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ABSTRACT

Time-evolution of partial differential equations is fundamental for modeling several
complex dynamical processes and events forecasting, but the operators associated
with such problems are non-linear. We propose a Padé approximation based
exponential neural operator scheme for efficiently learning the map between a
given initial condition and the activities at a later time. The multiwavelets bases are
used for space discretization. By explicitly embedding the exponential operators
in the model, we reduce the training parameters and make it more data-efficient
which is essential in dealing with scarce and noisy real-world datasets. The Padé
exponential operator uses a recurrent structure with shared parameters to model the
non-linearity compared to recent neural operators that rely on using multiple linear
operator layers in succession. We show theoretically that the gradients associated
with the recurrent Padé network are bounded across the recurrent horizon. We
perform experiments on non-linear systems such as Korteweg-de Vries (KdV)
and Kuramoto–Sivashinsky (KS) equations to show that the proposed approach
achieves the best performance and at the same time is data-efficient. We also show
that urgent real-world problems like epidemic forecasting (for example, COVID-
19) can be formulated as a 2D time-varying operator problem. The proposed Padé
exponential operators yield better prediction results (53% (52%) better MAE
than best neural operator (non-neural operator deep learning model)) compared to
state-of-the-art forecasting models.

1 INTRODUCTION

Predicting the future states using the current conditions is a fundamental problem in machine learning,
robotics, autonomous aerial / ground / underwater systems and cyber-physical systems (Xue &
Bogdan (2017)). Such problems fall under the umbrella of a common term, the “Initial Value
Problems” (IVPs). The basic structure of IVP involves a first-order time-evolution along with non-
linear operators. The class of IVPs spans the domain of physics (modeling gravitational waves
(Lovelace, 2021)), neuroscience (Hodgkin-Huxley model (Zhang et al., 2020)), engineering (fluid
dynamics (Wendt, 2008)), water waves (tsunami (Elbanna et al., 2021)), mean field games (Ruthotto
et al., 2020; Bogdan & Marculescu, 2011), to list just a few. Within the current pandemic context, the
applications areas like epidemiology (Kermack–McKendrick model (Kermack et al., 1991; Diekmann
et al., 2021)) are of tremendous interest.

Neural Operators The use of deep learning to solve the IVP like problems for predictions has
been exploiting within the framework of convolutional neural networks (CNNs) (Bhatnagar et al.,
2019; Guo et al., 2016), and time-evolution by employing multiple layers (Khoo et al., 2020). The
multi-layered deep networks with CNNs are suitable to solve problems with a large number of training
samples. Moreover, because of the image-regression like structures, such models are restricted to the
specifications of the input size. Another research direction aims at solving and modeling the partial
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differential equations (PDEs) versions of the IVPs for a given instance. The works of (Kochkov et al.,
2021) model the IVP solution as NNs for modeling the turbulent flows. Along the same lines, we
have physics-informed neural networks (PINNs) (Raissi et al., 2019; Wang et al., 2021b) that utilize
PDE structure for defining the loss functions. Such models are not applicable within the context of
a complete data-driven scenario, or for the setups where the exact PDE structure is not known, for
example, modeling the climate, epidemic, or unknown physical and chemical phenomena. Finally, we
have the works of Neural Operators that are completely data-driven and input-resolution independent
schemes (Li et al., 2020b;c;a; Gupta et al., 2021; Bhattacharya et al., 2020; Patel et al., 2021). Most
of these approaches tried to efficiently work with the integral kernel operators, for example, Graph
Nyström sampling in (Li et al., 2020b), convolution approximation in (Li et al., 2020a), or the
multiwavelets compression in (Gupta et al., 2021). Apart from solving non-homogeneous linear
differential equations, the PDE operators are mostly non-linear. To tackle the non-linear behavior,
these prior works use a multi-cell architecture with non-linearity (for example, ReLU). To work
with the IVP like problems, and be data-efficient, we aim to adopt explicitly the non-linear operator
(exponential) that appears in the IVP solutions.

Exponential Operators The exponential of linear transformation has been a subject of research
for the last 150 years (Laguerre, 1898). In the simplest form, the exponential operator appears
as a solution of: dy

dt “ at, yp0q “ y0 as yptq “ eaty0 (for more general examples, see Table 1).
With applications ranging from control systems theory (converting continuous to discrete systems)
to solving partial differential equations (Cox & Matthews, 2002; Kassam & Trefethen, 2005), the
exponential function of operators is a subject of active research. In deep learning, the exponential
function to model non-linearity is used in (Andoni et al., 2014). Recently, the exponential operators
have also been explored in the field of computer vision for generative flows in (Hoogeboom et al.,
2020).

Padé Approximation Although one approach to implementing an exponential operator could be
attained through a Taylor series representation, this operator function is prone to errors (Abramowitz
& Stegun, 1965). Scale-and-squaring (SSQ) methods are commonly suggested approaches to deal
with the errors (Lawson, 1967). In addition to SSQ, the Padé approximation which represents
an analytic function as the ratio of polynomials achieves state-of-the-art accuracy in computing
exponential operators (Fasi & Higham, 2019). Industry standard numerical toolboxes (for example,
MATLAB, SciPy) use the Padé approximation based approach to compute the matrix exponential
expm (Al-Mohy & Higham, 2009). Matrix exponential via Padé representation requires dense
matrix computations (for example, inverse and higher-order polynomials). Such operations are
not numerically feasible, in-general, for the inputs with large size. However, the commonly used
operators like convolution (possibly, multi-layered) have parameters that are fixed beforehand and are
much less than the input dimension. A suitable approach, therefore, is a neural architecture based
Padé approximation.

Our strategy, in this work, is to explicitly embed the exponential operators in the neural operator
architecture for dealing with the IVP like datasets. The exponential operators are non-linear, and
therefore, this removes the requirement of having multi-cell linear integral operator layers. While with
sufficient data in-hand, the proposed approach may work similarly to the existing neural operators
with a large number of training parameters. However, this is seldom a feasible scenario for the
expensive real-world experiments, or on-going recent issues like COVID19 prediction. Here, the
current work is helpful in providing data-efficiency analytics, and is useful in dealing with scarce
and noisy datasets (see Section 3.3). To the advantage of Padé approximation, the exponential of a
given operator can be computed with the pre-defined coefficients (see Section 2.3) and a recurrent
polynomial mechanism.

