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Abstract
Self-supervised learning (SSL) has emerged as a
powerful framework to learn representations from
raw data without supervision. Yet in practice, en-
gineers face issues such as instability in tuning
optimizers and collapse of representations during
training. Such challenges motivate the need for a
theory to shed light on the complex interplay be-
tween the choice of data augmentation, network
architecture, and training algorithm. We study
such an interplay with a precise analysis of gen-
eralization performance on both pretraining and
downstream tasks in a theory friendly setup, and
highlight several insights for SSL practitioners
that arise from our theory.

1. Introduction
Self-supervised learning (SSL) aims to construct useful rep-
resentations of data without the need for pre-constructed
labels. Due to the recent success and widespread applica-
bility of SSL, established methods for training large neu-
ral networks now incorporate pre-training of models in an
unsupervised manner over large amounts of data, before
fine-tuning/probing them over downstream datasets (Devlin
et al., 2019; Chen et al., 2020; Brown et al., 2020; Radford
et al., 2021). Self-supervised pretraining generally aims to
render the model invariant to certain distorsions/views of the
inputs, in order to capture useful features for downstream
tasks (e.g., Chen et al., 2020; Caron et al., 2020; Grill et al.,
2020; Caron et al., 2021; Bardes et al., 2022). Though very
powerful, SSL methods can be challenging to implement
properly. They tend to suffer from various practical issues,
such as instability and collapse during training and the need
to carefully tune parameters related to the architecture, op-
timization algorithm, representation dimension, and form
of augmentations. These different aspects of pretraining
can lead to widely different behaviors and representations,
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as illustrated for instance in Figure 1. These challenges
motivate new theoretical insights to better understand why
such issues arise and how to better address them.

Our study focuses on the joint-embedding framework and
characterizes learned representations for given choices of
input distributions, data augmentations, and architecture.
To obtain a fine-grained picture, we study linear classes of
functions endowed with a reproducing kernel, and analyze
a theoretically friendly loss function that models both con-
trastive and non-contrastive methods. Our work generalizes
the discrete data setting of HaoChen et al. (2021) and the
finite dimensional setting of Saunshi et al. (2022), encom-
passing more expressive nonparametric models, potentially
with universal approximation properties, and which can cap-
ture certain properties of architectures through their limiting
kernel limits (Jacot et al., 2018).

Our contributions are as follows:

1. We unveil two central integral operators: an “intrinsic”
one that depends on the input distribution and choice
of augmentations and another capturing the inductive
bias associated with the model of computation.

2. We provide new bounds on the downstream general-
ization error that are sharper than previous work, and
which can handle distributions shift between data be-
fore and after performing augmentations.

3. We propose new generalization bounds on the pretrain-
ing excess risk via tools from convex analysis. This
analysis yields novel insights, including an understand-
ing of the benefits of using multiple augmentations per
sample (e.g., “multi-crop”).

4. We detail several examples where optimal represen-
tations are found in closed form, illustrating the role
of augmentations, architecture, and regularization in
forming representations.

5. We discuss several practical insights for SSL practi-
tioners that emerge from our theory, in particular on
how design choices in pretraining may affect down-
stream performance, and on how to avoid collapse of
representations.

Related work. Foundations for theoretically analyzing
SSL have emerged in the past few years. Particularly rele-
vant to our work, Balestriero & LeCun (2022); Kiani et al.
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Figure 1. Effect of augmentations and architecture. TSNE of rep-
resentations learned on MNIST with no augmentations (left) or
with rotations and an MLP (middle) or a CNN (right). The repre-
sentations depend on both the augmentations and the architecture.

(2022) provide theoretically friendly characterizations of
many self-supervised learning settings, including closed-
form solutions of representations in the kernel setting. For
contrastive learning, SSL was first theoretically analyzed by
Arora et al. (2019); Tosh et al. (2021a;b); Tian et al. (2021).
Notably, HaoChen et al. (2021) recently leveraged tools
in spectral graph theory to characterize guarantees on SSL
performance under clustering assumptions. These assump-
tions were deemed impractical by Saunshi et al. (2022),
who highlighted the importance of incorporating inductive
bias to obtain provable guarantees. This line of work was
extended to multi-modal SSL by Lee et al. (2021) where
in essence the central symmetric operator T is replaced by
a non-symmetric one, and the eigen decomposition is re-
placed by the singular one. The role of inductive bias has
also been scrutinized through analysis of feature learning in
training dynamics by Wen & Li (2021) and Tian (2022).

2. Setup
Machine learning streamlines the task of creating algorithms
for finding patterns in data. An algorithm is conceptualized
as a mapping f from an input x ∈ X to an output y ∈ Y .
To construct this mapping f : X → Y , one can choose a
measure of disagreement ℓ : Y × Y → R, and minimize
the risk

R(f) = E(X,Y )∼ρ[ℓ(f(X), Y )], (1)

for ρ ∈ ∆X×Y a distribution on I/O pairs. We denote
by f∗ ∈ argminR an optimal I/O map according to the
risk. Mapping raw inputs (e.g., arrays of pixels), to outputs
(e.g., classifying an animal in an image), is in general a
challenging task. An effective technique consists of first
extracting (or engineering) meaningful features ψ : X →
Rk from input data before using those features to search f
under the form g ◦ ψ for g : Rk → Y a simple function.1

Though features ψ can be hand-engineered, representation
learning aims at improving such design via unsupervised
learning procedures. On the one hand, reconstruction based
methods mask or add noise to inputs via a mapping Mx and
aim to reconstruct the original input x from the features g◦ψ

1For convenience, several technicalities, such as measurability,
have been deferred to the appendix.

Practice Theory Quantity
Augmentation Spectral embedding T
Architecture Space of functions K
Optimization Regularization λ

Subtle Interplay Tλ

Table 1. Analogy between practice and theory that this paper pro-
poses to help disentangle the various phenomena of SSL training.

using g, a simple prediction head. Large language models
largely rely on this paradigm, usually learning ψ by com-
pleting sentences Mx where word tokens are masked (e.g.
Devlin et al., 2019). On the other hand, joint embedding
methods learn ψ by leveraging invariance to small perturba-
tions of the semantic information contained in inputs. This
is the paradigm we shall focus on. Recently, joint embed-
ding methods have relied heavily on the concept of data
augmentation, such as small rotation, translation, color jit-
tering of images. In particular, contrastive methods learn ψ
by enforcing that if two augmentations ξ and ξ′ come from
the same data point, their representation ψ(ξ) and ψ(ξ′)
are close; while if they come from different data points,
their representation are far away from one another (e.g.,
Chen et al., 2020). Non-contrastive methods only enforce
similarities of augmented datapoints and avoid collapse by
enforcing richness of the representation (see, e.g., Bardes
et al., 2022). In the following, we focus on a theoretically
friendly variant of VICReg (Balestriero & LeCun, 2022)
with parameter β > 0, defined for ψ : X → Rk by

L(ψ) = β EX Eξ,ξ′
[
∥ψ(ξ)− ψ(ξ′)∥2

∣∣∣X]
+
∥∥Eξ[ψ(ξ)ψ(ξ)⊤]− I

∥∥2
2
, (2)

where pairs of inputs/augmentations (X, ξ) follow a distri-
bution µ ∈ ∆X×X , whose conditional (ξ |X) arises from
the choice of augmentation. The first term in L enforces
invariance of the representation ψ to two augmentations ξ
and ξ′ of the same input X , while the second term lowers
risk of collapse by pushing coordinates ψi : X → R of
ψ = (ψi)i∈[k] to be orthogonal in L2.
Remark 1 (Contrastive learning with L). When β = 1, the
population loss L is equivalent to the spectral contrastive
loss studied in HaoChen et al. (2021) as a theoretically
friendly proxy for SimCLR (Chen et al., 2020). In other
terms, L analyzes both contrastive and non-contrastive ap-
proaches to representation learning.

Given a representation ψ, one can optimize for f through
linear probing by constructing f = g ◦ψ where g is a linear
function. f is thereby in the class of functions

F =
{
x 7→ w⊤ψ(x)

∣∣w ∈ Rk
}
. (3)

In practice, one might not know the optimal ψ, but can esti-
mate it as ψ̂ from empirical data, leading to an estimate F̂
of this class of functions.
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3. Representation learning
In this section, we study the representations induced by pre-
training with specific augmentations and inductive biases.

3.1. Closed form solution

Equation (2) admits a closed form solution for ψ upon not-
ing that the invariant part is a quadratic form.
Lemma 2 (Spectral embedding). There exists a linear pos-
itive symmetric operator L in L2 for which the operator
I − T is positive and

EX Eξ,ξ′
[
∥ψ(ξ)− ψ(ξ′)∥2

∣∣∣X] = ∑
i∈[k]

ψ⊤
i Lψi.

To be consistent with previous literature, we will rather use
T = I − L/2, which is also a linear positive symmetric
operator, and is defined as, for ψ1, ψ2 ∈ L2

ψ⊤
1 Tψ2 = EX Eξ,ξ′

[
ψ1(ξ)

⊤ψ2(ξ)
∣∣X]

As a consequence, if (λi) are the eigenvalues of T and (fi)
are the corresponding eigenvectors, a minimizer of L is
ψi =

√
µifi with µi = 1− β + βλi.

Lemma 2 is closely tied to the guiding principle in unsu-
pervised learning that a good representation of data should
minimize variations over the manifold of the data (Cabannes
et al., 2023), and techniques that learn such representations
through spectral decomposition of a central operator (see,
e.g., Coifman & Lafon, 2006).

3.2. Search within a linear class of functions

In this more technical section, we study solutions of L for ψ
belonging to a linear class of functions. The coordinates
of the mapping ψ : X → Rk are typically searched within
a space of functions Ψ ⊂ RX , leading to ψ ∈ Ψk. In our
theoretically friendly setup, we assume that Ψ is a linear
class of functions endowed with a Hilbertian topology such
that the linear evaluations ψ 7→ ψ(x) are continuous for
almost all x ∈ X . The theory of reproducing kernel Hilbert
space (Scholkopf & Smola, 2001) asserts that Ψ can be
parameterized by a Hilbert space H and a mapping φ :
X → H such that

Ψ = {x 7→ fθ(x) | fθ(x) = ⟨θ, φ(x)⟩H , θ ∈ H} . (4)

This generalizes the setting of HaoChen et al. (2021)
where X is assumed to be finite and Ψ is parameterized by
H = RX and φ(x) = δx, as well as the setting of Saunshi
et al. (2022) where H is assumed to be finite dimensional.

To describe architectures such as neural networks with such
a linear structure, it is common to linearize those models
(e.g. Jacot et al. (2018)) as

ψθ(x) = ψθ0(x) + ⟨∇θ0ψθ0(x), θ − θ0⟩+ o(∥θ − θ0∥),

λ

λ
i
−
λ
‖θ
i
‖2

augment. reg.

interplay archit. reg.

Figure 2. Interplay between T and K as a function of λ. Illus-
tration of Proposition 4 in a setting where (λi) = (.9, .75, .5)
and (∥θi∥2) = (.4, .25, .125). The plot displays the eigenvalues
associated with three different eigenfunctions as a function of λ,
β is set to one for convenience. When λ = 0, the minimizer
ψ∗ : X → R of (2) is defined through T , here φ∗ = f1 (i = 1,
shown in blue), when λ is big ψ∗ = f3 (green) mainly depends on
K. In the middle, there is an interplay between these two regimes
leading to ψ∗ = f2 (orange). The three regimes are named the
“augmentation”, the “architecture” (or VCReg) and the “interplay”
regime respectively. This abstract setting can be instantiated with
a two-layer ReLU network and cropping as detailed in Figure 8.

where θ are the network parameters, assumed close to their
initialization θ0, and ψθ is the neural network. In this case,
we may take φ = ∇θ0ψθ0 , which arguably describes some
regimes of wide neural networks (Lee et al., 2019).

To minimize L in practice and improve generalization, a reg-
ularization parameter is typically introduced.2 The follow-
ing lemma provides a closed form solution of the regularized
variant of L.

Lemma 3 (Regularized population loss). For Θ ∈ Rk ⊗H,
and a regularizer λ > 0, the regularized loss L(SΘ) +

λ ∥Θ∥22 can be minimized in closed form with the operator

Tλ = (1− β)I + βT − λK−1. (5)

where K = SS⊤ for S : H → L2(µΞ); θ 7→ fθ the embed-
ding of H in L2. Specifically, if (λi) are the (decreasing)
eigenvalues of Tλ and (fi) the corresponding eigenfunc-
tions, a minimizer is given by ψi = max {λi, 0} fi.

3.3. The need for inductive bias

Two different points of view motivate the introduction of
the regularizer λ ∥Θ∥ leading to the operator Tλ.

In the classical viewpoint of statistical learning theory, one
would like to retrieve the eigenfunctions of T to minimize L
(Lemma 2). However, when solely accessing finitely many
samples of data, eigenfunctions of T should be searched

2While we study here the bias of Tikhonov regularization for
simplicity, similar studies can be done for early stopped gradi-
ent descent or stochastic gradient descent when they are cast as
spectral filters, as in Lin et al. (2020), see also literature related to
optimization for matrix factorization problems (Chi et al., 2019),
which has been applied to SSL by Simon et al. (2023).
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within a space of finite capacity (i.e. {f ∈ Ψ | ∥f∥2Ψ ≤
λ−1}). Though fewer samples are needed for smaller mod-
els (e.g. the fewer neurons and layers in a deep network),
such small models are unlikely to be expressive enough to
represent the ideal solutions. This echoes the classical trade-
off between approximation and estimation error. In the case
of Laplacians, one can assume that the eigenfunctions of T
are smooth thereby belong to a small space of functions that
are well-approximated with a finite model of computation.
We refer the curious reader to Cabannes et al. (2021a) for
results in this vein when I − T is the real Laplacian in L2.

Another take was suggested by Saunshi et al. (2022), which
pointed out that eigenvalues of T can have large multiplicity
in realistic situations (in particular in the non-localized aug-
mentations setting of Section 4.2), meaning that the space F
is not uniquely defined from the loss L. As a consequence,
defining the optimal solution solely from T is somewhat
ill-posed, whereas, when K is properly chosen, Tλ could
define a “more principled” representation ψ. Paradoxically,
with this viewpoint, bias could reduce the approximation
error. Figure 3 illustrates such an idea. It leverages the
following interpretation of the inductive bias in the friendly
setting where T and K commute.
Proposition 4. If T and K commute, and if (λi) are the
eigenvalues of T and (fi) its eigenfunctions, then there
exists (θi) such that fi = fθi (4). Moreover, the optimal
representation to minimize the regularized loss are the fi
that maximize βλi − λ ∥θi∥2 . In other terms, the regular-
ization biases towards representations that have a small
complexity with respect to the model of computation.

Lemma 3 shows an interesting behavior of the VCReg loss
(β = 0, i.e. VICReg without invariance term). In this
setting, the optimal ψ retrieve the largest eigenfunctions
of K, recovering kernel PCA. Learning downstream tasks
with linear probing of the resulting ψ is equivalent to linear
regression with an eigenvalue cut-off, which is a powerful
spectral filtering technique (see, e.g. Bun et al., 2017).

4. Illustrative examples
The analysis of this paper relies on two central operators:
T , that is “intrinsically” defined from the data distribution
and augmentations, and K, which relates to the model of
computation (e.g. the network architecture). Once those
operators are chosen, Section 5 provides a sharp analysis
of convergence and generalization with SSL in the kernel
regime. In essence, Assumption 3 requires that the target
function (downstream) align well with the learned repre-
sentation (upstream) when given infinite data. Here, the
effect of T and the inductive bias introduced by λK−1 on
the learned representation can appear abstract. To provide
intuition and outline important properties of these operators,
this section lays out several concrete examples to help prac-

Eigenvalues of T Eigenvalues of K Eigenvalues of Tλ

Figure 3. Trade-off on eigenvalues between T and K. Illustration
of a harmonic setting where T and K are diagonalized in the
same basis. This basis is parametrized by an “invariance score”
(x = m in (54)) and a “complexity score” (y = |S| in (54)).
The eigenvalues λx,y(A) for A ∈ {T,K, Tλ} are represented
with colors and displayed in a grid associated with x ∈ [15] and
y ∈ [8]. The sole use of the operator T biases towards invariance
(lower x) with high complexity (lower y), while the sole use of
K biases toward low complexity. The interplay between the two
results in Tλ whose biggest eigenfunctions have high invariance
and low complexity, and corresponds to an ideal representation ψ.

titioners better understand the role of augmentations and
their interplay with the inductive bias of the architecture.

Two different perspective have emerged to understand
learned representation in SSL. One intuition comes from the
spectral clustering literature, and is the object of subsection
4.1. The other intuitive way to understand SSL is based on
harmonic analysis, and is the object of subsection 4.2. All
in all, this section generalizes previous works by dropping
out strong clustering assumptions in the data, showing that
what really matter are the eigenfuntions of T , which even-
tually capture clustering structures when such clustering
assumptions are invoked. It further uses harmonic analysis
tools to better describe these eigenfunctions as suggested by
Saunshi et al. (2022) and detailed in Table 2.

4.1. Low-variation with localized augmentations

When augmentations (ξ |X) are localized around the in-
put X , optimizing the loss L (2) biases towards small gradi-
ents of ψ along the directions of augmentations. Formally
for ψ : X → R, using first order Taylor expansion,

E
[
∥ψ(ξ)− ψ(ξ′)∥2

∣∣∣X] ≃ E
[
⟨∇ψ(X), ξ − ξ′⟩2

∣∣∣X] .
Under isotropic augmentations, the objective simplifies as

E
[
⟨∇ψ(X), ξ − ξ′⟩2

∣∣∣X] ∝ ∥∇ψ(X)∥2 ,

which enforces ψ to have small variations on densely pop-
ulated regions of the input space – reminiscent of popular
approaches to tackle representation and semi-supervised
learning in the last two decades (van Engelen & Hoos, 2020).
More generally, augmentations govern the important direc-
tions of invariance for ψ, recovering a finite-differences ap-
proach to the Tangent Prop algorithm (Simard et al., 1991).

Low variation methods are particularly useful when data
display a clustering structure (c.f. Figure 10 for an illus-
tration with neural networks). If augmentations preserve
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the clustering structure, L is minimized by piecewise con-
stant functions on each cluster, leading to useful features for
downstream tasks that involve classifying different clusters
(HaoChen et al., 2021; Schiebinger et al., 2015). The induc-
tive biases further deforms those top eigenfunctions to be
regular in a sense defined by Ψ (4), e.g., analytic if we use
a radial basis function kernel (Sun & Zhou, 2008).

4.2. The role of augmentations

When augmentations are not localized, which is often the
case in practice, harmonic analysis provides useful tools
to study in-depth the role of augmentations, in particular
when data are uniform on the sphere or the hypercube. Our
findings on the hypercube are summarized in Table 2. In
such a setting, we show that common augmentations enforce
smoothness, locality, or invariance to certain symmetries.
For example, crops push ψ to focus on details that can
appear within the crop size, filtering out long-range interac-
tions between parts of the input that are likely to be spurious
features. The following example formalizes this.

Example 1 (Cropping). Consider the hypercube setting
where X = {−1, 1}n and X is uniformly distributed. A
basis of L2(X ,R) is given by the parity functions χS :
x 7→

∏
i∈S xi for all the subsets S ⊆ [n]. Pre-training via

cropping with window sizes v × w set TχS = 0 for all S
whose support forms a window larger than the size v × w.
For all the other S, TχS = λSχS , where λS decreases
with the diameter of S. In other terms, pre-training with
2-D cropping eliminates the influence of functions which
act globally outside of the cropping window. This, in effect,
imparts a locality to the induced representation ψ which is
often desirable for generalization.

This example suggests that the ideal crop size should match
the desired scale of details for ψ; e.g., on a dataset with
fine-grained details such as iNaturalist, one should reduce
the crop window size in comparison to a dataset such as
ImageNet. Appendix D discusses further examples of aug-
mentations, such as random noise or translations, and shows
how they bias towards smooth or invariant eigenfunctions.

4.3. Interplay with the architecture

While the design of augmentations and architecture can be
done separately, changes to the architecture and optimiza-
tion scheme play an important role in the resulting optimalψ.
Generally, increasing the amount of inductive bias by in-
creasing λ shifts ψ towards smoother functions, in the sense
captured by the H norm, which we illustrate in Figure 4.
In practice, the right amount (captured here by the param-
eter λ) of inductive bias to enforce is often set by a mix
of intuition, common knowledge and empirical evidence.
For example, Caron et al. (2021) links the inductive bias of
early stopping to beneficial outcomes noting that “training

longer [...] has been leading to worse performance”.

Example 2 (Dot-product kernel). On the Boolean hyper-
cube setting of Example 1, many linear models (4) take the
form φ(x)⊤φ(y) = h(⟨x, y⟩) (e.g., the classical NTK lin-
earization of fully connected layer) leading to an integral
operator K that is diagonalizable by parity functions. More
precisely, there exists (νi) ∈ Rd such that KχS = ν|S|χS ,
where |S| is the cardinality of S and ν|S| decreases with |S|.
In the setting of crops, T pushes towards representation
on parity functions with small diameter (ψ = (χS)S for S
with small diameters), while the inductive bias acts on the
cardinality of the sets S, pushing towards the χS that maxi-
mize ν|S|. Formal derivations are provided in Appendix D.

