *new* theoretical results showing
 879 that identifiability must be incorporated into PFN priors. Theorem 4.3 proves that if a PFN prior
 880 places nonzero mass on SCMs that violate the identifiability conditions of the chosen setting, then
 881 the resulting posterior predictive interventional distribution is necessarily misspecified and cannot
 882 yield consistent causal effect estimates, even with infinite data. This explains the empirical behavior
 883 of Do-PFN, which may return non-informative posteriors when its prior includes SCMs with strong
 884 unobserved confounding and no valid instruments. Our theoretical results show that this issue is
 885 structural, not merely an implementation detail.

886 **Empirical performance.** Empirically, our model outperforms others in different settings. Besides,
 887 we also have experiments showing the necessity to have the correct identifiability assumption in the
 888 prior specification.

889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 **B EXAMPLE FOR SCM-PRIORS**

920 Here, we consider the IV setting from Example 3 with additional normality assumption and empty
 921 $X = \emptyset$, i.e., observational distribution $(Z, A, Y) \sim \mathbb{P}_{\text{obs}}$. Let us consider the following class of
 922 SCMs:

923 $U \sim \mathcal{N}(0, 1), \epsilon_Z \sim \mathcal{N}(0, 1), \epsilon_A \sim \mathcal{N}(0, 1), \epsilon_Y \sim \mathcal{N}(0, 1), \quad (10)$

925 $Z = \alpha\epsilon_Z + \kappa U A = \beta Z + \delta\epsilon_A + \gamma U, Y = \zeta A + \eta U + \theta\epsilon_Y, \quad (11)$

926 where U is an unobserved confounder between A and Y , and $\epsilon_Z, \epsilon_A, \epsilon_Y$ are noise variables, and $\alpha, \beta, \gamma, \delta, \zeta, \eta$, and θ are scalars describing the functional dependences between observed and noise
 927 variables. Our causal query is $Q(\mathbb{P}_{\text{int}}) = \mathbb{E}[Y(1)] = \zeta$.

928 **General approach.** The class of SCMs above is compatible with the linear IV setting whenever
 929 it holds that $\kappa = 0$ (independence assumption from Example 3). Hence, we can specify a prior
 930 distribution over this class of SCMs by specifying a distribution Π over $(\alpha, \beta, \gamma, \delta, \zeta, \eta, \theta)$ and setting
 931 $\kappa = 0$. Note that this automatically specifies a distribution over \mathbb{P}_{obs} (by sampling from the SCM)
 932 and \mathbb{P}_{int} (by intervening and setting $A = 1$ in the SCM). Interestingly, this addresses the two
 933 drawbacks of observational priors from above as follows: (i) During the PFN training we can sample
 934 $\mathcal{D}_n \sim \mathbb{P}_{\text{obs}}$ and $y(1) \sim \mathbb{P}_{\text{int}}$ and thus fit $q_\theta(y(1) | \mathcal{D}_n)$ for the interventional outcome (see Sec. 5 for
 935 details). For estimating the causal query we can thus use $Q(q_\theta(y(1) | \mathcal{D}_n))$ and do not need access
 936 to the potentially unknown \bar{Q} . (ii) We can directly control the marginal prior distribution of ζ , thus
 937 remedying the above drawbacks and allowing us more control to incorporate prior information of our
 938 causal query.

939 **Adding identifiability assumptions to the prior.** A key question is whether we should actually
 940 impose the identifiability assumption $\kappa = 0$ when constructing a prior. A different approach would
 941 be to also put a prior on κ , thus taking account the possibility of identifiability violations in the prior.
 942 Such an approach has been proposed by (Robertson et al., 2025), where the authors construct a prior
 943 over many possible causal inference settings simultaneously. *However*, as we show in the following,
 944 this would make consistent Bayesian estimation of the causal query of interest *impossible*, confirming
 945 Theorem 4.3.

946 **Lemma B.1.** *Let $S^* = (\alpha^*, \beta^*, \delta^*, \gamma^*, \zeta^*, \eta^*, \theta^*, \kappa^* = 0)$ be an identified ground-truth SCM. Then
 947 for any causal target $\zeta \neq \zeta^*$ there exists another SCM $S = (\alpha, \beta, \gamma, \delta, \zeta, \eta, \theta, \kappa)$ with $\kappa \neq 0$ that
 948 induces the same observational distribution as S^* .*

949 *Proof.* See Appendix C. □

950 Lemma B.1 has an important consequence: if our prior Π puts positive probability mass on all
 951 possible combinations of $(\alpha, \beta, \gamma, \delta, \zeta, \eta, \theta, \kappa)$, the corresponding posterior $\Pi(\cdot | \mathcal{D}_n)$ will even for
 952 $n \rightarrow \infty$ put positive probability mass on any $\zeta \in \mathbb{R}$, thus being completely non-informative about
 953 the causal target quantity. As a consequence, any Bayesian point estimator using such a prior (e.g., as
 954 in under the approach (Robertson et al., 2025)) will be asymptotically biased.

955 In contrast, we present a different approach to circumvent the above problems: namely, we propose to
 956 construct PFN-priors that incorporate assumptions that allow for identifiability of the causal target
 957 quantity (e.g., setting $\kappa = 0$ in the above example). As such, we follow established philosophy in
 958 causal inference that separates identifiability and estimation steps (Pearl, 2009): the identifiability
 959 step should be established by the practitioner using domain knowledge (e.g., establishing whether a
 960 certain variable is a valid instrument). Once identifiability has been established, we can use Bayesian
 961 modeling and PFN-based models for the *estimation step*.

962 **Which noise variables to model?** A key question that remains is what classes of SCMs we can use
 963 to specify priors for the causal inference setting \mathcal{C} at hand. Indeed, the class of SCMs is non-unique:
 964 as suggested in the main paper, it is not necessary to specify both noise variables ϵ_A and ϵ_Y .

965 **Lemma B.2.** *Let $S^* = (\alpha^*, \beta^*, \gamma^*, \delta^*, \zeta^*, \eta^*, \theta^*)$ be a fixed SCM from the above class with $\text{Var}^*(A | z) > 0$ and $\text{Var}^*(Y | a) > 0$ for all z, a . Then, there exist unique SCMs $S_1 = (\alpha_1, \beta_1, \gamma_1, \delta_1 = 0, \zeta_1, \eta_1, \theta_1)$ and $S_2 = (\alpha_2, \beta_2, \gamma_2, \delta_2, \zeta_2, \eta_2, \theta_2 = 0)$ that induce the same observational distribution
 966 as S^* and thus the same causal query $\zeta_1 = \zeta_2 = \zeta^*$. However, whenever it holds that both $\delta = 0$
 967 and $\theta = 0$, there exists an SCM S^* for which $\zeta \neq \zeta^*$.*

972 *Proof.* See Appendix C. □
973

974 Lemma B.2 implies that it *suffices to specify priors over SCMs without either treatment noise ϵ_A or*

975 *outcome noise ϵ_Y .* However, if we remove both, there exist interventional distributions for which the

976 prior will never put probability mass on the ground-truth causal query, rendering Bayesian inference

977 inconsistent. In the following, we generalize this result to arbitrary SCMs and causal inference

978 settings.

