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ABSTRACT

Domain invariant learning aims to learn models that extract invariant features
over various training domains, resulting in better generalization to unseen target
domains. Recently, Bayesian Neural Networks have achieved promising results
in domain invariant learning, but most works concentrate on aligning features
distributions rather than parameter distributions. Inspired by the principle of
Bayesian Neural Network, we attempt to directly learn the posterior distribution
of network parameters given domain invariant information. We first propose a
theorem to show that the invariant posterior of parameters can be implicitly inferred
by aggregating posteriors on different training domains. Our assumption is more
relaxed and allows us to extract more domain invariant information. We also
propose a simple yet effective method, named PosTerior Generalization (PTG),
that can be used to estimate the invariant parameter distribution. PTG fully exploits
variational inference to approximate parameter distributions, including the invariant
posterior and the posteriors on training domains. Furthermore, we develop a lite
version of PTG for widespread applications. PTG shows competitive performance
on various domain generalization benchmarks on DomainBed. Additionally, PTG
can use any existing domain generalization methods as its prior, and combined
with previous state-of-the-art method the performance can be further improved.
Code will be made public.

1 INTRODUCTION

Distribution shift is a fundamental yet challenging problem for machine learning (Quinonero-Candela
et al., 2008; Muandet et al., 2013). The common assumption of independent and identically distributed
data is essential for applying the networks learned from training data to test data. However, this
assumption may not hold in real-world scenarios. For example, a self-driving system may be invalid in
remote districts(Li et al., 2018d; Liang et al., 2018). Therefore, it’s a hot topic that how to generalize
a model to out-of-distribution test datasets.

Domain generalization (DG) is a solution to distribution shift (Zhou et al., 2021a; Gulrajani &
Lopez-Paz, 2020). DG usually take several training domains to train a model that generalize well on
unseen test domains (Zhou et al., 2021b; Li et al., 2018b). One of the mainstream research interests
in DG is Domain invariant learning (DIL)(Muandet et al., 2013; Ilse et al., 2020; Nguyen et al.,
2021). Since deep neural networks (DNN) are usually trained in an end-to-end, black-box liked way,
they may fail to distinguish between informative features and unrelated features. For example, in
Colored MNIST recognition task (Arjovsky et al., 2019), DNNs may classify digits by color rather
than shape. DIL aims to extract invariant features that shared by different domains, so the disturbance
from domain specific background features will be reduced. Since domain invariant features may
contain more valuable information, DIL is widely acknowledged as an effective DG method.

Uncertainty is also an important consideration for out-of-distribution generalization (Li et al., 2022b;
Qiao & Peng, 2021; Upadhyay et al., 2021). Traditional DNNs are usually optimized by maximum
likelihood estimation, which ignores model uncertainty and data uncertainty. Researches have
validated that common DNNs are overconfident in their predictions, especially for out-of-distribution
data (Guo et al., 2017; Hein et al., 2019; Daxberger & Hernández-Lobato, 2019). Bayesian neural
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network (BNN) is a well-studied approach that good at uncertainty estimation (Blundell et al., 2015;
Jospin et al., 2022; Kristiadi et al., 2020). BNN aims to learn the posterior distributions of parameters
to represent uncertainty. Some recent works have applied BNN in DG. Xiao et al. (2021) estimate
domain invariant features and classifiers by BNN, and minimize the distributional discrepancy across
different domains. Liu et al. (2021) propose a novel variational Bayesian inference framework to
enforce the conditional distribution alignment via the prior distribution matching in a latent space,
which also takes the marginal label shift into consideration with posterior alignment.

However, in most Bayesian domain generalization methods, BNNs are treated as a tool rather than
being fully explored from the perspective of their principle: the posterior distribution of parameters.
DIL learn domain invariant features by adversarial learning (Li et al., 2018c; Shao et al., 2019;
Li et al., 2018b), direct alignment (Li et al., 2020; Xiao et al., 2021) or other methods. From the
perspective of Bayes, these methods indirectly change the estimate of parameters from Maximum
a Posteriori (MAP) estimate given full training data distributions to MAP given domain invariant
features, which we call domain invariant parameters. Inspired by this perception, we want to directly
infer the posterior distribution of domain invariant parameters from complete given domains.

In this work, we propose a novel approach to obtain the posterior of parameters given domain
invariant information, PosTerior Generalization (PTG). For brevity, we call the posterior of parameters
given domain invariant information as domain invariant posterior. PTG aggregates the posterior of
parameters on different training domains to directly infer the domain invariant posterior. Different
from other DIL methods, PTG does not need to represent domain invariant information by feature
distributions. To be specific, we just assume that there exists two abstract sufficient statistics: domain
invariant information Dc and domain specific information Dv. Dc and Dv represent all the domain
invariant information and the rest information from D, and they should be independent. With this
condition, we can directly calculate the distribution of parameter posteriors given Dc by Bayes
formula and other formulas. Given different training domains, we can treat these domains as samples
and empirically approximate the specific form of posteriors given Dc. At last, we simplify the
distribution of parameters by variational inference for easy practical application.

We also give insights into PTG from the view of feature learning. Compared with simple DIL, PTG
try to make predictions by domain invariant information extract from both invariant features and
part of specific features. We also provide a lightweight, DNN based version PTG-Lite for further
simplification. PTG can work as a post process that identifies the domain invariant parameters in its
prior model and further aggregate the domain specific parameters, where the prior can be a model
obtained by any DG method. We empirically evaluate PTG on DomainBed (Gulrajani & Lopez-Paz,
2020). Experiments show that PTG can bring improvements across various benchmarks. Combined
with the state-of-the-art competitor(Li et al., 2017a), PTG can further improve its performance.

Our contributions can be summarized as follows:

• We introduce the analysis of parameter posterior distributions into domain generalization
for the first time.

• Based on a relaxed assumption, we propose theories to infer the posteriors given domain
invariant information, which allow us to extract more domain invariant information.

• We propose two simple yet effective domain generalization methods named Posterior
Generalization based on our theories.

• Posterior Generalization achieves state-of-the-art performance on various benchmarks, and
combined with other methods the performance can be further improved.

2 RELATED WORK

2.1 DOMAIN GENERALIZATION

Domain generalization aims to learn a generalized model by given training domains that can be
applied to any unseen test domains (Blanchard et al., 2011; Zhou et al., 2021a; Gulrajani & Lopez-Paz,
2020; Wang et al., 2022). There are some DG works that require only single training domain (Wang
et al., 2021; Qiao et al., 2020; Gao et al., 2022), but the use of multi training domains is still the
mainstream setup (Segu et al., 2023; Wang et al., 2023; Li et al., 2022a). One basic DG approach
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is empirical risk minimization (ERM), which simply minimizes the sum of empirical risks across
all domains (Vapnik, 1991). Gulrajani & Lopez-Paz (2020) have shown that under a fair evaluation
protocol, DomainBed, ERM can surprisingly outperform many DG methods. Other approaches
include domain invariant learning (Nguyen et al., 2021; Muandet et al., 2013; Rame et al., 2022),
data augmentation (Zhang et al., 2017; 2019; Kang et al., 2022), invariant risk minimization (Zhou
et al., 2022; Lin et al., 2022; Arjovsky et al., 2019), meta learning (Li et al., 2018a; Shu et al., 2021)
and other methods (Hu et al., 2018; Zhang et al., 2022; Rosenfeld et al., 2022).