Appendix D provides additional examples. For instance, in
the case of translations, there is a similar interplay between
a low-degree bias in K versus an invariance bias in T . We
also consider convolutional architectures, which can impose
locality through constraints on diam(S), on top of a low-
degree bias. Figure 3 shows such trade-offs in eigenvalues,
Figure 4 visualizes how this interplay may affect leading
eigenfunctions in a spherical setup, and Figure 5 illustrates
the resulting effect on different downstream tasks.

5. Convergence analysis
The following section analyzes guarantees on both the pre-
training and downstream tasks.3 For simplicity, we consider
the mean-square loss ℓ(y, y′) = ∥y − y′∥2 with Y = Rdy .
The studies of many losses can be reduced to the least-
squares case thanks to calibration inequalities (Bartlett et al.,
2006) or self-concordance properties (Ostrovskii & Bach,
2018). To precisely study convergence rates, we consider
the kernel regime of Section 3.2, where F is specified
through Θ∗ of Lemma 3 as

F =
{
x→ w⊤Θ∗φ(x)

∣∣w ∈ Rk
}
, (3)

and F̂ is defined similarly with Θ̂ as an estimate of Θ∗. In
the following, (fi) denote the eigenfunctions of Tλ ordered
by decreasing eigenvalues, and λ is considered to be fixed
throughout this section.

5.1. Dealing with distribution shift

Self-supervised learning algorithms often incorporate strong
augmentations leading to potentially different marginal dis-
tributions over inputs and augmentations. This discrepancy
is often overlooked, many theoretical works implicitly as-
suming ρX = µΞ. In practice, the marginal distribution ρX
of inputs in the downstream task can be meaningfully dif-
ferent from the marginal distribution of augmentations µΞ

3The pretraining and downstream tasks refer to minimization
of L and R respectively.
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Augmentation example Effect of the operator T
Input (no augmentation) -

Random noise Attenuate higher order Fourier modes
Cropping Keep Fourier modes within cropping windows
Translations Bias towards Fourier modes with cyclic invariance
Flipping Equate eigenvectors of subsets related by flips

Legend: -1 bit, +1 bit, flipped bit, random bit

Table 2. Effect of common augmentations on the optimal representation ψ through the operator T . Without augmentations, ψ could match
any Fourier basis function. Augmentations filter out some of those by attenuating their eigenvalues in T , and the architecture will push ψ
to pick some specific frequencies among the remaining ones through the operator K. The table stylizes the effect of usual augmentations
on parity functions over bit streams. We refer the reader to Appendix D for further details and derivations.

Figure 4. Interplay on the sphere. Level lines of the 7-th eigen-
function of Tλ for three different λ. Augmentations consist of
translations of the x, y, z coordinates together with Gaussian per-
turbations. K is the integral operator associated with the radial
basis function. Without regularization (left), the eigenfunction is
highly localized at clusters corresponding to the action of the aug-
mentations. Increasing the regularization biases towards smoother
harmonic eigenfunctions of K (middle and right).

on which we have imposed orthogonality of the represen-
tation ψ in the pretraining task. However, the optimal rep-
resentation ψ is likely to be invariant to augmentations,
meaning that ideally, ψ(X) should have the same distribu-
tion when X ∼ µΞ or X ∼ ρX , which we write formally
as ψ#µΞ = ψ#ρX . Moreover, augmentations are likely
to spread the input data distribution, leading to the domi-
nance ρX ≪ µΞ. This motivates the following assumptions
and definitions.
Assumption 1 (Low expansion). There exists cr > 0 such
that for any function f in the original space of functions Ψ
defined in (4),

∥f∥2L2(ρX ) ≤ cr ∥f∥2L2(µX ) ,

Assumption 2. For any i smaller than the number of posi-
tive eigenvalues of Tλ, the projection of the target f∗ on fi
in L2(µΞ) coincides with the projection on fi in L2(ρX ).

To make those two concepts more concrete, we provide
three examples below.
Example 3. If ρX has a density against µΞ which is
bounded from below by δ ∈ (0, 1] on its support, i.e.
µΞ = δρX + (1 − δ)µ⊥ with µ⊥ ∈ ∆X , then Assump-
tion 1 is met with cr = 1/δ.
Example 4. Let Στ = EX∼τ [φ(X)φ(X)⊤] be the covari-
ance matrix of φ under the distribution τ . When there exists
c such that ΣρX ⪯ cΣµΞ (i.e cΣµΞ − ΣρX is positive semi-
definite), then Assumption 1 holds with cr = c.

10−2 10−1 100 101

λ

L
2

er
ro

r

target function

` = 1 non-inv.

` = 3, inv.

Figure 5. Trade-off on downstream errors. Effect of pretraining
regularization λ on the empirical downstream error for two tasks on
the sphere S7. The targets f∗

ℓ are polynomials of degree ℓ ∈ {1, 3},
with only f∗

3 invariant to translations. K is built from a dot-
product kernel that acts as a regularizer on degrees, while T is
built from local translations. Designing ψ from T alone (λ = 0) is
helpful to learn globally invariant polynomials in the downstream,
while increasing the regularization λ helps to learn polynomials of
small degree. Experiment details in Appendix E.2, and Figure 11
showcases a similar behavior for neural networks.

Example 5. If ψ♯µΞ = ψ♯ρX holds for the optimal repre-
sentation ψ = (fi), with (fi) the positive eigenfunctions
of Tλ, and there exists a measurable function g : Rk → Y
such that f∗ = g ◦ ψ, then Assumption 2 is verified.

In essence, Assumptions 1 and 2 allow for the incorporation
of augmented data that does not resemble the original data
as long as the model of computation (Assumption 1) and
training via the VICReg loss (Assumption 2) do not bias
too much towards this aberrant augmented data. Example
3 states that when the augmented data mostly looks like
the original samples then one does not have to worry about
bias introduced by the model of computation. Example
4 gives a more relaxed guarantee based on second order
moments. Finally, Example 5 states that one need not worry
about the idiosyncrasies of the augmented data if the learned
representations confound augmented data with their original
samples.

5.2. Generalization on downstream tasks

This section provides comprehensive generalization guar-
antees on supervised downstream tasks. The follow-
ing assumption ensures that the target function f∗(x) =

6
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Eρ[Y |X = x] of the downstream task is well represented
by the pretraining problem.

Assumption 3 (Source condition). f∗ belongs to the posi-
tive eigenspace of Tλ, i.e. f∗ ∈ Span {fi |λi > 0}.

Example 6 (Cluster assumption). If the support of the den-
sity µΞ has k connected components, f∗ is constant on those
clusters, and λ = 0, then Assumption 3 holds.

We now give a simplified version of our downstream guar-
antee. See Theorem 4 in Appendix B for the full statement.

Theorem 1 (Downstream error). Let (Xi, Yi) ∼ ρ⊗n be n
samples drawn from the distribution for the downstream task
and ℓ be the square loss. Define kλ < +∞ as the number of
strictly positive eigenvalues of Tλ. Under Assumptions 1, 2,
and 3, after a transitory regime, the average excess risk of
the optimally-regularized empirical risk minimizer fn is

E[R(fn)−R(f∗)] ≤ 2keε
2

n
+

log(n)1.1

n
∥f∗∥L2(ρ)

+ c2f,Tλ

(
Lk(SΘ̂)− Lk(SΘ∗)

)
+ cf,k. (6)

where ε2 is the noise level of Y (the supremum of con-
ditional variances), ke ≤ k is the effective dimension
of the representation ψ = Θφ on the downstream task,
cf,k ≤ (kλ − k)+ ∥f∗∥2L2(ρX ) is a constant relating to the
concentration of the energy of f∗ the target function on
the downstream task with respect to the eigenspaces of Tλ,
cf,Tλ

≤
∥∥T−1

λ f∗
∥∥ is a similar constant taking into account

the decay of eigenvalues of Tλ, and the index k in Lk indi-
cates that we search over ψ : X → Rk.

The results of Theorem 1 can be seen as a variance-bias
decomposition. A variance term, due to misspecified lin-
ear regression, displays rates in k log(n)/n. The log(n)
factor is actually an artefact of our derivations, and could
be removed with Theorem 1 of Mourtada et al. (2022). A
bias term relates to the approximation error. It captures
both the hardness to learn f∗ with Tλ through the con-
stants cf,Tλ

and cf,k, and the error made on the pre-training
task through L − L∗. Note that the proof of Theorem 1
mindfully avoids bounding cf,Tλ

by
∥∥T−1

λ

∥∥
op

∥f∗∥ which
would introduce the inverse of the spectral gap of Tλ in the
bound, and would not characterize well situation where the
target function f∗ is actually easy to learn with Tλ. We also
remark that for classification tasks, recent work shows that
under mild assumptions on ρX , and low noise conditions, it
should be possible to convert the rates of Theorem 1 into ex-
ponentially fast rates for the zero-one loss (Cabannes et al.,
2021b). This is particularly the case under the cluster setting
studied by HaoChen et al. (2021).4 The theoretical conver-
gence rates of Theorem 1 are validated experimentally in
Figure 6.

4See also Rigollet (2007) for fast rates in this setting.
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Figure 6. Empirical downstream performance on a simple task (de-
tailed in Appendix D) depends on the number of both downstream
samples (x-axis) and pretraining (y-axis) in log-scale. Along the
left hand side of the plot, convergence rates of n−1/2

pre are observed
with respect to the number of pretraining samples (Theorem 3)
while along the top, convergence rates of n−1

down are observed with
respect to the number of downstream samples (Theorem 1). At
the bottom, a saturation phenomenon is observed where added
downstream samples do not result in noticeable benefits as the
excess risk stalls at R(ΠF̂f

∗)−R(f∗) > 0.

5.3. Pretraining guarantees

Theorem 1 above states that representations with small pre-
training loss can solve downstream tasks that satisfy As-
sumption 3 but do not address how difficult it is to find such
representations. This section aims to bridge that gap. The
following theorem details convergence rates of the empirical
risk minimizer using Rademacher complexity arguments.

Theorem 2 (Empirical risk minimizer). Let Θn ∈ Rk ⊗
H be the minimizer of the unbiased regularized empirical
version of L based on a dataset Dn. Assume that Dn is built
from n input samples (Xi) ∼ µ⊗n

X and m augmentation
per samples (ξij) ∼ µ|⊗mXi

, then the average excess risk is
bounded by

EDn [L(SΘn)]− L(SΘ) ≤ 12κ2k

λ
√
n

(
1 +

κ2k

λ

)
, (7)

where κ is a bound on ∥φ(X)∥.

Note that the proof of Theorem 2 proceeds with a loose
bound on the variance of the empirical risk, which is mainly
due to the difficulty in dealing with non-exchangeability
of the samples (ξij). In essence, the ease of minimizing L
depends on both the variance of L when estimated with
empirical data (or the variance of stochastic gradients when
performing SGD), and the size of the space where we aim
to find representations ψ : X → Rk. With stronger assump-
tions on the distribution of φ(ξ) (e.g., data are clustered, and
the law of (ξ |X) is invariant per cluster), one could show
much better behavior of the excess risk with respect to the
number of augmentations (e.g., replacing n by the minimum

7
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number of points in one cluster multiplied by the number
of views). The following theorem states convergence rates
with a stochastic gradient descent algorithm capturing such
a potential situation. Proofs and technicalities, based on
convex optimization literature, are detailed in Appendix C.

Theorem 3 (Sharper bounds). There exists an imple-
mentable algorithm that guarantees an average excess risk

EDn [L(SΘn)]− L(SΘ)

≤ 3κ2cλc
′
λ

√
σ2
X

n
+

σ2
ξ

nm
+

4κ6c2λ
n

(8)

where cλ = 1+κ2kλ/λ, c′λ = 1+k2λ/λ
2, kλ is the number

of positive eigenvalues of Tλ, κ is a bound on ∥φ∥, σX
relates to the variance of E [ψ(ξ) |X], and σξ relates to the
average variance of (ξ |X). Moreover, when K = SS⊤ or
the covariance of the φ(ξ) has a finite number of positive
eigenvalues (e.g. X finite or H finite dimensional), with cK
a constant that relates to the condition number of K, this
bound can be tightened to

EDn
[L(SΘn)]− L(SΘ) ≤ 4c2Kc

2
λ

n
. (9)

In the setting studied in HaoChen et al. (2021), we stress that
Theorem 3 guarantees convergence rates of O(n−1) rather
than O(n−1/2) on the upstream loss. In effect, we improve
the rates of HaoChen et al. (2021, Theorem 4.3) from n−1/2

to n−1 on both pretraining and downstream tasks.

6. Practical insights
In this section, we relate our theory to commonly observed
phenomena when training SSL algorithms and offer best
practices informed by our findings.

6.1. The downstream problem

Two regimes should be distinguished for the downstream
problem. When few downstream samples are available, few-
shot learning requires a small effective dimension ke (6) to
lower the estimation error and avoid fitting noise. Limiting
ke (or equivalently the capacity of F̂) can be done either
by decreasing the representation dimension k or applying
regularization on downstream tasks. This theoretical trade-
off between effective dimension and number of downstream
examples is illustrated empirically by He & Ozay (2020,
Figure 6). On the contrary, when accessing a substantial
amount of data for training downstream tasks, one could
confidently augment the representation dimension k to de-
crease the approximation error. This was notably observed
on large-scale datasets by Garrido et al. (2022, Figure 1):
as k increases, the effective dimension ke converges to a
limit, and the downstream performance keeps increasing

until this limit is reached. Remarkably, our theory explains
this phenomenon: since kλ is finite, as k increases, the ef-
fective dimension ke will be bounded by the limiting case
where k = kλ.5

6.2. The pretraining problem

Usefulness of multiple augmentations per sample. Theo-
rem 3 shows how multiple augmentation such as multi-crops
can result in faster convergence to an optimal representa-
tion ψ. There, the variance of the empirical risk depends
on both σX due to variation over inputs, and σξ due to
variations over resulting views after augmentation. With
multiple augmentations per sample, one can reduce the lat-
ter variance and improve performance, which was observed
with the introduction of multicrops in Caron et al. (2020).
However, when the total amount m × n of pre-processed
data is held fixed, it is generally better to process many
inputs with two views m = 2, rather than a few inputs with
many augmentations. This finding matches the empirical
observations of Bardes et al. (2022) that if available, fresh
samples are always better than more views.

Capacity trouble in pretraining. Theorems 2 and 3 show
that, without regularization restricting the capacity of the
model of computation, one cannot expect to meaningfully
solve the pretraining task. This is captured by the quan-
tity cλ that goes to infinity as λ goes to zero. Such issues
related to the lack of regularization commonly arise in prac-
tice. Given n ×m upstream samples (ξij), the empirical
minimization of VICReg can be implemented by approx-
imating µ with

∑
ij δ(i,ξi,j)/nm. In this setting, T is the

adjacency matrix of a graph with as many connected com-
ponents as there are inputs n, as detailed in Appendix E. All
the connected components define a maximal eigenvector of
the empirical approximation to T , leading to a “collapsed”
representation ψ =

∑
j δξij/m. Regularizing forces the op-

timizer to search for representation inside the space Ψ which
mixes those small clusters letting meaning eigenfunctions
emerging (see Figure 7 for an illustration).

6.3. Guidelines for practitioners

Our theoretical study provides several insights that may be
useful for SSL practitioners. We highlight a few below.

Avoiding collapse. The common collapse phenomenon,
where pretraining ends up fitting noise instead of learn-
ing useful features, may be addressed in several ways. Our
theory suggests to:

• Reduce the model capacity, through regularization
(e.g., early stopping), or simpler architectures (e.g.,
a shallow CNN instead of an MLP). As a consequence,

5Note that without regularization, (1− β)I + βT is not trace-
class so ke will not converge as k increases.

8
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Figure 7. Capacity trouble. Level lines of the top eigenfunction
of empirical estimate of Tλ for negligible regularization (left)
and small regularization λ (right). Experiments are done with a
Gaussian kernel with scale about one tenth of the problem diameter,
augmentations are represented as black dots, connected by a line
when they provide from the same input X . When λ is negligibly
small, capacity troubles arise, infringing the recovery of the cluster
structure on the right.

Ψ will have a lower effective dimension, K will en-
courage “simpler” representations that can be learned
with less data, even without any data augmentation.

• Use stronger augmentations. T will become more
compact, reducing kλ the dimension of the “positive
eigenspace” of Tλ. The ideal ψ will exhibit more struc-
ture, thereby its search could be reduced to smaller
spaces, making it harder to collapse.

Incorporating priors. Representations are typically used for
solving downstream tasks, thus it is crucial to incorporate
the right priors during pretraining. Our theory showcases
the important role of several factors. (i) Augmentations de-
termine the nature of the invariance that is enforced (e.g.,
low variations, short-range dependencies, translation invari-
ance); affects top eigenfunctions of T . (ii) Architecture
promotes “simple” representations (e.g., smoothness, local-
ity); affects top eigenfunctions of K. (iii) Regularization
balances the interplay between augmentations and archi-
tecture; affects top eigenfunctions of Tλ. (iv) Pretraining
data impacts both T and K and their eigenfunctions, e.g.,
through clustering structure, or natural image statistics.

7. Conclusion
This paper presents a theoretical framework for studying
self-supervised learning in the kernel regime. It examines
three key operators and their impact on convergence and
generalization: T linked with augmentations, K linked with
architecture choices, and Tλ resulting from their interplay
and tuned by the parameter λ. Our analysis offers use-
ful guarantees and practical guidelines for practitioners to
improve the stability and performance of SSL algorithms.
Looking beyond the kernel regime, future work can We left
for future work the extension of our analysis beyond the
kernel setting, in particular to understand non-linear training
dynamics in finite width neural network and feature learning

capabilities within layers. Moreover, future studies could
encompass more techniques that enhance performance in
SSL, these include projecting representations before en-
forcing losses, batching the data, or applying different loss
functions.
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A. Mathematical details and simple proofs
A.1. Technical details

Several technicalities were left implicit in the main text, we discuss it now. In particular, we assumed that there exists a
minimizer f∗ of the risk R which is true when Y is finite, or when ℓ is the least-square loss and (Y |X) has a second order
moment almost everywhere. Moreover, in the proof for least-squares, we will assume for simplicity that Y = R. The same
derivations still holds true when Y = Rk although it requires slight precautions such as working in Y ⊗H rather than in H
(see Cabannes et al., 2021b, for example).

Integers. The representation dimension k is an integer, and [k] denotes the set {1, 2, · · · , k}. For simplicity, we abuse
notations and denote by N the set of strictly positive integers.

Geometry. The product A× B denotes the set of elements (a, b) with a ∈ A and b ∈ B. The notation a⊤ denotes the
adjoint of a which depends on the Hilbertian metric space one consider a to be part of (e.g. the adjoint in L2(µΞ) is not the
same as the adjoint in L2(ρX )). The notation a⊤b denotes the scalar product ⟨a, b⟩ with the Hilbertian metric space a and b
are understood to be part of. The Hilbertian norm on matrices or operators is denoted by ∥·∥F (Frobenius), ∥·∥2 or ∥·∥HS
(Hibert-Schmidt). The operator norm is denoted by ∥·∥op. Moreover, the identity is always denoted by I .

Distributions. In order to define probabilities, X and Y are assumed to be Polish spacesa endowed with the Borel
topologies. We used the simplex notation ∆A to design the set of probability measure on A, and the tensor notations ρ⊗n to
denotes the measure of n independent random variables all distributed according to ρ. The notation φ#ρ denote the measure
of φ(X) when X is distributed according to the measure ρ. The notation ρ≪ µ means that for any measurable set X the
fact that µ(X) = 0 implies that ρ(X) = 0. The notation δx denotes the Dirac distribution, which satisfies ⟨f, δx⟩ = f(x)
using the duality bracket between functions and distributions. For any distribution p, the space L2(p) is made of measurable
functions that are square-integrable.

Functions. All functions such as ℓ, f , ψ, φ, and so on, are restricted to be measurable. The notation ◦ denote the
composition of functions f ◦ g(·) = f(g(·)). A function f : X → Y is understood as an element of YX , and we use some
isomorphism such as (Rk)X = (RX )k. We use the notation Rk ⊗H to denote linear bounded operator from H to Rk. This
tensor product notation generalizes matrix notations with Rk ⊗ Rdh = Rk×dh . In particular,

Ψk =
{
x→ Θφ(x)

∣∣Θ ∈ Rk ⊗H
}
.

For Θ ∈ Rk ⊗H, one can write Θ in row-style as an element of Hk as well as its adjoint Θ⊤ ∈ H ⊗ Rk in column-style
which follows from the fact that Hk is self-adjoint when endowed with the ℓ2-product topology.

A.2. Proof of Remark 1

Let us characterize (2) in order to easily implement it with unbiased stochastic gradient. We need to get the expectation
outside the norm. This can be done with the following derivations∥∥E[ψ(ξ)ψ(ξ)⊤]− I

∥∥2 = Tr
(
(E[ψ(ξ)ψ(ξ)⊤]− I)(E[ψ(ξ′)ψ(ξ′)⊤]− I)

)
= Eξ,ξ′

[
Tr
(
ψ(ξ)ψ(ξ)⊤ψ(ξ′)ψ(ξ′)⊤

)]
− 2Eξ

[
Tr
(
ψ(ξ)ψ(ξ)⊤

)]
+Tr(I)

= Eξ,ξ′
[
(ψ(ξ′)⊤ψ(ξ))2

]
− 2Eξ

[
∥ψ(ξ)∥2

]
+ k.

