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ABSTRACT

Existing preference optimization methods are mainly designed for directly learning
from human feedback with the assumption that paired examples (preferred vs.
dis-preferred) are available. In contrast, we propose a method that can leverage
unpaired preferred or dis-preferred examples, and works even when only one type
of feedback (positive or negative) is available. This flexibility allows us to apply
it in scenarios with varying forms of feedback and models, including training
generative language models based on human feedback as well as training policies
for sequential decision-making problems, where learned (value) functions are
available. Our approach builds upon the probabilistic framework introduced in
(Dayan & Hinton, [1997), which proposes to use expectation-maximization (EM)
to directly optimize the probability of preferred outcomes (as opposed to classic
expected reward maximization). To obtain a practical algorithm, we identify and
address a key limitation in current EM-based methods: when applied to preference
optimization, they solely maximize the likelihood of preferred examples, while
neglecting dis-preferred samples. We show how one can extend EM algorithms
to explicitly incorporate dis-preferred outcomes, leading to a novel, theoretically
grounded, preference optimization algorithm that offers an intuitive and versatile
way to learn from both positive and negative feedback.

1 INTRODUCTION

The use of preference annotated data for training machine learning models has a long history going
back to early algorithms for recommender systems and market research (Guo & Sanner; [2010;
Boutilier, 2002; Bonilla et al., 2010). These days preference optimization algorithms are receiving
renewed attention since they are a natural candidate for shaping the outputs of deep learning systems,
such as large language models (Ouyang et al., 2022} Team et al.,2024) or control policies, via human
feedback (Christiano et al., [2017; [Rafailov et al., 2023} |Azar et al., |[2023)). Arguably, preference
optimization algorithms can also be a natural choice even when direct human feedback is not available
but one instead aims to optimize a machine learning model based on feedback from a hand-coded or
learned critic function (judging desirability of solutions). Here preference optimization methods are
useful since they let us optimize the model to achieve desired outcomes based on relative rankings
between outcomes alone (rather than requiring absolute labels or carefully crafted reward functions).

Among preference optimization approaches, those based on directly using preference data — as
opposed to casting preference optimization as reinforcement learning from (human) feedback — such
as DPO (Rafailov et al., [2023)), have emerged as particularly successful since they only require
access to an offline dataset of paired preference data, and are fairly robust to application domain and
hyperparameter settings. However, algorithms within this class make specific assumptions tailored to
their application domain. They were designed to optimize LLMs from human feedback in the form
of comparisons of generated sentences and thus, by design, require paired preference data (since they
directly model a specific choice of preference distribution). We are interested in finding algorithms
that are more flexible, and applicable in settings where the assumptions underlying DPO do not apply.

In this work we take a fresh look at preference optimization from a probabilistic inference perspective
that has been used with great success in the literature on KL regularized reinforcement learning (Dayan
& Hintonl [1997; Peters et al.,[2010; |Abdolmaleki et al., 2018). We find that from this perspective a
simplified approach to preference optimization can be derived that is intuitive to understand and is
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capable of leveraging an arbitrary number of unpaired preferred or dis-preferred outcomes, or even
solely one type (positive or negative) of preference feedback. In particular, our method is able to
learn even if exclusively positive or negative examples are available. Formally, our method involves
an objective consisting of three log likelihood terms that are derived from first principles: maximizing
the likelihood of preferred outcomes, minimizing the likelihood of dis-preferred outcomes, while
staying close to a reference distribution (see equation[I0). We show the effectiveness of our method
across a wide range of benchmarks including synthetic benchmarks, training policies for continuous
control, and training large language models (LLMs) from human feedback.