Our Contributions The main novel contributions of this work are summarized as follows: (i) For
the IVPs, we propose to embed the exponential operators in the neural operator learning mechanism.
(ii) By using the Padé approximation, we compute the exponential of the operator using a novel
recurrent neural architecture that also eliminates the need for matrix inversion. (iii) We theoretically
demonstrate that the proposed recurrent scheme, using the Padé coefficients, have bounded gradients
with respect to (w.r.t.) the model parameters across the recurrent horizon. (iv) We demonstrate the
data-efficiency on the synthetic 1D datasets of Korteweg-de Vries (KdV) and Kuramoto–Sivashinsky
(KS) equations, where with less parameters we achieve state-of-the-art performance. (v) We formulate
and investigate the epidemic forecasting as a 2D time-varying neural operator problem, and show

2



Published as a conference paper at ICLR 2022

Equation Solution
du
dt “ Au, upt “ 0q “ u0 (Linear ODE) upt “ τq “ etAu0

ut “ B
2u

Bx2 , upx, 0q “ u0pxq (Heat equation) upx, τq “ eτ
B2

Bx2 u0pxq

ut “ Lu` N fpuq, upx, 0q “ u0pxq 1 upx, τq “ eτLu0pxq `
τ
ş

0

epτ´tqLN fpupx, tqqdt 2

Table 1: Initial Value Problem examples along with their time-evolution solutions. The exponential function of
operators appears in the IVP solutions. For Linear ODE, A is the linear transformation.

that for real-world noisy and scarce data, the proposed model outperforms the best neural operator
architectures by 53% and best non-neural operator schemes by 52%.

2 OPERATORS FOR INITIAL VALUE PROBLEM

We formalize the partial differential equations (PDEs) version of the Initial Value Problem studied in
this work in Section 2.1. Section 2.2 summarizes the multi-resolution analysis using multiwavelets
for space-discretization. Section 2.3 describes the proposed use of canonical exponential operators
and presents a novel architecture using Padé approximation.

2.1 INITIAL VALUE PROBLEM

The initial value problem (IVP) for PDEs can be written in its general form as follows.

ut “ Fpt, uq, x P Ω

upx, 0q “ u0pxq, x P Ω
(1)

where, ut is the first-order time derivative of u, F is a time-varying differential operator (non-linear
in-general) such that F : R` Y t0u ˆ B Ñ B with B being a Banach space. Usually, the system
in eq. (1) is required to satisfy a boundary condition such that Bupx, tq “ 0, x P BΩ @t in the
solution horizon, and BΩ is the boundary of the computational region Ω with B some linear function.
Pertaining to our work, the operator map problem for IVP can be formally defined as follows.

Operator Problem Given A and U as two Sobolev spaces Hs,p with s ą 0, p “ 2, an operator T is
such that T : A Ñ U . For a given τ ą 0 and two functions u0pxq and upx, τq, in this work, we take
the operator map as T u0pxq “ upx, τq with x P Ω.

Table 1 summarizes a few examples of the IVP and their solutions.The exponential operators are
ubiquitous in the IVP solutions and, therefore, are important to study. One issue, however, is that
the exponential operators are non-linear and unlike convolution like operators, there does not exist a
general way to diagonalize them (Fourier transform diagonalizes convolution operator) for an efficient
representation. Previous work on neural operators (Li et al., 2020c;a; Gupta et al., 2021) modeled
the non-linear operators in one way or another by using multiple canonical integral operators along
with non-linearity (for example, ReLU). In this work, we directly produce an exponential operator
approximation. First, we discuss an efficient basis (multiwavelets) for space discretization of the
input / output functions in Section 2.2.

2.2 MULTI-RESOLUTION ANALYSIS

The multi-resolution analysis (MRA) aims at projecting a function to a basis over multiple scales.
The wavelet basis (e.g., Haar, Daubechies) are some popular examples. Multiwavelets further this
operation by using the family of orthogonal polynomials (OPs), for example, Legendre polynomials
for an efficient representation over a finite interval (Alpert et al., 2002). The multiwavelets are

1Time-advection equation with linear operators L,N and non-linear function fp.q. A wide range of problems
can be modeled, for example, Korteweg-de Vries, Kuramoto-Sivashinsky, Burgers’ Equation, Navier-Stokes (list
not exhaustive).

2A non-linear integro-differential solution to the time-advection equation using semi-group approach (Beylkin
& Keiser, 1997; Pazy, 1983; Yoshida, 1980). A slightly general version is discussed in (Beylkin et al., 1998).
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useful in the sparse representation of the integral operators with smooth kernels. In addition, the
multiwavelets also sparsify the exponential functions of the strictly elliptic operators (Beylkin &
Keiser, 1997). However, we do not rely on this assumption in this work. Here, we briefly introduce
the MRA and refer the reader to Gupta et al. (2021) for a more detailed discussion.

Notation We begin by defining the space of finite interval polynomials as Vk
n “ tf |f are polynomi-

als of degree ă k defined over interval p2´nl, 2´npl ` 1qq for all l “ 0, 1, . . . , 2n ´ 1, and assumes
0 elsewhereu. The Vk

n are contained in each other for subsequent n or,

Vk
0 Ă Vk

1 Ă . . . Ă Vk
n´1 Ă Vk

n Ă . . . . (2)

The orthogonal component of these polynomial spaces is termed as multiwavelet space Wk
n and are

defined such that
Vk

n

à

Wk
n “ Vk

n`1, Vk
n K Wk

n. (3)

The orthonormal basis of Vk
0 are OPs ϕ0, ϕ1, . . . , ϕk´1 and we have used appropriately normalized

shifted Legendre Polynomials in this work. The basis for Vk
n and Wk

n are ϕnjlpxq “ 2n{2ϕjp2nx´ lq

and ψn
jlpxq “ 2n{2ψjp2nx´ lq, respectively, for l “ 0, 1, . . . , 2n ´ 1 and j “ 0, 1, . . . , k ´ 1.

Finally, an important trick for representing the operator T in the multiwavelet basis is called non-
standard (NS) form (Beylkin et al., 1991). The NS form decouples the interactions of the scales and
is useful in obtaining an efficient numerical procedure. Using NS form, the projection of operator T
is expanded using a telescopic sum as follows.

Tn “
ÿn

i“L`1
pQiTQi `QiTPi´1 ` Pi´1TQiq ` PLTPL, (4)

where, Pn : Hs,2 Ñ Vk
n is the projection operator, Tn “ PnTPn, Qn : Hs,2 Ñ Wk

n such
that Qn “ Pn ´ Pn´1, and L is the coarsest scale under consideration pL ě 0q. Therefore,
the NS form of the operator is a collection of the triplets tAi, Bi, Ciu

n
i“L`1 and PLTPL with

Ai “ QiTQi, Bi “ QiTPi´1 and Ci “ Pi´1TQi. In this work, we aim to model Ai, Bi, Ci as the
exponential operators to better learn the IVP by explicitly embedding the non-linear operators into
the multiwavelet transformation. This is not straightforward due to the non-linearity of exponential
functions. We are now in shape to present the main contribution of the current work in the Section 2.3
where we discuss an implementable neural approximation of the exponential operators.