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **C PROOFS**
 1027

1028 **C.1 PROOF OF THEOREM 4.3**
 1029

1030 *Proof of Theorem 4.3.* Assume that $\Pi(\mathcal{S}_0 \in \mathcal{Z}) = w_0 > 0$. Let

$$1031 \mathcal{E}(\mathbb{P}_{\text{obs}}^{\mathcal{Z}}) := \{\mathcal{S} : \mathbb{P}_{\text{obs}}^{\mathcal{Z}} = \mathbb{P}_{\text{obs}}^{\mathcal{S}_0}\}$$

1032 denote the observational equivalence class of \mathcal{Z} . In other words, $\mathcal{E}(\mathbb{P}_{\text{obs}}^{\mathcal{Z}})$ contains exactly those
 1033 SCMs that give rise to the same observational distribution as the models in \mathcal{Z} .
 1034

1035 Choose any pair of distributions $(\mathbb{P}_{\text{obs}}^{\mathcal{W}}, \mathbb{P}_{\text{int}}^{\mathcal{W}}) \in \mathcal{P}_{\text{obs}} \times \mathcal{P}_{\text{int}}$ induced by an SCM \mathcal{W} with $\Pi(\mathcal{W}) > 0$
 1036 and satisfying $\mathbb{P}_{\text{obs}}^{\mathcal{W}} = \mathbb{P}_{\text{obs}}^{\mathcal{Z}}$. Such an SCM \mathcal{W} exists by definition of the equivalence class and has
 1037 positive prior mass by assumption. By identifiability of the causal inference setting \mathcal{C} , it then holds
 1038 for any $\mathcal{S}_0 \in \mathcal{Z}$ that

$$1039 Q(\mathbb{P}_{\text{int}}^{\mathcal{W}}) = \bar{Q}(\mathbb{P}_{\text{obs}}^{\mathcal{W}}) = \bar{Q}(\mathbb{P}_{\text{obs}}^{\mathcal{S}_0}) \neq Q(\mathbb{P}_{\text{int}}^{\mathcal{S}_0}). \quad (12)$$

1040 The key point here is that identifiability fixes the target functional Q uniquely from the observational
 1041 distribution, and therefore the value obtained under \mathcal{W} must differ from the one induced by \mathcal{S}_0
 1042 whenever the latter does not agree with the identified functional.

1043 Now draw data $\mathcal{D}_n \sim \mathbb{P}_{\text{obs}}^{\mathcal{W}}$. For every $\mathcal{S} \in \mathcal{E}(\mathbb{P}_{\text{obs}}^{\mathcal{Z}})$, the observational likelihoods coincide for
 1044 all n because all such models produce the same observational distribution. Hence, the Bayes
 1045 factors between any two models in $\mathcal{E}(\mathbb{P}_{\text{obs}}^{\mathcal{Z}})$ are always equal to 1, regardless of the sample size.
 1046 Consequently,

$$1047 \Pi(\mathcal{S} | \mathcal{D}_n) \propto \Pi(\mathcal{S}) \quad \text{for all } \mathcal{S} \in \mathcal{E}(\mathbb{P}_{\text{obs}}^{\mathcal{Z}}), \text{ all } n.$$

1048 Thus, within the equivalence class, the posterior simply mirrors the prior. Outside the equivalence
 1049 class, however, the likelihood is misspecified, and therefore we know that $\Pi(\mathcal{S} | \mathcal{D}_n) \rightarrow 0$ for
 1050 $\mathcal{S} \notin \mathcal{E}(\mathbb{P}_{\text{obs}}^{\mathcal{Z}})$ as $n \rightarrow \infty$.

1051 We now examine the posterior predictive functional. By the above concentration behavior, we have

$$1052 Q\left(\int \mathbb{P}_{\text{int}}^{\mathcal{S}} \Pi(\mathcal{S} | \mathcal{D}_n) d\mathcal{S}\right) \rightarrow \int_{\mathcal{E}(\mathbb{P}_{\text{obs}}^{\mathcal{S}_0})} Q(\mathbb{P}_{\text{int}}^{\mathcal{S}}) \Pi(\mathcal{S}) d\mathcal{S}, \quad (13)$$

1053 because only models in the equivalence class retain non-vanishing posterior mass.

1054 Within that class, a fraction w_0 of the prior mass lies on \mathcal{Z} , so we can decompose the above limit as

$$1055 \int_{\mathcal{E}(\mathbb{P}_{\text{obs}}^{\mathcal{S}_0})} Q(\mathbb{P}_{\text{int}}^{\mathcal{S}}) \Pi(\mathcal{S}) d\mathcal{S} = w_0 \int_{\mathcal{Z}} Q(\mathbb{P}_{\text{int}}^{\mathcal{S}}) \Pi(\mathcal{S}) d\mathcal{S} + (1 - w_0) Q(\mathbb{P}_{\text{int}}^{\mathcal{W}}), \quad (14)$$

1056 where the remaining mass $(1 - w_0)$ is assigned to models observationally equivalent to \mathcal{Z} but not in
 1057 \mathcal{Z} itself. By (12), the resulting limit cannot equal $Q(\mathbb{P}_{\text{int}}^{\mathcal{W}})$. Hence,

$$1058 \int_{\mathcal{E}(\mathbb{P}_{\text{obs}}^{\mathcal{S}_0})} Q(\mathbb{P}_{\text{int}}^{\mathcal{S}}) \Pi(\mathcal{S}) d\mathcal{S} \neq Q(\mathbb{P}_{\text{int}}^{\mathcal{W}}),$$

1059 which shows that Π is not well-specified for \mathcal{C} . □

1060 **C.2 PROOF OF LEMMA B.1 (LINEAR IV)**
 1061

1062 *Proof of Lemma B.1.* We prove that for any $\zeta \neq \zeta^*$, there exists an SCM $S = (\alpha, \beta, \gamma, \delta, \zeta, \eta, \theta, \kappa \neq 0)$ that induces the same observational distribution as S^* .

1063 **Step 1: Observational distribution of S^***

1064 The observational distribution is characterized by the covariance matrix Σ^* of (Z^*, A^*, Y^*) :

$$1065 \text{Var}(Z^*) = (\alpha^*)^2 \quad (15)$$

$$1066 \text{Cov}(Z^*, A^*) = (\alpha^*)^2 \beta^* \quad (16)$$

$$1067 \text{Var}(A^*) = (\alpha^* \beta^*)^2 + (\delta^*)^2 + (\gamma^*)^2 \quad (17)$$

$$1068 \text{Cov}(Z^*, Y^*) = \zeta^* (\alpha^*)^2 \beta^* \quad (18)$$

$$1069 \text{Cov}(A^*, Y^*) = \zeta^* [(\alpha^* \beta^*)^2 + (\delta^*)^2 + (\gamma^*)^2] + \eta^* \gamma^* \quad (19)$$

$$1070 \text{Var}(Y^*) = \zeta^{*2} [(\alpha^* \beta^*)^2 + (\delta^*)^2 + (\gamma^*)^2] + 2\zeta^* \eta^* \gamma^* + (\eta^*)^2 \quad (20)$$

1080 **Step 2: Construction of alternative SCM S**
10811082 The covariance matrix Σ has elements:

1083 $\text{Var}(Z) = \alpha^2 + \kappa^2 \quad (21)$
1084

1085 $\text{Cov}(Z, A) = \alpha^2\beta + \kappa(\kappa\beta + \gamma) \quad (22)$
1086

1087 $\text{Var}(A) = (\alpha\beta)^2 + (\kappa\beta + \gamma)^2 + \delta^2 \quad (23)$
1088

1089 $\text{Cov}(Z, Y) = \zeta(\alpha^2\beta + \kappa(\kappa\beta + \gamma)) + \eta\kappa \quad (24)$
1090

1091 $\text{Cov}(A, Y) = \zeta[(\alpha\beta)^2 + (\kappa\beta + \gamma)^2 + \delta^2] + \eta(\kappa\beta + \gamma) \quad (25)$
1092

1093 $\text{Var}(Y) = \zeta^2[(\alpha\beta)^2 + (\kappa\beta + \gamma)^2 + \delta^2] + 2\zeta\eta(\kappa\beta + \gamma) + \eta^2 + \theta^2 \quad (26)$

1094 **Step 3: Parameter matching**
10951096 To achieve $\Sigma = \Sigma^*$, we need:

1097 $\alpha^2 + \kappa^2 = (\alpha^*)^2 \quad (27)$
1098

1099 $\alpha^2\beta + \kappa(\kappa\beta + \gamma) = (\alpha^*)^2\beta^* \quad (28)$
1100

1101 $(\alpha\beta)^2 + (\kappa\beta + \gamma)^2 + \delta^2 = (\alpha^*\beta^*)^2 + (\delta^*)^2 + (\gamma^*)^2 \quad (29)$
1102

1103 $\zeta(\alpha^2\beta + \kappa(\kappa\beta + \gamma)) + \eta\kappa = \zeta^*(\alpha^*)^2\beta^* \quad (30)$
1104