For the first part, we get

EX Eξ,ξ′
[
∥ψ(ξ)− ψ(ξ′)∥2

∣∣∣X] = 2Eξ[∥ψ(ξ)∥2]− 2EX Eξ,ξ′
[
ψ(ξ)⊤ψ(ξ′)

∣∣X]
As a consequence,

L(ψ;β) = 2(β − 1)Eξ[∥ψ(ξ)∥2]− 2β EX Eξ,ξ′
[
ψ(ξ)⊤ψ(ξ′)

∣∣X]+ Eξ,ξ′
[
(ψ(ξ′)⊤ψ(ξ))2

]
+ k. (10)

In particular, when β = 1, we retrieve the spectral contrastive loss introduced by HaoChen et al. (2021),

L(ψ) = −2EX Eξ,ξ′
[
ψ(ξ)⊤ψ(ξ′)

∣∣X]+ Eξ,ξ′ [(ψ(ξ)⊤ψ(ξ′))2] + k.
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A.3. Proof of Lemma 2

First, notice that if we define for ψ : X → R, the mapping ω(ψ) → EX [Eξ,ξ′
[
∥ψ(ξ)− ψ(ξ)∥2

∣∣∣X]], ω is a quadratic

form on L2(µΞ). As a consequence, it can be represented with a linear self-adjoint operator L on L2(µΞ) such that
ω(ψ) = ⟨ψ,Lψ⟩L2(µΞ)

. Because ω(ψ) ≥ 0, we have L ⪰ 0 (with ⪰ the Loewner order on symmetric operators, i.e. A ⪰ B
if A−B is positive). The following lemma show that L is bounded.

Lemma 5. For any ψ ∈ L2(µΞ), ω(ψ) ≤ 2 ∥ψ∥2L2(µΞ)
. As a consequence, L ⪯ 2I .

Proof. This follows from the fact that

ω(ψ) = EX [Eξ,ξ′
[
∥ψ(ξ)− ψ(ξ′)∥2

∣∣∣X]]
= EX [Eξ,ξ′

[
∥ψ(ξ)− E [ψ(ξ) |X] + E [ψ(ξ) |X]− ψ(ξ′)∥2

∣∣∣X]]
= EX [Eξ,ξ′

[
∥ψ(ξ)− E [ψ(ξ) |X]∥2 + ∥E [ψ(ξ) |X]− ψ(ξ′)∥2

∣∣∣X]]
= 2EX [Eξ

[
∥ψ(ξ)− E [ψ(ξ) |X]∥2

∣∣∣X]]
= 2 min

ψ0:X→R
EX [Eξ

[
∥ψ(ξ)− ψ0(X)∥2

∣∣∣X]]
≤ 2EX [Eξ

[
∥ψ(ξ)∥2

∣∣∣X]] = 2Eξ
[
∥ψ(ξ)∥2

]
= 2 ∥ψ∥L2(µΞ)

Hence for any ψ, with the L2(µΞ) geometry we have ψ⊤Lψ ≤ ψ⊤ψ, which implies, since L is self-adjoint, that
∥L∥op ≤ 2.

Because 0 ⪯ L ⪯ 2I , let us introduce T = (2I − L)/2, we have 0 ⪯ T ⪯ 1 and, with the L2(µΞ) geometry, for
ψ : X → Rk

L(ψ) = β

k∑
i=1

ψ⊤
i Lψi +

∥∥E[ψ(ξ)ψ(ξ′)⊤]− I
∥∥2 = 2β

k∑
i=1

ψ⊤
i (I − T )ψi +

∥∥E[ψ(ξ)ψ(ξ′)⊤]− I
∥∥2 .

In order to diagonalize all operators without relying on integral formulations of the spectral theorem, we introduce the
following mild assumption.

Assumption 4. Assume that T has a pure point spectrum.

Example 7. When the distribution of augmentation have a density p with respect to a any measure and (x, ξ) →
p (ξ |x) /p(ξ) is in L2(µ), or when X is finite, T can be shown to be a compact operator, hence to have a pure point
spectrum according to the spectral theorem.

Proof. When X is finite, the L2 spaces are finite dimensional, hence locally compact, which implies that all operators
are compact. To prove the case with density, let us develop T as an integral operator. We have, in L2(µΞ) geometry, for
f : X → R

2f⊤(I − T )f = EX E
[
∥f(ξ)− f(ξ′)∥2

∣∣∣X] = EX E
[
∥f(ξ)∥2 + ∥f(ξ′)∥2 − 2 ⟨f(ξ), f(ξ′)⟩

∣∣∣X]
= 2f⊤f − 2EX E [⟨f(ξ), f(ξ′)⟩ |X] .

This allow us to identify T with the inner product, we have for g : X → R and p the density of augmentations

f⊤Tg = EX E [⟨f(ξ), g(ξ′)⟩ |X] =

∫
⟨f(ξ), g(ξ′)⟩ p (ξ |x) p (ξ′ |x) dξ′ dξµX (dx)

=

∫
µΞ(dξ)

〈
f(ξ),

∫
µΞ(dξ

′)g(ξ′)

∫
µX (dx)p (ξ |x) p (ξ′ |x)

p(ξ)p(ξ′)

〉
.

13
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As a consequence, one can consider T as the integral operator in L2(µΞ) linked with the kernel

k(ξ, ξ′) =

∫
µX (dx)p (ξ |x) p (ξ′ |x)

p(ξ)p(ξ′)
.

When this kernel is bounded, or simply when ξ → k(ξ, ξ) belongs to L2(µΞ), T is trace-class hence compact.

Let us now prove in order to minimize L, one should take the eigenfunctions of the operator (1 − β)I + βT whose
corresponding eigenvalues are the biggest positives ones. It can be proven with simple geometry in a somewhat abstract
space. To do so, remark that ψ : X → Rk in L2(µΞ,X ,Rk) can be represented as ψ̃ ∈ Rk ⊗ L2(µΞ,X ,R) with the linear
map that associates (ψ⊤

i φ) to a function φ ∈ L2(µΞ,X ,R). Let denote Tβ = (1 − β)I + βT , the upstream loss can be
characterized as

L(ψ) = 2β
∑
i∈[k]

⟨ψi, (I − T )ψi⟩+
∥∥Eξ[ψ(ξ)ψ(ξ)⊤]− I

∥∥2

= 2β
∑
i∈[k]

〈
e⊤i ψ, (I − T )ψ⊤ei

〉
+

∥∥∥∥∥∥Eξ[
∑
i,j∈[k]

e⊤i ψ(ξ)ψ(ξ)
⊤ejeie

⊤
j ]− I

∥∥∥∥∥∥
2

= 2β
∑
i∈[k]

eiψ̃(I − T )ψ̃⊤ei +

∥∥∥∥∥∥
∑
i,j∈[k]

e⊤i ψ̃ψ̃
⊤ejeie

⊤
j − I

∥∥∥∥∥∥
2

= 2β Tr
(
ψ̃(I − T )ψ̃⊤

)
+
∥∥∥ψ̃ψ̃⊤ − I

∥∥∥2 = 2β Tr
(
ψ̃(I − T )ψ̃⊤

)
+Tr

((
ψ̃ψ̃⊤ − I

)2)
.

= Tr
(
2βψ̃(I − T )ψ̃⊤ + ψ̃ψ̃⊤ψ̃ψ̃⊤ − 2ψ̃ψ̃⊤ + I

)
.

= TrL2(µΞ)

(
ψ̃⊤ψ̃ψ̃⊤ψ̃ + (2β(I − T )− 2I)ψ̃⊤ψ̃

)
+ k.

= TrL2(µΞ)

(
ψ̃⊤ψ̃ψ̃⊤ψ̃ − 2Tβψ̃

⊤ψ̃
)
+ k. = TrL2(µΞ)

(
(ψ̃⊤ψ̃ − Tβ)

2 − T 2
β

)
+ k.

In order to find the minimizer of L with this new characterization, slight precautions are needed here since the two operators
are not trace-class. The following lemma takes those precautions in order to finish the proof.

Lemma 6. Let A be a self-adjoint operator on L2(µΞ). Assume that there exists c such that A ⪯ cI and that A is
pure-point spectrum. Then if (λi, fi) denote the eigen-decomposition of A with λi in decreasing order, the minimization
of Tr

(
(B −A)2 −B2

)
under the constraint that B is a self-adjoint positive operator of rank at most k, is reached for

B = ψ̃⊤ψ̃ with ψ : X → Rk such that ψi = max(0, λi)
1/2fi.

Proof. Let us decompose A into a positive part A+ ⪰ 0 and a negative part A− ⪰ 0 such that A = A+ −A−. Using the
fact that B is positive self-adjoint, we get

Tr
(
(B −A)2 −A2

)
= TrB2 − 2B1/2AB1/2 = Tr

(
B2 − 2B1/2A+B

1/2
)
+ 2Tr

(
B1/2A−B

1/2
)

≥ Tr
(
B2 − 2B1/2A+B

1/2
)
.

Let us decompose B into k symmetric operators of rank at most one as B =
∑k
i=1Bi such that BiBj = 0 for any

14
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i ̸= j ∈ [k]. Using the different properties of the operators introduced, we proceed with

Tr
(
(B −A)2 −A2

)
≥

k∑
i=1

Tr
(
B2
i

)
− 2Tr (BiA+) =

k∑
i=1

∥Bi∥2op − 2 ∥BiA+∥op

≥
k∑
i=1

∥Bi∥2op − 2 ∥Bi∥op ∥ΠBi
A+∥op ≥

k∑
i=1

∥Bi∥2op − 2 ∥Bi∥op
∥∥∏
j<i

(I −ΠBj
)A+

∥∥
op

=

k∑
i=1

∥Bi∥op −
∥∥∏
j<i

(I −ΠBj )A+

∥∥
op

2

−
∥∥∏
j<i

(I −ΠBj )A+

∥∥2
op

≥ −
k∑
i=1

∥∥∏
j<i

(I −ΠBj )A+

∥∥2
op

≥ −
k∑
i=1

σi(A+)

where ΠB denote the orthogonal projector on the image of B, and σi(A) the i-th singular value of A (monotonically ordered
with σ1(A) the biggest). The last inequality is due to the Courant-Fisher min-max principle, This inequality can be achieved
with ΠBi

the projection on the i-th eigenspace of A and ∥Bi∥op = σi(A). In other terms, B should match the first k positive
eigenvalues of A. In the case where A has less than k positive eigenvalues, then B should match all the positive eigenvalues
and be null on the range of A−.

The following is a direct corollary of the proof above.

Proposition 7 (Uniqueness of minimizers). The minimizers of L are unique up to orthogonal transformations and
eigenfunction picking. More specifically, if U ∈ Rk×k is orthogonal, i.e. U⊤U = I , then L(ψ) = L(Uψ); and if
λk = λk+1, one can choose different eigenfunctions as fk in the eigen-decomposition (λi, fi) of Tβ .

A.4. Proof of Lemma 3

Let us consider ψ : X → Rk with ψi = fθi for θi ∈ H and S : H → L2(µΞ); θ → θ⊤φ(·). We can use the tensor notations
introduced earlier to parameterized ψ = SΘ⊤ with Θ = (θi)i∈[k] seen as an element of Rk ⊗H. The proof of Lemma 3
follows from the fact that

∥Θ∥22 =
∥∥Θ⊤∥∥2

2
=
〈
SΘ⊤, (S⊤S)−1SΘ⊤〉

L2(µΞ)
=

k∑
i=1

Sθ⊤i K
−1Sθi =

k∑
i=1

ψ⊤
i K

−1ψi.

Since Ψ = S(H) = imS = imK1/2 = K1/2(L2(µΞ)), one can consider K−1 as the inverse of K such that for
ψi ∈ kerK, ψ⊤

i K
−1ψi = +∞. This is what we implicitly assumed in the main paper, which lead to the (ψi) being all in

Ψ. Note that in many cases, Ψ is dense in L2(µΞ) (Micchelli et al., 2006), and one does not need to take such a precaution
since the kerK = {0}, and there is only one way to define K−1 on L2(µΞ).

A.5. Second proof of Lemma 3 with covariance operators

The proof given above of Lemma 3 might seem quite abstract for the reader unfamiliar with reproducing kernel Hilbert
space. In this subsection, we provide a somewhat more accessible proof of this Lemma based on covariance operators.

Reusing the unbiased characterization of L we have

L(ψ;β) = 2(β − 1)Eξ[∥ψ(ξ)∥2]− 2β EX Eξ,ξ′
[
ψ(ξ)⊤ψ(ξ′)

∣∣X]+ Eξ,ξ′
[
(ψ(ξ′)⊤ψ(ξ))2

]
+ k.

= 2(β − 1)Tr
(
Eξ[ψ(ξ)ψ(ξ)⊤]

)
− 2β Tr

(
EX Eξ,ξ′

[
ψ(ξ))ψ(ξ′)⊤

∣∣X])+Tr
(
Eξ
[
ψ(ξ)ψ(ξ)⊤

]2)
+ k,

where the last term provides from the fact that

Eξ,ξ′
[
(ψ(ξ)⊤ψ(ξ′))2

]
= Eξ,ξ′

[
ψ(ξ)⊤ψ(ξ′)ψ(ξ′)⊤ψ(ξ)

]
= Eξ,ξ′

[
Tr
(
ψ(ξ′)ψ(ξ′)⊤ψ(ξ)ψ(ξ)⊤

)]
= Tr

(
Eξ[ψ(ξ)ψ(ξ)⊤]Eξ′ [ψ(ξ′)ψ(ξ′)⊤]

)
= Tr

(
Eξ[ψ(ξ)ψ(ξ)⊤]2

)
.
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A.5.1. OPERATOR TECHNICALITIES

The search for ψ will be done under the form Θφ for Θ ∈ Rk ⊗H and φ : X → H. Let us discuss technicalities related to
the infinite dimensional operators that will appear.

Assumption 5. The Hilbert space H is separable, and the mapping φ belongs to L2(µX ) endowed with Borel topology on
both X and H.

Remark 8. The operator Σ = Eξ[φ(ξ)φ(ξ)⊤] ∈ H ⊗H is trace-class.

Proof. This follows from linearity of traces, expectations, together with the fact that TrAB = TrBA,

TrΣ = Eξ Trφ(ξ)φ(ξ)⊤ = ∥φ∥2L2(µX ) < +∞.

As a consequence, Σ is compact, hence has a pure point spectrum, and since H is separable it can be diagonalized with its
eigenvectors forming a basis of H.

We will see later that Σ−1/2ΣXΣ−1/2 is indeed isometric to T . Hence, under Assumption 4, Σ−1/2ΣXΣ−1/2 has a
pure-point spectrum. However, the following lemma shows that this operator is bounded without using the fact that T ⪯ I .

Remark 9. The operator ΣX = EX Eξ,ξ′
[
φ(ξ)φ(ξ′)⊤

∣∣X] ∈ H ⊗H verifies 0 ⪯ ΣX ⪯ Σ with ⪯ the Loewner order
(A ⪯ B if B −A is semi-definite positive). As a consequence, ΣX is trace-class and Σ−1/2ΣXΣ−1/2 is continuous.

Proof. This follows from Jensen inequality applies to A→ AA⊤, which can be proven using the positivity of covariance
operator.

0 ⪯ E[(A− E[A])(A− E[A])⊤], ⇒ E[A]E[A]⊤ ⪯ E[AA⊤].

As a consequence,

Eξ,ξ′
[
φ(ξ)φ(ξ′)⊤

∣∣X = x
]
⪯ Eξ

[
φ(ξ)φ(ξ)⊤

∣∣X = x
]
,

which implies that
ΣX ⪯ Σ.

As a consequence, TrΣX ≤ TrΣ < +∞ and Σ−1/2ΣXΣ−1/2 ⪯ I , and
∥∥Σ−1/2ΣXΣ−1/2

∥∥
op

≤ 1. The positivity follows

from the fact that ΣX is a covariance operator ΣX = EX
[
Eξ [φ(ξ) |X]Eξ [φ(ξ) |X]

⊤
]
.

A.5.2. OPERATOR FORMULATION

Let us begin by proving a variant of the lemma where everything is expressed in H. We expand later on the isometry
between H and L2(µΞ) (due to the isometry between S and Σ1/2) that allows us to transfer it to the lemma written in the
paper.

Lemma 10. For (θi) ∈ Hk and fθ : x→ ⟨φ(x), θ⟩, and a regularizer λ ∈ R

L((fθi)i∈[k]) + λ
∑
i∈[k]

∥θi∥22 = Tr

(Σ1/2(
∑
i∈[k]

θiθ
⊤
i )Σ

1/2 −A)2 −A2

+ k,

with A and Σ being operator on H defined as

A = Σ−1/2((1− β)Σ + βΣX − λI)Σ−1/2, Σ = Eξ
[
φ(ξ)φ(ξ)⊤

]
, ΣX = EX [Eξ,ξ′

[
φ(ξ)φ(ξ′)⊤

∣∣X]].
As a consequence, a minimizer Θ∗ of L is such that Θ∗ matches the eigenvalue decomposition of A on positive eigenvalues
up to the k-th. Formally, if A =

∑
i∈N λiui ⊗ ui with ui ∈ H and (λi) in decreasing order,

Θ∗ = (θi)i∈[k], with θi =
√
max(λi, 0)Σ

−1/2ui.

Moreover, (fθi) are orthogonal in L2(µΞ), where µΞ denotes the marginal distribution over augmentations.
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Proof. Let us now rewrite the different quantities appearing in L based on the parameterization ψ = Θφ. We have

Tr
(
E[ψ(ξ)ψ(ξ)⊤]

)
= Tr

(
E[Θφ(ξ)φ(ξ)⊤Θ⊤]

)
= Tr

(
ΘE[φ(ξ)φ(ξ)⊤]Θ⊤) = Tr

(
ΘΣΘ⊤) = Tr

(
Σ1/2Θ⊤ΘΣ1/2

)
.

The adjoint Θ⊤ is taken with respect to the canonical topology on H and Rk. Similarly,

Tr
(
EX E

[
ψ(ξ)ψ(ξ′)⊤

∣∣X]) = Tr
(
ΘΣXΘ⊤) = Tr

(
Σ−1/2ΣXΣ−1/2Σ1/2Θ⊤ΘΣ1/2

)
.

For the last term, we get

Tr
(
E[ψ(ξ)ψ(ξ)⊤]2

)
= Tr

(
(ΘΣΘ⊤)2

)
= Tr

(
ΘΣΘ⊤ΘΣΘ⊤) = Tr

(
Σ1/2Θ⊤ΘΣΘ⊤ΘΣ1/2

)
Collecting the different terms, we get

L(Θφ) + 2λTr(Θ⊤Θ)− k

= Tr
(
2(β − 1)Σ1/2Θ⊤ΘΣ1/2 − 2βΣ−1/2ΣXΣ−1/2Σ1/2Θ⊤ΘΣ1/2

+Σ1/2Θ⊤ΘΣΘ⊤ΘΣ1/2 + 2λΣ−1Σ1/2Θ⊤ΘΣ1/2
)

= Tr

((
Σ1/2Θ⊤ΘΣ1/2 + (β − 1)I − βΣ−1/2ΣXΣ−1/2 + λΣ−1

)2
−
(
(β − 1)I − βΣ−1/2ΣXΣ−1/2 + λΣ−1

)2)
= Tr

((
Σ1/2Θ⊤ΘΣ1/2 − Σ−1/2((1− β)Σ + βΣX − λ)Σ−1/2

)2
−
(
Σ−1/2((1− β)Σ + βΣX − λ)Σ−1/2

)2)
.

This proves the first part of the lemma. Remark that the expression of the lemma is slightly different from the generalization
to continuous X suggested by HaoChen et al. (2021) in their Appendix F, that would reuse the work of Schiebinger et al.
(2015) considering the covariance operator with feature φ̄(x) = q−1/2(x)E [φ(ξ) |X = x] where q : x→ EX∼µΞ

[k(x,X)]
rather than Σ−1/2ΣXΣ−1/2.

Finally, let us prove that the fθi are orthogonal in L2, we have〈
fθi , fθj

〉
L2(µΞ)

=
√
max(λi, 0)max(λj , 0)E[

〈
Σ−1/2ui, φ(ξ)

〉〈
Σ−1/2ui, φ(ξ)

〉
]

=
√

max(λi, 0)max(λj , 0)E[u⊤i Σ−1/2φ(ξ)φ(ξ)⊤Σ−1/2uj ]

=
√

max(λi, 0)max(λj , 0)u
⊤
i Σ

−1/2 E[φ(ξ)φ(ξ)⊤]Σ−1/2uj

=
√

max(λi, 0)max(λj , 0)u
⊤
i Σ

−1/2ΣΣ−1/2uj

=
√

max(λi, 0)max(λj , 0)u
⊤
i uj =

√
max(λi, 0)max(λj , 0)δij .

This proves the orthogonality of the fθi in L2(µΞ).