2.3 EXPONENTIAL OPERATOR APPROXIMATIONS

Due to the nature of first-order time-evolution equations, the exponential operators appear in the
solution of IVP as discussed in Section 2.1. Being an analytic function, the exponential also assumes
a Taylor series expansion. However, the approximation error by truncation is (Abramowitz & Stegun,
1965) and may require a large number of coefficients. We now discuss a better approximation for the
non-linear functions.

Padé Approximation Given an analytic function fpzq, z P C at 0 and let p, q P N, the rp{qs

Padé approximation of f at 0 is a rational polynomial rpqpzq “ Apqpzq{Bpqpzq, where Apqpzq and
Bpqpzq are polynomials of degree p and q, respectively. For our work, fpzq “ ez , and the rp{qs

Padé approximation to the exponential function is written as Apqpzq “
řp

j“0 ajz
j and Bpqpzq “

řq
j“0 bjz

j , where

aj “
pp` q ´ jq!p!

pp` qq!j!pp´ jq!
, 0 ď j ď p bj “

pp` q ´ jq!q!p´1qj

pp` qq!j!pq ´ jq!
, 0 ď j ď q. (5)

Note that, a0 “ b0 “ 1, and we now discuss the exponential of operators. Given an operator L
(possibly non-linear), the rp{qs Padé approximation for eL can be written as

eL « rpqpLq “

¨

˝

q
ÿ

j“0

bj L ˝ L ˝ . . . ˝ L
looooooomooooooon

j´times

˛

‚

´1 ¨

˝

p
ÿ

j“0

aj L ˝ L ˝ . . . ˝ L
looooooomooooooon

j´times

˛

‚. (6)

For L being a linear transformation, the inverse in eq. (6) is computed as a matrix inverse, for example
when evaluating a matrix exponential. Even convolution operator can be represented as the circulant
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matrix (shift-invariant kernel) operation. But storing the big circulant matrix is not a numerically
efficient solution. Instead, we now discuss a neural architecture that emulates the Padé approximation
for operators in eq. (6) while avoiding taking the inverse.

Padé Exponential Model We compute the operator exponential using the rp{qs Padé approximation
via a recurrent neural architecture in Figure 1. First, the denominator polynomial BpqpLq is evaluated
using the left recurrent network. Second, the output is passed through a non-linear layer which we
implement as v “ σpWu` bq with σp.q being the ReLU function. Note that the non-linearity layer
is applied to the input channels, and therefore, its size is independent of the input spatial dimension.
Finally, the output of the non-linear layer is passed through another recurrent network implementing
the numerator polynomial ApqpLq. Note that, both polynomial recurrent networks use same operator
L, or in other words, the parameters are shared across the network. With aj , bj fixed-beforehand, the
total trainable parameters of the Padé exponential model are tθL,W, bu.

One issue with the recurrent architectures is the possibility of gradients explosion when evaluated over
a large horizon. In such cases, techniques like gradient clipping is used as a workaround. For a given
p, q, the proposed network runs the recurrent loops for a total of p` q´2. We show that the proposed
rp{qs Padé network does not suffer from the issue of gradient explosion, and the boundedness of the
gradients is established through the following result:
Theorem 1. Given a linear operator L “ LpθLq, a non-linearity layer v “ σpWu`bq, and p, q P N,
at points of differentiability, the gradients of the operation x ÞÑ y “ F px; θL,W, bq :“ rp{qseLpxq

using the rp{qs Padé network in Figure 1 are bounded in operator norm by∥∥∥∥ By

BθL

∥∥∥∥ ď expp}L}q p}b}2 ` }W }}x}2q

˜

nθ
ÿ

j“1

∥∥∥∥ BL
Bθj

∥∥∥∥2
¸1{2

, (7)∥∥∥∥ By

BW

∥∥∥∥ ď expp}L}q}x}2, (8)∥∥∥∥By

Bb

∥∥∥∥ ď exp

ˆ

p

p` q
}L}

˙

. (9)

The detailed proof is provided in the Supplementary Materials (Appendix E). Note that, nθ “ |θL| is
such that nθ ! M , where M is the dimension of the input. For example, the convolution operator has
a fixed kernel independent of the size of the input, the Fourier-based convolution in (Li et al., 2020a)
has km Fourier modes independent of the input dimension. Next, as noted earlier, the non-linearity
layer σpWu ` bq is applied to the input channels (instead of input spatial dimensions), therefore,
the gradient bounds do not scale with high input-resolutions, apart from the dependence from ∥x∥2
which could be pre-normalized.

Finally, the Padé neural model is integrated with the multiwavelet transform by substituting each
of A,B,C, from Section 2.2, with rp{qseLA , rp{qseLA , rp{qseLA . The complete flow-diagram by
plugging-in the Padé model is shown in Appendix D.

3 EXPERIMENTS

Here, we empirically evaluate the proposed model and compare against the existing approaches. We
consider several synthetic PDE datasets as well as a real-world example of pandemic prediction
(COVID-19). For the data, a similar input/output structure is used as in the recent works of neural
operator architectures. Specifically, the input function u0pxq and the output function upτ, xq for some
pre-specified τ ą 0, are evaluated at M discretized locations of the domain Ω. This yields a single
training sample of pu0pxiq, upτ, xiq, xi P Ω, 1 ď i ď M . In total, we take N training samples, and
unless stated otherwise, N “ 1000 and we test on 200 samples for the synthetic datasets.

Padé Model Implementation The operator L in Figure 1 is fixed as a single-layered convolution
operator for 1D datasets, and 2-layered convolution for 2D datasets. For getting the input/output
operator mapping, the multiwavelet transform is used only for discretizing the spatial domain. The
Padé neural model easily fits into the sockets of the multiwavelet transformation based neural operator
as sketched in Figure 7 (Appendix D). The multiwavelet filters are obtained using shifted Legendre
OPs with degree k “ 4. In contrast to the work of Gupta et al. (2021), only a single cell of
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+ + +

+ + +

shared parameters

Figure 1: Padé Exponential Model. A recurrent neural architecture for computing the exponential of an operator
L using rp{qs Padé approximation. The multiplicative scalar coefficients ai, bi are fixed-beforehand using eq.
(5). The non-linear fully-connected layer is used to mimic the inverse polynomial operation.

multiwavelet transform is used in the current work because the non-linearity in the operator is explicit
via Padé neural operator. This saves a lot of trainable parameters and yields a compact model which
is suitable when dealing with scarce noisy real-world data as we see in Section 3.3. The numerator /
denominator polynomials degrees p{q for the Padé approximation is fixed as pp, qq “ p5, 6q for 1D
models and p4, 2q for 2D models. While the authors do not advocate that this is the best possible
choice, an ablation study for 1D data is performed in Appendix B.1.

