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ABSTRACT

Contemporary ranking systems that are based on win/loss history, such as Elo
(Elo, 1978) or TrueSkill (Herbrich et al., 2007) represent each player using a scalar
estimate of ability (plus variance, in the latter case). While easily interpretable,
this approach has a number of shortcomings: (i) latent attributes of a player cannot
be represented, and (ii) it cannot seamlessly incorporate contextual information
(e.g. home-field advantage). In this work, we propose a simple Transformer-based
approach for pairwise competitions that recursively operates on game histories,
in addition to modeling players directly. By characterizing each player by its
history, rather than an underlying scalar skill estimate, it is able to make accurate
predictions even for new players with limited history. When restricted to the same
information as several state of the art methods, including Elo and Glicko (Glickman,
1995), our approach significantly outperforms them on predicting the outcome of
real-world Chess, Baseball and Ice Hockey games.

1 INTRODUCTION

Systems for ranking teams or individuals in pairwise competitions have important uses in a wide
variety of applications that include: (online e)-sports matchups, dating apps, rating sports teams,
rating chess players and training populations of agents (Balduzzi et al., 2018).

The most widely used techniques use as input the outcomes of previous match-ups, this being
universally available and requiring no domain insights or meta-data. For easy interpretability, most
of them use a single scalar, corresponding to a latent skill attribute, to characterize a player or team.
This single value is then used to predict the outcome of match-ups or games. However, this implies
that the multitude of attributes that makeup a player can be represented by a single number, which is
a questionable assumption.

This paper introduces a simple Transformer-based approach for predicting the outcome of competi-
tions from historical data alone. Each player/team is represented by an embedding vector, computed
entirely from the history of previous competitions. While a scalar skill rating for each player cannot
directly be computed, the model can still be used for the same ranking or match-up tasks as existing
methods. While the model is naturally able to incorporate contextual information alongside input
history, we focus on using historical data alone, restricting our contextual information to home-field
advantage. This is the most general scenario and enables direct comparison to many widely used
techniques, avoiding the confounding effect of feature engineering.

A key feature of our model is that it is not necessary to make use of player identity in order to achieve
strong predictions: each player is represented entirely by their previous games and outcomes. In a
recursive fashion, the opponents of these games are also represented by their history. The purely
relational summary of player history allows it to quickly produce accurate predictions for new players
for whom little history exists, or for teams at the start of a new season. Player identity can be included
in the model, which enables the modeling of non-transitive relations, as we show in a simple example
of rock-paper-scissors.
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2 RELATED WORK

Skill-based methods: Skill ranking has a long history in professional sports and competitive games
(Glickman, 1995; Dehpanah et al., 2020). In chess, the most widely-known skill rating system is
Elo (Elo, 1978). This assumes that a player A has a skill rating θA and that its performance pA is
distributed according to pA ∼ N (pA; θA, σ

2) where σ is some fixed variance. Then the probability
that A beats b is given by

Pr(pA > pB |θA, θB) = Φ

(
θA − θB√

2σ

)

where Φ is the cdf of a unit Gaussian distribution with mean 0.

Replacing Φ with a logistic distribution results in a Bradley-Terry model (Bradley and Terry, 1952).
Both Elo and Bradley-Terry can be made Bayesian by assuming some distribution over the skills of
each player, i.e. each player has a variance σA in addition to θA so that each player’s performance
is modeled as a Gaussian distribution with mean θA and variance σA, rather than a fixed σ. These
modifications are made in the Glicko system (Glickman, 1995) and (Weng and Lin, 2011) to Elo and
Bradley-Terry, respectively. Both models can be extended to allow for teams of players and more
than two person competitions, which is done in TrueSkill (Herbrich et al., 2007) (Herbrich et al.,
2008) and Bayesian-Bradley Terry (Weng and Lin, 2011).