A.5.3. ISOMETRIC FORMULATION

Let us consider S : H → L2(µΞ); θ → fθ the embedding of the RKHS in L2(µΞ).
Lemma 11. S is isometric to Σ1/2, and K = S⊤S is an integral operator that maps f ∈ L2(µΞ) to Kf ∈ L2(µΞ) defined
for ξ ∈ X as

Kf(ξ) = Eξ′
[
φ(ξ)⊤φ(ξ′)f(ξ′)

]
. (11)

Proof. This follows from the fact that both S and Σ1/2 are a square root of Σ. Indeed, Σ = S⊤S, since for θ ∈ H,〈
θ, S⊤Sθ

〉
H = ⟨Sθ, Sθ⟩L2(µX ) = Eξ[Sθ(ξ)2]

= Eξ[⟨θ, φ(ξ)⟩2] = Eξ[⟨θ, φ(ξ)⊗ φ(ξ)θ⟩]
= ⟨θ,E[φ(ξ)⊗ φ(ξ)]θ⟩ = ⟨θ,Σθ⟩ .

As a consequence, S is isometric to Σ1/2 (if we write the singular value decomposition of S as USV ⊤, then Σ1/2 = USU⊤).
Regarding the part in K, one can check with the same derivation that S⊤f = E[f(ξ)φ(ξ)] ∈ H hence the value of
(Kf)(ξ) = (S⊤f)⊤φ(ξ) = Eξ′ [f(ξ′)φ(ξ′)⊤φ(ξ)].
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Using the isometry one can replace ∥Sθ∥ =
∥∥Σ1/2θ

∥∥ with the Hilbertian norm on H and L2(µΞ), so that for C operating in
H, TrSCS⊤ = TrΣ1/2CΣ1/2. Going back to the proof in H, one can replace all the Σ1/2 by S or its adjoint at the right
places to get the following statement.
Lemma 12. For Θ ∈ Rk ⊗H, and a regularized λ ∈ R

L(SΘ) + λ ∥Θ∥22 = Tr((SΘ⊤ΘS⊤ − Tλ)
2 − T 2

λ) + k

where
T = S−⊤ΣXS

−1, Tλ = (1− β)I + βT − λK−1, K = SS⊤,

with S : H → L2(µΞ); θ → fθ the embedding of H in L2(µΞ), where µΞ denotes the marginal distribution over
augmentations. As a consequence, a minimizer Θ∗ of L;λ is such that SΘ⊤

∗ matches the eigenvalue decomposition of Tλ on
positive eigenvalues up to the k-th.

Proof. This lemma follows from the previous discussion. The fact that S−⊤ΣS−1 equates to T on the L2(µΞ)-closure of Ψ
is due to the characterization in Lemma 3. We can nonetheless prove it in a more direct fashion, by adapting Lemma B.9 of
Saunshi et al. (2022) to our case.

A.6. Proof of Proposition 4

Proposition 4 relies on the fact that when two operators commutes, they can be diagonalized in the same basis.
Lemma 13. When K and T commute, K and T can be diagonalized by the same eigenfunctions (fi).

Proof. When the operators commute, if f is an eigenfunction of T with Tf = λf , then TKf = KTf = λKf . This means
that the eigenspace of T , i.e. ker(T − λI) are stable by K. As a consequence, K can be decomposed with respect to the
summation L2 = ⊕λ∈spec(T ) ker(T − λI). By diagonalizing the restrictions of K on each of those spaces, there exists a
basis that diagonalizes both K and T .

While we did not discuss it in the main text, one should not consider any eigenvalue decomposition of T but only the
eigenfunctions that jointly diagonalize T and K. However, note that to find those eigenfunctions, based on Courant-Fisher
principle, one can take, recursively on i ∈ N, fi = fθi an eigenfunction in ker(T − λiI) that maximizes or minimizes ∥θi∥.
Those eigenfunctions (fi) will diagonalize Tλ, and the optimal representation will pick the ones that maximize f⊤i Tλfi as
long as this quantity is positive.

If fi diagonalize K then fi ∈ imK1/2 = Ψ = imS, hence there exists a θi ∈ H such that fi = Sθi. As a consequence,
with the L2(µΞ) geometry, f⊤i K

−1fi = (Sθi)
⊤(S⊤S)−1Sθi = ∥θi∥22. We use this to derive that

fiTλfi = (1− β)f⊤i fi + βf⊤i Tfi − λf⊤i K
−1fi = 1− β + βλi − λ ∥θi∥22 .

In other term the maximal eigenvalues of Tλ are found by maximizing βλi − λ ∥θi∥2.
Remark 14. Recently, HaoChen & Ma (2022) have taken this second perspective on inductive bias perspective by looking
at the “barrier” case where one can only match eigenfunctions that belongs to the function space Ψ. In the kernel regime,
this is deceptive since, for example, when considering the Gaussian kernel φ(x)⊤φ(x′) = − exp(∥x− x′∥2), Ψ is made of
analytic functions (Sun & Zhou, 2008), hence cannot parameterize any indicator functions without being one everywhere,
therefore their approach would fail to explain how the Gaussian kernel could learn fast under the cluster assumption.

A.7. Remark about VCReg

When L = 0, finding ψ correspond in finding k functions (fθi)i that are orthogonal in L2(µΞ) and maximize 1− λ ∥θ∥2 =

1− λf⊤θ K
−1fθ before multiplying them by (1− λ ∥θi∥2)+. Using Courant-Fisher min-max principle, the function (fθi)i

are given by the k biggest eigenfunctions of K.

A.8. Proof of Example 3

If µΞ = δρX + (1− δ)µ⊥, then for any measurable function f

∥f∥2L2(µΞ)
= δ

∫
X
f(x)2ρX (dx) + (1− δ)

∫
X
f(x)2µ⊥(dx) ≥ δ ∥f(X)∥2L2(ρX ) .
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A.9. Proof of Example 4

This follows from the embedding Sρ and Sµ of H in L2(ρX ) and L2(µΞ) respectively. We have seen earlier that S⊤
µ Sµ =

ΣµΞ and S⊤
XSX = ΣρX . Let f ∈ Ψ, there exists θ ∈ H such that f = fθ, hence, using the isometry between S and Σ1/2,

∥fθ∥2L2(ρX ) = ∥SXθ∥2L2(ρX ) =
∥∥∥Σ1/2

ρX θ
∥∥∥2
H

=
∥∥∥Σ1/2

ρX Σ−1/2
µΞ

Σ1/2
µΞ
θ
∥∥∥2
L2(ρX )

≤
∥∥∥Σ−1/2

µΞ
ΣρXΣ

−1/2
µΞ

∥∥∥
op

∥∥∥Σ−1/2
µΞ

θ
∥∥∥2
H

=
∥∥∥Σ−1/2

µΞ
ΣρXΣ

−1/2
µΞ

∥∥∥
op

∥fθ∥2L2(µΞ)
.

We conclude by using the equivalence the fact that A ⪯ cB implies that B−1/2AB−1/2 ⪯ c · I .

A.10. Proof of Example 5

This follows from the definition of the different objects,

Π
(ρX )
fi

(f) = wfi, with w = argmin
w∈R

EX∼ρX [∥f(X)− wfi(X)∥2].

We develop this last objective as

EX∼ρX [∥f(X)− wfi(X)∥2] = EX∼ρX [∥g(ψ(X))− wfi(X)∥2] = EZ∼ψ#ρX [
∥∥g(Z)− w⊤Z

∥∥2]
= EZ∼µΞ

[
∥∥f(X)− w⊤fi(X)

∥∥2].
Hence, the equality of the w and of the projections.

A.11. Proof of Example 6

If µΞ has k connected components, then the indicators of those components will be orthogonal in L2(µΞ) while minimizing
the invariant term Ex E

[
∥φ(ξ)− φ(ξ′)∥2

∣∣∣X]. As a consequence, f∗ belongs to the space of the (fi)i≤k.

B. Control of the downstream convergence
This section is devoted to the proof of Theorem 1. In all the following, kλ designs the number of positive eigenvalues of
Tλ (including multiplicity) as an operator on L2(µΞ). We fix k ≤ kλ, and design by F the span of the (fi)i∈[k]. In the
kernel regime, the space F can also be written as F =

{
w⊤Θ∗φ

∣∣w ∈ Rk
}

for Θ∗ the minimizer defined in Lemma 12.
We denote by F̂ the space defined similarly from an estimate Θ̂ of Θ∗.

The error on the downstream task could be decomposed into three quantities: the error on the downstream task linked with
the capacity of F̂ (12); the error on the upstream task linked to approximation error between F and F̂ (13), the error due to
the fact that the downstream task might not be effectively solved within F (14).

Lemma 15 (Decomposition intuition). Let F and F̂ be two closed convex sets of L2(ρX ), and ΠF design the orthogonal
projection on the space F according to L2(ρX ) geometry. For any function f : X → Y in F̂ , the excess of risk (1) can be
decomposed as

R(f)−R(f∗) ≤
∥∥f −ΠF̂f

∗∥∥2
L2(ρX )

(12)

+ 2
∥∥(I −ΠF̂ )ΠFf

∗∥∥2
L2(ρX )

(13)

+ ∥(I −ΠF )f
∗∥2L2(ρX ) , (14)

Proof. The proof of the lemma follows from classical characterization of the mean square error and a triangular inequality.
Introduce the following technical assumption.

Assumption 6. Assume (X,Y ) → Y to belong to L2(ρ).
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When ℓ(y, y′) = ∥y − y′∥2, using the fact that (X,Y ) → Y − E [Y |X] is orthogonal to any measurable function that does
not depend on Y in L2(ρ),

R(f) = E[∥f(X)− Y ∥2] = E[∥f(X)− E [Y |X]∥2] + E[∥E [Y |X]− Y ∥2].

As a consequence, f∗(x) = E [Y |X = x] and

R(f)−R(f∗) = ∥f − f∗∥2L2(ρX ) .

Let us decompose the excess of risk with the orthogonal projection of F̂ , we have

R(f)−R(f∗) = ∥f − f∗∥2L2(ρX
=
∥∥f −ΠF̂f

∗∥∥2
L2(ρX

+
∥∥(I −ΠF̂ )f

∗∥∥2
L2(ρX

The second term is worked out as∥∥(I −ΠF̂ )f
∗∥∥2
L2(ρX )

=
∥∥(I −ΠF̂ )ΠFf

∗ + (I −ΠF̂ )(I −ΠF )f
∗∥∥2
L2(ρX )

≤ 2
∥∥(I −ΠF̂ )ΠFf

∗∥∥2
L2(ρX )

+
∥∥(I −ΠF̂ )(I −ΠF )f

∗∥∥2
L2(ρX )

≤ 2
∥∥(I −ΠF̂ )ΠFf

∗∥∥2
L2(ρX )

+ ∥(I −ΠF )f
∗∥2L2(ρX )

where the last inequality is due to the fact that projections contract distances.

For linear probing (3), when the downstream task is learned with n data points and a noise level ε, (12) is expected to behave
as ε2k/n (Mourtada & Rosasco, 2022). In this linear setting, (13) should be seen as a measure of angle between F and F̂
seen through the eyes of f∗ (Davis & Kahan, 1970; Kato, 1995).

B.1. Controlling (12)

The downstream task error relates to the generalization error of mis-specified linear model. To bound it, we will use the
convergence rates analysis through concentration of integral operators of Smale & Zhou (2007) and Caponnetto & De Vito
(2007). It requires reworking slightly the previous decomposition.
Lemma 16 (Warm-up). Let F̂ be the span of the (ψi)i∈[k], with Sψ : Rk → L2 defined as Sψw = w⊤ψ, then

ΠF̂f
∗ = Sψ E[ψ(X)ψ(X)⊤]−1 E[Y ψ(X)]. (15)

Based on data (Xi, Yi), one can define the empirical risk minimizer fn = Sψwn, where wn is the minimizer of

wn ∈ argmin
w∈Rk

n∑
i=1

∥∥w⊤ψ(Xi)− Yi
∥∥2 = [

1

n

n∑
i=1

φ(Xi)φ(Xi)
⊤]−1 1

n

n∑
j=1

Yiφ(Xi). (16)

Proof. The two formula can be proven at once by remarking that if ΠF̂f
∗ is defined as Sψw for w minimizing

E[
∥∥w⊤φ(X)− Y

∥∥2] = w⊤ E[φ(X)φ(X)⊤]w − 2w⊤ E[Y φ(X)] + E[∥Y ∥2].

Minimizing this quadratic form leads to the first results. The second result is proven in the same way after substituting the
distribution over (X,Y ) by the empirical one n−1

∑
i∈[n] δ(Xi,Yi).

As a consequence of this warm-up lemma, let us introduce some notations, for ψ : X → Rk and some data (Xi), define

Sψ : Rk → L2(ρX );w → w⊤ψ, Ŝψ : Rk → ℓ2(n);w → (w⊤ψ(Xi))i∈[n], (17)

where ℓ2(n) is endowed with normalized (i.e. probability-like) scalar product ⟨a, b⟩ = n−1
∑
i∈[n] aibi. Similarly to

Lemma 11, one can show that the adjoint of Sψ and Ŝψ , and the covariance operators are

Sψ : L2(ρX ) → Rk; f → EρX [f(X)ψ(X)], Ŝψ : ℓ2(n) → Rk; (Yi)i∈n → 1

n

∑
i∈[n]

Yiψ(Xi).

Σψ = SψS
⊤
ψ = EρX [ψ(X)ψ(X)⊤], Σ̂ψ = ŜψŜ

⊤
ψ =

1

n
[ψ(X)ψ(X)⊤], (18)
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In this subsection, we will only consider S and Σ associated with ψ and we remove the indices for convenience. To simplify
notation when f ∈ L2(ρX ) we will write Ŝ⊤f for Ŝ⊤(f(Xi))i∈[n].

Assumption 7 (Homoskedastic noise). There exists ε > 0 such that for ρX -almost all x, the variance of (Y |X = x) is
bounded by ε2.

Lemma 17 (Bias-Variance decomposition). Based on data (Xi, Yi), one can define the regularized empirical risk minimizer
fn = Sψwn with a regularization parameter γ > 0 as

wn ∈ argmin
w∈Rk

n∑
i=1

∥∥w⊤ψ(Xi)− Yi
∥∥2 + γ ∥w∥2 . (19)

When doing so, under Assumption 7, the average excess of risk can be decomposed as, with M = sup ∥ψ(X)∥,

E(Xi,Yi)[
∥∥fn −ΠF̂f

∗∥∥2
L2(ρX )

] ≤ ε2

n

(
1 +

M2

γn

)
Tr
(
(Σ + γ)−1Σ

)
+ 2γ

(
1 +

M2

γn

)2 〈
ΠF̂f

∗,Σ(Σ + γ)−1ΠF̂f
∗〉
L2(ρX )

+ 2E(Xi)

∥∥∥S(Σ̂ + γ)−1Ŝ⊤(I −ΠF̂ )f
∗
∥∥∥2
L2(ρX )

. (20)

Proof. Retaking the warm-up lemma, one can show that

wn = (Σ̂ + γ)−1Ŝ(Yi)i∈[n].

As a consequence, using the usual bias-variance decomposition, and the fact that f∗ = Eρ [Y |X = ·], we develop

E(Yi |X=Xi)[
∥∥fn −ΠF̂f

∗∥∥2] = E(Yi |X=Xi)[
∥∥∥S(Σ̂ + γ)−1Ŝ⊤(Yi)i∈[n] −ΠF̂f

∗
∥∥∥2]

= E(Yi |X=Xi)

[∥∥∥S(Σ̂ + γ)−1Ŝ⊤(Yi − E [Y |X = Xi])i∈[n]

∥∥∥2]+ ∥∥∥S(Σ̂ + γ)−1Ŝ⊤f∗ −ΠF̂f
∗
∥∥∥2 .

The first term can be worked out with Mourtada & Rosasco (2022) techniques as

E(Xi,Yi)

[∥∥∥S(Σ̂ + γ)−1Ŝ⊤(Yi − E [Y |X = Xi])i∈[n]

∥∥∥2] ≤ ε2

n

(
1 +

R2

γn

)
Tr
(
(Σ + γ)−1Σ

)
under the assumption that the variance of (Y |X) is bounded by ε2.

We work out the second term with∥∥∥S(Σ̂ + γ)−1Ŝ⊤f∗ −ΠF̂f
∗
∥∥∥ ≤

∥∥∥S(Σ̂ + γ)−1Ŝ⊤(f∗ −ΠF̂f
∗)
∥∥∥+ ∥∥∥S(Σ̂ + γ)−1Ŝ⊤ΠF̂f

∗ −ΠF̂f
∗
∥∥∥ .

Once again, the last part can be worked out with techniques of Mourtada & Rosasco (2022) to get

E(Xi,Yi)[
∥∥∥S(Σ̂ + γ)−1Ŝ⊤ΠF̂f

∗ −ΠF̂f
∗
∥∥∥2] ≤ γ

(
1 +

R2

γn

)2 〈
ΠF̂f

∗,Σ(Σ + γ)−1ΠF̂f
∗〉
L2(ρX )

.

This provides the decomposition of the lemma.

Let us work out the last term in (20).

Lemma 18. For t =
∥∥∥(Σ + γ)−1/2(Σ− Σ̂)(Σ + γ)

∥∥∥
op

and M such that ∥ψ(X)∥ ≤M almost everywhere,

∥∥∥S(Σ̂ + γ)−1Ŝ⊤(I −ΠF̂ )f
∗
∥∥∥
L2(ρX )

≤ min

{
1

1− t
, 1 + t · M

2 + γ

γ

}∥∥∥Σ−1/2
γ Ŝ⊤(I −ΠF̂ )f

∗
∥∥∥ . (21)
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Proof. Let us set f = (I −ΠF̂ )f
∗ and Aγ = A+ γI for simplicity. Remark that f is orthogonal to the image of S, hence

S⊤f = 0. We decompose the last quantity with

Σ̂−1
γ Ŝ⊤f = (Σ̂−1

γ −̂Σ−1
γ )Ŝ⊤f + (Σγ)

−1Ŝ⊤f

= Σ̂−1
γ (̂Σγ − Σ̂γ)Σ

−1
γ S⊤f +Σ−1

γ Ŝ⊤f

= Σ̂−1
γ (̂Σ− Σ̂)Σ−1

γ Ŝ⊤f +Σ−1
γ Ŝ⊤f

= Σ−1/2
γ

(
Σ1/2
γ Σ̂−1

γ Σ1/2
γ Σ−1/2

γ (̂Σ− Σ̂)Σ−1/2
γ + I

)
Σ−1/2
γ Ŝ⊤f

Using the fact that S is isometric to Σ1/2 which itself if smaller than Σ
1/2
γ (with the Loewner order), we have∥∥∥S(Σ̂ + γ)−1Ŝ⊤(I −ΠF̂ )f

∗
∥∥∥
L2(ρX )

≤
(
1 +

∥∥∥Σ1/2
γ Σ̂−1

γ Σ1/2
γ

∥∥∥
op

∥∥∥Σ−1/2
γ (̂Σ− Σ̂)Σ−1/2

γ

∥∥∥
op

)∥∥∥Σ−1/2
γ Ŝ⊤f

∥∥∥
We know that ∥∥∥Σ1/2

γ Σ̂−1
γ Σ1/2

γ

∥∥∥
op

≤ γ−1(∥Σ∥op + γ) ≤ γ−1( sup
x∈supp ρX

∥ψ(x)∥2 + γ)

We also have that for A and Â self adjoint and any t > 0, the sequence of implications∥∥∥A−1/2(A− Â)A−1/2
∥∥∥
op

≤ t ⇔ −tI ⪯ A−1/2(Â−A)A−1/2 ⪯ tI

⇔ −tA ⪯ Â−A ⪯ tA

⇔ (1− t)A ⪯ Â ⪯ (1 + t)A

⇔ (1 + t)−1A−1 ⪯ Â−1 ⪯ (1− t)−1A−1

⇔ (1 + t)−1 ⪯ A1/2Â−1A1/2 ⪯ (1− t)−1.

Combining the different results leads to the lemma.

Probabilistic arguments will show that t, as well as
∥∥∥(Σ + γ−1/2Ŝ⊤(I −ΠF̂ )f

∗
∥∥∥, vanishes to zero in n−1/2. We will use

Bernstein concentration inequality.

Lemma 19 (Bernstein concentration inequalities). Let denote by A a Hilbert space and by (Zi)i∈[n] a sequence of
independent random vectors on A such that E[Zi] = 0, and such that there exists two positive constants M and σ such that
for all m > 2

1

n

∑
i∈[n]

E[∥Zi∥m] ≤ m!σ2Mm−2/2

For any t > 0,

P(
∥∥ 1
n

n∑
i=1

Zi
∥∥ ≥ t) ≤ 2 exp

(
−nt2

2σ2 + 2tM

)
.

In particular when the (Zi) are bounded by 3M , and σ2 = n−1
∑
i∈n E[Z2

i ], the condition holds. When, instead, Zi are
symmetric matrices in Rk×k and ∥·∥ is the operator norm, the same bound holds with k exp(· · · ) instead of 2 exp(· · · ) on

the right-hand side, where σ2 =
∥∥∥n−1

∑
i∈[n] E[Z2

i ]
∥∥∥.

Proof. See Corollary 1 in Pinelis & Sakhanenko (1986) for the first part, and Tropp (2015) for the matrix version.