Benchmark Neural Operators We compare against the recently proposed neural operator works
with the proposed Padé exponential model (Padé Exp). The graph neural operator (GNO) was
proposed in (Li et al., 2020b). A multi-level version of the graph neural network (MGNO) in (Li
et al., 2020c). LNO A low-rank representation of the integral operator kernel and then using multiple
layers with non-linearity, which also emulates unstacked DeepONet (Lu et al., 2020). A convolution
approximation to the canonical integral kernel and then Fourier transform to diagonalize in (Li et al.,
2020a) as FNO. MWT Leg utilize multiwavelets for spatial projections using Legendre OPs and uses
multi-cell structure along with ReLU non-linearity. The Padé Exp model delivers state-of-the-art
(Sota) performance on a range of datasets, both synthetic and real-world. With less number of
parameters, the proposed model shows promise for small datasets as shown in Section 3.3.

Training parameters All neural operator models are trained using Adam optimizer with a learning
rate of 0.001 and decay of 0.95 after every 100 steps. The loss function is taken as the relative L2
error. For synthetic datasets we train for a total of 500 epochs and for real-world COVID-19 dataset
we train for a total of 750 epochs. All experiments are done on an Nvidia A100 40GB GPUs.

3.1 KORTEWEG-DE VRIES EQUATION

The Korteweg-de Vries (KdV) equation is a one-dimensional non-linear PDE used to model the
non-linear shallow water waves. For a given field upx, tq, the KdV PDE takes the following form:

ut “ ´0.5u
Bu

Bx
´

B3u

Bx3
, x P p0, 1q, t P p0, 1s

u0pxq “ upx, t “ 0q.

(10)

For Table 1 notations, we have L “ ´ B
3

Bx3 , fpuq “ ´0.25u2, and N “ B
Bx . The neural operator

learns the mapping of the initial condition u0pxq to the solutions upx, t “ 1q. The initial condition
is generated in Gaussian random fields according to u0 „ N p0, 74p´∆ ` 72Iq´2.5q with periodic
boundary conditions. The data set is obtained by solving the equation using the fourth-order stiff
time-stepping scheme known as ETDRK4 (Cox & Matthews, 2002) with a resolution of 210, and
datasets with lower resolutions are obtained by sub-sampling the highest resolution dataset.

For evaluation, firstly, we vary the total training samples (N ) for all the operator models. We sample
randomly and uniformly 5 times the training subset from the complete data N “ 1000, and for each
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Figure 2: (Left) Number of training samples N vs performance (relative L2 error) for neural operators evaluated
on the KdV equation with s=1024. For N ă 1000, each smaller dataset is sampled uniformly randomly 5
times from the complete dataset (N “ 1000) and mean ˘ std.dev (shaded region) results are shown across the
sampling experiments. (Right) Same analysis for KS equation with s=1024.

Networks s = 64 s = 128 s = 256 s = 512 s = 1024
Padé Exp 0.00301 0.00308 0.00311 0.00298 0.00295
MWT Leg 0.00372 0.00369 0.00391 0.00408 0.00392
FNO 0.00663 0.00676 0.00657 0.00649 0.00672
MGNO 0.12507 0.13610 0.13664 0.15042 0.13666
LNO 0.04234 0.04764 0.04303 0.04465 0.04549
GNO 0.13826 0.12768 0.13570 0.13616 0.12521

Table 2: Korteweg-de Vries (KdV) equation benchmarks for different input resolution s. The relative L2 errors
are shown shown for each model.

sampling the models are evaluated. For consistency, each model is fed the same training sub-sample
and the results are shown in Figure 2 (Left). We see that Padé Exp model has the sharpest decay
compared to the other state-of-the-art neural operators on varying N . This shows that the proposed
model is data-efficient and works well when less data is available. Next, we also evaluate the Padé
Exp model on the complete data N “ 1000 but by varying the input resolution as shown in Table 2.
The proposed model performs consistently better for all the input resolutions.

3.2 KURAMOTO-SIVASHINSKY (KS) EQUATION

The Kuramoto-Sivashinsky (KS) equation is a fourth-order non-linear PDE derived to model the
diffusive instabilities in a laminar flame front. For a given field upx, tq, the KS PDE takes the
following form:

ut “ ´u
Bu

Bx
´

B2u

Bx2
´

B4u

Bx4
, x P p0, 1q, t P p0, 1s

u0pxq “ upx, t “ 0q.

(11)

The KS equation is also time-advection and according to the Table 1 notations, we have: L “

´ B
2

Bx2 ´ B
4

Bx4 , fpuq “ ´0.5u2, and N “ B
Bx . The neural operator learns the mapping of the initial

condition u0pxq to the solutions upx, t “ 1q. Similarly to the KdV equation in Section 3.1, the initial
condition is sampled from a Gaussian random field u0 „ N p0, 54p´∆ ` 52Iq´2.5q with periodic
boundary conditions. The equation is numerically solved using chebfun package (Driscoll et al.,
2014) with a resolution of 210, and datasets with lower resolutions are obtained by sub-sampling the
highest resolution data set.

We evaluate the proposed model on the KS equations and compare with the existing works in a similar
experimental setup as for the KdV equation in Section 3.1. The reduced training experiment results
are shown in Figure 2 (Right), where we have uniformly and randomly sub-sampled the training
samples from the complete dataset. For consistency, we have evaluated all models on the same
sub-sampled training set. We again observe that the proposed Padé Exp model with its compact
structure has the steepest decay of relative L2 error compared to the recent neural operator works.
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Networks MAE Relative L2 error Net. vs FC
C R D

Padé Exp 1219 ˘ 130 1752 ˘ 666 211 ˘ 31 0.0155 ˘ 0.0034 82.14% (+652K)
MWT Leg 3554 ˘ 1157 2928 ˘ 1338 284 ˘ 209 0.0245 ˘ 0.0043 62.0% (+18M)
FNO 3D 4213 ˘ 391 3391 ˘ 1233 592 ˘ 157 0.0301 ˘ 0.0045 54.0% (+1.02M)
LNO 3D 28502 ˘ 12698 6586 ˘ 3442 1465 ˘ 965 0.1056 ˘ 0.0394 -105.0% (+238K)
Neural ODE 4339 ˘ 1174 3443 ˘ 1408 443 ˘ 192 0.0310 ˘ 0.0069 53.8% (+172K)
Seq2Seq 2798 ˘ 456 3317 ˘ 1690 346 ˘ 83 0.0273 ˘ 0.0058 63.7%(+1.8M)
Transformer 7087 ˘ 972 6613 ˘ 2853 1722 ˘ 320 0.0501 ˘ 0.0094 13.4% (+15.2K)
FC 10305 ˘ 2818 5885 ˘ 1609 1634 ˘ 686 0.0609 ˘ 0.0111 (37.2K)

Table 3: COVID-19 prediction benchmarks for different networks using 10-fold resampling with mean ˘ std.
dev. across folds. The Mean Average Error (MAE) is presented for Confirmed (C), Recovered (R), and Deaths
(D) counts averaged across 7 days of prediction for 50 US states. The relative L2 error is the test error for each
model. The last column compares each network vs FC in terms of the total MAE improvement and total model
parameters difference.
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Figure 3: COVID19 Forecasting. Confirmed, Recovered, and Deaths count forecasting results for the 07/07/20
– 07/13/20 (chosen arbitrarily) using previous 2 weeks as the input. The Padé Exp prediction and the best
non-neural operator scheme from Table 3 (seq2seq) is shown. Top row: Most populous US state California with
population 39.77 M (2018 census). Bottom row: Same results for Massachusetts with a moderate population of
6.89 M.