2.2 DOMAIN INVARIANT LEARNING

Domain invariant learning (DIL) is widely studied in various tasks. For example, in domain adaption
(Csurka, 2017), where test data without labels are available, DIL aims to learn features that shared by
both training and test domains (Zhao et al., 2019). There are theoretical guarantees that the invariant
features work well on test domains (Ben-David et al., 2010). However, in DG, test domains are
unavailable, so DIL only learns invariant features shared by training domains. Muandet et al. (2013)
propose domain-invariant component analysis to learn an invariant transformation by minimizing
the dissimilarity across domains. Zhao et al. (2020) propose an entropy regularization term to learn
conditional-invariant features across all source domains. Rame et al. (2022) introduce a regularization
that enforces domain invariance in the space of the gradients of the loss.

2.3 BAYESIAN NEURAL NETWORK

Bayesian neural network aims to estimate the uncertainty of parameters (Blundell et al., 2015;
Kristiadi et al., 2020; Jospin et al., 2022). The key idea of BNN is to estimate the posterior distributions
of parameters given training data. Recently, researches have proposed several realization methods for
BNN, including Variational Inference(Blundell et al., 2015), Markov chain Monte Carlo (Li et al.,
2016) and Laplace Approximate (Daxberger et al., 2021; Kristiadi et al., 2021). There are also modern
works that apply BNN in DG. Xiao et al. (2021) estimate the distribution of domain invariant features
and classifiers and by BNN. Liu et al. (2021) propose a variational Bayesian inference framework
to enforce the conditional distribution alignment and marginal label shift alignment by distribution
alignment. However, most works use BNN to estimate the distributions of features or classifiers
across different domains, rather than adapting BNN from the view of parameter distributions.

2.4 VARIATIONAL INFERENCE

Variational inference is a popular approach to train BNNs. It approximates the true posteriors by some
common distributions, such as Gaussian distribution. The distance between variational distribution
and the true posterior is quantified by Kullback-Leibler (KL) divergence. Blundell et al. (2015)
propose a backpropagation-compatible algorithm for variational BNN training. Kristiadi et al. (2020)
find it sufficient to build a ReLU network with a single Bayesian layer. Krishnan et al. propose a
method to choose informed weight priors in BNN by DNN.

3 PROPOSED METHOD

In this section, we introduce the theory of PTG and how it works. We first give some necessary
notations and claims in Section 3.1. Then, we explain the theory in Section 3.2. The algorithm
implementations of PTG are shown in 3.3 and Section 3.4. At last, We explain how PTG extract
domain invariant information from the view of feature learning.

3.1 PRELIMINARIES

We introduce notations for our discussions. We denote an arbitrary domain by D, and use {Di}Ni=1 to
represent training domains, where N is the number of training domains. For easy description in the
following passage, we define D to be the random variable that follows the joint distribution of data X
and labels Y in a dataset (Zhou et al., 2021a), rather than a mark of domain labels or a collection of
samples. We denote network parameters by ω. To simplify the description, we use p(·) to denote the
distribution of corresponding variables. For example, p(D) means the distribution of D.
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We assume that there exist two independent sufficient statistics of each domain: domain invariant
information Dc and domain specific information Dv. p(Dc) remains constant as D changes, but
p(Dv) vary. The principle behind this assumption is shown in Appendix A. We denote the domain
specific information of each training domain as {Dv

i }Ni=1. We do not need to assume the form of
these two statistics, while they usually exist as domain invariant and variant features (Shankar et al.,
2018). Furthermore, we do not need to specify how Dc and Dv are extracted from D. We can
approximate the posterior distribution of parameters given Dc, p(ω|Dc), even without access to Dc.

At last, we briefly introduce how to infer the posterior of parameters by variational inference (Blundell
et al., 2015). p(ω|Di) denotes the posterior distribution of parameters given domain Di, and q(ω|θi)
denotes a variational distribution, where θi is the parameter of the variational distribution. We use
Gaussian distribution as the variational distribution. If we train a BNN on Di, its loss function is:

DKL[q(ω|θi)||p(ω|Di)] =

∫
q(ω|θi)log(

q(ω|θi)
p(ω|Di)

) dω. (1)

By simplification, the loss function is:
DKL[q(ω|θi)||p(ω)]− Eq(ω|θi)[log(p(Di|ω))], (2)

where p(ω) means the prior distribution of parameter, which is usually set to be standard Gaussian
distribution. The first loss term can be seen as a regularization and the second term is the original
negative log-likehood. In practice, the second term can be empirically optimized and the first term
has an explicit expression. After training, we can approximate the intractable posterior p(ω|Di) by
tractable variational distribution q(ω|θi).

3.2 BAYESIAN PRINCIPLE OF PTG

Posterior 1 Posterior 2Posterior 1 Posterior 2

Aggregated posteriorAggregated posterior

(a) Bayesian view

Features of training domains

Learned convs

Aggregated convs

PTG-Lite

DIL

Domain 1 featuresDomain 1 features

Domain 2 featuresDomain 2 features

Domain invariant featuresDomain invariant features

All convs on training domainsAll convs on training domains

(b) Feature learning view

Figure 1: Illustration of PTG from Bayesian view and feature learning view. From Bayesian view,
PTG aggregates posteriors on each domain to infer domain invariant posteriors. From feature learning
view, PTG extracts more domain invariant information from feature. DIL aims to extract invariant
features while ignoring the similar but variant features. PTG methods aim to infer the invariant
parameter posteriors by different aggregation approaches (separated by gray dashed line). As a result,
PTG methods can preserve the invariant information from specific features.

To train a network that can generalize on any domain, we aim to estimate the posterior of parameters
given domain invariant information p(ω|Dc). However, due to the unknown content of Dc, p(ω|Dc)
is intractable, let alone estimation. In fact, Dc and Dv are independent, but they always exist together.
We can only get p(ω|Dc,Dc). Nevertheless, we can infer p(ω|Dc) by the following formula:
Theorem 3.1. If Dc and Dv are independent, then p(ω|Dc) = Ep(Dv)[p(ω|Dc,Dv)]

The proof is shown in Appendix B. As a result, we can empirically estimate p(ω|Dc) by sampling
from p(Dv). Since p(Dc) is constant, sampling from p(Dv) is the same as sampling from p(D),
which is exactly {Di}Ni=1. Meanwhile, p(ω|Dc,Dv

i ) = p(ω|Di) because Dc and Dv
i are sufficient

statistics of Di. Considering that p(ω|Di) can be approximate by q(ω|θi) via variational inference,
we can approximate p(ω|Dc) by:

p(ω|Dc) ≈
∑N

i=1 q(ω|θi)
N

. (3)
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Note that it’s the mean of distributions q(ω|θi), rather than the mean of parameters ω. For the
convenience of realization, we keep approximating p(ω|Dc) by Gaussian variational inference. The
approximate expectation and variance of p(ω|Dc) can be calculated by Appendix C. Therefore, we
replace the true domain invariant posterior by q(w|θ0):

q(w|θ0) = N (µ, σ2) (4)

µ =

∑N
i=1 Eq(ω|θi)[ω]

N
(5)

σ2 =

∑N
i=1 VARq(ω|θi)[ω]

N
+

∑N
i=1 Eq(ω|θi)[ω

2]

N
− (

∑N
i=1 Eq(ω|θi)[ω]

N
)2 (6)

where µ and σ2 are approximate expectation and variance. We give an illustration for the Bayesian
view of PTG in Figure 1a.