1105 $\zeta[(\alpha\beta)^2 + (\kappa\beta + \gamma)^2 + \delta^2] + \eta(\kappa\beta + \gamma) = \zeta^*[(\alpha^*\beta^*)^2 + (\delta^*)^2 + (\gamma^*)^2] + \eta^*\gamma^* \quad (31)$
1106

1107 $\zeta^2[(\alpha\beta)^2 + (\kappa\beta + \gamma)^2 + \delta^2] + 2\zeta\eta(\kappa\beta + \gamma) + \eta^2 + \theta^2 = (\text{Var}(Y^*)) \quad (32)$

1108 **Step 4: Solution construction**
11091110 We choose $\kappa \neq 0$ such that $|\kappa| < |\alpha^*|$. We set

1111 $\alpha = \sqrt{(\alpha^*)^2 - \kappa^2}, \quad (33)$
1112

1113 $\beta = \frac{(\alpha^*)^2\beta^*}{\alpha^2 + \kappa^2} = \beta^* \quad (\text{from (27) and (28)}), \quad (34)$
1114

1115 $\delta = \delta^*, \quad (35)$
1116

1117 $\kappa\beta + \gamma = \pm\sqrt{(\gamma^*)^2 - (\alpha^*\beta^*)^2 + (\alpha\beta)^2} \quad (\text{from (29)}). \quad (36)$
1118

1119 Since $\alpha\beta = \alpha\beta^* = \frac{\alpha}{\alpha^*}\alpha^*\beta^*$, we have .
1120

1121 $\alpha\beta)^2 = \frac{\alpha^2}{(\alpha^*)^2}(\alpha^*\beta^*)^2 = \frac{(\alpha^*)^2 - \kappa^2}{(\alpha^*)^2}(\alpha^*\beta^*)^2. \quad (37)$
1122

1123 Therefore, we have
1124

1125
$$\kappa\beta + \gamma = \pm\sqrt{(\gamma^*)^2 + \frac{\kappa^2}{(\alpha^*)^2}(\alpha^*\beta^*)^2}. \quad (38)$$

1126

1127 From Eq. (30) and Eq. (31), we can solve for η via
1128

1129
$$\eta = \frac{\zeta^*(\alpha^*)^2\beta^* - \zeta(\alpha^2\beta + \kappa(\kappa\beta + \gamma))}{\kappa}. \quad (39)$$

1130

1131 Finally, θ is determined from Eq. (32).
11321133 **Step 5: Existence Verification**
11341135 The system has 8 parameters $(\alpha, \beta, \gamma, \delta, \zeta, \eta, \theta, \kappa)$ and 6 constraints (the 6 unique entries of the
1136 covariance matrix). Since $\zeta \neq \zeta^*$ is fixed and $\kappa \neq 0$ is chosen, we have 6 remaining parameters
1137 for 6 constraints. The key observation is that the introduction of confounding ($\kappa \neq 0$) creates
1138 additional correlation structures that can compensate for the change in the causal effect ζ , allowing
1139 the observational distribution to remain unchanged.
1140

□

1134 *Proof of Lemma B.2.* Let $\mathcal{S} = (\alpha, \beta, \gamma, \delta, \zeta, \eta, \theta)$ be any SCM from the linear IV class in Eq. (10).
 1135 Then, the following coefficients are identified via observational data alone:

$$1136 \quad \alpha = \sqrt{\text{Var}(Z)}, \quad (40a)$$

$$1138 \quad \beta = \mathbb{E}[Y | Z = 1], \quad (40b)$$

$$1139 \quad \zeta = \frac{\zeta\beta}{\beta} = \frac{\mathbb{E}[\zeta(\beta + \delta\epsilon_A)] - \mathbb{E}[\zeta(\delta\epsilon_A)]}{\beta} = \frac{\mathbb{E}[Y | Z = 1] - \mathbb{E}[Y | Z = 0]}{\mathbb{E}[A | Z = 1] - \mathbb{E}[A | Z = 0]} \quad (40c)$$

1141 as well as the combination of coefficients

$$1143 \quad \delta^2 + \gamma^2 = \text{Var}(A | Z), \quad \text{and} \quad \eta^2 + \theta^2 = \text{Var}(Y | A) \quad (41)$$

1144 and the back-door adjustment

$$1145 \quad \mathbb{E}[Y | A = 1] - \mathbb{E}[Y | A = 0] = \zeta + \eta(\mathbb{E}[U | A = 1] - \mathbb{E}[U | A = 0]) \quad (42)$$

$$1147 \quad = \zeta + \frac{\eta\gamma}{\gamma^2 + \delta^2 + (\beta\alpha)^2}. \quad (43)$$

1148 Note that the back-door adjustment is biased for ζ due to unobserved confounding.

1150 **Noiseless treatment case.** Let now $\mathcal{S}^* = (\alpha^*, \beta^*, \gamma^*, \delta^*, \zeta^*, \eta^*, \theta^*)$ denote an arbitrary fixed SCM
 1151 from the linear IV class. We start by constructing $\mathcal{S}_1 = (\alpha_1, \beta_1, \gamma_1, \delta_1 = 0, \zeta_1, \eta_1, \theta_1)$ such that
 1152 $\mathbb{P}_{\text{obs}}^{\mathcal{S}_1} = \mathbb{P}_{\text{obs}}^{\mathcal{S}^*}$. Because of Eq. (40), we set

$$1153 \quad \alpha_1 = \alpha^*, \beta_1 = \beta^*, \zeta_1 = \zeta^*. \quad (44)$$

1155 Furthermore, setting $\delta_1 = 0$ implies due to Eq. (41) that

$$1156 \quad \gamma_1^2 = \delta^{*2} + \gamma^{*2}. \quad (45)$$

1158 Due to Eq. (42), it must holds that

$$1159 \quad \frac{\eta_1\gamma_1}{\gamma_1^2 + (\beta_1\alpha_1)^2} = \frac{\eta^*\gamma^*}{\delta^{*2} + \gamma^{*2} + (\beta^*\alpha^*)^2}, \quad (46)$$

1162 which implies that

$$1163 \quad \eta_1^2 = \frac{\eta^{*2}\gamma^{*2}}{\delta^{*2} + \gamma^{*2}}. \quad (47)$$

1165 Finally, due to Eq. (41), we yield

$$1166 \quad \theta_1^2 = \eta^{*2} + \theta^{*2} - \frac{\eta^{*2}\gamma^{*2}}{\delta^{*2} + \gamma^{*2}}, \quad (48)$$

1168 which means that every parameter of \mathcal{S}_1 has a unique solution in terms of parameters of \mathcal{S}^* under the
 1169 constraints of preserving the observational distribution.

1171 **Noiseless outcome case.** We now construct $\mathcal{S}_2 = (\alpha_2, \beta_2, \gamma_2, \delta_2, \zeta_2, \eta_2, \theta_2 = 0)$ such that $\mathbb{P}_{\text{obs}}^{\mathcal{S}_2} =$
 1172 $\mathbb{P}_{\text{obs}}^{\mathcal{S}^*}$. Again, Eq. (40) implies that

$$1173 \quad \alpha_2 = \alpha^*, \beta_2 = \beta^*, \zeta_2 = \zeta^*, \quad (49)$$

1175 and setting $\theta_2 = 0$ implies due to Eq. (41) that

$$1176 \quad \eta_2^2 = \eta^{*2} + \theta^{*2}. \quad (50)$$

1178 Due to Eq. (42), it must holds that $\frac{\eta\gamma}{\gamma^2 + \delta^2 + (\beta\alpha)^2} = \frac{\eta\gamma}{\delta^{*2} + \gamma^{*2} + (\beta^*\alpha^*)^2}$ which implies that

$$1180 \quad \gamma_2^2 = \frac{\eta^{*2}\gamma^{*2}}{\eta^{*2} + \theta^{*2}}. \quad (51)$$

1182 Finally, due to Eq. (41), we have

$$1184 \quad \delta^2 = \eta^{*2} + \gamma^{*2} - \frac{\eta^{*2}\gamma^{*2}}{\eta^{*2} + \theta^{*2}}, \quad (52)$$