By using the exponential operators, the IVPs can be efficiently solved as we witness from Figure 2.
Finally, we also evaluate the proposed model for the complete data but varying the input resolution s
(see results in Table 10, Appendix B.4). We again conclude that the proposed model attains better
performance than state-of-the-art approaches for all the resolutions.

3.3 EPIDEMIC FORECASTING: COVID-19 STUDY

The epidemic forecasting problem refers to the prediction of future counts of infected individuals,
recovered individuals and deaths using the current observational data. A variety of compartmental
models exist to model the epidemic spread with certain assumptions (see related work, Appendix A).
The dynamics of the epidemic spread by modeling their time-evolution behavior is not exactly known,
and may not apply to any problem, for example, the recent COVID-19 pandemic. Neural operators,
providing a complete data-driven approach, are capable to learn PDE agnostic maps. Consequently,
we show that the epidemic forecasting can be formulated as an operator map learning problem.
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Dataset The COVID-19 data set 3 from April 12th 2020 to August 28th 2021 is provided by Johns
Hopkins University (Dong et al., 2020). We take the data of 50 US States, and for each state, we have
the total counts of daily reported confirmed (C), recovered (R), and deaths (D). We normalize the
data of each state by their total population. Therefore, we have a daily collection of 2-dimensional
data of size 50 ˆ 3.

Deep learning Benchmarks In addition to the neural operators, we also compare against the state-
of-the-art deep learning techniques: an auto-regressive fully connected (FC) network, Sequence to
Sequence (Seq2Seq) (Salinas et al., 2019; Rangapuram et al., 2018) and Transformers (Vaswani
et al., 2017) utilizing encoder-decoder structure. For Seq2Seq, we have used LSTM architecture
for encoder and decoder. Neural ODE (Chen et al., 2019) utilizing latent ODE for time-series
forecasting.

Operator Map The operator task is to learn the map between the 14 consecutive counts (C, R, D) to
next 7 days data for each of the 50 US states. Let dt be the 50 ˆ 3 array on day-t, then the operator
map can be written as follows.

T pd´14, d´13, . . . , d´1
looooooooooomooooooooooon

u0pxq

q “ pd0, d1, . . . , d6
loooooomoooooon

upτ,xq

q.

Forecasting The COVID19 forecasting benchmarks are presented in Table 3. Due to data scarcity
(484 samples in total), we do a 10-fold resampling of the dataset to obtain train/test samples and
the averaged results are presented for all models. We see that the proposed Padé exponential model
achieves better performance than existing approaches especially in the presence of scarce and noisy
data setup. The Seq2Seq performs best among all non-neural operator models. In terms of the
total mean averaged error (MAE) (for C, R, and D counts), the Padé exponential achieves a 53%
improvement over the best neural operator (MWT Leg), and 52% over the best non-neural operator
model (Seq2Seq). The percentage improvement over the FC model and the difference between the
total model parameters w.r.t. FC are shown in the last column. A sample forecasting is shown for 2
US states in Figure 3. We also show the corner cases (best and worst test sample) predictions in the
Figure 8 (Appendix B.5) along with the best/worst prediction states.

4 ABLATION EXPERIMENTS

The ablation experiments are presented in the Supplementary Materials (Appendix B.1). The follow-
ing experiments are performed; (i) Comparison between the proposed Padé approximation vs Taylor
Series neural operator, (ii) the variations of p, q for the rp{qs Padé approximation model in Figure 1,
and (iii) variation of the non-linearity module in the Padé neural model.

5 FUTURE DIRECTIONS AND CONCLUSION

Time-evolution analysis of PDEs and forecasting the future states from a set of observations is
fundamental for studying a wide range of complex systems in physics, chemistry, geoscience,
neuroscience, system biology, social, political, and climate sciences. In many such contexts, we
need to solve an initial value problem consisting of a first-order time-evolution of several nonlinear
spatial operators. To efficiently solve these initial value problems while also overcoming data science
challenges (e.g., scarcity in the number of samples, samples corrupted by unknown noise types and
sources), we proposed a combined multiwavelet and Padé approximation based exponential neural
operator architecture. The proposed model has order-magnitude fewer parameters (see Table 3) and
attains data-efficiency.

The IVPs deal with first-order time evolution, and thus, the exponential operator appears. In a
more general setup, the higher-order time derivatives, or even fractional time derivatives should be
considered to model the non-Markovian dynamics. In such cases, Reisz transform like approach
helps. This is an interesting future direction for neural operator design, where data helps identifying
the time-evolution order.

3https://github.com/CSSEGISandData/COVID-19
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Networks λ “ 0.05 λ “ 0.04 λ “ 0.03 λ “ 0.02
Padé Exp (p=5, q=6) 0.00199 0.00237 0.00219 0.00215
Padé Exp (p=4, q=2) 0.00222 0.00231 0.00291 0.0159
Taylor (Lt=6) 0.00730 0.00690 0.00846 0.00704
Taylor (Lt=4) 0.00938 0.00842 0.00866 0.0193
L’Hospital (n=6) 0.00775 0.00699 0.00752 0.0194
L’Hospital (n=4) 0.00731 0.00798 0.00844 0.0199

Table 4: Taylor vs Padé Approximation for exponential operator evaluated on the KdV equation for s=1024 with
varying input (u0pxq) fluctuation strength λ (low λ implies high fluctuation). The highest polynomials degree
are similar for each model by setting Lt “ maxpp, qq for Taylor and similarly n “ maxpp, qq for L’Hospital.
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Figure 4: Polynomials degree p, q grid variation for rp{qs Padé neural model of Figure 1. The performance is
evaluated on the KdV equation with s=1024.

A RELATED WORK

Epidemic Forecasting In Epidemiology, the compartmental models are very common, where the
population is assigned into discrete categories (for example, Susceptible, Infected, Recovered), also
termed as SIR models which date back to 1927 (Kermack et al., 1991; Diekmann et al., 2021). Along
the lines, several works exist that model the time-evolution of epidemic using various assumptions.
The work of Chen et al. (2020) uses a ridge regression based prediction. An extension of SEIR (E for
Exposed) compartments to sub-populations moving across different places in (Pei & Shaman, 2020).
A convolution filter based approach in (Wang et al., 2020), where the total infected cases are modeled
as convolution of novel cases with proportion of infected counts over time. A susceptible EIR model
in (Zou et al., 2020b) incorporating the unreported cases. The work of Davis et al. (2020) which
simultaneously models the transmission rate among US states. A physics-based model in (Wang et al.,
2021a) that uses auto-differentiation using Runga-Kutta methods to estimate the model parameters.