Our approach contrasts with the methods above in that each player is represented by an embedding
vector rather than a single number (plus variance). In terms of how player history is utilized, Trueskill
(Herbrich et al., 2007), is closest to ours but still differs significant ways: (a) it uses player-specific
representations, whereas ours in agnostic to the player ID; (b) it combines information using a
graphical model, rather than a deep learning model and (c) it is a flat model, whereas our builds the
representation by recursively expanding opponent histories.

Embedding approaches: (Delalleau et al., 2012) used a neural network architecture to learn latent
embeddings for players, aiming to predict player enjoyment in online matchups. (Zhang et al., 2010)
learn a factor embedding for each player and take the inner product with a context vector to get a skill
rating. (Balakrishnan and Chopra, 2012) use similar methods for user preferences ("do you prefer
A or B?"). Our approach differs in that it focuses on the more general no-context scenario. In this
setting the data only consists of outcomes (win/loss or points differential) and time features, better
revealing differences in modeling performance.

Non-transitivity: Recent work by (Balduzzi et al., 2018) proposed a determinant-based framework
for modeling non-transitive interactions between RL agents on a leaderboard. Their approach draws
on ideas from combinatorial Hodge theory, as laid out in (Jiang et al., 2011). In the same spirit as
(Chen and Joachims, 2016a;b) who use a 1-layer MLP, we instead rely on the inherent non-linearity
of deep neural networks to capture transitive and non-transitive relations (if player ID is provided).
(Chen and Joachims, 2016c) learn two embeddings for each player, a "blade" vector and a "chest"
vector and use the difference between the two to model the probability of winning that captures
intransitivity.

Multi-player: Another group of approaches explicitly address multiplayer competitions (Herbrich
et al., 2007; Minka et al., 2018), e.g. multiplayer online battle area games (MOBA). Many approaches
are customized to particular game environments and incorporate domain specific information, e.g.
Heros of Newerth (Suznjevic et al., 2015) and Ghost Recon Online (Delalleau et al., 2012). Our
method cannot naively handle multi-player settings, but there are plausible approaches to incorporat-
ing this, as we discuss later.

Context: Many recent approaches have shown ways to incorporate contextual information alongside
historical outcomes. (Chen and Joachims, 2016a) uses context, such as betting odds, to improve
predictions. TrueSkill2 (Minka et al., 2018) refines TrueSkill (Herbrich et al., 2007) to incorporate
context. While not the focus of our paper, since our approach is neural network-based it is able to
easily learn useful features from context, if needed.
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3 LEARNED HISTORY EMBEDDINGS

3.1 NETWORK GRAPH

The most intuitive explanation of our approach is from a network graph perspective. Consider a
graph where each node n = (A,B, g) represents a game between players A and B along with a node
attribute, g. We consider the simple case where g = {r, t} where r is a scalar indicating the point
differential between A and B and t is the time of the game. There is a directed edge between two
nodes n1 and n2 defined by n1 = (A1, B1, g1) and n2 = (A2, B2, g2) if {A1, B1} ∩ {A2, B2} 6= ∅1

and t1 > t2. Thus edges in this graph connect nodes that share one player, and neighbors of a node n
are defined to go backward in time.

The architecture for our approach relies on Transformer (Vaswani et al., 2017) layers that use attention
to learn embeddings of players, operating on an increasingly large receptive field in this network
graph. The "level 1" version of our method will operate on neighbors that are path length one away
from the proposed match-up; the "level 2" version considers all nodes of path length less than two
from proposed match-up, and so on. Note that our model acts only on the node features g = (r, t) so
it has no knowledge of explicit player ID in the match-up, thus it is acting only on the histories of
the players. This allows for greater flexibility and forces the model to learn richer representations
compared to prior work.