1186 which means that every parameter of \mathcal{S}_2 has a unique solution in terms of parameters of \mathcal{S}^* under the
 1187 constraints of preserving the observational distribution. \square

1188
1189

D IMPLEMENTATION DETAILS

1190
1191

D.1 IMPLEMENTATION DETAILS OF DATA PRIOR

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

Data Prior. (i) For each covariate cluster C_i containing latent nodes, we sample a random MLP-style graph over $\text{pa}(C_i)$ by drawing biases and edge-weights from Π_{C_i} and then pruning edges at random to ensure acyclicity. We evaluate this graph with tanh activations and noise (from normal, uniform, Laplace, or logistic distribution) to produce continuous features, then apply randomized thresholds to discretize or binarize a subset, yielding mixed-type covariates via our unstructured BNN prior. (ii) For treatment (and outcome) clusters C_j of purely observed nodes, we instantiate a second BNN $f_\theta^{(j)}$ over $\text{pa}(C_j)$ (with $\theta \sim \Pi_{C_j}$ and the same acyclicity constraint). We forward-propagate the covariates through $f_\theta^{(j)}$ with injected noise to compute a scalar propensity score, then threshold to assign a binary treatment. We forward-propagate both covariates and treatment to obtain potential outcomes. The resulting treatment (and outcome) are sampled from our structured BNN prior.

1202
1203
1204
1205
1206
1207
1208
1209

We sample covariates from a DAG-structured SCM by drawing a random MLP-like directed graph and assigning each node a bias, edge weights sampled from prior distributions. The resulting MLP-like graph is transformed into a DAG by randomly dropping edges, and structural equations with tanh activations and heterogeneous noise distributions (normal, uniform, Laplace, or logistic) generate continuous features. Then we apply a randomized feature transformation that discretizes some features and binarizes others, yielding mixed-type covariates. Next, we assign binary treatments via a separate randomly instantiated MLP and forward-propagate each covariate with injected noise to compute a propensity score.

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

Input format. CausalFM operates as an in-context learner like other foundation models, meaning it approximates Bayesian inference by conditioning on a dataset provided in its context window. Therefore, it requires an entire dataset to make predictions for specific query samples. (1) Input structure: The model accepts a dataset $\mathcal{D}_n = \{(x_i, a_i, y_i)\}_{i=1}^n$ acting as the context (or support set) and a query point x_{query} (or a batch of query points). (2) Mechanism: The transformer processes the entire sequence of observed data \mathcal{D}_n using self-attention to extract context-dependent representations. It then outputs the posterior predictive distribution for the causal quantity (e.g., CATE given the context \mathcal{D}_n and the specific query x_{query}). (3) Comparison to fine-tuning baselines: In practice, standard baselines require an explicit training phase on a training set before evaluation. In contrast, CausalFM takes the “training” data as the input context (support set) and directly generates predictions for the test data (query set) in a single forward pass.

1221
1222

D.2 IMPLEMENTATION DETAILS OF OUR METHOD

1223
1224
1225
1226
1227
1228
1229
1230

We encode observational data as tokens, and the embedded tokens are then processed through a transformer where attention is applied between the observations. We use transformer-based PFN as an encoder to extract a task- or context-dependent representation from input data. This representation is then passed to a Gaussian mixture model (GMM) head, which predicts the parameters of a GMM, including mixture weights, means, and standard deviations. The model outputs a mixture distribution over the target variable, and is trained end-to-end using the negative log-likelihood (NLL) of the observed targets under the predicted GMM. This enables uncertainty-aware and multi-modal predictions while leveraging the few-shot generalization capabilities of our model.

1231
1232
1233
1234
1235
1236

We instantiate a per-feature transformer tailored to CATE estimation. For a mini-batch with sequence length $S = S_{\text{supp}} + S_{\text{query}}$ (query set followed by support set). Confounders $X \in \mathbb{R}^{S \times B \times F_x}$, treatment $A \in \mathbb{R}^{S \times B \times F_a}$, and factual outcomes $Y \in \mathbb{R}^{S \times B \times F_y}$ are encoded as tokens. To prevent label leakage, we split at $S_{\text{supp}} = \lfloor 0.8 S \rfloor$ and set $A_t = \text{NaN}$ and $Y_t = \text{NaN}$ for $t \geq S_{\text{supp}}$ (on the query set). The model thus observes (X, A, Y) on support steps and learn to infer CATEs for the query set from X only.

1237
1238
1239
1240
1241

The X stream uses a feature encoder, while A and Y pass through a NaN-indicator handler followed by feature projections. We concatenate the three streams along the token axis to obtain $H_0 \in \mathbb{R}^{B \times S \times (F_g+2) \times E}$, add a feature-token positional embedding, and process H_0 with L transformer encoder blocks (self-attention only). We pool over tokens to produce feature $Z \in \mathbb{R}^{B \times S \times E}$. After lightweight MLP maps Z to a scalar, a 1D K -component GMM head outputs mixture parameters (π, μ, σ) via $\pi = \text{softmax}(W_\pi z / T)$, $\mu = W_\mu z$, $\sigma = \text{softplus}(W_\sigma z) + \varepsilon$, for each $z \in \mathbb{R}^E$. Our

1242 training loss is the Gaussian-mixture negative log-likelihood (GMM-NLL). We thus obtain the
 1243 distribution

$$1244 \quad 1245 \quad p(\tau \mid x) = \sum_{k=1}^K \pi_k(x) \mathcal{N}(\mu_k(x), \sigma_k^2(x)) \quad (53)$$

1246 And the CATE can be computed through
 1247

$$1248 \quad 1249 \quad \hat{\tau}(x) = \mathbb{E}[\tau \mid x] = \sum_{k=1}^K \pi_k(x) \mu_k(x) \quad (54)$$

1252 We use embedding size $E = 128$, $n_{\text{heads}} = 4$, feed-forward dimension $4E$, $L = 10$ encoder layers,
 1253 GELU activations, and feature grouping size = 1 (per-feature tokens). For the GMM head we set
 1254 $K = 5$, temperature $T = 1.0$, and variance floor $\varepsilon = 10^{-3}$. We train with Adam (learning rate 10^{-3} ,
 1255 weight decay 10^{-5}), batch size 16, and up to 150 epochs. We use early stopping on validation loss.
 1256 Empirically, the total training time for causalFM model is about 24 hours on an NVIDIA A100 GPU.

1257 We implement our CausalFM using PyTorch. Our model implementation builds upon the TabPFN
 1258 architecture (Hollmann et al., 2023) from [https://github.com/PriorLabs/TabPFN/](https://github.com/PriorLabs/TabPFN/tree/main)
 1259 tree/main.

1261 D.3 IMPLEMENTATION DETAILS OF BASELINES

1263 For the standard CATE setting baselines, we follow the implementation from <https://github.com/AliciaCurth/CATENets/tree/main> for most of the CATE estimators, including S-
 1264 learner (Künzel et al., 2019), T-learner (Künzel et al., 2019), TARNet (Shalit et al., 2017b), X-
 1265 leaner (Künzel et al., 2019), DR-learner (Kennedy, 2023b), RA-learner (Curth & van der Schaar,
 1266 2021). For the foundation model baselines, we follow the author implementation from <https://github.com/vdb1m/CausalPFN/tree/main> for CausalPFN (Balazadeh et al., 2025); we
 1267 follow the author implementation from <https://github.com/jr2021/Do-PFN> for DoPFN
 1268 (Robertson et al., 2025).

1269 For the IV setting, we follow the implementation from <https://github.com/DennisFrauen/MRIV-Net/tree/main/models> for the most of the IV methods, in-
 1270 cluding KIV (Singh et al., 2019), DFIV (Xu et al., 2021), DeepIV (Hartford et al., 2017), DeepGMM
 1271 (Bennett et al., 2019), DMLIV (Syrgkanis et al., 2019). For each dataset and method, we evaluated 5
 1272 repetitions, each with a different random seed. All methods used the same train-test split.