Lemma 20. For any t > 0, the vector part in last term of the bias decomposition (20) can be controlled with

P
(∥∥∥Σ−1/2

γ Ŝ⊤(I −ΠF̂ )f
∗
∥∥∥ ≥ t

)
≤ 2 exp

(
−nt2

a(b+ 2Mγ−1/2t/3)

)
(22)
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where b = 2Tr (Σ + γ)−1Σ, M = sup ∥ψ(X)∥ and a = ∥f∗∥L∞ +M ∥f∗∥L2 . Moreover, this vector part is bounded by
γ−1a2M2. The matrix part in the last term of (20) is controlled with

P
(∥∥∥Σ−1/2

γ (Σ̂− Σ)Σ−1/2
γ

∥∥∥
op

≥ t

)
≤ k exp

(
−nt2

2M2γ−1(1 + t/3)

)
(23)

Moreover, this matrix part is bounded by γ−2M4.

Proof. Let us introduce
Zi = (I −ΠF̂ )f

∗(Xi)(Σ + γ)−1/2ψ(Xi) ∈ Rk. (24)

One can check that

1

n

∑
i∈[n]

Zi = (Σ + γ)−1/2 1

n

∑
i∈[n]

(I −ΠF̂ )f
∗(Xi)ψ(Xi) = (Σ + γ)−1/2Ŝ⊤(I −ΠF̂ )f

∗,

as well as, since imS = F̂
E[Zi] = S⊤(I −ΠF̂ )f

∗ = 0.

Moreover,
∥Zi∥ =

∥∥∥(Σ + γ)−1/2ψ(Xi)
∥∥∥ ∣∣(I −ΠF̂ )f

∗(Xi)
∣∣ ≤ γ−1/2M(∥f∗∥L∞ +M ∥f∗∥L2).

where R = supX ∥ψ(X)∥ and we have used the fact that∣∣(I −ΠF̂ )f
∗(Xi)

∣∣ ≤ |f∗(Xi)|+
∣∣ΠF̂f

∗(Xi)
∣∣ = |f∗(Xi)|+

∣∣〈SS−1ΠF̂f
∗, φ(X)

〉∣∣
≤ |f∗(Xi)|+

∥∥SS−1
∥∥
op

∥∥ΠF̂f
∗∥∥
L2 ∥φ(Xi)∥ ≤ ∥f∗∥L∞ +M ∥f∗∥L2 .

Finally, we have

E[∥Zi∥2] = E
[∥∥∥(Σ + γ)−1/2ψ(Xi)

∥∥∥2 ∣∣(I −ΠF̂ )f
∗(Xi)

∣∣2]
≤ E

[∥∥∥(Σ + γ)−1/2ψ(Xi)
∥∥∥2] (∥f∗∥L∞ +M ∥f∗∥L2)

= Tr
(
(Σ + γ)−1Σ

)
(∥f∗∥L∞ +M ∥f∗∥L2).

Using Bernstein inequality leads to the control on the vector term.

For the matrix term, let us introduce

Zi = UiU
⊤
i − E[UiU⊤

i ], Ui = (Σ + γ)−1/2φ(Xi).

We have (Σ + γ)−1/2(Σ̂− Σ)(Σ + γ)−1/2 = 1
n

∑
i∈[n] Zi, and

sup ∥Z∥ ≤ sup ∥U∥2 ≤ γ−1M2.

Finally, using the fact that ∥Ui∥2 ⪯ Ui sup ∥Ui∥, with the variational definition of the mean, with the infimum taken with
respect to the Loewner order

E[Z2
i ] = inf

a
E[(Zi − a)2] ⪯ E[(UiU⊤

i )2] ⪯ sup ∥U∥2 E[U⊤
i Ui] = sup ∥U∥2 (Σ + γ)−1Σ ⪯ sup ∥U∥2 I

Applying the matrix version of Bernstein inequality leads to the lemma.

We now turn the deviation inequalities of the last lemma into a bound on the average.

Lemma 21. Retaking the notation of the previous lemma.

E(Xi)

∥∥∥S(Σ̂ + γ)−1Ŝ⊤(I −ΠF̂ )f
∗
∥∥∥2
L2(ρX )

≤ k exp

(
−3nγ

(3 +
√
2)M2

)
(γ−4M6a2(M2 + 2γ))2

+
16ab

n
+

512a2M2

9γn2
.
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Proof. In essence, we have two random variables, X =
∥∥∥Σ−1/2

γ (Σ̂− Σ)Σ
−1/2
γ

∥∥∥2
op

, and Y =
∥∥∥Σ−1/2

γ Ŝ⊤(I −ΠF̂ )f
∗
∥∥∥2

the vector one. We proceed with computation using the fact that for X positive E[X] =
∫
t>0

P(X > t) dt and that ab > t,
implies for any s that a > 1 + s or b > t/(1 + s),

E[min

{
1

1−X
, 1 +

(M2 + γ)X

γ

}2

Y 2]

=

∫
t∈(0,sup(1+γ−1(M2+γ)X)2Y 2)

P

(
min

{
1

1−X
, 1 +

(M2 + γ)X

γ

}2

Y 2 > t

)
dt

≤
∫

inf
s
P

(
min

{
1

1−X
, 1 +

(M2 + γ)X

γ

}2

> 1 + s

)
+ P(Y 2 > t/(1 + s)) dt.

Rather than solving this in closed form, we will proceed with a much simpler bound that consists in taking s = 1 without
any optimization. It gives the much simpler formula

E[min

{
1

1−X
, 1 +

(M2 + γ)X

γ

}2

Y 2] ≤ P(
1

(1−X)2
> 2) sup(1 + γ−1(M2 + γ)X)2Y 2 + 2E[Y 2].

For Y we can use the same technique as before, using that exp(−(a+ b)−1) ≤ exp(−max(2a, 2b)−1) ≤ exp(−(2a)−1) +
exp(−(2b)−1), we get

E[Y 2] =

∫
t>0

P(Y 2 > t) dt ≤
∫
t>0

2 exp

(
− −nt
a(b+ 2Mγ−1/2t1/2/3)

)
dt

≤ 4

∫
t>0

exp

(
−−nt

2ab

)
+ exp

(
− −nt1/2

4aMγ−1/2/3)

)
dt

= 8abn−1 + 256a2M2γ−1n−2/9

We conclude the lemma with the previous one.

Let us now simplify the constant that appear in the bound derived so far.

Lemma 22 (Simplifying constants). The constant is the previous bound can be worked out as

Tr
(
Σ(Σ + γ)−1

)
≤ k, M ≤ λ−1k sup ∥φ∥ ,

〈
ΠF̂f

∗,Σ(Σ + γ)−1ΠF̂f
∗〉
L2(ρX )

≤ ∥f∗∥L2(ρX ) .

We also have
∥f∗∥L2(ρX ) ≤ ∥f∗∥L∞(ρX ) ≤ σ, ε2 ≤ σ2, σ2 = sup

x
E
[
Y 2
∣∣X = x

]
As a consequence, the constant a appearing earlier is smaller than (1 +M)σ.

Proof. The first bound is a direct application of the fact that Σ ⪯ Σ+ λ, hence Tr((Σ + γ)−1γ) ≤ Tr(I) = k. The second
bound is due to the fact that ψ = Θ̂φ, hence ∥ψ∥ ≤

∥∥∥Θ̂∥∥∥
op

∥φ∥ ≤
∥∥∥Θ̂∥∥∥

F
∥φ∥. In the meantime, if Θ̂ was regularized

λ
∥∥∥Θ̂∥∥∥2

F
≤ L̂(Θ) + λ

∥∥∥Θ̂∥∥∥2 ≤ L̂(0) = k.

For the part in f∗, we have that ∥∥∥Σ1/2(Σ + γ)−1/2ΠF̂f
∗
∥∥∥ ≤

∥∥ΠF̂f
∗∥∥ ≤ ∥f∗∥ .

Finally, the last equality is due to the fact that f∗(x) is the mean of Y conditionally to X = x,

∥f∗(X)∥ = ∥E [Y |X]∥ ≤ E
[
Y 2
∣∣X]1/2 ≤ σ.

This ends the lemma
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Lemma 23. Under Assumption 7, when γ =M2 log(n)1+δn−1, with δ > 0, there exists a N > 0 such that for any n > N ,
the excess of risk of the regularized empirical risk (19) minimizer reads

E(Xi,Yi)[R(fn)−R(f∗)] ≤ 2keε
2

n
+

8M2 log(n)1+δ

n
∥f∗∥L2(ρX )+

64ka

n
+2

∥∥I −ΠF̂ΠFf
∗∥∥2+ ∥I −ΠFf

∗∥2 (25)

where ke = Tr
(
Σ(Σ + γI)−1

)
≤ k is the effective dimension, a =

∥∥I −ΠF̂f
∗
∥∥
L∞ ≤ ∥f∗∥L∞ + M ∥f∥L2 , and

M = sup ∥ψ∥ ≤ kλ−1 sup ∥φ∥.

Proof. When γ = c log(n)1+δn−1 the excess of risk reads

E(Xi,Yi)[R(fn)−R(f∗)] ≤ keε
2

n

(
1 +

M2

c log(n)

)
+

2c log(n)1+δ

n

(
1 +

M2

c log(n)

)2

∥f∗∥L2(ρX ) +
64ka

n

+
114a2M2

9cn log(n)
+O(exp(− log(n)1+δ/2)) + 2

∥∥I −ΠF̂ΠFf
∗∥∥2 + ∥I −ΠFf

∗∥2

Taking c =M2 leads to the lemma.

B.2. Controlling (13)

An ideal control of (13) would leverage closed form solutions to both the population and empirical risk and use concentration
inequalities on integral operators, as in Cabannes et al. (2021b); Pillaud-Vivien & Bach (2023). Yet, those proof proceed
with the estimation of the smallest eigenfunctions of (Σ̂X +λ)−1/2Σ(Σ̂X +λ)−1/2, rather than the biggest of Σ−1/2(ΣX −
λ)Σ−1/2. In this proof, we will rather utilize derivations based on empirical processes concentration, together with the
following “transfer bound”.

Lemma 24 (Transfer bound). For Θ̂ ∈ Rk ⊗H, and F̂ =
{
x→ w⊤Θ̂φ(x)

∣∣∣w ∈ Rk
}

,

∑
i∈[k]

λ2i

∥∥∥(Π(µΞ)
F −Π

(µΞ)

F̂
)fi

∥∥∥2
L2(µΞ)

−
∑

k<i≤kλ

λ2i

∥∥∥Π(µΞ)

F̂
fi

∥∥∥2
L2(µΞ)

≤ L(Θ̂;λ)− L(Θ∗;λ), (26)

where Π
(τ)
F is the projection orthogonal on F in L2(τ).

Proof. For simplicity, let us remove the dependency to µΞ in the proof. Let us introduce C = SΘ̂Θ̂⊤S⊤, C is a positive
operator of rank k in L2, let us write it as C =

∑
i∈[k] µigig

⊤
i with µi ≥ 0.

L(Θ̂;λ)− k = Tr
(
(C − Tλ)

2 − T 2
λ

)
= Tr

(
C2 − 2C1/2TλC

1/2
)
.

Let us decompose Tλ = T+ − T− where T+ and T− are positive. Since Tλ ⪯ T+, −C1/2TλC
1/2 ⪰ C1/2T+C

1/2, hence

L(Θ̂;λ)− k ≥ Tr
(
C2 − 2C1/2T+C

1/2
)
=
∑
i≤k

µ2
i − 2µi

∥∥∥T 1/2
+ gi

∥∥∥2 .
Minimizing this quantity with respect to µi, leads to

L(Θ̂;λ)− L(Θ;λ) ≥
∑
i≤k

λ2i −
∑
i≤k

∥∥∥T 1/2
+ gi

∥∥∥4 .
Let us know introduce (fi) the eigenfunctions of Tλ. With U = (⟨gi, fj⟩2)ij ∈ Rk×kλ and λ = (λi) ∈ Rkλ , we have

∑
i≤k

∥∥∥T 1/2
+ gi

∥∥∥4 =
∑
i≤k

(g⊤i T+gi)
2 =

∑
i≤k

∑
j≤kλ

λj ⟨gi, fj⟩2
2

=
∑

j,m≤kλ

λjλm
∑
i≤k

⟨gi, fj⟩2 ⟨gi, fm⟩2 = λ⊤U⊤Uλ.
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Note that U is at most doubly stochastic since both (gi) and (fi) are orthonormal families, thus ∥U∥ ≤ 1, and U⊤U ⪯ I . If
one replace the fi by fi/

∥∥ΠF̂
∥∥ in the definition of U that would become Ũ = diag((

∥∥ΠF̂fi
∥∥2)i≤kλ)−1U , Ũ is still right

stochastic. Hence
U⊤U ⪯ diag(

∥∥ΠF̂fi
∥∥2
i≤kλ

)2 diag(
∥∥ΠF̂fi

∥∥2
i≤kλ

).

It follows that ∑
i≤k

∥∥∥T 1/2
+ gi

∥∥∥4 ≤ λ⊤U⊤Uλ =
∑
i≤kλ

λ2i
∥∥ΠF̂fi

∥∥2 .
This allows to simplify the lower bound as

L(Θ̂;λ)− L(Θ;λ) ≥
∑
i≤k

λ2i
(
f⊤i fi − f⊤i ΠF̂fi

)
−

∑
k<i≤kλ

λ2i f
⊤
i ΠF̂fi

=
∑
i≤k

λ2i
〈
fi, (I −ΠF̂ )fi

〉
−

∑
k<i≤kλ

λ2i
∥∥ΠF̂fi

∥∥2
=
∑
i≤k

λ2i
∥∥(ΠF −ΠF̂ )fi

∥∥2 − ∑
k<i≤kλ

λ2i
∥∥ΠF̂fi

∥∥2 .
This ends the proof of our transfer bound.

The left-hand side in Lemma 24 is to be linked with the desired control of (13). In order to deal more finely with
distribution-shift, we introduce the following generic variant of Assumptions 1 and 2.

Assumption 8 (Low expansion). Assume that for any function of the original space of functions f ∈ Ψ (4),

∥f∥L2(ρX ) ≤ ζ
(
∥f∥L2(µX )

)
,

with ζ : R → R continuous, increasing and ζ(0) = 0.

Definition 25 (Distribution ε-robustness). A close convex set of functions F will be said to be ε-robust to distribution shift
conditionally to the function f if ∥∥∥Π(ρX )

F f −Π
(µΞ)
F f

∥∥∥
L2(ρX )

≤ ε ∥f∥L2(ρX ) ,

where Π
(τ)
F is the projection orthogonal on F in L2(τ).

Assumption 9. There exists a profile σ : R2 → R increasing and bounded such that for any k ∈ N, Span {fi}i∈[k] is
σ(k)-robust to f∗.

Lemma 26 (Decomposition). Under Assumptions 8 and 9, with Fl the span of the (fi)i∈[l]

∥∥∥(I −Π
(ρX )

F̂
)Π

(ρX )
Fl

f∗
∥∥∥
L2(ρX )

≤ σ(l) + ζ

∑
i≤l

∣∣∣⟨f∗, fi⟩L2(µΞ)

∣∣∣ ∥∥∥(Π(µΞ)
Fl

−Π
(µΞ)

F̂
)fi

∥∥∥
L2(µΞ)

 . (27)

Proof. Using the fact that I −Π is a projection when Π is a projection, and that projections contract distance, we get∥∥∥(I −Π
(ρX )

F̂
)Π

(ρX )
Fl

f∗
∥∥∥
L2(ρX )

≤
∥∥∥(I −Π

(ρX )

F̂
)(Π

(ρX )
Fl

−Π
(µΞ)
Fl

)f∗
∥∥∥
L2(ρX )

+
∥∥∥(I −Π

(ρX )

F̂
)Π

(µΞ)
Fl

f∗
∥∥∥
L2(ρX )

≤
∥∥∥(Π(ρX )

Fl
−Π

(µΞ)
Fl

)f∗
∥∥∥
L2(ρX )

+
∥∥∥(I −Π

(ρX )

F̂
)Π

(µΞ)
Fl

f∗
∥∥∥
L2(ρX )

.

Under Assumption 9, the first term in the right-hand side of the previous equation is bounded by σ(l). Regarding the second
term, under Assumption 8, for f ∈ Ψ and f ′ ∈ F̂ ⊂ Ψ, we have∥∥∥(I −Π

(ρX )
Fl

)f
∥∥∥
L2(ρX )

≤ ∥f − f ′∥L2(ρX ) ≤ ζ
(
∥(f − f ′∥L2(µΞ)

)
.
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Taking the minimum on the right-hand side and using the fact that ζ is increasing leads to∥∥∥(I −Π
(ρX )
Fl

)f
∥∥∥
L2(ρX )

≤ ζ

(∥∥∥(I −Π
(µΞ)
Fl

)f
∥∥∥
L2(µΞ)

)
.

Applied to Π
(µΞ)
Fl

f∗, this leads to

∥∥∥(I −Π
(µΞ)

F̂
)Π

(ρX )
Fl

f∗
∥∥∥
L2(ρX )

≤ ζ

(∥∥∥(I −Π
(µΞ)

F̂
)Π

(µΞ)
Fl

f∗
∥∥∥
L2(µΞ)

)
.

We are done with all the quantities that relate to the distribution shift. Under Assumption 3, we have

∥∥∥(I −Π
(µΞ)

F̂
)Π

(µΞ)
Fl

f∗
∥∥∥
L2(µΞ)

=

∥∥∥∥∥∥
∑
i≤l

⟨f∗, fi⟩µΞ
(I −Π

(µΞ)

F̂
)fi

∥∥∥∥∥∥
L2(µΞ)

≤
∑
i≤l

∣∣∣⟨f∗, fi⟩µΞ

∣∣∣ ∥∥∥(I −Π
(µΞ)

F̂
)fi

∥∥∥
L2(µΞ)

.

Collecting the previous equations leads to the lemma.

To get a finer control of (13), remark that the left-hand side of (26) has some additional constraints that can help us to tighten
our bound. For simplicity, we will remove all the dependency to µΞ in the following. In essence, we want to lower bound
the λ2i and to upper bound the

∥∥(ΠF −ΠF̂ )fi
∥∥. The next lemma adds a constraint the maximal error one can make on (13)

under a constraint on L(Θ;λ).

Lemma 27. When F is of dimension k and F̂ is of dimension k′ we have∑
i≤k

∥∥(ΠF −ΠF̂ )fi
∥∥2 = k − k′ +

∑
i>k

∥∥ΠF̂fi
∥∥2 ≤ k. (28)

Proof. Let us consider two projection U and V onto the span of (ui)i∈[k] and (vi)i∈[k] with (ui)i∈N and (vi)i∈N two
orthonormal basis of the ambient space. We have, with Hilbert-Schmidt norm everywhere,

∥U(I − V )∥2 = ∥U∥2 − ∥UV ∥2 = k − ∥UV ∥2 = k −
∥∥(UV )⊤

∥∥2 = k − k′ + k′ − ∥V U∥2 = k − k′ + ∥V (I − U)∥2 .

Based on invariant of the Hilbert-Schmidt norm to adjoint, and the fact that projection are self-adjoint, we have

∥U(I − V )∥2 = ∥(I − V )U∥2 = k − k′ + ∥V (I − U)∥2 = k − k′ + ∥(I − U)V ∥2 .

Finally, we also know that since projection contracts distances ∥(I − V )U∥2 ≤ ∥U∥2 = k. The claim of the lemma consists
in writing explicitly ∥∥(I −ΠF̂ )ΠF

∥∥2 =
∥∥(ΠF −ΠF̂ )ΠF

∥∥2 =
∑
i≤k

∥∥(ΠF −ΠF̂ )fi
∥∥2

= k − k′ +
∥∥ΠF̂ (I −ΠF )

∥∥2 = k − k′ +
∑
i>k

∥∥ΠF̂fi
∥∥2 ≤ k.

This is lead to the statement of the lemma.

Given a control on (2), finding an upper bound on (13) reduces to a purely algebraic one. In order to find the worse value
that

∑
i≤k |⟨f∗, fi⟩|

∥∥∥(Π(µΞ)
F −ΠF̂ )fi

∥∥∥
L2(µΞ)

can take, let us introduce

xi =
∥∥(ΠF −ΠF̂ )fi

∥∥ , ci = |⟨f∗, fi⟩| . (29)
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The previous results lead to the following maximization problem in order to find the worse value of (13),

max
x

∑
i≤k

cixi (30)

subject to
∑
i≤k

λ2ix
2
i −

∑
k<i≤kλ

λ2ix
2
i ≤ ε (Lemma 24)

∑
i≤k

x2i = k − k′ +
∑

k<i≤kλ

x2i ≤ k (Lemma 27)

B.3. Keeping it simple and concluding after controlling (14)

Solving smartly the algebraic problem above to get the best bound on (13) requires distinguishing between many cases.
While it might be relevant to distinguish those different cases and show different convergence regimes, this subsection
proceed in a simpler way, although less tight. In particular, we can simplify the problem with respect to the (xi)ik, using
the fact that k′ ≤ k (it is minimum between the number of positive eigenvalues of T̂λ based on samples and k), it leads to
x2k+1 =

∑
i≤k x

2
k and x2k+1+j = 0, (30) becomes

max
x

∑
i≤k

cixi (30)

subject to
∑
i≤k

(λ2i − λ2k+1)x
2
i ≤ ε

In general, one could refine this formulation by introducing a probability argument that tells us how much one can expect the
error between ΠF̂ and ΠF to concentrates on the eigenspace linked to the smallest eigenvalue of T 2

λ . The problem shows
two behaviors, if the ci decrease faster than the λi than we want to charge the energy of (xi)i≤k on the smallest indices.
Otherwise, we want to charge the (xi)i≤k on the biggest indices.