3.2 LEVEL 1 HISTORY

We wish to predict the outcome of a proposed match occurring between players A and B, which
will result in either a win or loss (draws are discussed later). Our model makes this prediction using
the T previous match-ups of each player ZA := {gA1 , ..., gAT } and ZB := {gB1 , ..., gBT } respectively.
These histories are considered level 1 since they correspond to the nodes in the network graph that
are depth one away from each player. When computing the probability that A beats B we must
respect the underlying symmetry that p(A beats B) = 1 − p(B beats A). To do this we stack the

inputs as Z1 =

([
ZA

ZB

])
and Z2 =

([
ZB

ZA

])
and run them through a multi-layer Transformer

ζ such that o(A,B) := ζ(Z1) − ζ(Z2). The resulting logit o(A,B) has the desired property
o(A,B) + o(B,A) = 0 and is trained with cross entropy loss.

This level 1 model is only able to learn fairly simple weighted averages over the history, or generic
comparisons of the form "team A is doing better than team B in its past x games".

3.3 LEVEL 2 HISTORY

The model becomes more powerful once we consider all nodes in the graph that are at most path
length two away from the current node. These nodes correspond to "histories of history", where all
previous games in the proposed match-up history include the history of each opponent involved.

Consider two players A and B with T most recent match histories ZA = {gA1 , ..., gAT } and ZB =
{gB1 , ..., gBT } respectively. We now also use the ith opponent’s own history, looking at their T
previous match-ups. These are represented by features hij , from the match-up with the jth opponent
in player i’s history, i being an opponent in A’s history.

We learn an embedding for each opponent i in player A’s history by passing the features hij , j ∈ 1..T
through a multi-layer Transformer and an MLP. This step summarizes the history of nodes at depth 2
into an embedding vector ĥi. The level 1 history of playerA is sumarized using the same Transformer
+ MLP to produce ĝ. The level 1 and 2 history embeddings are combined to produce a summary
embedding ZA for player A. The equivalent summary for player B is computed in the same fashion
using the same set of attention + MLP layers. Figure 1 shows this two level hierarchy.

Formally, for a given player, we have the level 1 history X ∈ RT×k, each row of which corresponds
to gi, k being the number of features per match-up (k = 2 for the case g = r, t). We also have
level 2 history Y ∈ RT×T×k, which is a tensor that holds hij . Both X and Y are processed with

1i.e. A1 = A2 or A1 = B2 or B1 = A2 or B1 = B2.
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Figure 1: Overview of our two level player history embedding model. See text for details.

the same multi-layer Transformer φ(.) : RT×k → RT×d, d being the output embedding dimension
(a hyper-parameter). The result is then passed to an MLP which ψ(.) : RT×d → Re summarizes
the embeddings. Thus, the level 1 and 2 histories are summarized into e dimensional embeddings
ĝ = ψ(φ(X)) and ĥi = ψ(φ(Y )), respectively. These are are combined into a matrix Z (of size
2e× T ):

Z =

[
ĝ . . . ĝ

ĥ1 . . . ĥT

]
Here the ith column corresponds to an embedding representing the ith match-up in a player’s history.
The first part of the embedding, ĝ, captures the player’s own history (level 1), which is shared for
each game in the history, and the second part of the embedding, ĥi, represents the history of opponent
in the ith game.

Computing Z for each player A and B yields ZA and ZB , which we combine using a multi-layer
Transformer ζ(.) : R2e×2T → R to produce a scalar output. Optionally, contextual information c
about the encounter between A and B can be added at this stage by appending it to ZA and ZB .
Using the same procedure as in Section 3.2 to enforce the underlying symmetry, output logit o is
defined to be:

o = ζ

ZAZB
c

− ζ
ZBZA

c

 (1)

3.4 MODEL ARCHITECTURE DETAILS

In level 2 version of the model, φ(.) and ζ(.) each consist of a 3 layer Transformer (see Figure 2).
Each of the layers uses the standard architecture from (Vaswani et al., 2017): 4-head attention→
LayerNorm→ 1 layer MLP→ LayerNorm. The output embedding dimensions are d = 32 and e = 8.
Overall, the model is 6 Transformer layers deep (φ(.) and ζ(.)), plus a single MLP layer (ψ(.)).