1296 **E SYNTHETIC DATA GENERATION FOR THE STANDARD CATE ESTIMATION**
 1297 **SETTING**
 1298

1299 We construct the standard CATE estimation datasets by sampling covariates X , treatment A , and
 1300 continuous outcomes Y . The design induces rich nonlinearity while preserving strong ignorability
 1301 ($A \perp\!\!\!\perp \{Y(0), Y(1)\} \mid X$).
 1302

1303 **E.1 COVARIATES VIA A DAG-STRUCTURED SCM**
 1304

1305 We first sample a layered directed graph (an MLP-like DAG), then evaluate a structural causal model
 1306 (SCM) on its nodes and expose a random subset as observed features.
 1307

1308 **Graph.** Sample number of layers L_X and hidden size H_X from simple discrete priors (see ‘‘Hyper-
 1309 parameters’’ below). Build a layered graph with H_X nodes per layer and fully connect layer ℓ to $\ell+1$.
 1310 Randomly drop a fraction p_{drop}^X of inter-layer edges to sparsify while keeping acyclicity.
 1311

1312 **Node equations and noise.** For each node j , sample weights $\{w_{jk}\}_{k \in \text{pa}(j)}$, bias b_j , and an
 1313 exogenous noise distribution $\varepsilon_j \sim \mathcal{D}_j$, where \mathcal{D}_j is drawn from a meta-prior over {Normal, Uniform,
 1314 Laplace, Logistic} with a random scale. Nodes are evaluated in topological order:

$$s_j = \sum_{k \in \text{pa}(j)} w_{jk} x_k + b_j + \varepsilon_j, \quad x_j = \tanh(s_j), \quad (55)$$

1315 with the convention $\sum_{k \in \emptyset} (\cdot) = 0$ for roots. Let $U_X = \{\varepsilon_j\}$ denote the collection of all node noises.
 1316

1320 **Observed features.** Sample a feature index set $\mathcal{F} \subseteq V$ with $|\mathcal{F}| = d$ uniformly from all graph
 1321 nodes. A single observation $X \in \mathbb{R}^d$ is obtained by re-sampling U_X , evaluating (55) over the DAG,
 1322 and reading out $X = (x_j)_{j \in \mathcal{F}}$. Each sample uses independent U_X .
 1323

1324 **Feature typing and transformations (Optional).** Each selected feature x_j is assigned a random
 1325 type from {continuous, binary, categorical}. Continuous features are kept in their raw form $x_j \in$
 1326 $(-1, 1)$. Binary features are obtained by mapping x_j through a logistic function and drawing a
 1327 Bernoulli sample. For categorical features, we first sample a base distribution $\pi^0 \in \Delta^{K-1}$ over K
 1328 categories from a Dirichlet prior. To make the distribution depend on the DAG value x_j , we introduce
 1329 a fixed direction vector $v \in \mathbb{R}^K$ (normalized) and scale $\alpha > 0$, and form

$$\pi(x_j) = \text{softmax}(\log \pi^0 + \alpha x_j v). \quad (56)$$

1330 The observed categorical feature is then sampled as $X_i \sim \text{Categorical}(\pi(x_j))$.
 1331

1332 **E.2 TREATMENT ASSIGNMENT**
 1333

1335 Given X , we compute a stochastic logit via a feed-forward network with layer-wise exogenous noise
 1336 and then sample a Bernoulli treatment $A \sim f_A(X, U_A)$.
 1337

1338 **Network.** Sample depth $L_A \geq 3$ and hidden width H_A . Let $h^{(0)} = X \in \mathbb{R}^d$ be the input layer. For
 1339 hidden layers $\ell = 1, \dots, L_A - 1$,
 1340

$$s^{(\ell)} = W^{(\ell)} h^{(\ell-1)} + b^{(\ell)} + \varepsilon^{(\ell)}, \quad h^{(\ell)} = \tanh(s^{(\ell)}), \quad (57)$$

1341 and the (scalar) output logit
 1342

$$s_A = w^\top h^{(L_A-1)} + b + \varepsilon^{(L_A)}. \quad (58)$$

1343 We define the propensity $p = \sigma(s_A)$ and sample
 1344

$$A \sim \text{Bernoulli}(p). \quad (59)$$

1345 Let $U_A = (\varepsilon_{\ell=1}^{(L_A)},, U_B)$ collect all exogenous noises of the network and the random variable U_B
 1346 used for the Bernoulli sampling.
 1347

1350 E.3 CONTINUOUS OUTCOME
13511352 For each unit, we compute the potential outcomes $Y(0)$ and $Y(1)$ using the *same* exogenous noise
1353 U_Y .
13541355 **Network.** Sample depth $L_Y \geq 3$ and width H_Y ; optionally drop a fraction p_{drop}^Y of hidden edges to
1356 induce sparsity. For a given treatment level $a \in \{0, 1\}$, the input is X and A , then for hidden layers
1357

1358
$$t^{(\ell)}(a) = V^{(\ell)} h^{(\ell-1)}(a) + c^{(\ell)} + \xi^{(\ell)}, \quad h^{(\ell)}(a) = \tanh(t^{(\ell)}(a)), \quad (60)$$

1359 with $h^{(0)}(a) = [X, a]$, and the scalar output logit
1360

1361
$$Y(a) = v^\top h^{(L_Y-1)}(a) + c + \xi^{(L_Y)}. \quad (61)$$

1362 The factual outcome is
1363

1364
$$Y = AY(1) + (1 - A)Y(0) \quad (62)$$

1365 Let $U_Y = \{\xi^{(\ell)}\}_{\ell=1}^{L_Y}$ denote outcome-network noises; *the same* U_Y *is reused when constructing* $Y(0)$
1366 *and* $Y(1)$ *for the same unit.*
13671368 E.4 INDEPENDENCE AND IDENTIFICATION
13691370 All exogenous noises are sampled independently across mechanisms and samples: $U_X \perp U_A \perp U_Y$
1371 and i.i.d. across units. Hence strong ignorability holds:
1372

1373
$$A \perp\!\!\!\perp \{Y(0), Y(1)\} \mid X, \quad 0 < \Pr(A=1 \mid X) < 1, \quad (63)$$

1374 with overlap ensured by the sigmoid in (58) to (59).
13751376 E.5 HYPERPARAMETERS AND PRIORS (AS USED IN OUR CODE)
13771378 We use simple, reproducible priors for architecture, weights, and noises:
13791380

- **Covariate DAG:** $L_X \sim \text{Unif}\{3, 4, 5, 6\}$, $H_X \sim \text{Unif}\{15, \dots, 40\}$, edge-drop $p_{\text{drop}}^X = 0.5$.
- **Treatment net:** $L_A \sim \text{Unif}\{3, 4\}$, $H_A \sim \text{Unif}\{8, \dots, 20\}$.
- **Outcome net:** $L_Y \sim \text{Unif}\{3, 4, 5\}$, $H_Y \sim \text{Unif}\{10, \dots, 25\}$, edge-drop $p_{\text{drop}}^Y = 0.4$.
- **Weights/biases:** i.i.d. $w, b \sim \mathcal{N}(0, \sigma_w^2)$ with task-specific σ_w .
- **Node noises:** for each node, draw a type in {Normal, Uniform, Laplace, Logistic} and a scale from a wide range; sample fresh noises per unit and layer as in (55), (57)–(58), (60)–(61).
- **Activation:** \tanh for all hidden layers; output layers are linear (logits).
- **Features observed:** choose \mathcal{F} uniformly at random from all DAG nodes, $|\mathcal{F}| = d$.

1388 E.6 GENERATION PIPELINE
13891390 For each dataset:
13911392

1. Sample the covariate DAG, parameters, and noises; for each unit, evaluate the DAG in topological order to obtain X by reading nodes in \mathcal{F} .
2. Given X , construct the treatment network with U_A to get p and sample $A \sim \text{Bernoulli}(p)$.
3. For outcomes, sample U_Y once per unit and use it to compute $Y(0)$ and $Y(1)$ via (61).