3.3 IMPLEMENTATION OF PTG

Although we have made some simplifications in 3.2 to put the theory into practice, there are still many
difficulties. The first problem is the disordered dimensions of parameters. For example, if we train
two BNNs on two domains by the same method, there’s no guarantee that parameters at the same
position have the same function. The first convolution kernel in the first BNN mat extract foreground
features and the second convolution kernel extracts background features. The opposite situation may
exist in the second BNN. If we directly calculate p(ω|Dc) by PTG without addressing this issue, the
aggregated convolution kernels will have great variances, and their function can be hardly explained.
To mitigate this problem, we should initialize the BNN on each domain by the same, well-generalized
model, e.g. a BNN trained by ERM. In this way, the function of each parameter can be approximately
settled, which avoids the problem of disorder to some extent.

Another problem is the ambiguity of classifier. Since different training domain contains different
features, the distribution of classifier, i.e. the last layers in a network, may differ a lot across domains.
Similarly, if we directly calculate the posterior of domain invariant classifier, some parts of the final
classifier may have large variances, which can influence the interpretability or even hurt the prediction
performance. Therefore, we only construct one classifier shared by different domains, and further
optimize it after the aggregation of featurizers. Besides, we design the classifier to be deterministic
layers for less ambiguity.

The last problem is the dimension reorder of parameters. Although initialization can set parameters
near extreme points, if the learning rate is too large, parameters may deviate from their local minima
during training, leading to the problem of disordered dimension again. As a result, the learning rate
of PTG should be carefully decayed by a rate α, such as 0.01 times the learning rate of initialization
methods. To make sure the aggregated parameters can still extract meaningful features, we further
update them by ERM. The algorithm of PTG is summarized as Algorithm 1

Algorithm 1 PTG

Input: training domains {D}Ni=1

Initialize BNN featurizers {fi(·)}Ni=0 and DNN classifier fcls(·) by a DG method
for training iterations do

for i=1; i⩽N; i++ do
sample minibatch data (xi, yi) from Di

calculate loss by (fcls(fi(xi)), yi) and Equation (2)
update fi(·) with α decayed learning rate

end for
update f0(·) by Equation (4)
merge {(xi, yi)}Ni=1 to form (X,Y )
calculate loss by (fcls(f0(X)), Y ) and Equation (2)
update f0(·) and fcls(·) with α decayed learning rate

end for
Output: generalized network fcls(f0(·))
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3.4 PTG-LITE

Although PTG exploit variational inference to simplify the aggregation of posteriors, the training
of BNNs and the inference of PTG are still complicated. Therefore, we further simplify PTG and
propose the DNN based PTG-lite. PTG-Lite shares the same Bayesian theory with PTG, but PTG-
Lite uses MAP to simplify the invariant variational distribution q(ω|θ0). Since we choose Gaussian
distribution to be the variational distribution in PTG, the MAP estimate is exactly the expectation, so
the aggregated parameters can be calculated by:

θ0 =

∑N
i=1 Eq(ω|θi)[ω]

N
. (7)

Similarly, the expectations of variational distributions on different domains q(ω|θi)are exactly their
MAP estimates. According to Equation (2), the MAP estimate can be obtained by a maximum
likelihood estimate (right) plus L2 regularization (left).

Different from PTG, PTG-Lite can’t represent the uncertainty of parameters, so the domain specific
parameters are not effectively aggregated or may even ruin the whole network. We study by experi-
ments that it works better to drop out domain specific parameters than to replace them by mean values.
We judge whether a parameter is domain specific by its coefficient of variation: if the coefficient of a
parameter on different domains is greater than a given rate β, such as 0.1, we drop out this parameter.
The algorithm of PTG-Lite is summarized as Algorithm 2

Algorithm 2 PTG-Lite

Input: training domains {D}Ni=1

Initialize DNN featurizers {fi(·)}Ni=0 and DNN classifier fcls(·) by a DG method
for training iterations do

for i=1; i⩽N; i++ do
sample minibatch data (xi, yi) from Di

calculate loss by (fcls(fi(xi)), yi) and Equation (2)
update fi(·) with α decayed learning rate

end for
update f0(·) by

∑N
i=1 fi(·)

N
drop out f0(·) by coefficient of variation and rate β
merge {(xi, yi)}Ni=1 to form (X,Y )
calculate loss by (fcls(f0(X)), Y ) and Equation (2)
update f0(·) and fcls(·) by ERM with α decayed learning rate

end for
Output: generalized network fcls(f0(·))

3.5 EXPLANATION FROM FEATURE LEARNING VIEW

Figure 2: Casual relationships. We assume there exists domain invariant information Dc and domain
specific information Dvand follow the data generation assumption (left) as Rosenfeld et al. (2020).
Most DIL (middle) makes inference by domain invariant features Zc, which fail to provide enough
invariant information. PTG methods (right) makes inference by domain invariant information directly,
which is extracted from both invariant features and useful specific features. Gray node means the
specific features are extracted by aggregated parameter posteriors.

Although the Bayesian principle of PTG is provided in Section 3.2, we can give a more intuitive
description of how PTG works from the view of feature learning. Moreover, the relationship between
our assumption, domain invariant information, and domain invariant features can be better illustrated.
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As shown in Figure 2, traditional DIL makes a stronger assumption that domain invariant information
exist in the form of feature maps, which may ignore some potential information that exists in specific
features. In contrast, PTG directly infers the posterior distribution of parameters conditioned on
the domain invariant information. And we show in the next textbf that these parameters can extract
invariant information from both invariant and specific features.

There is a strong relationship between domain invariant parameters p(ω|Dc) and its variation rate,
details are discussed in Appendix D. During the aggregation, posteriors that differ little across
domains will be replaced by similar distributions; while posteriors that differ a lot will be replaced
by new distributions with large variances. Consequently, PTG keeps the invariant parameters while
aggregating specific parameters into more general distributions. PTG-Lite aggregates parameters
by dropping out extreme specific parameters, but some specific parameters are reserved. From this
perspective, PTG is more like a post process: it further identifies the remaining domain specific
parameters within a prior model, and aggregate them by general parameter distributions. We give a
visualization of this process in Figure 1b, where the synthetic specific features contain significant
invariant information. For easy understanding, we use a whole convolution kernel to represent domain
invariant or specific parameters. In fact, the domain invariant and specific parameters are mixed up.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. Following Gulrajani & Lopez-Paz (2020), we evaluate our method and comparison methods
on four benchmarks: PACS (Li et al., 2017b), VLCS (Fang et al., 2013), OfficeHome (Venkateswara
et al., 2017), TerraIncognita (Beery et al., 2018).