2 RELATED WORK

2.1 RL AS INFERENCE

Viewing reinforcement learning through the lens of probabilistic inference offers an alternative
framing of RL (Dayan & Hinton, |[1997). This “RL as inference” perspective has gained consider-
able attention recently (Levinel 2018]) inspiring various expectation-maximization (EM) based RL
algorithms (Peters et al., 2010; /Abdolmaleki et al.,|2018). Essentially, these policy improvement
algorithms can be viewed as performing EM to optimize the likelihood of a successful outcome.
However, a limitation of these algorithms is their reliance on successes (preferred outcome) data. In
this paper, we extend this framework to incorporate dis-preference information; effectively allowing
the policy to make unwanted outcomes /ess likely. We show that this alone can have an positive effect
on data efficiency and performance on certain tasks, notwithstanding the added flexibility.

2.2 PREFERENCE OPTIMIZATION

Preference optimization methods like Direct Preference Optimization (DPO; Rafailov et al.,[2023)
and Identity Preference Optimization (IPO;|Azar et al.| [2023)) have enjoyed much attention lately,
especially in the LLM training literature. This success is mostly due to a so-called direct optimization
of human preferences, in contrast to reward model training required in RL from human feedback
(RLHF) training pipelines. Nevertheless, these preference optimization methods were designed
specifically to learn from a particular type of data: pairs of preferred and dis-preferred data, usually
coming from humans indicating their preference over a pair of LLM responses to their query. This
can be restrictive in scenarios where multiple outcomes need to be considered, and DPO has since
been extended to multiple generations and compared to a novel method Efficient Exact Optimization
(EXO;Ji et al., |2024)), both shown to outperform the RLHF baseline in cases where a reward model
is available. In this paper, we leverage the RL as inference framework to generalize preference
optimization even further, allowing for more general algorithms derived from first principles. Our
approach can not only handle scenarios with multiple generations but it also naturally handles
cases where only one type of feedback is accessible (i.e. all generations are failures), which can be
particularly useful for challenging task with binary success/failure outcomes (e.g. code, math, safety
assurance).

3 USING PREFERRED AND DIS-PREFERRED OUTCOMES FOR POLICY
OPTIMIZATION

In this section we present an approach to optimising policies based on preference data and show how
it can be used to tackle a variety of problem settings in Machine Learning; e.g. policy optimisation
in a standard RL setting or learning from human preference feedback. We build upon a large body
of existing work in probabilistic inference for policy optimization. In particular we make use of
a formulation underlying many existing KL regularized RL approaches that are motivated from
the RL as inference perspective such as REPS (Peters et al., 2010), AWR (Peng et al., 2019) and
MPO (Abdolmaleki et al.,[2018)). We will show that, when applied to preference optimization, the
Expectation-Maximization (EM) approach employed by this class of algorithms results in a natural
formulation of maximizing (weighted) likelihood of preferred outcomes. Since such a formulation is
appealing due to its simplicity but cannot effectively use information about dis-preferred outcomes
(unless we make the often unrealistic assumption of having access to the full probability distribution
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over preferences) we finally derive a simple extension that enables the use of dis-preferred/disliked
data-points.

The resulting algorithm has multiple intriguing properties: it can make use of preference data
containing positive and negative outcomes but it does not require paired outcomes (i.e. it can make
use of data for which we only know whether it is either good or bad, without knowing about relative
preference with respect to other data-points) and can thus also naturally utilize unbalanced datasets
(where e.g. we have multiple preferred options for each dis-preferred example, or vice-versa). Due to
the close relationship of our algorithm to the existing MPO algorithm (Abdolmaleki et al., 2018) we
refer to it as preference based MPO (PMPO).

3.1 BACKGROUND ON MAXIMISING PREFERRED OUTCOMES

We review the preference based RL formulation common in RLHF (Ziegler et al.| 2019; Rafailov]
et al.,|2023)) and show how methods from the literature on EM based policy optimization (Rawlik
et al.,[2013; |Peters et al.,[2010; Abdolmaleki et al., 2018)) can be naturally applied to it.

In the following, = denotes the conditioning variable such as the state/observation in classical RL,
or a document and query in the LLM finetuning setting. Providing this information to a model (or
policy) produces 7 (y|x), a probability distribution over outputs y; these would be actions in classical
RL or responses/generations (sequences of tokens) in the LLM finetuning literature. We will also
make use of the definition of a KL divergence between conditional distributions which we define as

KL(p(-[x) | ¢(-[x)) = KL(p, ¢; ) = Eyp(.[a) [log p(y|x) —log q(ylz)].