To keep it simple, we will optimize L without any rank restriction first, which allow considering λkλ+1 = 0, before
thresholding the rank to get to a space of dimension k.

Lemma 28. Under Assumptions 8 and 9, with Fl the span of the first l eigenfunctions of Tλ,

∥∥∥(I −Π
(ρX )

F̂
)f∗
∥∥∥2
L2(ρX )

≤ inf
l≤k

∥∥∥(I −Π
(ρX )
Fl

)f∗
∥∥∥2
L2(ρX )

+ 4σ(l)2 + 4ζ2
(∥∥∥T̃λ−1

Π
(µΞ)
Fl

f∗
∥∥∥
L2(µΞ)

(
L(Θ̂;λ)− L(Θ;λ)

)1/2)
. (31)

where T̃λ =
∑
i∈[k](λ

2
i − λ2k+1)

1/2fif
⊤
i . Moreover, when the search for F̂ is done without rank restriction on Θ, before

thresholding to get reduce F̂ to a space of dimension k, under the strong Assumptions 1 and 2, as well as Assumption 3

∥∥∥(I −ΠF̂k
)f∗
∥∥∥2 ≤ |k − kλ| ∥f∗∥2L2(ρX ) + 2cr

∥∥T−1
λ f∗

∥∥2
L2(µΞ)

{
L(Θ̂;λ)− L(Θ∗;λ)

}
. (32)

Proof. Keeping the algebraic notation above, this comes from a simple application of Cauchy-Schwarz, for (ai) ∈ Rk

∑
i≤l

cixi =
∑
i∈[l]

ci
ai
aixi ≤

∑
i≤[l]

c2i
a2i

1/2∑
i∈[l]

a2ix
2
i

1/2

.
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When applies to the quantities in (29) and ai = λ2i − λ2k+1 and l ≤ k, the previous lemma leads to

∥∥∥(I −Π
(ρX )

F̂
)Π

(ρX )
Fl

f∗
∥∥∥
L2(ρX )

≤ σ(l) + ζ

∑
i≤l

∣∣∣⟨f∗, fi⟩L2(µΞ)

∣∣∣ ∥∥∥(Π(µΞ)
Fl

−Π
(µΞ)

F̂
)fi

∥∥∥
L2(µΞ)


≤ σ(l) + ζ

∑
i≤l

cixi

 ≤ σ(l) + ζ


∑
i≤l

c2i
a2i

1/2∑
i∈[l]

a2ix
2
i

1/2


≤ σ(l) + ζ


∑
i≤l

c2i
a2i

1/2 (
L(Θ̂;λ)− L(Θ;λ)

)1/2 .

We conclude by remarking that
∑
i≤l

c2i
a2i

=
∥∥∥T̃−1

λ ΠF(µΞ)

l

f∗
∥∥∥
L2(µΞ)

.

For the second part, set F̂k the k first eigenfunctions to the all the one retrieve with the empirical minimization of L, and
F to be the span of all the eigenfunctions linked with positive eigenvalues of Tλ. Let us rework the decomposition of the
excess of risk, we have∥∥∥(I −ΠF̂k

)f∗
∥∥∥2 =

∥∥∥ΠF̂kλ
(I −ΠF̂k

)f∗
∥∥∥2 + ∥∥∥(I −ΠF̂kλ

)(I −ΠF̂k
)f∗
∥∥∥2

=
∥∥∥(ΠF̂kλ

−ΠF̂k
)f∗
∥∥∥2 + ∥∥∥(I −ΠF̂kλ

)f∗
∥∥∥2

≤
∥∥∥(ΠF̂kλ

−ΠF̂k
)f∗
∥∥∥2 + 2

∥∥∥(I −ΠF̂kλ
)ΠFf

∗
∥∥∥2 + ∥(I −ΠF )f

∗∥2

≤ |k − kλ| ∥f∗∥2 + 2
∥∥∥(I −ΠF̂kλ

)ΠFf
∗
∥∥∥2 .

The last bound begin due to Assumption 3, as well as the lax bounding that on the operator norm of two projections. When
one could remove the k − kλ we let it as we expect the quantity to behave it this way, with a constant similar to ∥f∗∥2 /kλ
instead of ∥f∗∥2.

We can now state the master theorem.

Theorem 4. Under Assumptions 3, 7, 8 and 9, there exists a regularizer γ such that the regularized empirical risk minimizer
verifies that: for any δ > 0, there exists an Nδ > 0 such that for any n > Nδ , the excess of risk of the regularized empirical
risk (19) minimizer reads

R(f)−R(f∗) ≤ 2keε
2

n
+

8M2 log(n)1+δ

n
∥f∗∥L2(ρX ) +

64ka

n

+ inf
l≤k

∥∥∥(ΠFkλ
−Π

(ρX )
Fl

)f∗
∥∥∥2
L2(ρX )

+ 4σ(l)2 + 4ζ2
(∥∥∥T̃λ−1

Π
(µΞ)
Fl

f∗
∥∥∥
L2(µΞ)

(
Lk(Θ̂;λ)− Lk(Θ;λ)

)1/2)
. (33)

where Fl the span of l-th first eigenfunction of Tλ, kλ the number of strictly positive eigenfunctions of Tλ, ke ≤ k is the
effective dimension of ψ in L2(ρX ), a =

∥∥I −ΠF̂f
∗
∥∥
L∞ ≤ ∥f∗∥L∞ +M ∥f∥L2 , M = sup ∥ψ∥ ≤ kλ−1 sup ∥φ∥, and

T̃λ =
∑
i∈[k](λ

2
i − λ2k+1)

1/2fif
⊤
i . Moreover, under the sole Assumptions 1 and 2, we have the simpler bound

R(f)−R(f∗) ≤ 2keε
2

n
+

8M2 log(n)1+δ

n
∥f∗∥L2(ρX ) +

64ka

n
+max(k − kλ, 0) ∥f∗∥2L2(ρX )

+ 2cr
∥∥T−1

λ ΠFλ
f∗
∥∥2
L2(µΞ)

{
Lkλ(Θ̂;λ)− Lkλ(Θ∗;λ)

}
+ ∥(I −ΠFλ

)f∗∥L2(µΞ)

Where Θ̂ is understood as belonging to Rkλ ⊗ H in this last expression and Fλ the eigenspace linked with positive
eigenvalues of Tλ.
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B.4. Discussion

B.4.1. FINITE NUMBER OF POSITIVE EIGENVALUES

The following result relates the eigenvalues of Tλ with those of K. It notably proves that kλ is finite when K is trace-class,
which is one claim of Theorem 1.

Lemma 29 (Relating capacity between K and Tλ). If (µi) are the eigenvalues of K, then the number of eigenvalues of Tλ
that are bigger than t ∈ R is smaller than the cardinality of {i |µi > λ/(1− t)} . Moreover, if there exists q > 0 such that
Tr
(
K1/q

)
< +∞, then there exists a cq such that if (µi) are the eigenvalues of K, we have µi ≤ cqi

−q. As a consequence,
in this setting, for any t ∈ R, the number of eigenvalues of Tλ that is bigger than t is smaller than (cq(1− t)/λ)1/q .

Proof. Let us consider the set of eigenvectors (fi) whose eigenvalues are bigger than t. Consider the span of this space, we
want to quantify its dimension. We know that all unitary vectors in this span satisfies

t ≤ x⊤Tλx ≤ x⊤Tx− λx⊤K−1x ≤ 1− λx⊤K−1x

Hence

x⊤K−1x ≤ 1− t

λ

This means that this span does not intersect the span of φi for φi the eigenvectors of K−1 such that the eigenvalues are
bigger than λ/(1− t). In other terms, this linear space does not intersect a linear space of co-dimension d where d is the
cardinality mentioned in the lemma statement. Let us denote by U the space we are interested in and by V the space it does
not intersect beside in the origin, and by E the ambient space Since U ∩ V = {0}, the quotient (U + V )/V is isomorphic
to U , hence

dim(U) = dim

(
U + V

V

)
≤ dim

(
E

V

)
= codim(V ) = d.

This concludes the proof of the first part of the lemma.

The second claim follows from the fact that µ1/q
i are summable and decreasing, hence the sequence Sn =

∑
i≤n µ

1/q
i is a

Cauchy sequence. As a consequence, there exists N ∈ N, such that for any s > N/2, we have

sµ
1/q
2s ≤ S2s − Ss ≤ 1/2.

Hence, for all s ≥ N , we have µs ≤ s−1/q, hence µs/s−1/q is bounded. Denoting by cq the maximum, leads to the first
result. The final statement is a consequence of the fact that cqi−q > λ/(1− t) implies i < (cq(1− t)/λ)1/q .

Example 8. When considering the radial basis function kernel φ(x)⊤φ(x′) = exp(−∥x− x′∥2), Ψ is the space of
analytical functions (Sun & Zhou, 2008), which is known to be small compared to L2 spaces (Kolmogorov & Tikhomirov,
1959). As a consequence, one can think as q = +∞ in the previous lemma. More in general, when φ is bounded, K is
trace-class and one can take q = 1.

Proof. The capacity of K is relates to the capacity of K(
{
f
∣∣∣ ∥f∥L2(µΞ)

≤ 1
}
), which itself relates to the capacity of

Ψ = imK1/2. This explains why q can be taken, in essence, as arbitrarily big (Bach, 2023).

When φ is bounded, the following

Tr (K) = Tr
(
SS⊤) = Tr

(
S⊤S

)
= Tr

(
E[φ(X)φ(X)⊤]

)
= E[Tr

(
φ(X)φ(X)⊤

)
]

= E[φ(X)⊤φ(X)] = E[∥φ(X)∥2] < +∞,

proves that K is trace class.
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B.4.2. DERIVATION FOR VANISHING BIAS

In the main text, we have assumed that Tλ was the right operator to define the solution of the representation learning (which
explains Assumption 3). This might offend the purist as it would be nicer to define a principled solution that does not depend
on the choice of the architecture (yet that might be easier to approximate with some architecture than others). This suggests
studying the behavior of the last expression in Theorem 4 when λ goes to zero.

We let for future work a more precise study of the inductive bias in this vanishing setting: in essence, the choice of
architecture Ψ perturbs T by λK−1 to make it Tλ, and ideally, we would like to quantify the speed at which Tλ converges
to T when seen through the eyes of f∗ as we decrease the regularization parameter. In the kernel regime, it could be
characterized by perturbation theory (Kato, 1995), and refinement of Davis-Kahan theorem (Davis & Kahan, 1970) taking
into account Assumption 3. Moreover, when K and T commute, the interplay can be studied in a more direct fashion thanks
to Proposition 4.

C. Control of the upstream excess of risk
In order to control the excess of risk, one can use technique steaming from optimization as well as technique steaming from
classical statistical learning.

C.1. Rademacher complexity

First, let us remark that L is a quadratic function when parameterized with Λ = Θ⊤Θ ∈ H ⊗H.
Lemma 30. Let Θ ∈ Rk ⊗H, denote Λ = Θ⊤Θ ∈ H ⊗H

L(SΘ) = 2(β − 1)Eξ[
〈
Λ, φ(ξ)φ(ξ)⊤

〉
]− 2β EX Eξ,ξ′

[〈
Λ, φ(ξ′)φ(ξ)⊤

〉 ∣∣X]+ Eξ,ξ′
[〈
Λ, φ(ξ)φ(ξ′)⊤

〉2]
+ k. (34)

Moreover, the regularization reads λ ∥Θ∥2 = λTrΛ = λ ⟨Λ, I⟩.

Proof. Consider ψ = Θφ, we have

L(ψ;β) = 2(β − 1)Eξ[ψ(ξ)⊤ψ(ξ)]− 2β EX Eξ,ξ′
[
ψ(ξ)⊤ψ(ξ′)

∣∣X]+ Eξ,ξ′
[
(ψ(ξ′)⊤ψ(ξ))2

]
+ k.

= 2(β − 1)Eξ[φ(ξ)⊤Λφ(ξ)]− 2β EX Eξ,ξ′
[
φ(ξ)⊤Λφ(ξ′)

∣∣X]+ Eξ,ξ′
[
(φ(ξ′)⊤Λφ(ξ))2

]
+ k.

= 2(β − 1)Eξ[Tr
(
Λφ(ξ)φ(ξ)⊤

)
]− 2β EX Eξ,ξ′

[
Tr
(
Λφ(ξ′)φ(ξ)⊤

) ∣∣X]+ Eξ,ξ′
[
Tr
(
Λφ(ξ)φ(ξ′)⊤

)2]
+ k.

The lemma follows from the characterization of the Hilbert-Schmidt geometry with the trace, the fact that Λ is self-adjoint,
and that the regularization reads ∥Θ∥2 = TrΘ⊤Θ.

Let us recall three useful facts from the statistical learning literature.
Lemma 31. Let R(ζ) = EZ [ℓ(ζ, Z)], ζ∗ be the minimizer of L inside a domain for ζ, and ζn be the minimizer of
R(Zi)(ζ) =

1
n

∑
i∈[n] ℓ(ζ, Zi) based on exchangeable data Zi such that E(Zi)[R(Zi)] = R. The average excess of risk of

ζn is bounded by Rademacher complexity as

R(ζn)−R(ζ∗) ≤ 4E(Zi),(σi)

[
sup
ζ

1

n

n∑
i=1

σiℓ(ζ, Zi)

]
(35)

where σi are i.i.d variables taking values one and minus one with probability one half.

Proof. The proof is a classical result from learning theory (Bartlett & Mendelson, 2002), its proof consists in introducing
both the empirical risk of ζn and ζ , and bounding the difference between the empirical and population of ζ by the supremum
of this deviation over the entire domain of ζ. This is followed by the replacement of the population risk by the average
empirical one, and a symmetrization trick that introduce the variable (σi) based on exchangeability of the (Zi).

Lemma 32. For linear model, the Rademacher complexity can be bounded as

E(Zi),(σi)

[
sup

∥ζ∥≤M

1

n

n∑
i=1

σi ⟨Zi, ζ⟩

]
≤ M√

n

√
E[∥Z∥2]. (36)
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Proof. This is a classical result on Rademacher complexity of ball constraints predictors (Bartlett & Mendelson, 2002).

Lemma 33. Moreover, when h : R → R is Lipschitz, the following contraction principle holds

E[sup
f

1

n

n∑
i=1

σih(f(Zi))] ≤ sup ∥dh(x)∥E[sup
f

1

n

n∑
i=1

σif(Zi)]

Proof. This follows from contraction of space capacity by Lipschitz functions (Vitushkin, 1954), see Meir & Zhang (2003)
for a proof in the context of machine learning.

We can now state the convergence property based on Rademacher complexity.

Lemma 34. Let Θn ∈ Rk ⊗H be the minimizer of the unbiased regularized empirical version of L based on a dataset Dn.
Assume that Dn is built from n input samples (Xi) and m augmentation per samples (ξij), then the average excess of risk is
bounded by

EDn
[L(SΘn)]− L(SΘ) ≤

8κ2 sup ∥Λ∥HS√
n

(
m+ 1 + β

m
+

√
2κ2 sup ∥Λ∥HS (m2 + 1)

m2

)
, (37)

where κ is a bound on ∥φ(X)∥.

Proof. Following the previous lemmas on Rademacher complexity we have

EDn [L(SΘn);λ]− L(SΘ;λ) ≤ 8EDn,σ

sup
Λ

1− β

n

∑
i∈[n]

σi

〈
Λ,

1

m

∑
j∈[m]

φ(ξij)φ(ξij)
⊤

〉
+ 8EDn,σ

sup
Λ

β

n

∑
i∈[n]

σi

〈
Λ,

2

m

∑
j∈[m/2];j+k−1=m

φ(ξij)φ(ξik)
⊤

〉
+ 4EDn,σ

 2

n

∑
i∈[n/2];i+j−1=n

σi
1

m2

∑
k,l∈[m]

〈
Λ, φ(ξik)φ(ξjk)

⊤〉2
≤

8 sup ∥Λ∥HS√
n

(1− β)EX

[
E

[∥∥ 1

m

m∑
i=1

φ(ξi)φ(ξi)
⊤∥∥2

HS

∣∣∣∣∣X
]]1/2

+
8 sup ∥Λ∥HS√

n

β EX
E
∥∥ 2

m

m/2∑
i,j=1

φ(ξi)φ(ξj)
⊤∥∥2

HS

∣∣∣∣∣∣X
1/2


+

8 sup ∥Λ∥HS√
n

√
2 sup

∣∣〈Λ, φ(ξ)φ(ξ′)⊤〉∣∣E
∥∥ 1

m2

m∑
i,j=1

φ(ξi)φ(ξj)
⊤∥∥2

HS

1/2
 .

To work out those terms, remark that if (Zi) are i.i.d. variables,

E[

∥∥∥∥∥∥1p
∑
i∈[p]

Zi

∥∥∥∥∥∥
2

] = E[

∥∥∥∥∥∥1p
∑
i∈[p]

Zi − E[Z]

∥∥∥∥∥∥
2

] + ∥E[Z]∥2 =
1

p
E[∥Z − E[Z]∥2] + ∥E[Z]∥2 .

While one could work out each term, the lemma consists in simply bounding φ by κ, hence all the mean and standard
deviation one can obtain with expression of φ by κ.

The expression in the main text is due to the following lemma.

Lemma 35. When minimizing a regularized risk, one can reduce the search of Θ under the constraint ∥Λ∥HS ≤ λ−1k.
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Proof. When regularizing we have

∥Λ∥HS =
∥∥Θ⊤Θ

∥∥
HS

≤ ∥Θ∥op ∥Θ∥HS ≤ ∥Θ∥2HS ,

and for minimizer of the empirical or population risk

λ ∥Θ∥2 ≤ L(SΘ) + λ ∥Θ∥2 ≤ L(0) = k,

which explains the statement of the lemma.

The attentive reader would remark that compared to the bound of HaoChen et al. (2021) we gain a factor k−1/2. Indeed, this
factor could be recovered in HaoChen et al. (2021) by using the techniques of Maurer (2016) rather than a trivial bound on
Rademacher complexity of vector-valued function spaces in kmaxi∈[k] R̂(Fi) with HaoChen et al. (2021) notations.

C.2. Convex optimization

When a least-square problem benefits from additional structure, such as smoothness or strong convexity, results from
convex optimization could lead to improvement over the usual convergence rates in n−1/2. Recall basic results from convex
optimization.

Lemma 36. Let L(Θ) = EZ [ℓ(Θ, Z)] be a convex function optimized over a convex domain. Given n samples (Zi),
(unbiased) stochastic gradient descent with final averaging can achieve an excess of risk

E(Zi) L(Θ̂)− L(Θ∗) ≤
√
2MV n−1/2 (38)

with M2 = ∥Θ∗ −Θ0∥2 and V 2 = E[∥∇Θℓ(Θ, Zi)∥2]. Moreover, if L is α-smooth, then it can achieve

E(Zi) L(Θ̂)− L(Θ∗) ≤
√
2Mσn−1/2 + αM2n−1 (39)

where σ2 = E[∥∇L −∇ℓ∥2]. Finally, when L is α-strongly convex, it achieves

E(Zi) L(Θ̂)− L(Θ∗) ≤
2V 2

α(n+ 1)
. (40)

As a consequence, given n data samples, there exists an empirical estimate of Θ̂ that guarantee those generalization bounds.

Proof. This lemma is a direct consequence of Theorems 6.1, 6.2 and 6.3 of Bubeck (2015).

It should be noted that when parameterized with Λ = Θ⊤Θ, L is a quadratic form as stated by Lemma 30, yet it is minimized
over a non-convex domain, the domain of symmetric operator of rank k. We will relax this constraint and consider the
harder problem of optimizing over Λ in the set of self-adjoint positive operators. This is justified by the fact that Theorem 4
provides guarantee on the downstream task, even when one relaxes the rank constraint on Λ.

To benefit from Lemma 36, one should consider an unbiased expression of L. Consider the minibatch scheme that consist in
sampling two inputs X1, X2, and m augmentations ξij for each Xi, formally

Xi ∼ µ⊗2
X , ξij ∼ µ|⊗mXi

. (41)

Here µX denotes the marginal of µ with respect to X , which is likely to match ρX , and µ|X denotes the distribution of Ξ
conditionally to X .

Lemma 37. An unbiased formulation of L is based on ℓ defined as

∇Λℓ(SΘ;λ) =
2(β − 1)

m

∑
j∈[m]

φ(ξ1j)φ(ξ1j)
⊤ − 2β

m(m− 1)

∑
1≤j ̸=k≤m

φ(ξ1j)φ(ξ1k)
⊤

+
1

m2

2∑
i,i′=1

m∑
j,k=1

〈
Λ, φ(ξij)φ(ξi′k)

⊤〉φ(ξij)φ(ξi′k)⊤. (42)

Moreover, when L is regularized, one has to add +λI to get a gradient on the regularized risk.
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Proof. This formula follows from Lemma 30.