Evaluation protocol. We follow the training and evaluation protocol in DomainBed. We select one
domain as the target domain while the rest domains are used for training. We repeat the procedure
until all domains have been used as test domains. We select models via training domain validation
set (Gulrajani & Lopez-Paz, 2020). The results that use other model selection methods are reported
in Appendix F Each training domain is divided into 8:2 training/validation splits randomly, and the
final result is selected according to the detection accuracy on these validation sets. We repeat 5× 5
experiments for each set up, which consist of 5 different hyperparameter samples times 5 different
random seeds.

Implementation details. We use ResNet18 (He et al., 2016) pre-trained on ImageNet (Deng et al.,
2009) as the backbone networks for all models. The Results on ResNet50 are shown in Appendix G.
We train a BNN by other DG methods as the initializations of PTG. PTG-Lite can directly use other
DG models as its initializations. All the BN layers are frozen during training. The last FC layer is
replaced by a classifier with 1024 hidden units. We also apply dropout. Models are trained using
the Adam optimizer. The search space of α is {0.05, 0.1, 0.5}, and {0.05, 0.1} for β. We do not use
other strategies such as weight averaging (Cha et al., 2021) or ensemble learning (Li et al., 2023) to
directly show the influence of PTG. More details are shown in Appendix E.

4.2 MAIN RESULTS

We compare PTG with the following methods: Mixup (Yan et al., 2020), CORAL (Li et al., 2017a),
MMD (Sun & Saenko, 2016), IRM (Arjovsky et al., 2019), GroupDRO (Sagawa et al., 2019), CAD
(Ruan et al., 2021), VREx (Krueger et al., 2021), SagNet (Nam et al., 2021), Bayes-IRM (Lin
et al., 2022), Fish (Shi et al., 2022), Fishr (Rame et al., 2022), ERM, ARM (Zhang et al., 2022),
SD(Pezeshki et al., 2021), and SelfReg (Koyama & Yamaguchi, 2020). We only compare with models
that do not use large scale pre-training or ensemble learning.

The overall out-of-domain detection accuracies performances on four DG benchmarks are reported
in Table 1. We show the full tables reporting the performance on each benchmark in Appendix I.
In all experiments, PTG achieves significant performance gain against ERM-Bayesian as well as
the previous best results: +1.9% in PACS, +0.2% in VLCS, +4.4% in TerraIncognita and +2.2%
in average compared to the previous state-of-the-art model. BNNs are recognized to have strong
generalization ability because they catch uncertainty from training data. However, we observe that
although ERM-Bayesian gains improvements on PACS and OfficeHome compared to ERM, the
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Table 1: Benchmark Comparisons. Out-of-domain classification accuracies(%) on PACS, VLCS,
OfficeHome and TerraIncognita are shown. ERM-Bayesian is a BNN (Blundell et al., 2015) trained
by ERM. PTG takes ERM-Bayesian as initialization. PTG-Lite takes ERM as initialization. All
models are reproduced on DomainBed. We highlight the best, second and third results.

Algorithm PACS VLCS Office-Home TerraIncognita Avg

CAD 67.4 ± 6.2 66.6 ± 2.2 26.6 ± 9.9 27.5 ± 3.9 47.0
IRM 78.9 ± 1.2 73.6 ± 1.4 49.7 ± 4.8 32.2 ± 3.4 58.6
MMD 80.8 ± 1.5 74.2 ± 0.9 58.4 ± 0.4 33.1 ± 9.6 61.6
ARM 79.2 ± 0.9 74.3 ± 0.9 56.7 ± 0.4 36.6 ± 1.0 61.7
GroupDRO 80.3 ± 0.5 73.9 ± 0.6 58.0 ± 0.2 34.8 ± 2.2 61.8
VREx 81.2 ± 0.3 74.4 ± 1.7 59.1 ± 0.3 37.4 ± 0.5 63.0
Bayes-IRM 81.1 ± 0.4 74.7 ± 1.3 59.3 ± 0.3 38.9 ± 1.1 63.5
Mixup 79.4 ± 0.1 74.4 ± 0.8 60.0 ± 0.5 40.3 ± 1.4 63.5
Fishr 81.2 ± 0.9 75.4 ± 0.4 59.1 ± 1.1 40.1 ± 0.7 64.0
SD 80.2 ± 1.0 75.0 ± 0.9 62.2 ± 0.3 38.6 ± 3.3 64.0
SagNet 81.2 ± 0.9 75.8 ± 0.4 60.2 ± 1.1 39.3 ± 2.1 64.1
SelfReg 81.8 ± 1.1 75.3 ± 1.0 61.2 ± 0.4 38.2 ± 2.4 64.1
Fish 80.7 ± 0.3 75.9 ± 0.5 61.2 ± 0.4 39.0 ± 1.2 64.2
CORAL 81.2 ± 0.5 75.4 ± 0.6 61.9 ± 0.2 38.7 ± 3.1 64.3

ERM 79.8 ± 1.2 75.7 ± 0.2 58.9 ± 1.0 41.7 ± 1.5 64.0
PTG-Lite 83.0 ± 0.3 75.9 ± 0.3 60.9 ± 0.0 44.9 ± 0.4 66.2
ERM-Bayesian 81.3 ± 0.3 74.0 ± 0.7 59.2 ± 0.7 40.9 ± 0.6 63.9
PTG 83.7 ± 0.1 76.1 ± 0.5 61.6 ± 0.4 44.7 ± 1.2 66.5

average accuracy drops, which means directly applying BNN into DG task brings little benefit.
However, the outstanding performance of PTG shows that Bayesian learning is still a promising
approach to solve DG problem, as long as we explore its full potential.

Besides PTG, we find that PTG-Lite also achieves good performance. PTG-Lite achieves gains
against ERM by: +3.2% in PACS, +0.2% in VLCS, +2.0% in OfficeHome, +3.2% in TerraIncognita
and +2.2% in average. This may indicate that the parameters of ERM is already enough to extract
necessary domain invariant features, but it also extracts some unnecessary features that may harm the
generalization on target domains. Please refer to Section 5 for more details.

4.3 COMBINATION WITH OTHER METHODS

PTG needs an initialization network that trained by other DG methods. For a fair comparison, we use
ERM as the initialization methods in Table 1 since ERM introduces no additional DG training strategy.
However, PTG can take any other DG model as its initialization, as long as the backbone structure is
not changed. Here, we combine PTG with ERM and the previous state-of-the-art model CORAL to
further show the power of PTG. Similarly, we initialize and further train BNNs by CORAL, and use
these BNNs to initialize PTG. More combinations are shown in Appendix H

Results are presented in Table 2. CORAL shows better performances than ERM with +0.3% average
out-of-domain accuracy gain. By combining PTG and CORAL, the performances are consistently
improved by 2.3% over CORAL in average. We observe that PTG can improve the accuracies across
almost all experimental setups, including different prior methods, different benchmarks and different
domains. We attribute this phenomenon to the dependency of the theorems of PTG and former DG
methods. PTG focuses on the distribution of parameters alone, while there is no restriction about
feature maps. Therefore, we believe that PTG can be easily combined with other DG methods and
may get comprehensive improvements.