The level 1 version of the model, which does not look at opponent histories, consists of computing
ψ(φ(XA)) and ψ(φ(XB)), concatenating them and passing resulting vector through an MLP. φ and
ψ are defined as above.

Multi-Head 
Attention

Add + Norm

1-Layer MLP

Add + Norm

Multi-Head 
Attention

Add + Norm

1-Layer MLP

Add + Norm

Multi-Head 
Attention

Add + Norm

1-Layer MLP

Add + Norm

Input Output

Figure 2: Architecture of the 3-layer Transformer (Vaswani et al., 2017) used for functions φ(.) and
ζ(.). See text for details.
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3.5 PRACTICAL IMPLEMENTATION

It is only necessary to train the model a single time on a fixed data set. The cost of training is
linear in the number of matchups (as with Glicko2), being O(T 2xM) where M is the number of
matchups in the data set. Additionally, prediction is fast, being O(T 2) which takes time on the order
of milliseconds. Further practical speedups are possible by caching each matchup so that future
matchups making use of it can simply look up the associated vector, rather than recomputing afresh.
Overall, our approach is still highly performant, albeit slightly slower than Glicko2.

4 EXPERIMENTS

4.1 DATA SETS

Our main evaluation uses four large real-world datasets:

• CHESS1: A data set from the first Kaggle chess competition matches (Kaggle A).

• CHESS2: A data set provided by Kaggle from their from their second competition (Kaggle
B).

• HOCKEY: National Hockey League (NHL) data from 1979-2020 (Hockey).

• BASEBALL: Major League Baseball (MLB) data from 1969-1991 (Baseball).

The CHESS1 data set consists of 65053 matches and contains 6573 unique players. Each player in
CHESS1 plays an average of 17.8 games in the data set. The CHESS2 data set consists of 366000
games and 7651 unique players. We use a 60000 game subset of this data which has 4529 unique
players, each of whom appears an average of 15.7 times. The HOCKEY data set is provided by Hockey
Summary Project (Hockey) and spans the years 1979-2020 of regular season and playoff games,
during which 41 separate teams play. There are a total of 43984 matches in this data, of which each
team appears an average of 2145.5 times. The BASEBALL data set is provided by Baseball Databank
(Baseball) and spans the years 1969-1991 of regular season and playoff games. During this period 28
unique teams play an average of 3304 times.

4.2 DATASET CONSTRUCTION

For CHESS1 we take the first 55000 games to be training, the next 2000 to be validation, and the
remaining 8053 used as a test set. For CHESS2 we take the first 50000 games to be training, the
next 2000 to be validation, and the remaining 8000 to be the test set. For HOCKEY we take the first
38000 games to be training, the next 2000 to be validation, and the remainder to be the test set. For
the BASEBALL we take the first 38000 games to be training, the next 2000 to be validation, and the
remaining to be the test set.

The evaluation metric we report in Figure 3 is the Pearson correlation between the prediction and the
outcome (0=loss, 1 = win, 0.5 = draw), which for two variables X,Y is defined as

ρX,Y =
cov(X,Y )

σXσY
.

This allows us to easily compare with the continuous variable EMA baseline (described below),
which does not naturally form a probability. In chess, if there is a draw, we take the target value y to
be 0.5 in the log-loss used for training:

p log y + (1− p) log(1− y),

effectively asking the probabilities to be close to 0.5.

4.3 EXPERIMENT CONFIGURATION

The hyper-parameters were tuned using the validation set and are described in Table 1.
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Environment
CHESS 1 CHESS 2 BASEBALL HOCKEY