1393 E.7 SYNTHETIC DATASETS SIZE
13941395 We sample 10000 synthetic training datasets from data prior with different data generation mechanism.
1396 Each training datasets contain 1024 data samples. The feature dimensions are also different across
1397 the datasets, ranging from 10 to 100. The features are mixed data type with continuous, binary and
1398 categorical.
1399

1404 **F SYNTHETIC DATA GENERATION FOR THE INSTRUMENTAL VARIABLES (IV)**
 1405 **SETTING**
 1406

1407 We aim at estimating CATEs from observational data under unobserved confounding using IVs.
 1408 In contrast to the standard CATE setting, where strong unconfoundedness holds, our IV datasets
 1409 intentionally violate unconfoundedness by introducing an unobserved confounder U that affects both
 1410 treatment A and outcome Y . Identification is instead driven by an instrument Z that (i) is relevant
 1411 for A , (ii) has no direct path to Y beyond A (exclusion), and (iii) is conditionally independent of U
 1412 given X .
 1413

1414 **Key differences vs. standard CATE.** (i) *Ignorability is broken*: $A \not\perp\!\!\!\perp \{Y(0), Y(1)\} \mid X$ due
 1415 to $U \rightarrow A$ and $U \rightarrow Y$. (ii) We introduce an *instrument* Z with $Z \perp\!\!\!\perp U \mid X$, $Z \not\perp\!\!\!\perp A \mid X$,
 1416 and no $Z \rightarrow Y$ edge (exclusion). (iii) Outcomes are generated via an *additive* structural form
 1417 $Y = f(X, A) + g(X, U) + \varepsilon_Y$ with f and g deterministic neural networks; the same ε_Y is reused
 1418 across $Y(0)$ and $Y(1)$ for a unit to ensure counterfactual consistency.
 1419

1420 **F.1 COVARIATES AND LATENT CONFOUNDERS VIA A DAG-STRUCTURED SCM**
 1421

1422 We reuse the DAG-SCM from the standard setting to produce a wide set of base variables W , then
 1423 split it into observed covariates X and unobserved confounders U . Thus we have different strength
 1424 of the unobserved confounders from weak to sufficiently strong.
 1425

1426 **Graph and node equations.** Sample number of layers L_X and hidden size H_X , build a layered
 1427 DAG (fully connect layer ℓ to $\ell+1$), and drop a fraction p_{drop}^X of inter-layer edges to sparsify. For
 1428 each node j , sample weights $\{w_{jk}\}_{k \in \text{pa}(j)}$, bias b_j , and a node-specific exogenous noise $\varepsilon_j \sim \mathcal{D}_j$
 1429 (type and scale drawn once per node). Evaluate in topological order

$$s_j = \sum_{k \in \text{pa}(j)} w_{jk} v_k + b_j + \varepsilon_j, \quad v_j = \tanh(s_j). \quad (64)$$

1430 Draw a feature index set for $W = (v_j)$ with $|W| = d_X + d_U^{\max}$, and then sample the actual confounder
 1431 dimension $d_U \in \{2, \dots, 5\}$ uniformly. Split $U \in \mathbb{R}^{d_U}$ from the first d_U coordinates of W , $X \in \mathbb{R}^{d_X}$ from the next d_X coordinates. Node noises $\{\varepsilon_j\}$ are drawn independently per unit.
 1432

1433 **F.2 INSTRUMENT VARIABLE**
 1434

1435 We generate Z from X only, ensuring $Z \perp\!\!\!\perp U \mid X$ by construction and precluding any direct $U \rightarrow Z$
 1436 path. Let ϕ_Z be a feed-forward network with input X and no layer-wise exogenous noise; the network
 1437 parameters are sampled once per dataset and then fixed. For a unit with covariates X ,

$$s_Z = \phi_Z(X), \quad Z = \begin{cases} \text{Bernoulli}(\sigma(s_Z)), & \text{binary instrument,} \\ s_Z, & \text{continuous instrument.} \end{cases} \quad (65)$$

1438 We randomly choose between the binary and continuous variants when creating datasets. Relevance
 1439 is induced via the $Z \rightarrow A$ path in the treatment mechanism below.
 1440

1441 Note that the instrument variable Z has a direct influence on the treatment A , but does not have a
 1442 direct effect on the outcome Y .
 1443

1444 **F.3 TREATMENT VARIABLE**
 1445

1446 Given (X, Z, U) , treatment is generated via a deterministic network ϕ_A followed by a Bernoulli draw.
 1447 There is *no* layer-wise noise inside ϕ_A ; the only randomness is the terminal Bernoulli. For a unit,
 1448

$$s_A = \phi_A([X; Z; U]), \quad p = \sigma(s_A), \quad A \sim \text{Bernoulli}(p). \quad (66)$$

1449 This introduces $U \rightarrow A$ and hence breaks ignorability, while maintaining $Z \perp\!\!\!\perp U \mid X$ and $Z \rightarrow A$
 1450 relevance.
 1451

1458 F.4 OUTCOME VARIABLES
1459

1460 The instrument variable Z has no direct effect on the outcomes. Outcomes are generated additively
1461 from a treatment channel f and a confounding channel g , both deterministic MLPs with inputs $[X; A]$
1462 and $[X; U]$, respectively. Let $\varepsilon_Y \sim \mathcal{N}(0, \sigma_Y^2)$ be an i.i.d. scalar noise drawn once per unit,

$$1463 \quad Y(a) = f(X, a) + g(X, U) + \varepsilon_Y, \quad a \in \{0, 1\}, \quad (67)$$

$$1465 \quad Y = A Y(1) + (1 - A) Y(0). \quad (68)$$

1466 By construction there is no $Z \rightarrow Y$ edge (exclusion), since Z influences Y only through A .
1467

1468 F.5 INDEPENDENCE AND IDENTIFICATION (IV)
1469

1470 All exogenous noises are sampled independently across units and mechanisms. The IV conditions
1471 hold by construction,

$$1472 \quad (\text{Independence}) \quad Z \perp U \mid X, \quad (69)$$

$$1474 \quad (\text{Exclusion}) \quad Y(a) \text{ depends on } X, a, U \text{ and } \varepsilon_Y \text{ only (no } Z\text{),} \quad (70)$$

$$1475 \quad (\text{Relevance}) \quad Z \not\perp A \mid X. \quad (71)$$

1477 F.6 HYPERPARAMETERS AND PRIORS
1478

1479 We use simple priors mirroring our implementation:

- 1480 • **DAG-SCM for (X, U) :** $L_X \sim \text{Unif}\{2, 3, 4, 5\}$, $H_X \sim \text{Unif}\{10, \dots, 50\}$, edge-drop
1481 $p_{\text{drop}}=0.4$; node noises ε_j draw a type in {Normal, Uniform, Laplace, Logistic} with
1482 random scale.
- 1483 • **Instrument net ϕ_Z :** depth $L_Z \geq 3$, width $H_Z \sim \text{Unif}\{8, \dots, 30\}$; output is either
1484 Bernoulli with $\sigma(s_Z)$ (binary Z) or real-valued s_Z (continuous Z); no layer-wise noise.
- 1485 • **Treatment net ϕ_A :** depth $L_A \geq 3$, width $H_A \sim \text{Unif}\{8, \dots, 30\}$; no layer-wise noise;
1486 $A \sim \text{Bernoulli}(\sigma(s_A))$.
- 1487 • **Outcome nets f, g :** depths $L_f, L_g \sim \text{Unif}\{3, \dots, 6\}$, widths $H_f, H_g \sim$
1488 $\text{Unif}\{10, \dots, 25\}$; $\varepsilon_Y \sim \mathcal{N}(0, \sigma_Y^2)$ with $\sigma_Y = 0.5$ by default.
- 1489 • **Weights/biases:** i.i.d. $w, b \sim \mathcal{N}(0, 1)$ sampled once per dataset; tanh activations.
- 1490 • **Strength:** $d_U \sim \text{Unif}\{2, \dots, 5\}$.

1493 F.7 GENERATION PIPELINE (IV)
1494

1495 For each dataset, we execute:

- 1497 1. Sample the covariate DAG and parameters; for each unit, evaluate (64) to obtain a wide
1498 matrix then split it into (U, X) .
- 1499 2. Given X , compute the instrument Z via (65) (binary or continuous and mixed).
- 1500 3. Given (X, Z, U) , compute the treatment propensity $p = \sigma(s_A)$ via (66) and sample $A \sim$
1501 Bernoulli(p).
- 1502 4. Draw a single ε_Y per unit and compute $Y(0), Y(1)$ using (67); set the factual outcome
1503 by (68).