5 DISCUSSIONS AND LIMITATIONS

Difference between PTG and PTG-Lite. Instead of Bayesian and non-Bayesian, the major difference
between PTG and PTG-Lite roots in the aggregation process. As shown in Section 3.5, the aggregation
procedure of PTG can be regarded as making addition: we keep the domain invariant parameters

8



Under review as a conference paper at ICLR 2024

Table 2: Combination with other methods. We combine PTG with previous state-of-the-art method
and report the performance on each benchmark. Each experiment is repeated 5 times.

Dataset Algorithm Test Domains Avg

A C P S

PACS

ERM 79.0 ± 0.2 74.3 ± 1.7 94.4 ± 0.7 71.4 ± 2.3 79.8
PTG 82.6 ± 0.1 77.0 ± 0.3 94.7 ± 0.4 80.6 ± 0.5 83.7

CORAL 79.6 ± 1.0 75.7 ± 0.3 94.5 ± 0.1 75.2 ± 0.5 81.2
CORAL-PTG 82.8 ± 0.7 77.9 ± 0.6 94.9 ± 0.2 82.5 ± 0.3 84.5

C L S V

VLCS

ERM 96.0 ± 0.3 63.4 ± 1.1 70.6 ± 1.2 72.8 ± 1.2 75.7
PTG 97.3 ± 0.2 64.6 ± 1.2 68.6 ± 0.5 73.9 ± 0.5 76.1

CORAL 95.3 ± 1.2 64.6 ± 0.9 70.3 ± 0.7 71.4 ± 0.2 75.4
CORAL-PTG 97.1 ± 0.6 64.8 ± 1.4 70.4 ± 0.2 71.9 ± 0.8 76.0

A C P R

OfficeHome

ERM 51.0 ± 1.6 46.8 ± 1.4 68.3 ± 1.2 69.5 ± 1.5 58.9
PTG 55.3 ± 0.5 50.8 ± 0.2 69.7 ± 0.3 70.6 ± 0.4 61.6

CORAL 55.4 ± 0.9 48.7 ± 0.2 71.2 ± 0.6 72.2 ± 0.3 61.9
CORAL-PTG 57.2 ± 1.2 50.3 ± 0.8 71.6 ± 0.5 73.9 ± 0.8 63.3

L100 L38 L43 L46

TerraIncognita

ERM 49.5 ± 3.1 32.1 ± 3.0 50.8 ± 0.1 34.2 ± 0.4 41.7
PTG 48.6 ± 0.8 40.7 ± 0.3 52.7 ± 0.3 36.8 ± 0.4 44.7

CORAL 45.4 ± 5.2 27.3 ± 6.3 51.4 ± 2.1 30.7 ± 0.9 38.7
CORAL-PTG 46.0 ± 2.2 36.1 ± 1.7 52.2 ± 0.7 33.5 ± 0.6 42.0

while replace the domain specific parameters by general distributions. However, PTG-Lite is making
subtraction: we drop the domain specific parameters directly. Both PTG and PTG-Lite can improve
performance, which implies two possible research directions: (1) DG methods can benefit from some
useful domain specific parameters; (2) Many DG methods already learn enough domain invariant
parameters, but there are still some harmful domain specific parameters.

PTG depends on initialization and the number of training domains. From feature learning view,
PTG is a post-procedure that refines the parameters of its prior network. Consequently, if the prior
model fails to learn enough domain invariant parameters, PTG also fails. Besides, PTG estimates
the invariant posterior empirically, so the number of training domain can influence the estimation
reliability. We recommend the number of training domain to be 3 at least. However, we find in
Appendix F that even if trained by only 2 training domains, PTG is still competitive.

PTG is not memory efficient. Although we have made many simplifications, the parameters on
different domains have to be loaded to compute the mean and variance of parameter distributions.
Besides, a BNN doubles the parameter amount of a DNN. We recommend the memory to be over 24G.
Meanwhile, the training procedure of BNN is also memory consuming. However, even if we sacrifice
the performance to save memory, as shown in Appendix G PTG is still competitive. Furthermore,
PTG just needs a few iterations (50 iterations, 1.4 epochs), so the computational costs are low.

6 CONCLUSION

In this paper, we introduce the analysis of parameter posterior distributions into Domain Invariant
Learning for the first time. We theoretically show how to infer the domain invariant posterior without
access to the domain invariant information condition Our relaxed assumption allow us to extract
more domain invariant information. We propose a new DIL method named PTG, and explained
its principles form both Bayesian view and feature learning view. Furthermore, we develop a lite,
non-Bayesian version of PTG for widespread applications. The extensive experiments can show the
promising performance of PTG. Besides, the combination of PTG and other methods may bring
comprehensive improvements. We hope that our research promotes new research directions of
examining the distributions of parameters for domain generalization.

9



Under review as a conference paper at ICLR 2024

REFERENCES
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Appednix
A PRINCIPLE OF THE ASSUMPTION THAT Dc AND Dv EXIST AND ARE

INDEPENDENT.

We do not assume the form of existence of Dc and Dv, or how they can be obtained. They are two
abstract statistics that contain all the domain invariant information and the rest information of D.
We only assume their existence and independence. Based on our assumption, the domain invariant
features are part of Dc or can be further inferred from Dc.

We can provide the rationality of our assumption. (1)If Dc didn’t exist, which means there were no
invariant information among domains, then Domain Generalization would have no solution. (2)If Dv

didn’t exist, which means there were only invariant information among domains, then there would
be no need for further generalization. (3)If Dc and Dv exist but could not be separated, then the
domain invariant features should always contain specific information (otherwise, part of Dc should
be independent of Dv , and we can take it as the true Dc), and domain invariant learning would have
no solution.

For example, if consider a DG task on dog images, D means a domain of dogs, and Di may refer
to a specific kind of dog, like golden retriever. Dc means the common information that all dogs
share, such as the overall body shape, the facial patterns, the teeth and so on. Dv

i means the specific
information that golden retriever have, such as the color, the hair length. As stated before, we don’t
care how the information is represented or how to get it, we just assume that it exists. We can directly
estimate the posterior parameter distributions that use the common information for recognition. This
is why we claim that our assumption is more relaxed than domain invariant features.

However, Dc is determined by the task, rather than our definition. In the dog image example, it’s
the nature of dog and the nature of photography that determine what information is invariant. There
should be invariant information, we can tell part of the invariant information, but it’s intractable to
provide a rigorous representation of the whole invariant information.

B PROOF OF THEOREM 3.1

If DcandDv are independent, then p(ω|Dc) = Ep(Dv)[p(ω|Dc,Dv)]

Proof.