B ADDITIONAL RESULTS

B.1 ABLATION STUDY

Taylor vs Padé Exponential Approximation We compare the Padé approximation based neural
model in Figure 1 vs Taylor series approximation for evaluating the exponential of the operator L.
The Taylor series version is written as

eL «

Lt
ÿ

j“0

1

j!
pL ˝ L ˝ . . . ˝ Lq
loooooooomoooooooon

j´times

,

where, Lt is the truncated length of the series. We evaluate the truncated Taylor series approximation
vs rp{qs Padé approximation in Figure 1 for same number of maximum polynomial degree, i.e.,
Lt “ maxpp, qq. For both models, we give input with varied degree of fluctuations (to make the data
more challenging) and the output is governed by the KdV equation (see Section 3.1). The fluctuated
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input is sampled from Random fields Filip et al. (2019) with controllable parameter λ with lower
values attaining higher fluctuations and the input u0pxq reaches the Brownian motion limit with
λ Ñ 0. We see in Table 4 that the Padé approximation model works better compared to Taylor series
based expansion for incorporating the exponential operators for each λ.

L’Hospital Approximation The exponential exppxq can also be approximated as limnÑ8p1`x{nqn

using L’Hospital rule (Krantz, 2004). For a given operator L, the L’Hospital based exponential
operator approximation can be written as

eL « pI ` L{nq ˝ pI ` L{nq ˝ . . . ˝ pI ` L{nq
looooooooooooooooooooooooomooooooooooooooooooooooooon

n´times

,

where, I is the identity operator and n is the length of truncation of operator compositions. We
compare L’Hospital approximation with the Padé model in Table 4 for the same degree of operator
polynomials, i.e., n “ maxpp, qq. For the same experimental settings as taken in the Taylor approxi-
mation comparison, we see that the proposed Padé model performs better than the L’Hospital-based
exponential approximation for all fluctuations strengths.

Varying Padé polynomials degree The numerator/denominator polynomials degree p, q in eq. (5)
for rp{qs Padé approximation model in Figure 1 are hyper-parameters. We vary the p, q over a 2D
grid of r1, 10s ˆ r1, 10s and evaluate for the KdV equation settings (s=1024) as mentioned in the
Section 3.1 and the results are shown in Figure 4. We make the following observations, namely; (i)
For p “ q “ 1, i.e., when there is no operator L and only the non-linear layer σpWu` bq, the model
has the worst performance of 0.1063. This shows the importance of operator L in the Padé model. (ii)
By increasing the p, q in either direction, the performance improves as we attain better approximation
with higher degree polynomials. The best performance is achieved as pp, qq “ p10, 1q. (iii) The
performance is roughly similar in the mid-range of p and q’s, as long as p ą 1 and q ą 3 for the 1D
experiment on KdV. Note that, although larger values of p and q are preferable but they also incur the
additional cost of run-time which scales linearly with p` q as evident from the recurrent structure in
Figure 1.

Depth L2 error
1 0.00295
2 0.00339
3 0.00628

Table 5: Non-linear layer depth vs
test error for the Padé neural model.

Structure of the non-linear MLP We have used the non-linear
layer σpWu` bq in the Padé neural model for all the experiments
with σp.q=ReLU. Now, we vary the depth of this layer from 1 to 3
(each layer is followed by ReLU non-linearity) to see the individual
contribution of this layer towards the final test performance. The
experiments settings are same as for Table 2 and we fix s “ 1024.
Upon increasing the depth we do not see any improvements, in
fact, after having three layers, the performance starts to degrade.
A possible reason could be Denominator polynomial getting affected by the deeper non-linearity
layer.

B.2 PREDICTION AT HIGHER RESOLUTIONS

Train
Test s = 2048 s = 4096 s = 8192

s=128 0.0423 (0.0473) 0.0440 (0.0511) 0.0450 (0.0544)
s=256 0.0229 (0.0315) 0.0250 (0.0374) 0.0263 (0.0427)
s=512 0.0124 (0.0230) 0.0148 (0.0305) 0.0162 (0.0372)

Table 6: Padé exponential (MWT Leg) model trained at lower resolutions can predict the output at higher
resolutions.

B.3 TRAINING/EVALUATION WITH DIFFERENT pp, qq

Due to the recurrent structure of the Padé approximation model in Figure 1, with only trainable
parameters tθL,W, bu, the model can be trained and tested on different values of pp, qq by just
varying the recurrence loop lengths of the numerator and denominator polynomial. We setup this
experiment on the KdV equation (same setting as in Section 3.1). The Padé model is trained for
pp, qq “ p5, 6q and p4, 2q and then tested on r1, 10s ˆ r1, 10s grid of p, q tuples as shown in Figure 5.
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Figure 5: Relative L2 error when Padé model trained and tested on different pp, qq. (Left) The KdV data using
pp, qq “ p5, 6q for training and other pp, qq for testing. (Right) The KdV data using pp, qq “ p4, 2q for training
and other pp, qq for testing. For each plot, the Orange/Green color denotes best performance (lowest value) in
the corresponding row/column, respectively.

We observe that the best performance (lowest relative L2 error) results when the train and test pp, qq

matches. In addition, we observe that for a fixed q, the best performance results when p is such
that p/q ratio is similar as the training ratio. For example, in Figure 5 (Left), we see that lowest
value for each column is obtained when p{q is closest to 5{6 while in (Right) we see lowest value of
each column when p{q “ 2. The boundary cases diverge because either p, q “ 1 does not have any
operator L in the corresponding polynomial as evident from eq. (6). When trained for pp, qq “ p4, 2q,
the best performance for q ą 5 saturates to p “ 10 because of the maximum limit on the experimental
grid pp “ 10q. Overall, this experiment suggests that the relative length of the polynomials during
evaluation should be similar to training setting for best performance.

B.4 KURAMOTO-SIVASHINSKY EQUATION

Comparison of relative error for different neural operators evaluated over KS equation is presented in
Table 10.

B.5 COVID-19 FORECASTING

Additional forecasting results for COVID-19 by considering the corner cases are presented in Figure 8.