Learning rate .0005 .0005 .00025 .00025
Optimizer Adam Adam Adam Adam

Number epochs 10 10 6 16
Batch size 120 120 40 40

T 40 40 40 100
Embedding size d 32 32 32 32
Embedding size e 8 8 8 8

EMA half-life 500 500 120 180

Table 1: The hyper-parameters for our model in each of the environments

(a) CHESS 1 (b) CHESS 2

(c) BASEBALL (d) HOCKEY

Figure 3: Match prediction on the evaluation set of four real-world datasets: CHESS1, CHESS2, BASE-
BALL, and HOCKEY. Pearson correlation with the true outcome of each game is plotted. Our learned
history embeddings approach is shown in blue. Depth 1 corresponds to the architecture described
Section 3.2, and depth 2 corresponds to the architecture described in Section 3.3. Exponential Moving
Average (EMA), Bayesian Bradley-Terry (Weng and Lin, 2011), Blade-Chest (Chen and Joachims,
2016c), Melo2K (Balduzzi et al., 2018), and Glicko (Glickman, 1995) baselines are shown in orange.
Error bars show ±1σ for five seeds with different model initializations. Our method significantly
outperforms the baselines, with depth 2 models generally being superior to depth 1. On the right
side of each subplot we show a depth 2 model with context added (black/white for CHESS1/CHESS2;
EMA of point differential for BASEBALL and HOCKEY). These features boost the model performance
over the context-free version.
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4.4 BASELINES

We compare our approach to the following baselines: (i) Glicko2 (Glickman, 2013), (ii) Bayesian
Bradley-Terry (Weng and Lin, 2011), (iii) an exponential moving average (EMA) of the win loss (in
chess) and the point differential (in baseball and hockey). EMA is a statistic on a sequence of values
(V1, ..., VT ) that keeps track of a recency weighted mean. The EMA mα

t at time step t depends on
{Vi}i≤t and is defined as

mα
t = αmα

t−1 + (1− α)Vt

where α is a hyper-parameter. The hyper-parameters used for Glicko2 and BBT are listed in
the appendix. We use the open-source R package "Sequential Pairwise Online Rating Tech-
niques"(Kałedkowski, 2020). The hyper-parameters for each baseline are tuned on the validation set.
We use the author’s publicly available implementation of the Blade-Chest model (Chen and Joachims,
2016c), but we find it does not perform well on the four data sets, achieving correlation of numbers
0.010, 0.077, 0.012, 0.023 on CHESS1, CHESS2, BASEBALL, and HOCKEY respectively.

4.5 RESULTS

The results are shown in Figure 3. Each approach is evaluated using 5 different random seeds for
model initialization and show ±1σ error bars. In all four environments the depth 2 method performs
the best out of the models which only look at win/loss and point differential data, significantly
outperforming Glicko2 and BBT baselines.

When additional meta-data is added to the depth 2 model, performance is boosted for all four
environments. In CHESS1/CHESS2, the context consists of telling the model which player is playing
white or black. In BASEBALL and HOCKEY, this context consists of adding the EMA prediction as
context for each player.

For hockey and baseball data, the exponential moving average of point differential is a strong baseline,
and it outperforms both Glicko and BBT. The strength of EMA in the sports setting can likely be
explained by the fact that at any point in time each team has played roughly the same number of
games, so fast adaptation to recent results is less informative than in chess. Despite the strength of
these baselines we still handily beat them with our approach, showing the good inductive bias of
treating the history of games as a graph.

Each dataset we examine is temporal in nature (i.e. the match ups follow a distinct ordering in
time), so there is only one possible choice for the training/test split. In other words, doing cross
validation with random splits would lead to cheating since having knowledge of future games can
leak information into what happened in the past. In particular, in chess simply knowing that a player
plays in the future leaks information about its past performance, since there is a bias for winners to
continue playing and losers to drop out. This requires evaluating our model using a moving block
bootstrap method on the sequential data. In the baseball domain, over five folds, sliding the training
window up a season at a time (162 games), our method outperforms Glicko2 (Glickman, 2013) by an
average of 0.021 with a standard deviation of 0.006 and outperforms BBT (Bradley and Terry, 1952)
by an average of 0.029 with a standard deviation of 0.009.

4.6 FAST START EVALUATION

In Figure 4 we compare our model to BBT for differing numbers of previous games. We look at the
minimum number of games played by each player and look at the correlation between the prediction
and the response for different buckets of this value. For both CHESS1 and CHESS2, the model is
strong relative to the BBT when it has to quickly adapt to new players who have only played a few
games. This contrasts with traditional methods such as BBT, Glicko, and EMA that require a burn-in
period in order to adjust to the player.