In order to bound the norm squared of the gradient, one can use the following lemma.

Lemma 38. For ℓ given in (42), bounds on the gradient norm and its variance are

∥∇Λℓ∥ ≤ 2κ2 + κ4 sup ∥Λ∥ , and E[∥∇Λℓ−∇L∥2] ≤ (σ2
X +m−1σ2

ξ )(1 + sup ∥Λ∥2), (43)

where σX relates to the variance of E [ψ(ξ) |X] and σξ relates to the average variance of (ξ |X).

Proof. Let us decompose ∇ℓ into three terms ∇ℓ = a+ b+ c as appearing in (42), we have

∥a∥ ≤ 2(1− β)
∥∥φ(ξ)φ(ξ)⊤∥∥ ≤ 2(1− β)κ2

∥b∥ ≤ 2β
∥∥φ(ξ)φ(ξ′)⊤∥∥2 ≤ βκ2

∥c∥ ≤
∥∥〈Λ, φ(ξ)φ(ξ′)⊤〉φ(ξ)φ(ξ′)⊤∥∥ ≤ sup ∥Λ∥κ4.

To bound the variance, one can proceed with

E ∥∇ℓ−∇L∥2 ≤ 3E ∥a− E[a]∥2 + 3E ∥b− E[b]∥2 + 3E ∥c− E[c]∥2 .

Let us begin with the part in a,

E


∥∥∥∥∥∥ 1

m

∑
i∈[m]

φ(ξ1i)φ(ξ1i)
⊤ − E[φ(ξ)φ(ξ)⊤]

∥∥∥∥∥∥
2
 = E


∥∥∥∥∥∥ 1

m

∑
i∈[m]

φ(ξ1i)φ(ξ1i)
⊤ − E[φ(ξ)φ(ξ)⊤

∣∣∣∣∣∣X = X1]

∥∥∥∥∥∥
2


+ E
[∥∥E[φ(ξ)φ(ξ)⊤ ∣∣X = X1]− E[φ(ξ)φ(ξ)⊤]

∥∥2]
=

1

m
EX Eξ

[∥∥φ(ξ)φ(ξ)⊤ − E[φ(ξ)φ(ξ)⊤
∣∣X]

∥∥2 ∣∣∣X]+ E
[∥∥E[φ(ξ)φ(ξ)⊤ ∣∣X]− E[φ(ξ)φ(ξ)⊤]

∥∥2] .
Similarly, the part in b can be expressed as

E[∥b− E[b]∥2] = 2β

(
2

m
EX Eξ

[∥∥φ(ξ)φ(ξ′)⊤ − E[φ(ξ)φ(ξ′)⊤
∣∣X]

∥∥2 ∣∣∣X])
+ 2β E

[∥∥E[φ(ξ)φ(ξ′)⊤ ∣∣X]− E[φ(ξ)φ(ξ′)⊤]
∥∥2] .

Finally,

E[∥c− E[c]∥2] = 1

m2
EX Eξ

[∥∥〈Λ, φ(ξ)φ(ξ′)⊤〉φ(ξ)φ(ξ′)⊤ − E[
〈
Λ, φ(ξ)φ(ξ′)⊤

〉
φ(ξ)φ(ξ′)⊤

∣∣X,X ′]
∥∥2 ∣∣∣X,X ′

]
+ E

[∥∥E [〈Λ, φ(ξ)φ(ξ′)⊤〉φ(ξ)φ(ξ′)⊤ ∣∣X,X ′]− E[
〈
Λ, φ(ξ)φ(ξ′)⊤

〉
φ(ξ)φ(ξ′)⊤]

∥∥2]
=

1

m2
EX Eξ

[∥∥〈Λ, φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤ − E[φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤
∣∣X,X ′]

〉∥∥2 ∣∣∣X,X ′
]

+ E
[∥∥〈Λ,E [φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤

∣∣X,X ′]− E[φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤]
〉∥∥2] .

≤ 1

m2
∥Λ∥2 EX Eξ

[∥∥φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤ − E[φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤
∣∣X,X ′]

∥∥2 ∣∣∣X,X ′
]

+ ∥Λ∥2 E
[∥∥E [φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤

∣∣X,X ′]− E[φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤]
∥∥2] .

As a consequence, we get

E ∥∇ℓ−∇L∥2 ≤ 3

(
2(1− β)

(
σ2
ξ,1

m
+ σ2

X,1

)
+ 2β

(
2σ2

ξ,2

m
+ σ2

X,2

)
+ sup ∥Λ∥2

(
σ2
ξ,3

m2
+ σ2

X,3

))
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where

σ2
ξ,1 = EX Eξ

[∥∥φ(ξ)φ(ξ)⊤ − E[φ(ξ)φ(ξ)⊤
∣∣X]

∥∥2 ∣∣∣X]
σ2
X,1 = E

[∥∥E[φ(ξ)φ(ξ)⊤ ∣∣X]− E[φ(ξ)φ(ξ)⊤]
∥∥2]

σ2
ξ,2 = EX Eξ

[∥∥φ(ξ)φ(ξ′)⊤ − E[φ(ξ)φ(ξ′)⊤
∣∣X]

∥∥2 ∣∣∣X]
σ2
X,2 = E

[∥∥E[φ(ξ)φ(ξ′)⊤ ∣∣X]− E[φ(ξ)φ(ξ′)⊤]
∥∥2]

σ2
ξ,3 = EX Eξ

[∥∥φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤ − E[φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤
∣∣X,X ′]

∥∥2 ∣∣∣X,X ′
]

σ2
X,3 = E

[∥∥E [φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤
∣∣X,X ′]− E[φ(ξ)φ(ξ′)⊤ ⊗ φ(ξ)φ(ξ′)⊤]

∥∥2] .
Using the fact that m2 ≥ m and choosing the right σX and σξ leads to the lemma.

The following lemma states the convexity properties of L
Lemma 39. As a function of Λ, the objective L is α-smooth with α = κ4, where κ is a bound on ∥φ∥. Moreover, when X is
finite, it is α′-strongly, with α′ being the square of eigen gap of K = SS⊤.

Proof. This is a consequence of Lemma 30, L is a quadratic function, with the quadratic part being

E[
〈
Λ, φ(ξ)φ(ξ′)⊤

〉2
] =

〈
Λ,E[φ(ξ′)φ(ξ′)⊤]⊗ E[φ(ξ)φ(ξ)⊤]Λ

〉
= ⟨Λ,Σ⊗ ΣΛ⟩ .

In other terms, the hessian of L is Σ⊗ Σ ∈ H⊗2 ⊗H⊗2. As a consequence, Σ⊗ Σ ⪯ ∥Σ⊗ Σ∥op I = ∥Σ∥2op I ⪯ κ4I.

Similarly, Σ⊗ Σ ⪰
∥∥Σ−1

∥∥−2

op
I = γ2ξ I, where γξ is the eigen gap of Σ, hence of K.

There are few remaining difficulties that must be addressed before concluding. First, although the identity is not Hilbert-
Schmidt, it should be noted that the term in λwill only contract distances in the stochastic gradient descent. As a consequence,
optimizing the regularized risk will only contract the descent trajectory (to prove it formally one could go back to the proofs
of Bubeck (2015)). Finally, we have described a descent in the space of self-adjoint positive operators, without incorporating
any constraints on the rank of Λ. Notice that based on Lemma 35, on can restrict the search of Λ to inside the domain
∥Λ∥ ≤ kλ/λ. Finally, if Λ minimizes the loss L, then one can show that thresholding its eigenvalues to make it of dimension
at most k can only increase the loss L by a bounded multiplicative factor. We note that without explicit regularization, the
previously described stochastic gradient descent algorithm with early stopping has a regularization effect that could be
studied in the spectral filtering framework of Lin et al. (2020).

D. Examples
This section is devoted to illustrate what T and K are under simple distributions thanks to harmonic analysis techniques.

D.1. Harmonics analysis on the sequence of bits, a.k.a. the Boolean hypercube

A fine-grained analysis of the role of classical augmentations can be derived in settings that allow précise derivations. We
shall focus on invariant data distribution such as the uniform distribution, and augmentations consisting of permutations or
perturbations of coordinates that left this distribution invariant. While such distributions may lack structure present in real
data, they allow for a precise study of the effect of certain architectures and augmentations, which may also partly apply to
more realistic data. The study involves the construction of appropriate L2 bases that ease the study of the effect of both
the kernel operator K and the smoothing operator T defined from augmentations. These are closely related to the study of
invariant kernels (see, e.g., Bietti et al., 2021; Bietti, 2022; Mei et al., 2021; Misiakiewicz & Mei, 2022).

Will focus here on the data that are n-bit inputs on the Boolean cube X = {−1,+1}d with uniform distribution. To be able
to use the harmonic analysis tools to their fullest, we assume that inputs are sampled from the uniform distribution on X . In
this setting, the space of function L2(X ) = L2(X ,R, µX ) is defined through the usual scalar product, for f, g : X → R,

⟨f, g⟩ = Ex∼τ [f(x)g(x)] =
1

2d

∑
x∈X

f(x)g(x).
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D.2. The role of augmentation

Let us know analyze the role of augmentation in the definition of T on the Boolean cube. For simplicity and ease of notation,
we assume indexing of the bits is taken mod d, e.g., x−1 = xd.

D.2.1. STUDY THROUGH PARITY FUNCTIONS

Parity functions. A useful basis in this space are the parity functions, which can be seen as Fourier functions in this
L2-space (O’Donnell, 2014). They are defined for each subset S ⊆ [d] as counting the parity of x within this set

χS(x) =
∏
i∈S

xi. (44)

Lemma 40. The parity functions χS form an orthonormal basis of L2(X ).

Proof. It is straightforwards to check that ⟨χS , χS⟩ = 1. If S ̸= S′, then w.l.o.g. there is an i ∈ S \ S′, and we have

⟨χS , χS′⟩ = Ex[xiχS\{i}(x)χS′(x)] = Exi [xi]Ex−i [χS\{i}(x)χS′(x)] = 0.

This proves orthogonality of this basis.

Let us begin with augmentations that are easily to study with the parity basis.
Proposition 41 (Random noise). Consider the flip of each bit of x with probability equal to p formally via the operation

Bpy(x) = x⊙ y, y ∼ Ber({−1,+1}, p)⊗d, (45)

where the operation x⊙ y applies pointwise multiplication and the distribution Ber({−1,+1}, p) returns the value −1 with
probability p and +1 with probability 1− p. Under the augmentations ξ = X ⊗ y, T is diagonalized in the parity basis with

TχS = |1− 2p||S| χS . (46)

In other terms, T applies a factor |1− 2p||S| to reduce the effect of higher order Fourier functions.

Proof. Recall the formula g⊤Tf = EX Eξ,ξ′ [⟨f(ξ), g(ξ′)⟩ |X]. As a consequence, with y, y′ denoting the noise strings
(each bit equal to −1 with probability p) and S △ S′ = (S ∪ S′)/(S ∩ S′),

χ⊤
S TχS′ = EX [Ey,y′ [χS(X ⊙ y)χS′(X ⊙ y′)]] = EX

Ey,y′
∏
i∈S

Xiyi
∏
j∈S′

Xjy
′
j


= EX

[
Ey

[ ∏
i∈S△S′

Xiyi

]]
Ey,y′

[ ∏
i∈S∩S′

yiy
′
i

]
= E[χS△S′(X)] · |1− 2p||S△S

′||1− 2p|2|S∩S
′| = |1− 2p||S|δS,S′ .

Therefore, in the case of bit-flip augmentations, T is diagonalized in the parity basis.

Proposition 42 (Cropping/Masking). Consider the cropping operation within a window of size w, formally defined as

[Mw
a (x)]i =

{
xi if i ∈ [a, a+ w)

Ber({−1,+1}, 0.5) otherwise
, a ∼ U ([d]) , (47)

where [a, a + w) = {a, a + 1, . . . , a + w − 1}, a is drawn from the uniform distribution over [d], and the distribution
Ber({−1,+1}, 0.5) returns a random bit with equal probability for +1 and −1 thus effectively masking the values outside
of the window in [a, a+ w). Under the augmentations ξ =Mw

a (X), T is diagonalized in the parity basis with

TχS =
max {1 + w − diam(S), 0}2

d2
· χS with diam(S) = min {v | v, a ∈ [d];S ⊆ [a, a+ v)} . (48)

In other terms, the action of cropping effectively removes any dependence on the kernel with parity functions of high order
whose support falls outside the windows of size w.
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Proof. In this setting,

χ⊤
S TχS′ = EX [Ea,b[χS(Mw

a (X))χS′(Mw
b (X))]]

=
1

d2

d∑
a,b=1

EX,ν,ν′

 ∏
i∈S∩[a,a+w)

xi
∏

i′∈S\[a,a+w)

νi′
∏

j∈S′∩[b,b+w)

xj
∏

j′∈S′\[b,b+w)

ν′j′


=

1

d2

d∑
a,b=1

1S⊆[a,a+w) 1S′⊆[b,b+w) EX [χS(X)χS′(X)] =
1

d2

d∑
a,b=1

1S⊆[a,a+w) 1S′⊆[b,b+w) δS,S′

=

(
1

d

d∑
a=1

1S⊆[a,a+w)

)2

δS,S′ .

The count of the sum relates to the diameter of S.

Proposition 43 (2D Cropping). Consider that 2D setting X = {−1,+1}m×d where inputs are organized into an m× d
grid. Consider the cropping operation to a window of size v × w, formally

[Mv×w
a,b (x)]i+jm =

{
xi+jm if i ∈ [a, a+ v), j ∈ [b, b+ w)

Ber({−1,+1}, 0.5) otherwise
, (a, b) ∼ U ([m]× [d]) . (49)

Under the augmentation ξ =Mv×w
a,b (X), T is diagonalizable in the parity basis and

TχS =
1

m2d2
(1 + v − diame1 S)

2
+ · (1 + w − diame2 S)

2
+ χS , (50)

where diame1 S is the diameter of S projected onto the first dimension.

Proof. This follows from the proof of the 1D case.

Proposition 44 (Flipping). Consider the operator which, with probability p, flip the indices into reverse order, formally

[R(x)]i = x−i. (51)

Under the augmentation ξ = R(X),
T = (1− 2p+ 2p2)I + 2p(1− p)J, (52)

where J is the involution that matches any set S to its mirror S̃ = {−i | i ∈ S}. In this setting, T is diagonalized by the√
2(χS + χS̃) and

√
2)(χS − χS̃) for S ⊆ [d].

Proof. In this setting,

χ⊤
S TχS′ = ((1− p)2 + p2)EX [χS(X)χS′(X)] + 2p(1− p)EX [χS̃(X)χS′(X)]

= (1− 2p+ 2p2)δS,S′ + 2p(1− p)δS̃,S′ ,

which explain the lemma.

Remark 45. Up to now, we have studied all the operators in the space L2(X ,R, µX) while the main text considered those
operators in L2(X ,R, µΞ), this is justified by the fact that all transformations studied earlier let invariant the uniform
distribution, hence

L2(µX ) = L2(µΞ). (53)

D.2.2. STUDY OF TRANSLATIONS THROUGH CYCLIC PARITIES

In order to study augmentations that consist of permutations, and more specifically translations, the parity basis is not
adapted to diagonalize T . Instead we define below a different basis that incorporates cyclic symmetries (Misiakiewicz &
Mei, 2022). We note that a similar study may be carried on other distributions, e.g., uniform on the sphere, product of
spheres, or torus (Bietti et al., 2021; Bietti, 2022; Favero et al., 2021; Mei et al., 2021).
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Cyclic parity functions. The functions χS are polynomials that can be grouped by their degree ℓ = |S| into spaces Vd,ℓ,
whose direct sum yields the full L2(X ) space, with

dimVd,ℓ = |{S ⊆ [d], |S| = ℓ}| =
(
d

ℓ

)
.

Those different spaces can be further decomposed into orbits under the action of a group. In particular for the group of
permutations G = Sd, we define the action A : G×X → X denoted A(a, x) = a · x as

(a · x)i = xa−1(i).

To give a concrete example of the study of augmentations through harmonic analysis, let us focus more specifically on
the action of translation, which form a sub-group of permutations. For simplicity, we will denote this group [d] which is
understood as Z/dZ, acting on X as

(a · x)i = xi−a

where i− a being understood modulo d. Define the orbits of this action as {S + a | a ∈ [d]} for S ⊆ [d]. On those different
orbits, one can define the following “cyclic parities” ψm,S : X → C:

ψm,S =
1√
kS

∑
k∈[kS ]

e2iπkm/kSχS+k =

√
kS
d

∑
k∈[d]

e
2iπkmd

kS
/d
χS+k where kS = |orb(S)| , (54)

where m ∈ [kS ] and S is taken as a representant of an orbit.

Lemma 46. The cyclic parities (ψm,S), for m ∈ [kS ] and S is a set of representers of each orbit of the translations action,
form an orthogonal basis of L2(X ,C, µ) where µ is the uniform measure on X . Moreover, they diagonalize the operators
A : L2 → L2 defined as Af(x) = f(a · x) for any a ∈ [d].

Proof. The first part follows from the fact that L2(X ) can be decomposed into the direct sum linked with the Vd,ℓ for
ℓ ∈ [0, d], that each subspace can be decomposed into the orbits of the action translation orb(S) = {S + a | a ∈ [d]} (note
that translation do not change the cardinals of the sets S). Those latter spaces can be parameterized through the discrete
Fourier transform, yielding the ψm,S .

A natural way to “find” those basis is when trying to diagonalize an operator T such that (χ⊤
S TχS′)S,S′⊆[d] that is block

diagonal, where each block corresponds to a circulant matrix on an orbit, which can be diagonalized with the discrete Fourier
transform. This is especially the case for operator of the lemma

AχS = χS+a

The above is only nonzero when [d] · S intersects [d] · S′, which implies orb(S) = orb(S′) thereby constructing a block
diagonal structure. Indexing the elements of the i-th block by Si,k = Si + k for k ∈ [d], we have

χ⊤
Si,k

AχSi,k′ = 1Si,k=Si,k′+a,= 1Si+k=Si+k′+a,= 1k−k′=a,

which only depends on the value of (k − k′). Therefore, each block above is a circulant matrix which is diagonalized by the
discrete Fourier transform. The eigenvectors of this matrix are

vm =
1√
kS

∑
k∈[kS ]

e2iπkm/kSek, where kS = |orb(S)| ,

for m ∈ [kS ] and the corresponding eigenvalues read

µm =
∑
k∈[kS ]

ckS−k exp

(
2iπkm

kS

)
,

where
ci = 1i=a,

Using the fact that we wrote those matrices for ei ≃ χS+i yields the lemma.
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The study of the operator T can be simplified thanks to its square root A : L2(µΞ) 7→ L2(µX ) formally defined by

Af(x) = Eξ [f(ξ) |X = x] (55)

and verifying
⟨f, Tg⟩L2(µΞ)

= EX Eξ,ξ′ [f(ξ)g(ξ′)|X] = ⟨Af,Ag⟩L2(µX ). (56)

This decomposition will be particularly useful, when µX is invariant under the action of permutations, which implies
µX = µΞ =: µ.
Lemma 47. In the uniform Boolean setting, when augmentations are defined as ξ = a ·X where a is a permutation sampled
from the probability distribution p ∈ ∆Sd

,

Tf(x) =
∑

a,b∈Sd

p(a)p(b)f((a−1b) · x).

Proof. The square root of T is defined as Af(x) =
∑
a∈Sd

p(a)f(a · x). Let us focus on the case where p(b) = δa=b,
using the fact that µX is the uniform measure, hence is left invariant by translation, we compute the adjoint of A with

⟨Af, g⟩L2(µX ) =
1

2d

∑
x∈X

Af(x)g(x) =
1

2d

∑
x∈X

p(a)f(a · x)g(x)

=
1

2d

∑
x∈X

p(a)f(a · x)g(a−1 · a · x) = 1

2d

∑
x∈X

p(a)f(x)g(a−1 · x)

=
〈
f, x 7→ p(a)g(a−1 · x)

〉
L2(µX )

.

=
〈
f,A⊤g

〉
L2(µΞ)

.

In the general case, we get by linearity,
A⊤f(x) =

∑
a∈Sd

p(a)f(a−1 · x).

Computing T = A⊤A leads to the result. Remark that if we further assume that p is symmetric (i.e., p(a) = p(a−1)), then
we have A⊤ = A, so that T = A2.

This allows us to characterize more finely the effect of translation on the operator T .
Proposition 48 (Translations). Consider the translation operator defined formally as

[Ta(x)]i = xi−a, a ∼ p ∈ ∆[d] (57)

Under the augmentation ξ = Ta(X), T is diagonalized in C by the cyclic parity functions (54).