Objective. Define a binary random variable .S, which takes a value of 1 in the event of a successful
outcome and 0 otherwise. To lighten notation, we will use the shorthand p(.5) and p(S’) to mean
p(S = 1) and p(S = 0), respectively, and similarly for the conditioned distributions. In words, our
goal is to optimize the parameters 6 of a parametric policy 7y (y|x) to produce outcomes y that have
a high likelihood of being preferred as measured by an unknown preference distribution p(S|y, x),
i.e. the event that y is a ‘preferred’ or ‘successful’ response to the condition x:

max B p(Sly,z) (D
0 Y~ To

Reference model. In addition to the above general formulation we assume access to a reference
model 7s that can either consist of a previous iteration of the model we would like to improve, or be
the outcome of a pre-training or supervised fine-tuning phase (as routinely employed in RLHF for
LLMs). We refer to this model as the reference policy and in general we use the terms model and
policy interchangeably.

Preference information. In order to derive a practical sample based algorithm we have to assume
some knowledge of the preference distribution p(S|y, z); we distinguish two cases in this paper.
In the first case we assume we have pointwise access function f(y, ) that is proportional to the
log-probability density function (PDF) of the preference distribution. That is, we have a Boltzmann
distribution p(S|y, x) o exp(f(y,x)/n) where ) is a temperature parameter. For cases where we can
query a reward function 7 or a state-action value-function QP_-] f can be set to be r or @, respectively.
In this case we only need samples (z, y) for optimization without explicit success/failure labels. In
the second case we assume we only have access to a dataset of labelled examples:

D {x@, ) Su,j)}N’M"

irj=1
where y(*7) ~ ¢ (-|2(?)) and the s(*/) are binary preference labels, usually obtained from human

feedback. In other words, in this second case we only have samples from the real preference
distribution P(S|y, x) as opposed to a Boltzmann model for it.

Policy optimization. Let us drop the superscripts (¢) for now and only consider the objective on a
per-condition basis, ultimately we average over the batch. Then for every conditioning z = x(*), the
problem is finding a policy that achieves the highest marginal probability of preferred outcomes. This

'Defined as Q(y, z) = E[>, v'r(ys, 2¢)|zo = 2, yo = y] for a timeseries of observation/action pairs.
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amounts to optimizing
7 (ylz)p(Sly, z)
q(y|x)

J(m5q,x)

where we have used a standard formulation from the probabilistic inference literature (Kingma &
Welling, [2013)) to decompose the objective into an evidence lower bound 7 (7; ¢, ) and a KL term
by introducing an auxiliary variational distribution ¢ that we will use as a ’vehicle’ to perform stable
optimization via expectation maximization (Dayan & Hinton,|1997). The goal of EM is to iteratively
find a tight lower bound given the current estimate 7.¢ by optimizing for ¢ (E-Step) and improve the
lower bound J by optimizing for m (M-Step). More concretely, in the E-step, we fix m = ¢ and find
the ¢ which minimizes the KL; this tightens the bound. In the M-step, we fix ¢ = ¢ and maximize
the lower bound 7 (g; 4, z) to update my. This process of tightening the bound and improving the
policy constitutes one iteration of policy improvement over 7.

logps (Slz) = B |log |+ KL(a(wle) | p= (y1S. ).

2)

E-step: Tighten the lower bound by fixing 7 = s and minimize KL(q(:|z) || pr.(:]S, x)).
Following prior work (Dayan & Hintonl [1997; Peters et al.,2010; /Abdolmaleki et al., [2018)), since
the KL is minimized when both distributions are equal, the solution can be expressed in closed form
as §(y|z) = pr.(y|S, x). Then, according to Bayes rule:

1
P (Y15, ) = 7wref(y|x)p(5|y,x), (3)

where we used the normalization factor Z, = [ met(y|z)p(S|y, z) dy. Recall that p(S|y, z) is still a
modelling choice discussed in the Preference information section.