4.7 NON-TRANSITIVITY

While the experiments above make no use of player ID, explicitly adding learning a representation per
player enables the modeling of non-transitive matchups. We demonstrate this by modeling the game
of rock-paper-scissors using the above model enhanced with a player ID feature. Trained on a toy
rock-paper-scissors data set, our model correctly predicts the outcome of the various matchups. By
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Figure 4: A breakdown of our performance as a function of history size, i.e. number of match-ups for
each player in the evaluation set (min over each pairing) on the CHESS1 (L) and CHESS2 (R) datasets.
We see that our approach (blue) is able to make accurate predictions for new players even with very
few games (< 10), where as the performance of Bayesian Bradley Terry (BBT, red) degrades in such
settings.

contrast, Glicko (Glickman, 2013) and the scalar based methods are no better than random. Melo2K
(Balduzzi et al., 2018) and BladeChest (Chen and Joachims, 2016c) are capable of modeling this
intransitive behavior as well.

In the four real-world data sets, we find that adding player ID as a feature does not significantly
improve the performance of our model, suggesting that the non-transitive effect is small.

5 DISCUSSION

We have introduced a novel and conceptually simple model for learning from pairwise comparison
data. This framework and architecture are able to capture complex inter-dependencies between
players’ histories and learn robust representations that are useful in predicting the winner of matches.
The experiments show significant gains against widely-used skill rating approaches that use game
history information alone.

The model also has several qualities that make it practical for real-world applications: First, the fast
start ability, shown in Figure 4, is vital for many online ranking systems, where new players must
be reliably matched to appropriate opponents, otherwise they will quickly lose interest in the game.
Second, at inference time our approach is very fast since the model is lightweight, using a modest
number of feed-forward layers. Furthermore, it is based on standard deep learning architectures for
which many software and hardware optimizations exist. This makes it feasible to run the model on
environments with very large numbers of players.

Code and trained models are available at https://anonymous.4open.science/r/ltc_
cam-C52A/README.md.

5.1 LIMITATIONS

The model, as described, does not compute a scalar skill quantity for each player, making it difficult
to interpret. However, it is possible to estimate an approximate measure by randomly sampling other
players and averaging the computed win probability against each. This would result in a scalar in the
range 0 (lose to everyone) to 1 (win against everyone).

5.2 FUTURE WORK

The simplicity of the framework allows for enhancements in a number of directions.

• Improved architectures: A natural direction is to recurse deeper into the player interaction
graph by using level n versions of our model, which would grow the receptive field. Extend-
ing our model to 3 levels is straightforward, as the same machinery can be used to compute

8

https://anonymous.4open.science/r/ltc_cam-C52A/README.md
https://anonymous.4open.science/r/ltc_cam-C52A/README.md


Under review as a conference paper at ICLR 2022

embeddings of histories one level deeper. These can then by combined by ζ(.), with each
column of Z being composed of three embedding vectors, rather than the current two.

• Multi-way competitions: While our approach does not immediately generalize to multi-way
competitions, there are plausible approaches to doing so. The central issue is that in an n-
player game,

(
n
2

)
pairwise ordering constraints must be respected. This could be performed

by a graph neural-net (which is invariant to input ordering) acting on the n players of the
game, each of whom has an embedding produced by our current model.

• Context: Our results in Figure 3 are a proof-of-concept that adding context can improve our
models performance. However, the information used (white/black for chess; EMA for ice
hockey and baseball) is very basic. If the goal is to produce the best absolute performance
for a given sport, then the priority is to source and utilize as much relevant meta-data as
possible. For ice hockey and baseball, numerous statistics about each game are typically
available, some of which would have useful predictive value. Our model is well suited for
learning from such heterogeneous data, given the well-established versatility of Transformer
models.
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