Ep(Dv)[p(ω|Dc,Dv)] (8)

=

∫
p(Dv)p(ω|Dc,Dv) dDv (9)

=

∫
p(Dv)

p(ω,Dc,Dv)

p(Dc,Dv)
dDv. (10)

Since Dc and Dv are independent, ∫
p(Dv)

p(ω,Dc,Dv)

p(Dc,Dv)
dDv (11)

=

∫
p(Dv)

p(ω,Dc,Dv)

p(Dc)p(Dv)
dDv (12)

=

∫
p(ω,Dc,Dv)

p(Dc)
dDv (13)

=
p(ω,Dc)

p(Dc)
(14)

=p(ω|Dc) (15)
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C MATHEMATICAL DERIVATION FOR THE EXPECTATION AND VARIANCE OF
p(ω|D)

We use fp(·) to represent the density function of corresponding distribution.

fp(ω|Dc) ≈
∑N

i=1 fq(ω|θi)

N
(16)

Ep(ω|Dc)[ω] =

∫
xfp(ω|Dc)(x) dx (17)

≈
∫

x

∑N
i=1 fq(ω|θi)(x)

N
dx (18)

=

∑N
i=1 Eq(ω|θi)[ω]

N
(19)

Ep(ω|Dc)[ω
2] =

∫
x2fp(ω|Dc)(x) dx (20)

≈
∫

x2

∑N
i=1 fq(ω|θi)(x)

N
dx (21)

=

∑N
i=1 Eq(ω|θi)[ω

2]

N
(22)

VARp(ω|Dc)[ω] =Ep(ω|Dc)[ω
2]− Ep(ω|Dc)[ω]

2 (23)

≈
∑N

i=1 Eq(ω|θi)[ω
2]

N
− (

∑N
i=1 Eq(ω|θi)[ω]

N
)2 (24)

=

∑N
i=1(Eq(ω|θi)[ω

2]− Eq(ω|θi)[ω
2])

N
+

∑N
i=1 Eq(ω|θi)[ω

2]

N
− (

∑N
i=1 Eq(ω|θi)[ω]

N
)2

(25)

=

∑N
i=1 VARp(ω|θi)[ω]

N
+

∑N
i=1 Eq(ω|θi)[ω

2]

N
− (

∑N
i=1 Eq(ω|θi)[ω]

N
)2 (26)

D RELATIONSHIP BETWEEN p(ω|Dc)AND ITS VARIATION RATE.

Since Dc
i follows the same distribution among domains, p(ω|Dc

i ) also follows the same distribution
among domains. On the other hand, Dv

i follows different distributions among domains, so p(ω|Dv
i )

also follows different distributions. From another perspective, in Bayesian Neural Networks, larger
variance in a parameter implies higher uncertainty. In DG context, uncertainty mainly comes from
the difference between domains, so parameters that change a lot among domains(high variance) are
more likely to extract domain specific features.

E EXPERIMENT SETUP

Datasets. Following Gulrajani and Lopez-Paz (Gulrajani & Lopez-Paz, 2020), we evaluate our
method and comparison methods on four benchmarks: PACS (Li et al., 2017b) containing 9,991
images of 7 classes across 4 domains {photo, art, cartoon, sketch}, VLCS (Fang et al., 2013)
containing 10,729 images of 5 classes across 4 domains {VOC2007, LabelMe, Caltech101, SUN09},
OfficeHome (Venkateswara et al., 2017) containing 15,588 images of 65 classes across 4 domains
{art, clipart, product, real}, TerraIncognita (Beery et al., 2018) containing 24,788 images of 10
classes across 4 domains {L100, L38, L43, L46}.

Evaluation protocol. For a fair comparison, we follow the training and evaluation protocol in
DomainBed. We select one domain as the target domain while the rest domains are used for training.
We repeat the procedure until all domains have been used as test domains. We select models via
training domain validation set (Gulrajani & Lopez-Paz, 2020). Each training domain is divided into
8:2 training/validation splits randomly, and the final result is selected according to the detection
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accuracy on these validation sets. We repeat 5× 5 experiments for each set up, which consist of 5
different hyperparameter samples times 5 different random seeds. We select the best hyperparameter
and report the mean and standard deviation of test domain classification accuracies from 5 random
runs.

Implementation details. We use ResNet18 (He et al., 2016) pre-trained on ImageNet (Deng et al.,
2009) as the backbone networks for all models. However, PTG and PTG-Lite need pre-trained DG
models as their initializations. The initializations of PTG should be BNNs. To reduce the computation
cost, we specify the prior of BNNs by DG trained DNNs (Krishnan et al., 2020) and further train the
BNN in the same way. Then, the BNNs are used as the initializations of PTG. PTG-Lite can directly
use the DNNs trained by other DG methods as its initializations. All the BN layers are frozen during
training. The last FC layer is replaced by a classifier with 1024 hidden units. We also apply dropout
where the dropout rate is selected by DomainBed. Models are trained using the Adam optimizer. The
search space of decay rate α is {0.05, 0.1, 0.5}, and the search space of coefficient of variation β
is {0.05, 0.1}. Since PTG is a post-processing algorithm, we do not use any other strategies such
as weight averaging (Cha et al., 2021) or ensemble learning (Li et al., 2023), to directly show the
influence of PTG.

F LEAVE-ONE-DOMAIN-OUT CROSS-VALIDATION RESULTS

We didn’t report the results of models selected by leave-one-domain-out cross-validation in the main
body, because we recommend that the number of training domains should be 3 at least. In Table 3,
we find that even if we use leave-one-domain-out cross-validation, which means we only use two
training domains and one validation domain, the performance is still good enough. However, we still
suggest that the number of training domains should be adequate just in case.

Table 3: Leave-one-domain-out cross-validation Results. All models use ResNet18 as backbones.

Algorithm PACS VLCS Office-Home TerraIncognita Avg
SelfReg 83.4 ± 0.8 78.9 ± 0.2 66.2 ± 0.6 46.3 ± 1.0 68.7
Fish 84.4 ± 1.1 80.4 ± 0.4 65.0 ± 0.4 43.9 ± 1.6 68.4
CORAL 84.7 ± 0.7 78.9 ± 0.5 65.9 ± 0.4 45.8 ± 1.6 68.8

ERM 82.7 ± 1.3 77.0 ± 0.4 65.5 ± 1.1 41.2 ± 0.9 66.6
PTG-Lite 84.5 ± 0.3 76.1 ± 0.2 67.6 ± 0.2 47.7 ± 0.7 69.0
ERM-Bayesian 84.7 ± 0.5 76.6 ± 0.4 63.8 ± 0.4 43.7 ± 0.9 67.2
PTG 86.3 ± 0.4 76.3 ± 0.5 67.1 ± 0.3 46.3 ± 0.7 69.0
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G RESULTS ON RESNET50

We didn’t provide results on ResNet50 in the main body for consideration of both GPU memory cost
and fairness. We develop a degraded PTG training algorithm to save memory(change the loss of
average outputs into average loss of outputs), but this behavior hurts the performance. Consequently,
we have reported the performance of all models based on ResNet18 for fair comparison. The
performance on ResNet50 is shown in Table 4, where we continue to achieve optimal performance.
Again we want to remind that the results on ResNet50 can’t reflect the full ability of PTG.