Tψm,S =
d2

k2S

∣∣∣∣p̂(mdkS
)∣∣∣∣2 ψm,S , (58)

where p̂ is the Fourier transform of p, defined for ω ∈ [d] by

p̂(ω) =
∑
a∈[d]

p(a) exp

(
−2iπaω

d

)
(59)

Proof. In the case of translation, we have

Af(x) =
∑
a∈[d]

p(a)f(a · x) =
∑
a∈[d]

p(a)Aaf(x),

were Ak be the operator that associate f to x→ f(k · x), it is a translation operator and retaking the proof of Lemma 46,
Akψm,S = e−2iπkm/kSψm,S . This leads to

Aψm,S =
∑
a∈[kS ]

p(a) exp

(
−2iπam

kS

)
ψm,S =

∑
a∈[d]

d

kS
· p(a) exp

(
−2iπam

kS

)
ψm,S =

d

kS
· p̂
(
md

kS

)
ψm,S ,
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and

T = A∗A =
∑
m,S

d2

k2S

∣∣∣∣p̂(mdkS
)∣∣∣∣2 ψm,Sψ∗

m,S .

This proves the lemma.

We now show how different sampling distributions over translations induce varying smoothing effects in the operator T .

Example 9 (Smoothing effect of translations). To see the effect of augmentation strength, consider a distribution p over
translations that takes the form p(a) = ωp0(ωa), where p0 is a localized window shape (e.g., uniform or Gaussian) that
sums to 1. Here ω ≈ 1/∆ is inversely related to the window size ∆, which controls the “strength” or range of augmentations.
Then we have

|p̂(m)|2 = |p̂0(m/ω)|2 ≈ |p̂0(∆m)|2.

Here, the squared Fourier coefficients |p̂0(m)|2 typically decay with the frequency m, which shows that T has a smoothing
effect that penalizes eigenfunctions ψm,S with larger m, i.e., those which oscillate more quickly. The above formula
also highlights that the increasing the augmentation strength ∆ will lead to faster decay with m, while leaving the
translation-invariant eigenfunctions (m = 0) unaffected.

D.3. The role of architectures

A particularly useful feature space φ to define the linear class of functions Ψ is the set:

φ : X 7→ R2d ;x 7→ (eSχS(x))S⊆[d]. (60)

for any sequences (eS) ∈ R2d . Linear model of this form can be diagonalized in the parity basis, which allows one to
effectively study the interplay between the role of augmentation and the role of the architecture.

Lemma 49. For any linear model defined through the features φ in (60), the integral operator K : L2(X ) 7→ L2(X ) is
diagonalized in the parity basis,

KχS = e2SχS . (61)

Proof. This follows from the fact that Kf(x) = d−1
∑
x′∈[d] k(x, x

′)f(x′) where k(x, x′) = φ(x)⊤φ(x′).

Among those classes of functions are dot-product kernel that verifies k(x, y) := φ(x)⊤φ(y) = h̃(∥x− y∥2) = h(x⊤y).
Once again, those kernels are particularly well adapted to the Fourier geometry of the Boolean hypercube.

Lemma 50 (Spectral decomposition of dot-product kernel). Any dot-product kernel is diagonalizable in the parity basis.
Specifically, there exists (νi)i∈[0,d] ∈ Rd+1 such that, when µX is the uniform distribution on the hypercube,

KχS = ν|S|χS . (62)

Proof. One can check that x⊤y = d− 2k for k the number of bits that differs in x and y. Define Qℓ the degree-ℓ averaged
polynomials of degree ℓ as ∑

S⊆[d],|S|=ℓ

χS(x)χS(y) =

(
d

ℓ

)
Qℓ,d(⟨x, y⟩), (63)

for any Boolean strings x and y. The Qℓ,d are well defined since the left-hand side is translation invariant. Moreover,
leveraging the orthogonality of the χS , one can show that the (Qℓ,d)ℓ∈[0,d] form a basis of functions on {d− 2k | k ∈ [0, d]}.

More exactly, the m→
(
d
ℓ

)−1/2
Qℓ,d(m) are orthonormal basis of the L2 space endowed with τ the pushforwards measure

of the uniform distribution on X through the mapping x → ⟨x, y⟩ for any fixed y, and the dimensions match. As a
consequence, there exists νℓ such that

h(⟨x, y⟩) =
∑
ℓ∈[0,d]

νℓ

(
d

ℓ

)
Qℓ,d(⟨x, y⟩)
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where νℓ can be found by computing the scalar product between h and Qℓ in L2(τ).

νℓ = ⟨h,Qℓ⟩L2(τ) . (64)

Finally, using the fact that, in the uniform setting, Kf(x) = d−1
∑
x′∈[d] k(x, x

′)f(x′) where k(x, x′) = φ(x)⊤φ(x′), we
have

KχS(x) = EY [h(⟨x, Y ⟩)χS(Y )] =
∑
ℓ

νℓ
∑

S′⊂[d],|S′|=ℓ

χS′(x)E[χS′(Y )χS(Y )] = νℓχS(x).

This ends the proof of this lemma.

Lemma 49 can also be shown on the sphere. Its proof showcase the Qℓ which act as normalized Legendre (or Gegenbauer)
polynomials. See, e.g. Smola et al. (2000); Bietti et al. (2021); Mei et al. (2021) for details. Note that for common kernel
functions on the sphere, such as the ones appearing in the NTK, the νk decay polynomially with k (Bach, 2017; Bietti &
Mairal, 2019).

The features (60) are rich enough to describe the neural tangent kernels of simple architectures with fully connected or
convolutional layers. First, we describe the general form of such NTKs as below.

Proposition 51 (Linearization of simple network). Define a simple neural architecture as

f(x) =

√
∆

Nωd

∑
i∈[N ]

∑
k∈[d/∆]

aik
∑
s∈[ω]

σ
(〈
wi, x

(q)
(k∆+s)

〉)
, (65)

where x(q)(k) = (xk, xk+1, · · · , xk+q−1) is a local patch of size q (with indices being defined modulo d), wi the weights
initialized from a rotation-invariant distribution W , σ : R 7→ R is an activation function, ω ∈ N is the size of the average
pooling window, ∆ ∈ N is the pooling window, and N is the channel number. The linearization of this network near
initialization yields the kernel

k(x, x′) = φ(x)⊤φ(x′) =
∆

dω

∑
k∈[d/∆]

∑
s,s′∈[ω]

h
(〈
x
(q)
(k∆+s), y

(q)
(k∆+s′)

〉
/q
)

(66)

where
h(⟨u, v⟩ /q) = Ew∼W [σ(⟨u,w⟩ /√q)σ(⟨v, w⟩ /√q) + σ′(⟨u, v⟩ /√q)σ′(⟨u, v⟩ /√q) · ⟨u, v⟩ /q] . (67)

Proof. Such a linearization can be found, e.g., in Proposition 3 of Misiakiewicz & Mei (2022).

Proposition 52 (Linearization of a fully connected network). A one hidden layer fully connected layer

fFC(x) =
1√
N

∑
i∈[N ]

aikσ(w
⊤
i x),

can be linearized as a dot-product kernel with kFC(x, y) = h(x⊤y/d) for h defined in (67). Moreover, the resulting integral
operator KFC is diagonalized in the parity basis as

KFCχS = νh(d, |S|)χS ,

where the coefficients are given by νh(d, ℓ) = ⟨h,Qℓ⟩L2(τ) as in (64).

Note that eigenvalues νh(d, ℓ) are non-increasing with ℓ, and for fixed ℓ and large d they satisfy νh(d, ℓ) = Θd(d
−ℓ). More

generally, it can be shown that limd→∞ dkνh(d, ℓ) =
dk

dtk
h(t)

∣∣
t=0

.

Proof. The first part is a direct consequence of the prior proposition with ω = 1 and q = ∆ = d. The second part is due to
Lemma 50, and (63). For the statements on eigenvalues, see (Yang & Salman, 2019).
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Proposition 53 (Linearization of a convolutional network). A convolutional layer followed by a fully connected layer

fCNN (x) =
1√
Nd

∑
i∈[N ]

∑
k∈[d]

aikσ
(
w⊤
i x

(q)
(k)

)
,

can be linearized with the h of (67) as

kCNN (x, y) =
1

d

∑
k∈[d]

h
(〈
x
(q)
(k), y

(q)
(k)

〉
/q
)
.

In the Boolean setting, the resulting integral operator KCNN is diagonalized in both the parity and the cyclic basis as

KCNNψm,S =

{
νh(q, |S|) (q+1−diam(S))+

q ψm,S , if diam(S) ≤ q,

0 otherwise.

where νh(q, ℓ) are defined by Proposition 52.

Proof. The first part corresponds to the case ω = ∆ = 1. The second part is due to the expansion of h over the Qℓ basis,
which leads to (see Eq. (30) in Misiakiewicz & Mei (2022) for details)

kCNN (x, y) =
∑

S⊆[d],diam(S)≤q

q−1νh(q, |S|)(q + 1− diam(S))+χS(x)χS(y).

The fact that K let the {S | |S| = a,diam(S) = b} invariant, since the eigenvalues only depends on |S| and diam(S),
allows to change from the parity basis to the cyclic basis.

When pooling is included in the kernel and ω > 1 in (65), then the architecture enforces local translation invariance. As a
simple example, consider the setting of global average pooling ω = d where strict invariance to translations is enforced and
parity functions are projected onto their sum of elements of the orbit to form the eigenbasis. In this case, K is no longer
diagonalized in the parity basis, but it is diagonal in the basis of cyclic parities.

D.4. Interplay between augmentations and architecture

In the uniform Boolean setting, the interplay between augmentations and architecture is made easy by the fact that many
operators K and T commutes.

Lemma 54. The operator K associated with a dot-product kernel in the uniform Boolean setting commutes with all the
operators T that can be built from bitwise noise, cropping, translations or index flip.

Proof. In the case of a dot-product kernel in the uniform setting, the spaces Vd,ℓ are eigenspaces of K. Those spaces are
left invariant by all the T defined through usual augmentations, since translations and index-flip operations preserve the
cardinality of subsets. As a consequence, K and T can be diagonalized in the same basis, hence they commute.

As a consequence of the previous lemma, the integral operator K associated with the linear model of fully connected layer
commute with all the operators T defined for usual augmentations. It is also the case for the convolutional layer with T
deriving from random noise, cropping, or translation.6 As a consequence, the interplay between the architecture and the
augmentations can be studied easily thanks to Proposition 4.

Example 10 (Interplay between FC kernel and translation augmentations). Recall from Example 9 that when sampling
translations from a localized window, the eigenvalues of T are of the form |p̂(m)|2 and typically decay with the frequency
index m in ψm,S = 1√

kS

∑
k∈[kS ] e

2iπkm/kSχS+k for any set S with no periodicity. In contrast, the eigenvalues νh(d, |S|)
of K for eigenfunctions ψm,S decay as Θd(d−|S|), independently of m. Regularization with parameter λ thus shrinks the
eigenvalues to |p̂(m)|2 − λνh(d, |S|)−1 after pre-training. This most notably eliminates contributions from eigenfunctions
ψm,S where m is small (i.e., near-invariant) but |S| is large. See Figures 3 and 5 for an illustration.

6Since it lets invariant the orbit of translation.
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Example 11 (Interplay between kernel for CNN and translation augmentations). Consider the setting as before in Example
10 with translations sampled from a localized window. For a single layer CNN with patch width q, eigenfunctions correspond
to parity functions χS , or cyclic parities ψm,S where diam(S) ≤ q with corresponding eigenvalue νh(q, ℓ)

q+1−diam(S)
d .

Here, the eigenfunctions ψm,S of T for S with diameter larger than q are completely eliminated, regardless of the
regularization strength λ, . For eigenfunctions ψm,S where diam(S) ≤ q, the CNN shrinks the contribution to |p̂(m)|2 −
λ(νh(q, ℓ)

q+1−diam(S)
d )−1, which shrinks more when diam(S) is larger.

Regularization parameter λ

E
ig

en
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e
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S
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χ{1,2,3,4}

Figure 8. Illustration of the interplay between T and K as a function of λ where K is the NTK of a 2-layer ReLU network and T
performs crops of window size 8 on 12-bit inputs. Here we plot eigenvalues of three different parity functions in the eigenbasis of both
operators. Parity functions which large diameters have smaller eigenvalues for T (here, the parity function with largest diameter is
χ{1,6}(X) = X1X6). Eigenvalues of K, in contrast, bias towards parities supported over fewer bits. Therefore, small regularization
biases towards parities with small diameter whereas added regularization penalizes parities with high cardinality.

D.5. Remark on the Sphere setup

In experiments, we also consider a setup with uniform data on the sphere X = Sd−1, with augmentations consisting of
permutations, and a dot-product kernel φ(x)⊤φ(y) = h(x⊤y). A natural choice of basis functions for L2(X ) in this case
are spherical harmonics (Efthimiou & Frye, 2014). These consist of homogeneous harmonic polynomials, and similar to the
parity case, these can be grouped by degree, leading to orthogonal spaces Vd,ℓ of spherical harmonics of any degree ℓ ≥ 0,
with

N(d, ℓ) := dimVd,ℓ =
2ℓ+ d− 2

ℓ

(
ℓ+ d− 3

d− 2

)
.

It is well-known that for dot-product kernels, K is diagonal in such a basis (Smola et al., 2000; Bach, 2017), with decaying
eigenvalues that only depend on the degree ℓ. These are given analogously to the hypercube setting by

νh(d, ℓ) = Et∼τ [h(t)Qℓ,d(t)],

where Qℓ,d are now Legendre (Gegenbauer) polynomials of degree ℓ orthogonal w.r.t. a different measure dτ(t) =

(1− t2)
d−3
2 dt over [−1, 1].

Since the spaces Vd,ℓ are left stable by the operator T = A⊤A, it is possible to show that there exists a choice of spherical
harmonics that also diagonalizes T (see, e.g., Bietti et al., 2021, Lemma 12). We may then see the eigenvalues λℓ,j of T in
this basis as capturing the invariance of the corresponding harmonic Yℓ,j , in particular Yℓ,j is invariant to all augmentations
when λℓ,j = 1, and non-invariant or only partially invariant when λℓ,j < 1.

Ordering λk,j at fixed k by decreasing j, the interplay between T and K then resembles the one described, e.g., in Figure 3.

E. Experiments
E.1. Implementation details

Previously, we extensively studied the embedding of H in L2 defined as S : H 7→ L2; θ → φ(·)⊤θ. Given samples
(ξij)i≤n,j≤m, all the action on H can be reduced to the span of the φ(ξij) (which is known as the representer theorem), and
S can be reduced to the embedding Ŝ : H 7→ Rnm; θ → ( 1

nmφ(Xij)
⊤θ)ij . This leads to the implementation

T̂λ = β + (1− β)T̂ − λK̂.

43



The SSL Interplay

Figure 9. Extending Figure 4. The i-th row representing the i-th eigenfunctions of Tλ (ordered by decreasing eigenvalues). Regularization
λ increases over the columns as λ ∈ {0, .1, 1, 10, 100}. Small λ biases towards functions invariant to the translation augmentation chosen
here whereas large λ biases towards smoother functions on the sphere corresponding to low order spherical harmonics in this setting. The
last two on the right are artifacts of the instability of the pseudo-inverse for K (leading to the implementation φK−1φ = 0 while we have
defined φ⊤K−1φ = +∞ when Kφ = 0).
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Where, T̂ ∈ Rnm is the matrix equal to the following where we index elements in Rnm by ij with i ∈ [n] and j ∈ [m],

T̂ = I +
∑
ijk

eije
⊤
ik,

and K is the Gram matrix defined as

nm · e⊤ijKekl = k(ξij , ξkl) = φ(ξij)
⊤φ(ξkl).

Note the the matrix T̂ − I can be seen as the adjacency matrix of the graph that connects augmentations if and only if they
come from the same input. Equivalently, T̂ can be seen as a Laplacian matrix. An eigenvector of T̂λ in Rnm is projected
back onto L2 thanks to SŜ−1 = SŜ(ŜŜ⊤)−1 = K⊤

x K
−1 where

nmKx =
(
φ(x)⊤φ(ξij)

)
ij
∈ Rnm.

Figure 10. VCReg with Neural networks. Contour plots of the minimizer ψ : X → R of L for β = 1 (left) and β = 0 (right) with a two
layer fully connected neural network when k = 1, X = R2, X is distributed according to a half-moon structure and ξ = X + ε for a
small noise ε. Augmentations are represented as black dots, connected by a line when they provide from the same input X .

E.2. Experiment details for Figure 5

We consider data uniformly distributed on the sphere Sd−1 with d = 8, augmentations consisting of cyclic shifts of {−1, 0, 1},
and a dot-product kernel of the form k(x, y) = (1 + x⊤y)κ(x⊤y), with κ(u) = 1− arccos(u)/π.

The target functions f∗ℓ are given by:

f∗1 (x) =
1

3

3∑
j=1

Q1,d(xj)

f∗3 (x) =
1

d

d∑
j=1

Q3,d(xj),

where Qℓ,d are the Gegenbauer polynomials introduced in Appendix D.5. Note that f∗3 is a cyclic-invariant spherical
harmonic of degree 3, while f∗1 is a non-invariant spherical harmonic of degree 1 (though is has some local shift stability).
Labels on the downstream tasks are generated from the f∗ℓ without noise.

Figure 5 shows the downstream relative excess risk ∥f̂n − f∗ℓ ∥2L2/∥f∗ℓ ∥2L2 , approximated over 1500 test datapoints, as
a function of the regularization parameter λ used in pretraining. We use the same n = 300 samples for pretraining and
downstream linear prediction. Pretraining uses all 3 augmentations for each sample, with a representation dimension k = 20.
The downstream problem is solved with kernel ridge regression using the induced kernel from pretraining, and the ridge
parameter is tuned on test samples to avoid dealing with model selection issues.

E.3. Experiment details for Figure 6

Figure 6 considers a classification problem involving four classes with a pretraining task specifically constructed to design
a representation ψ : X → Rk for k = 4 that solves this particular classification problem. The dataset we consider is the
halfmoon dataset, where X = Z + 1⟨Z,e1⟩>0e2 + U , Z ∼ U

(
S2
)
, and U ∼ N (0, σ2I) for σ = 0.1. Augmentations apply

Gaussian noise, ξ = X + V for V ∼ N (0, σ2I) with σ = 0.1. This setting corresponds to that with a Laplacian where
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Figure 11. Behavior of Figure 5 with a neural network. The regularization parameter λ is replaced by early stopping of SGD. We consider
a neural network with two hidden layers, both made of 200 neurons. Optimization was performed with gradient descent with a constant
step-size. Randomness due to weights initialization is averaged over 100 trials, the standard deviation being shown on the Figure.

L(ψ) ≃ ∥∇ψ∥2L2(ρX ). As a consequence, the ideal ψ will correspond to the top eigenvalues of the Laplacian. I.e., the first
two span the constant functions on both moons, the next two are waves with a single oscillation on a given moon, etc. In
essence, one can view the harmonics on L2([0, 1]) as x → cos(2iπωx+ χ) for χ ∈ {0, π/2} and ω ∈ N, deforming the
segment [0, 1] to match one moon, and duplicating this basis on the other moons. In this setting, eigenfunctions are not
analytic, since analytic functions cannot be dissociated on two different manifold (e.g., a locally constant analytic function is
globally constant). As a consequence, searching for the eigenfunction with the radial basis function kernel (Ψ only contains
analytical function in this case (Sun & Zhou, 2008)) requires proper tuning of the regularization parameter as a function
of the number of samples. This explains our choice of the exponential kernel in this experiment, which corresponds to
φ(x)⊤φ(y) = exp(−∥x− y∥ /σ) and is associated with the looser Sobolev space that is still a Reproducing kernel Hilbert
space (in R2, this is H1). This improves the learning of the top eigenfunctions of T without varying λ, better illustrating the
convergence rates of Theorems 1, 2 and 3.

In our experiments, we fixed λ = 10−3 and the scale of the exponential kernel σ to be about one fifth of the problem
diameter. We plot the eigenfunctions of T derived empirically with npre = 2000 samples in Figure 13. The classification
tasks aims to learn the four classes described on the left of Figure 12. Class labels include some noise as indicated by
the level lines of the conditional probability of Y as a function of X shown in the middle of Figure 12. A training set
example is shown on the right of this figure with ndown = 100. In the experiments we fix k = 5, which ensures that there is
strong correlation in performance between the pretraining and downstream tasks. The downstream task is optimized with a
least-squares surrogate: we learn g : X → R4 that minimizes the least-square error E[∥g(X)− eY ∥2] before decoding it as
f(X) = argmaxi∈[4] gi(X) to get an estimate of the ideal mapping f∗ : X → Y . We report the downstream generalization
error on both the least-squares (surrogate) loss and the 0-1 loss on Figure 14. This error is computed as the average over 100
trials on the pretraining task and 200 trials on the downstream task.

Class regions x 7→ P(Y = 1 |X = x) x 7→ P(Y = 2 |X = x) Training set

Figure 12. Setting of Figure 6. The downstream task consists in learning four classes in X = R2 with are represented on the left. Those
classes are generated with noise. The level lines of the conditional distribution of Y given X are represented on the middle for the left
moons; the right moon follows the same structure. A training set example is on the right.
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Eigenvalue #0 of Tλ Eigenvalue #1 of Tλ Eigenvalue #2 of Tλ Eigenvalue #3 of Tλ Eigenvalue #4 of Tλ

Figure 13. Eigenvalues of Tλ estimated empirically with 2000 pretraining samples on the problem that yield the empirical rates displayed
on Figure 6.
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Figure 14. Averaged downstream error computed over 100 trials on the pretraining task and 200 trials on the downstream task, for both
the least-squares loss (right) and the 0-1 loss (left).
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