1505 This yields datasets matching the classical IV graph and enabling evaluation of IV estimators.
1506

1507
1508
1509
1510
1511

1512 **G SYNTHETIC DATA GENERATION FOR THE FRONT-DOOR-ADJUSTED SETTING**
15131514 **G.1 FRONT-DOOR ADJUSTMENT DATASETS**
15151516 We next construct datasets satisfying the *front-door* criterion. Besides covariates X , treatment A ,
1517 and continuous outcomes Y , we introduce a mediator M . The design ensures that A affects Y only
1518 through M (no direct $A \rightarrow Y$ path), U (unobserved) confounds A and Y but does not affect M .
15191520 **Covariates via a DAG-structured SCM.** Identical to the standard setting: we sample a layered
1521 DAG, draw node-wise weights/biases/noise, evaluate in topological order as in (55), and expose d
1522 node values as observed features $X \in \mathbb{R}^d$. Independent exogenous noises $U_X = \{\varepsilon_j\}$ are re-sampled
1523 per unit.
15241525 **Latent confounders.** From the same SCM evaluation we also retain q additional node values as
1526 unobserved confounders $U \in \mathbb{R}^q$ (not revealed to learners). These induce confounding between A
1527 and Y .
15281529 **G.1.1 TREATMENT ASSIGNMENT WITH LATENT CONFOUNDING**
15301531 Given (X, U) , we sample a feed-forward network and generate treatment. Let $L_A \geq 3$ and H_A be the
1532 depth and width, respectively. With $h^{(0)} = [X, U]$,

1533
$$s_A^{(\ell)} = W_A^{(\ell)} h^{(\ell-1)} + b_A^{(\ell)}, \quad h^{(\ell)} = \tanh(s_A^{(\ell)}), \quad \ell = 1, \dots, L_A - 1, \quad (72)$$

1534

1535 and scalar logit
1536

1537
$$\tilde{s}_A = w_A^\top h^{(L_A-1)} + b_A, \quad p = \sigma(\tilde{s}_A), \quad A \sim \text{Bernoulli}(p). \quad (73)$$

1538

1539 **G.1.2 MEDIATOR MECHANISM**
15401541 The mediator is generated from (X, A) only, thereby enforcing the front-door exclusion $U \not\rightarrow M$.
1542 Let $L_M \geq 3$, H_M be depth and width, with input $g^{(0)} = [X, A]$,

1543
$$r^{(\ell)} = W_M^{(\ell)} g^{(\ell-1)} + b_M^{(\ell)} + \varepsilon_M^{(\ell)}, \quad g^{(\ell)} = \tanh(r^{(\ell)}), \quad \ell = 1, \dots, L_M - 1, \quad (74)$$

1544

1545 and scalar output
1546

1547
$$M = w_M^\top g^{(L_M-1)} + b_M + \varepsilon_M^{(L_M)}. \quad (75)$$

1548

1549 We denote $U_M = \{\varepsilon_M^{(\ell)}\}_{\ell=1}^{L_M}$.
15501551 **G.1.3 OUTCOME VARIABLE**
15521553 Outcomes are constructed to satisfy $A \rightarrow M \rightarrow Y$ as the *only* causal path from A to Y , while
1554 allowing $U \rightarrow Y$ and $X \rightarrow Y$. We decompose Y into an M -path component and a confounding
1555 component:
1556

1557
$$\begin{aligned} \text{Mediator path: } r_Y^{(\ell)} &= V^{(\ell)}[h^{(\ell-1)}] + c^{(\ell)} + \xi^{(\ell)}, \quad h^{(0)} = [X, M], \quad h^{(\ell)} = \tanh(r_Y^{(\ell)}), \\ R(X, M) &= v^\top h^{(L_Y-1)} + c + \xi^{(L_Y)}, \end{aligned} \quad (76)$$

1558

1559
$$\text{Confounding path: } G(X, U) = \tilde{v}^\top \tilde{h}^{(L_G-1)} + \tilde{c} + \tilde{\xi}^{(L_G)}, \quad \tilde{h}^{(0)} = [X, U], \quad \tilde{h}^{(\ell)} = \tanh(\cdot), \quad (77)$$

1560

1561 and define the potential outcomes
1562

1563
$$Y(a) = R(X, M(a)) + G(X, U) + \epsilon_Y, \quad M(a) \text{ computed from (74)–(75) with } A=a. \quad (78)$$

1564

1565 The factual outcome is $Y = A Y(1) + (1-A) Y(0)$. By construction there is no direct $A \rightarrow Y$ edge;
1566 A influences Y solely via M .
1567

1566 **G.1.4 HYPERPARAMETERS AND PRIORS**

1567

- **Covariate DAG:** $L_X \sim \text{Unif}\{3, 4, 5, 6\}$, $H_X \sim \text{Unif}\{15, \dots, 40\}$, edge-drop $p_{\text{drop}}^X = 0.5$; node noises drawn per-node from {Normal, Uniform, Laplace, Logistic} with random scale.
- **Treatment net** (Eq. (72)–(73)): $L_A \sim \text{Unif}\{3, 4\}$, $H_A \sim \text{Unif}\{8, \dots, 20\}$.
- **Mediator net** (Eq. (74)–(75)): $L_M \sim \text{Unif}\{3, 4\}$, $H_M \sim \text{Unif}\{8, \dots, 20\}$.
- **Outcome nets** (Eq. (76)–(78)): $L_Y, L_G \sim \text{Unif}\{3, 4, 5\}$, widths $\sim \text{Unif}\{10, \dots, 25\}$; additive Gaussian ϵ_Y with task-specific scale.
- **Weights/biases:** i.i.d. $\mathcal{N}(0, \sigma_w^2)$; tanh nonlinearity.

1576

1577 **G.1.5 GENERATION PIPELINE**

1578

1579 For each dataset:

1580

1. Sample the covariate DAG and evaluate to obtain (X, U) (observed X , hidden U).
2. Compute $p(A=1 | X, U)$ via (72)–(73) and sample A .
3. Evaluate the mediator M from (X, A) using (74)–(75).
4. Sample U_Y once per unit and compute $Y(0)$ and $Y(1)$ via (78) by first obtaining $M(0)$ and $M(1)$ from the mediator net; set $Y = A Y(1) + (1 - A) Y(0)$.

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620 H ADDITIONAL EXPERIMENTS

1622 H.1 EVALUATION IN THE FRONT-DOOR ADJUSTMENT SETTING

1624 H.1.1 BASELINES FOR FRONT-DOOR ADJUSTMENT SETTING

1626 In contrast to the standard CATE or IV settings, there are few established baselines for the front-
 1627 door case. Identification in this setting is enabled through Pearl’s front-door formula (Pearl, 2009).
 1628 The natural baseline is therefore the **plug-in front-door learner**, which estimates the necessary
 1629 nuisance components, i.e., $P(M | A, X)$, $P(A | X)$, and $\mathbb{E}[Y | M, X]$ and substitutes them into
 1630 the identification formula to recover causal quantities. To assess the role of model flexibility in
 1631 estimating these nuisance functions, we implement the plug-in learner with different regression
 1632 methods, including linear regression, Random Forests, and neural networks.

1633 H.1.2 RESULTS FOR FRONT-DOOR ADJUSTMENT SETTING

1635 Table 4 reports the averaged PEHE across datasets. We observe that CausalFM achieves competitive
 1636 CATE estimation. Importantly, these results hold *without requiring model retraining* for our model,
 1637 demonstrating the adaptability of our approach to the front-door setting.

1638 H.2 ADDITIONAL RESULTS ON THE STANDARD CATE ESTIMATION

1640 We report the detailed standard CATE estimation on 10 synthetic datasets in Table 8. We show our
 1641 method gives the best estimation on most of the datasets.