B.6 2D NAVIER-STOKES EQUATIONS

The Navier-Stokes (NS) equations are 2D time-varying PDEs describing the motion of viscous fluid
substances. The NS equations can describe many physical processes and have wide range of practical
uses. In this paper, to compare with the state-of-the-art models (Li et al., 2020a; Gupta et al., 2021)
under the same conditions, we use the same data sets that have been published in (Li et al., 2020a),
where the NS equations take the following form:

wtpx, tq ` upx, tq ¨ ∇wpx, tq ´ ν∆wpx, tq “ fpxq, x P p0, 1q2, t P p0, T s

∇ ¨ upx, tq “ 0, x P p0, 1q2, t P r0, T s

w0pxq “ wpx, t “ 0q, x P p0, 1q2

(12)

where u is the velocity, w is the vorticity such that w “ ∇ ˆ u. The incompressible flow is modeled
via divergence condition as ∇ ¨ upx, tq “ 0. We set the experiments to let the neural operator map the
first 10 time units to last T´10 time units of vorticityw. The initial condition is generated in Gaussian
random fields according to w0 „ N p0, 7

3
2 p´∆ ` 72Iq´2.5q with periodic boundary conditions and

the forcing function is fpxq “ 0.1psinp2πpx1 ` x2qq ` cosp2πpx1 ` x2qqq. We experiment with
different viscosities ν, final time T , and the number of training pairs N : piq ν “ 1e ´ 3, T “ 50,
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Networks
ν “ 1e´ 3
T “ 50
N “ 1000

ν “ 1e´ 4
T “ 30
N “ 1000

ν “ 1e´4
T “ 30
N “ 10000

ν “ 1e´ 5
T “ 20
N “ 1000

Padé Exp 0.00621 0.1427 0.0619 0.1533
MWT Leg 0.00625 0.1518 0.0667 0.1541
FNO-3D 0.0086 0.1918 0.0820 0.1893
FNO-2D 0.0128 0.1559 0.0973 0.1556
U-Net 0.0245 0.2051 0.1190 0.1982
TF-Net 0.0225 0.2253 0.1168 0.2268
Res-Net 0.0701 0.2871 0.2311 0.2753

Table 7: Navier-Stokes Equation validation at various viscosities ν and prediction horizon T .

Networks N = 200 N = 400 N = 600 N =800 N = 1000
Padé Exp 0.00864˘5.1e-4 0.00439˘ 2.8e-4 0.00365˘ 2.2e-4 0.00322˘ 1.7e-4 0.00295
MWT Leg 0.00898˘16.1e-4 0.00641˘7.7e-4 0.00463˘3.5e-4 0.00420˘2.7e-4 0.00392
FNO 0.00970˘6.4e-4 0.00781˘3.3e-4 0.00706˘2.1e-4 0.00679˘1.2e-4 0.00672

Table 8: Korteweg-de Vries (KdV) equation benchmarks for different numbers of training samples N . Top: Our
method. Bottom: the state-of-the-art methods.

Networks N = 200 N = 400 N = 600 N =800 N = 1000
Padé Exp 0.00764˘2.0e-4 0.00489˘ 2.2e-4 0.00416˘ 1.8e-4 0.00376˘ 1.0e-4 0.00338
MWT Leg 0.00849˘5.7e-4 0.00612˘5.5e-4 0.00496˘4.2e-4 0.00478˘3.3e-4 0.00445
FNO 0.01024˘1.1e-3 0.00771˘3.4e-4 0.00625˘1.7e-4 0.00508˘1.4e-4 0.00457

Table 9: Kuramoto–Sivashinsky (KS) equation benchmarks for different numbers of training samples N . Top:
Our method. Bottom: the state-of-the-art methods.

N “ 1000; piiq ν “ 1e ´ 4, T “ 30, N “ 1000; piiiq ν “ 1e ´ 4, T “ 30, N “ 10000; pivq

ν “ 1e´ 5, T “ 20, N “ 1000 on a 64 ˆ 64 grid.

The time-varying 2D data is modeled as 3D operator learning problem. We implemented the Padé
exponential model by taking L as 2-layered 3D CNNs with ReLU non-linearity and p “ q “ 4 in

1 100 200 300 400 500
epochs

2 × 10 1

3 × 10 1

4 × 10 1

Re
la

tiv
e 

er
ro

r

Padé Exp
MWT Leg
FNO

Figure 6: Relative L2 error vs epochs for MWT Leg with different
number of OP basis k.

Figure 1. A total of 4 layers of multi-
wavelet skeleton (Figure 7) with k “

3 are concatenated using ReLU non-
linearity. The results are reported
in Table 7, and we observe that Padé
model performs well compared to the
recent state-of-the-art neural operator
approaches. For the less data setup of
N “ 1000 with ν “ 1e ´ 4, we see
in Figure 6 that the Padé Exp model
quickly converges to the lowest value
compared to the other neural operator
approaches.

B.7 NUMERICAL VALUES

The numerical values for the training
samples variation experiment for the
KdV and KS equation in the Figure 2
are shown in Table 8 and Table 9, respectively.
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Networks s = 64 s = 128 s = 256 s = 512 s = 1024
Padé Exp 0.00359 0.00326 0.00347 0.00348 0.00338
MWT Leg 0.00445 0.00414 0.00436 0.00485 0.00445
FNO 0.00461 0.00451 0.00469 0.00491 0.00457
MGNO 0.10362 0.12038 0.13361 0.13343 0.13799
LNO 0.04133 0.04020 0.04498 0.04341 0.04360
GNO 0.14037 0.14277 0.13862 0.14525 0.14363

Table 10: Kuramoto-Sivashinsky (KS) equation benchmarks for different input resolution s. The relative L2
errors are shown shown for each model.

C NOTATIONS

Operator Learning

T,L Operators between function spaces

Hs,p Sobolev spaces such that constituent functions and their weak
derivatives upto order s have finite Lp norms

Multiwavelets
à

Subspace addition

Vk
n tf |f are polynomials of degree ă k defined over interval

p2´nl, 2´npl ` 1qq for all l “ 0, 1, . . . , 2n ´ 1, and assumes
0 elsewhereu

Wk
n Orthogonal space to Vk

n such that Wk
n

À

Vk
n “ Vk

n`1

Pn Projection operator such that Pn : Hs,2 Ñ Vk
n

Qn Projection operator such that Qn : Hs,2 Ñ Wk
n

L Coarsest scale of the multiwavelet transform
Padé Approximation

}.} Operator norm

}.}2 Euclidean L-2 norm

rp{qsf Padé approximation of function f with numerator/denominator
polynomial degree p/q, respectively

θL Parameters used to represent the operator L
θn Number of parameters used to represent the operator L
x ÞÑ y “ F px; Θq Mapping from x to y using function F with parameters set Θ

D MULTIWAVELET EXPONENTIAL OPERATOR ARCHITECTURE

The Padé neural operator based multiwavelet transform model is shown in Figure 7. The input to the
model is spn`1q, where n “ logpMq, and the output is U pnq

s , where n is the finest scale (or the log of
input resolution). For a detailed description of multiwavelet transform, we refer the reader to (Gupta
et al., 2021).