Table 4: Results on ResNet50. All methods use training-domain validation set to select models.
We report the performance of competitors according to their original papers. We want to remind
again that we sacrifice the performance of PTG on ResNet50 to save GPU memory. For more results,
please refer to DomainBed.

Algorithm PACS VLCS Office-Home TerraIncognita Avg
SelfReg 85.6 ± 0.4 77.8 ± 0.9 67.9 ± 0.7 47.0 ± 0.3 70.0
Fish 85.5 ± 0.3 77.8 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 69.3
CORAL 86.2 ± 0.3 78.8 ± 0.6 68.7 ± 0.3 47.6 ± 1.0 70.3

ERM 85.5 ± 0.2 77.5 ± 0.4 66.5 ± 0.3 46.1 ± 1.8 68.9
PTG-Lite 87.3 ± 0.2 79.6 ± 0.5 70.0 ± 0.3 49.2 ± 0.7 71.5
ERM-Bayesian 85.8 ± 0.5 77.7 ± 0.3 67.1 ± 0.2 45.5 ± 0.8 69.0
PTG 86.7 ± 0.2 79.4 ± 0.5 69.4 ± 0.6 48.5 ± 1.1 71.0

H MORE COMBINATIONS

PTG can be combined with most existing methods since it functions as a post-process strategy.
However, demonstrating the combination of PTG with all models is unnecessary. By Table 2,
we already show that PTG can further promote the performance by combination. We add some
experiments to show more combinations in Table 5, which show that all the combinations can bring
promotions to the original method.

Table 5: More Combinations. All methods use training domain validation to select models. All
models use ResNet18 as backbones.

Algorithm PACS VLCS Office-Home TerraIncognita Avg
ERM 79.8 ± 1.2 75.7 ± 0.2 58.9 ± 1.0 41.7 ± 1.5 64.0
PTG 83.7 ± 0.1 76.1 ± 0.5 61.6 ± 0.4 44.7 ± 1.2 66.5
SelfReg 81.8 ± 1.1 75.3 ± 1.0 61.2 ± 0.4 38.2 ± 2.4 64.1
SelfReg-PTG 85.3 ± 0.4 75.2 ± 0.4 63.6 ± 0.5 42.6 ± 0.9 66.7
Fish 80.7 ± 0.3 75.9 ± 0.5 61.2 ± 0.4 39.0 ± 1.2 64.2
Fish-PTG 84.9 ± 0.2 76.4 ± 0.3 63.6 ± 0.4 43.3 ± 1.1 67.1
CORAL 81.2 ± 0.5 75.4 ± 0.6 61.9 ± 0.2 38.7 ± 3.1 64.3
CORAL-PTG 84.5 ± 0.4 76.0 ± 0.8 63.3 ± 0.8 42.0 ± 1.3 66.5

I FULL RESULTS OF TABLE 1
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Table 6: PACS Comparisons. Out-of-domain classification accuracies(%) on PACS are shown.
ERM-Bayesian is a BNN (Blundell et al., 2015) trained by ERM. PTG takes ERM-Bayesian as
initialization. PTG-Lite takes ERM as initialization. All models are reproduced on DomainBed. We
highlight the best, second and third results.

Algorithm A C P S Avg
CAD 66.9 ± 2.7 62.8 ± 7.9 82.1 ± 3.7 57.6 ± 10.8 67.4
IRM 75.1 ± 2.5 74.0 ± 0.9 92.9 ± 1.6 73.4 ± 0.6 78.9
MMD 82.3 ± 1.4 75.6 ± 0.9 92.8 ± 0.2 72.7 ± 0.5 80.8
ARM 80.9 ± 0.6 70.9 ± 0.5 91.5 ± 0.3 73.4 ± 1.2 79.2
GroupDRO 79.4 ± 0.9 75.0 ± 0.6 92.7 ± 0.3 74.2 ± 2.0 80.3
VREx 82.3 ± 1.6 75.4 ± 0.6 93.2 ± 0.5 74.0 ± 1.7 81.2
Bayes-IRM 80.9 ± 0.7 75.5 ± 1.3 93.7 ± 0.6 74.2 ± 1.2 81.1
Mixup 78.7 ± 1.8 73.0 ± 1.2 94.0 ± 0.3 71.7 ± 1.0 79.4
Fishr 84.1 ± 0.2 74.4 ± 0.7 92.7 ± 0.1 73.5 ± 2.0 81.2
SD 80.4 ± 1.3 74.6 ± 0.5 92.4 ± 0.2 73.4 ± 1.2 80.2
SagNet 79.6 ± 1.7 75.2 ± 0.8 93.7 ± 0.7 76.2 ± 0.8 81.2
SelfReg 81.7 ± 0.8 75.2 ± 1.3 92.5 ± 0.4 77.8 ± 1.1 81.8
Fish 80.1 ± 1.2 73.8 ± 0.8 94.4 ± 0.2 74.5 ± 1.0 80.7
CORAL 79.6 ± 1.0 75.7 ± 0.3 94.5 ± 0.1 75.2 ± 0.5 81.2

ERM 79.0 ± 0.2 74.3 ± 1.7 94.4 ± 0.7 71.4 ± 2.3 79.8
PTG-Lite 82.4 ± 0.9 75.0 ± 0.6 94.9 ± 0.5 79.6 ± 0.7 83.0
ERM-Bayesian 79.2 ± 1.0 73.9 ± 0.8 93.6 ± 0.2 78.6 ± 0.9 81.3
PTG 82.6 ± 0.1 77.0 ± 0.3 94.7 ± 0.4 80.6 ± 0.5 83.7

Table 7: VLCS Comparisons. Out-of-domain classification accuracies(%) on VLCS are shown.
ERM-Bayesian is a BNN (Blundell et al., 2015) trained by ERM. PTG takes ERM-Bayesian as
initialization. PTG-Lite takes ERM as initialization. All models are reproduced on DomainBed. We
highlight the best, second and third results.