1643 Table 8: Standard CATE estimation on 10 synthetic datasets.

1644 Method	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	D ₈	D ₉	D ₁₀
1646 BASELINES (A): STANDARD CATE ESTIMATORS										
S-learner (Künzel et al., 2019)	0.725	0.583	0.752	0.829	0.614	0.892	0.858	0.421	0.680	0.985
T-learner (Künzel et al., 2019)	0.652	0.496	0.666	0.746	0.552	0.849	0.761	0.357	0.608	0.931
TARNet (Shalit et al., 2017b)	0.769	0.779	0.817	0.984	0.640	0.938	1.405	0.505	0.736	0.968
RA-learner (Curth & van der Schaar, 2021)	0.620	0.421	0.644	0.706	0.523	0.808	0.646	0.353	0.613	0.759
X-learner (Künzel et al., 2019)	0.574	0.400	0.614	0.634	0.381	0.713	0.686	0.302	0.549	0.779
DR-learner (Kennedy, 2023b)	0.783	0.533	0.767	0.947	0.867	0.882	0.791	0.4230	0.653	0.998
1651 BASELINES (B): FOUNDATION MODELS-BASED METHODS										
CausalPFN (Balazadeh et al., 2025)	0.493	0.489	0.585	0.743	0.413	0.615	0.950	0.288	0.453	0.544
DoPFN (Robertson et al., 2025)	0.417	0.313	0.228	0.679	0.591	0.475	0.497	0.551	0.610	0.827
CausalFM (ours)	0.454	0.487	0.515	0.677	0.204	0.618	0.950	0.278	0.442	0.532

1655 Reported: PEHE (Lower = better, best in bold).

1656 H.3 RESULTS ON OTHER DATASETS

1659 In the following, we present detailed results
 1660 of the experiments with ACIC 2016 datasets.
 1661 We follow CausalPFN Balazadeh et al. (2025)
 1662 obtaining data from https://github.com/BiomedSciAI/causallib/tree/master/causallib/datasets/data/acic_challenge_2016 to evaluate on 10
 1663 different datasets with various data generation
 1664 mechanism. The treatment and outcome were
 1665 simulated from real-world data corresponding
 1666 to 4802 individuals and 58 covariates. Table 9
 1667 shows the results of the CATE estimation.
 1668
 1669

1670 Table 9: Standard CATE estimation on ACIC2016
 1671 datasets. Reported: PEHE (mean \pm std.)

1672 Method	1673 PEHE
1674 BASELINES (A): STANDARD CATE ESTIMATORS	
S-learner (Künzel et al., 2019)	1.191 \pm 0.15
T-learner (Künzel et al., 2019)	1.143 \pm 0.14
TARNet (Shalit et al., 2017b)	0.934 \pm 0.15
RA-learner (Curth & van der Schaar, 2021)	0.762 \pm 0.14
X-learner (Künzel et al., 2019)	0.519 \pm 0.16
DR-learner (Kennedy, 2023b)	1.485 \pm 0.18
1675 BASELINES (B): FOUNDATION MODELS-BASED METHODS	
CausalPFN (Balazadeh et al., 2025)	0.239 \pm 0.11
DoPFN (Robertson et al., 2025)	0.857 \pm 0.36
CausalFM (ours)	0.638 \pm 0.32

1676 Lower = better (best in bold)

1674 H.4 ADDITIONAL RESULTS FOR THE IV SETTING
16751676 Table 10: IV setting for CATE estimation with binary instrument variable reported with PEHE.
1677 Results for benchmarking model performance across 10 different datasets under various confounding
1678 strength.

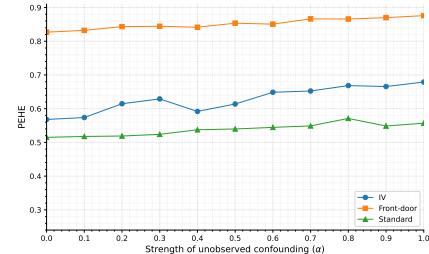
Method	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	D ₈	D ₉	D ₁₀
BASELINES (A): STANDARD CATE ESTIMATORS										
TARNet (Shalit et al., 2017b)	0.789	0.790	0.799	0.789	0.831	0.673	0.582	0.978	0.735	0.642
DR-learner (Kennedy, 2023b)	1.517	1.071	1.022	0.901	0.754	0.676	0.646	1.009	0.664	0.781
BASELINES (B): STANDARD IV ESTIMATORS										
KIV (Singh et al., 2019)	0.660	0.344	0.340	0.394	0.544	0.460	0.299	0.731	0.532	0.241
DFIV (Xu et al., 2021)	0.654	0.245	1.022	0.459	1.145	0.770	0.741	0.366	0.971	0.717
DeepIV (Hartford et al., 2017)	0.614	0.300	0.310	0.372	0.514	0.404	0.309	0.706	0.510	0.235
DeepGMM (Bennett et al., 2019)	0.704	0.403	0.440	0.599	0.569	0.486	0.292	0.737	0.566	0.232
DMLIV (Syrgkanis et al., 2019)	0.712	0.379	0.361	0.433	0.548	0.450	0.293	0.722	0.549	0.344
DRIV (Syrgkanis et al., 2019)	0.869	0.470	0.353	0.368	0.565	0.448	0.272	0.715	0.587	0.667
MRIV (Frauen & Feuerriegel, 2022)	0.759	0.632	0.698	1.011	0.348	0.860	0.929	0.707	0.562	0.380
BASELINES (C): FOUNDATION MODEL-BASED										
DoPFN (Robertson et al., 2025)	0.776	0.265	0.370	0.382	0.552	0.819	0.499	0.794	0.534	0.242
CausalFM (ours)	0.586	0.224	0.374	0.310	0.543	0.464	0.250	0.701	0.553	0.217

1689 Reported: PEHE (mean \pm standard deviation.) Lower = better (best in bold).1694 Table 11: IV setting for CATE estimation with continuous instrument variable reported with PEHE.
1695 Results for benchmarking model performance across 10 different datasets under various confounding
1696 strength.

Method	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	D ₈	D ₉	D ₁₀
BASELINES (A): STANDARD CATE ESTIMATORS										
TARNet (Shalit et al., 2017b)	0.943	0.825	1.025	0.458	1.007	1.316	0.848	1.004	0.825	0.884
DR-learner (Kennedy, 2023b)	1.038	1.055	0.946	0.533	0.955	1.071	1.109	1.502	1.258	0.888
BASELINES (B): STANDARD IV ESTIMATORS										
KIV (Singh et al., 2019)	0.509	0.567	0.699	0.178	0.533	0.948	0.420	0.811	0.602	0.506
DFIV (Xu et al., 2021)	0.526	0.574	0.691	0.171	0.532	0.991	0.428	0.800	0.609	0.506
DeepIV (Hartford et al., 2017)	0.484	0.539	0.664	0.169	0.506	0.901	0.399	0.770	0.572	0.481
DeepGMM (Bennett et al., 2019)	0.543	0.581	0.682	0.165	0.532	1.035	0.437	0.789	0.615	0.505
DMLIV (Syrgkanis et al., 2019)	0.518	0.642	0.701	0.181	0.600	1.009	0.574	0.813	0.611	0.537
DRIV (Syrgkanis et al., 2019)	0.633	0.705	0.870	0.279	0.663	0.873	0.523	1.009	0.749	0.630
MRIV (Frauen & Feuerriegel, 2022)	0.579	0.631	0.760	0.189	0.586	1.091	0.471	0.880	0.669	0.556
BASELINES (C): FOUNDATION MODEL-BASED										
DoPFN (Robertson et al., 2025)	0.471	0.528	0.787	0.322	0.649	1.723	0.416	0.588	0.722	0.545
CausalFM (ours)	0.515	0.600	0.704	0.152	0.538	0.934	0.414	0.826	0.600	0.509

1711 Reported: PEHE (mean \pm standard deviation.) Lower = better (best in bold).

1713 H.5 CHOICE OF PRIOR

1715 We also analyze the robustness of our model to different
1716 choices of the prior. In particular, we vary the strength of
1717 unobserved confounding in the data-generating process,
1718 controlled by a parameter $\alpha \in [0, 1]$. The results in Fig. 2
1719 show that our model remains robust as α increases. This
1720 again confirms the strong performance of CausalFM.1724 Figure 2: Robustness of our model to
1725 difference choices of the prior.
1726
1727