E PROOF OF THEOREM 1

First note that, for the Padé approximation rp{qsex, the polynomial coefficients in eq. (5), we have

aj “
1

j!

ppp´ 1q ¨ ¨ ¨ pp´ j ` 1q

pp` qqpp` q ´ 1q ¨ ¨ ¨ pp` q ´ j ` 1q
ď

1

j!

ˆ

p

p` q

˙j

. (13)

19



Published as a conference paper at ICLR 2022

+
+

Figure 7: Multiwavelet Padé Exponential Model. The Padé exponential neural operator from Figure 1 is used
in the skeleton of the multiwavelet transform based neural operator model. The inputs and outputs are recursively
updated using the decomposition cell (Left) and reconstruction cell (Right).

and similarly,

|bj | ď
1

j!

ˆ

q

p` q

˙j

.

For the simplicity of notation: let Apzq “ Apqpzq “
řp

j“0 ajz
j , A1pzq “

řp
j“1 jajz

j´1, Cpzq “
řq

j“0 |bj |zj , C 1pzq “
řq

j“1 j|b|jz
j´1. Note |Bpqpzq| ď Cp|z|q and |B1

pqpzq| ď C 1p|z|q. Using eq.
(13), we can further write that

|Apzq| ď exp

ˆ

p

p` q
|z|

˙

, |A1pzq| ď
p

p` q
exp

ˆ

p

p` q
|z|

˙

(14)

|Cpzq| ď exp

ˆ

q

p` q
|z|

˙

, |C 1pzq| ď
q

p` q
exp

ˆ

q

p` q
|z|

˙

(15)

Further let d and nθ denote the dimensions of x and θ respectively: x, y, u, v P Rd and θ :“ θL P Rnθ .
For the operation x ÞÑ y, we denote y “ F px; θL,W, bq :“ rp{qseLpxq. Then y “ ApLqv,
v “ σpWu` bq, u “ BpLqx, and∥∥∥∥ By

BθL

∥∥∥∥ “ max
gPRnθ ,}g}2“1

∥∥∥∥limtÑ0

1

t
pF px; θ ` tg,W, bq ´ F px; θ,W, bqq

∥∥∥∥
2

“ max
g P Rnθ , }g}2 “ 1
h P Rd, }h}2 “ 1

|x∇θxy, hy, gy| (16)

All matrix norms are spectral (i.e., the largest singular value), unless otherwise indicated as in equation
(25), whereas all vectors norms are Euclidean (i.e., the L2-norm). Denote by Bg,θ “

řnθ

j“1 gj
B

Bθj
, the

differential operator induced by g. The quantity of interest is |Bg,θxy, hy|. Next, by chain rule
Bg,θxy, hy “ xpBg,θApLqqv, hy ` xApLqBg,θv, hy

“ xpBg,θApLqqv, hy ` xApLqDWBg,θBpLqx, hy (17)
where Dg is a diagonal matrix of 1’s and 0’s depending upon the signatures of entries in Wu` b (see
for instance the computation of Lipschitz constants in Zou et al. (2020a)). Hence }Dg} “ 1. Since σ
(ReLU) is contractive with Lipschitz constant 1, }v}2 ď }W }}u}2 ` }b}2 ď }W }}BpLq}}x}2 ` }b}2.
Substituting back in eq. (17) we obtain

|Bg,θxy, hy| ď }Bg,θApLq}}W }}BpLq}}x}2 ` }Bg,θApLq}}b}2
` }ApLq}}W }}Bg,θBpLq}}x}2 (18)

Using eq. (14)-(15), the spectral norms are bounded further by

}ApLq} ď Ap}L}q ď exp

ˆ

p

p` q
}L}

˙

, (19)

}BpLq} ď Cp}L}q ď exp

ˆ

q

p` q
}L}

˙

. (20)
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Figure 8: COVID-19 Forecasting. The Padé Exp prediction and the best non-neural operator scheme from
Table 3 (seq2seq) is shown. (Top 3 rows) Prediction for the week 06/12/20 – 06/18/20 using previous 2 weeks
data. This week is the test sample with least MAE averaged across Confirmed, Recovered, and Death counts
for Padé Exp; or the test sample with best averaged prediction. Next, row 1-3 are US states in the order
of best-middle-worst averaged prediction for this test sample. (Bottom 3 rows) Same analysis for the week
03/07/21 – 03/13/21 which is having largest MAE, or the test sample with worst averaged prediction. Similarly,
row 4-6 are US states in the order of best-middle-worst averaged prediction for this worst test sample. The
missing values are substituted with zeroes which is one of the reason for higher errors.
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Next, by using the product rule, we obtain

}Bg,θApLq} ď

p
ÿ

j“1

|aj |}Bg,θpL ˝ L ˝ . . . ˝ L
looooooomooooooon

j´times

q}

paq
ď

p
ÿ

j“1

jaj}L}
j´1

}Bg,θL}

“ A1p}L}q}Bg,θL}

ď
p

p` q
exp

ˆ

p

p` q
}L}

˙

}Bg,θL}. (21)

Similarly,

}Bg,θBpLq} ď C 1p}L}q}Bg,θL} ď
q

p` q
exp

ˆ

q

p` q
}L}

˙

}Bg,θL}, (22)

}Bg,θL} ď

nθ
ÿ

j“1

|gj |}
BL
Bθj

} ď }g}2

˜

nθ
ÿ

j“1

}
BL
Bθj

}

2
¸1{2

. (23)

Using eq. (18), (22), and (23), we obtain the bound for eq. (16) as∥∥∥∥ By

BθL

∥∥∥∥ ď

ˆ

expp}L}q}W }}x}2 `
p

p` q
exp

ˆ

p

p` q
}L}

˙

}b}2

˙

˜

nθ
ÿ

j“1

}
BL
Bθj

}

2
¸1{2

, (24)

which is used to write the eq. (7) in Theorem 1. Similarly, the analysis is extended as∥∥∥∥ By

BW

∥∥∥∥ “ max
ΦPRdˆd,}Φ}2“1

∥∥∥∥limtÑ0

1

t
pF px; θ,W ` tΦ, bq ´ F px; θ,W, bqq

∥∥∥∥
2

“ max
ΦPRdˆd,}Φ}2“1

}ApLqDΦΦBpLqx}2 ď }ApLq}}BpLq}}x}2, (25)

and ∥∥∥∥By

Bb

∥∥∥∥ “ max
hPRd,}h}2“1

∥∥∥∥limtÑ0

1

t
pF px; θ,W, b` thq ´ F px; θ,W, bqq

∥∥∥∥
2

“ max
hPRd,}h}2“1

}ApLqDhh}2 ď }ApLq}, (26)

where, DΦ and Dh are diagonal matrices with 1’s and 0’s. Using eq. (25) and (26), we obtain the eq.
(8) and (9) in the Theorem 1, respectively.
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