Algorithm C L S V Avg
CAD 84.9 ± 5.5 61.3 ± 0.2 59.0 ± 3.1 61.3 ± 0.6 66.6
IRM 94.7 ± 1.6 62.6 ± 0.9 68.6 ± 1.8 68.7 ± 4.2 73.6
MMD 94.4 ± 1.1 60.7 ± 2.1 69.5 ± 1.2 72.0 ± 4.3 74.2
ARM 95.4 ± 1.2 60.3 ± 1.7 69.0 ± 2.2 73.4 ± 1.6 74.3
GroupDRO 94.5 ± 1.3 60.6 ± 1.9 66.7 ± 1.8 73.9 ± 1.8 73.9
VREx 94.5 ± 1.5 60.5 ± 2.3 70.2 ± 1.4 72.3 ± 2.3 74.4
Bayes-IRM 94.0 ± 1.9 62.2 ± 2.0 69.7 ± 1.6 72.8 ± 1.9 74.7
Mixup 95.5 ± 0.3 61.0 ± 0.6 69.2 ± 1.1 71.7 ± 1.7 74.4
Fishr 95.9 ± 0.9 60.6 ± 1.5 68.1 ± 1.2 73.4 ± 1.7 75.4
SD 94.8 ± 0.9 61.3 ± 1.2 69.2 ± 0.7 71.6 ± 1.2 75.0
SagNet 95.8 ± 0.9 64.0 ± 0.8 69.6 ± 1.0 73.8 ± 0.9 75.8
SelfReg 95.4 ± 0.6 63.2 ± 1.2 68.9 ± 1.5 73.4 ± 0.5 75.3
Fish 97.0 ± 0.5 62.3 ± 1.0 70.7 ± 0.9 73.5 ± 0.7 75.9
CORAL 95.3 ± 1.2 64.6 ± 0.9 70.3 ± 0.7 71.4 ± 0.2 75.4

ERM 96.0 ± 0.3 63.4 ± 1.1 70.6 ± 1.2 72.8 ± 1.2 75.7
PTG-Lite 96.8 ± 0.2 63.9 ± 0.2 69.5 ± 0.7 72.9 ± 0.7 75.9
ERM-Bayesian 96.2 ± 0.9 62.2 ± 0.6 67.3 ± 1.0 70.4 ± 0.8 74.0
PTG 97.3 ± 0.2 64.6 ± 1.2 68.6 ± 0.5 73.9 ± 0.5 76.1
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Table 8: OfficeHome Comparisons. Out-of-domain classification accuracies(%) on OfficeHome are
shown. ERM-Bayesian is a BNN (Blundell et al., 2015) trained by ERM. PTG takes ERM-Bayesian
as initialization. PTG-Lite takes ERM as initialization. All models are reproduced on DomainBed.
We highlight the best, second and third results.

Algorithm A C P R Avg
CAD 20.9 ± 6.9 21.3 ± 9.1 31.4 ± 11.8 33.0 ± 11.7 26.6
IRM 41.3 ± 5.4 40.4 ± 2.7 56.6 ± 5.6 60.4 ± 5.7 49.7
MMD 52.5 ± 0.2 45.3 ± 0.3 66.3 ± 0.1 69.5 ± 0.6 58.4
ARM 50.8 ± 0.8 42.9 ± 0.5 66.0 ± 0.4 67.2 ± 0.3 56.7
GroupDRO 52.4 ± 0.7 44.7 ± 1.0 67.0 ± 0.7 68.0 ± 0.7 58.0
VREx 53.4 ± 0.9 45.7 ± 0.9 68.0 ± 0.1 69.6 ± 0.5 59.1
Bayes-IRM 51.4 ± 0.2 46.7 ± 1.3 70.2 ± 0.6 68.9 ± 1.4 59.3
Mixup 52.0 ± 1.4 46.9 ± 0.7 70.2 ± 0.7 71.0 ± 0.7 60.0
Fishr 53.7 ± 0.5 43.7 ± 0.4 67.5 ± 0.5 69.6 ± 0.1 59.1
SD 54.4 ± 1.1 50.1 ± 0.4 70.3 ± 0.8 73.8± 0.7 62.2
SagNet 52.2 ± 1.4 47.7 ± 1.4 69.6 ± 1.1 71.1 ± 0.8 60.2
SelfReg 53.0 ± 1.2 49.2 ± 0.6 70.2 ± 0.7 72.4 ± 0.7 61.2
Fish 53.9 ± 0.3 48.8 ± 1.1 70.0 ± 0.2 71.9 ± 0.5 61.2
CORAL 55.4 ± 0.9 48.7 ± 0.2 71.2 ± 0.6 72.2 ± 0.3 61.9

ERM 51.0 ± 1.6 46.8 ± 1.4 68.3 ± 1.2 69.5 ± 1.5 58.9
PTG-Lite 53.1 ± 0.1 48.4 ± 0.2 70.2 ± 0.2 72.0 ± 0.4 60.9
ERM-Bayesian 51.6 ± 1.0 48.4 ± 0.2 66.5 ± 1.3 70.2 ± 0.4 59.2
PTG 55.3 ± 0.5 50.8 ± 0.2 69.7 ± 0.3 70.6 ± 0.4 61.6

Table 9: TerraIncognita Comparisons. Out-of-domain classification accuracies(%) on TerraIncog-
nita are shown. ERM-Bayesian is a BNN (Blundell et al., 2015) trained by ERM. PTG takes
ERM-Bayesian as initialization. PTG-Lite takes ERM as initialization. All models are reproduced on
DomainBed. We highlight the best, second and third results.

Algorithm L100 L38 L43 L46 Avg
CAD 27.9 ± 4.7 28.8 ± 10.7 31.0 ± 5.2 22.5 ± 2.8 27.5
IRM 37.9 ± 7.6 11.5 ± 2.4 44.2 ± 2.9 35.1 ± 1.2 32.2
MMD 32.8 ± 3.0 25.7 ± 1.0 47.9 ± 1.9 26.1 ± 1.8 33.1
ARM 40.4 ± 0.7 29.4 ± 2.4 46.9 ± 0.8 29.8 ± 1.3 36.6
GroupDRO 32.8 ± 0.7 30.2 ± 2.1 48.3 ± 0.9 28.0 ± 2.1 34.8
VREx 39.2 ± 4.3 32.7 ± 1.3 57.8 ± 0.8 29.7 ± 3.1 37.4
Bayes-IRM 44.0 ± 2.2 29.8 ± 3.0 49.6 ± 0.6 32.0 ± 2.3 38.9
Mixup 49.8 ± 3.6 30.5 ± 3.9 49.9 ± 0.8 31.0 ± 0.8 40.3
Fishr 42.9 ± 3.9 36.6 ± 0.8 48.4 ± 2.2 32.5 ± 1.0 40.1
SD 40.4 ± 1.8 28.9 ± 1.7 51.7 ± 0.6 33.3 ± 1.2 38.6
SagNet 42.8 ± 1.0 27.9 ± 4.4 51.1 ± 1.9 35.6 ± 1.8 39.3
SelfReg 45.1 ± 2.0 30.3 ± 2.1 49.4 ± 0.4 28.0 ± 1.7 38.2
Fish 42.7 ± 1.4 33.0 ± 2.9 49.1 ± 0.6 31.2 ± 1.4 39.0
CORAL 45.4 ± 5.2 27.3 ± 6.3 51.4 ± 2.1 30.7 ± 0.9 38.7

ERM 49.5 ± 3.1 32.1 ± 3.0 50.8 ± 0.1 34.2 ± 0.4 41.7
PTG-Lite 53.1 ± 1.7 39.2 ± 0.8 52.1 ± 0.3 35.1 ± 0.2 44.9
ERM-Bayesian 45.3 ± 3.5 35.3 ± 1.1 49.7 ± 1.0 33.5 ± 1.6 40.9
PTG 48.6 ± 0.8 40.7 ± 0.3 52.7 ± 0.3 36.8 ± 0.4 44.7
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