M-Step: Optimize the lower bound J fixing ¢ = ¢ from the previous step. Since this problem does
not have an analytic solution we use a parametric function approximator 7y, usually a large neural
network, and maximize the following objective via gradient ascent:

) 7o (ylz)p(Sly, x)
gx)=E |1 = E |l
J (7034, ) yIEq og Zlmﬂ'ref(y|$)p(sy,l")i| yIEq { ogwe(y\m)} + K 4
Ty = B [P0 jgmgla], )
Y~ Trref Zm

where K represents all constant terms that are independent of € and are dropped from the final
objective. Notice that this objective amounts to a weighted maximum likelihood with preferences
determining the weights and samples coming from 7¢. Notice also that the final expression subsumes
the closed form E-step solution such that we can safely consider only this objective and introduce
the short-hand 7 (7s; ), dropping the implicit dependence on the E-step solution. In practice, to
optimize this objective we need to form a Monte-Carlo approximation of the expectation in Eq. ().
We distinguish the two cases mentioned in the Preference information section.

In the first case, we assume access to a function f that is proportional to the preference log-probability,
and access to M responses y7) for each . We can then set p(S|y, z) ~ w) o exp(f(y9),z)/n)
in Eq. (B) (a softmax of f across the responses y) to x). This is the case commonly studied in the
literature, e.g., in MPO where one uses f = Q(y\%), z).

It is often unrealistic to assume access to a reliable model of preference labels. For example,
preferences often come from human annotations and we thus only have access to samples or we
might only have access to a learned and unreliable preference model"| To cover this case, let us
partition our dataset of labeled examples D = D, U D, where D, = {y) 3 (s) = 1)},_1.3s and
D, = {yV) 3 (sU) = 0)};=1.n, denote accepted (preferred) samples and rejected (dis-preferred)
samples, respectively. In this case we can still use the objective from Eq. (5), using the binary
preferences s\/) as weights:

J(mg;x) = Ja(mg;2) = E [s(j) logﬂ'g(y(j)|x)] = E logm;(y(i)|x), (6)

y() ~D y()~D,

which effectively filters rejected generations D, out, thus reverting back to the maximum likelihood
objective on preferred data.

2A case studied in the offline RL literature where the authors realised that using binary weights often works
better as in binary CRR (Wang et al.} 2020).
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3.2 USING DIS-PREFERRED OUTCOMES VIA REGULARISED MINIMUM LIKELIHOOD

We will now derive a simple way to incorporate negative (dis-preferred) samples into the optimization
to address the shortcomings of naively applying the EM-based perspective from the previous section.
We would like to incorporate these examples without changing the overall objective since it has
well established policy improvement guarantees (Rawlik et al., [2013 |Abdolmaleki et al., 2018)). To
accomplish this we take a second look at the non-parametric variational distribution ¢ from Eq. (3)
that is the solution to our E-step; since it determines the sampling distribution used for the M-step.

We can realise that the restriction to positive/preferred samples stems from the fact that we express
g directly in terms of the preference distribution p(S|y, ). A natural question then is: can we
re-express ¢ in terms of dis-preferences? It turns out the answer to this is positive. Recall that S’
denotes the complement of the event S i.e. the event that y is not a successful action/response to a
conditioning x. Then by definition, p(S|y, z) = 1 — p(S’|y, ) we can equivalently write

R 1
Q(ylz) = = mer(ylz)(1 = p('ly, 2)). )
x
We can plug this form of § into the evidence lower bound expressed in Eq. @). After rearranging
terms and re-writing in terms of two expectations over 7 this gives the alternative form:

J(me;2) = E

Y Tref

Sy, 1
[— w log 7r9(y|sc)} A KL(er, g5 ) + K, (8)

where K again denotes terms independent of 7y. This version of the objective now is expressed in
terms of the dis-preference distribution and we can use it to define a Monte-Carlo estimate based on
dis-preferred examples as (where the additional constant 1 results in KL regularization):

J (mg; ) = T (me; ) = o [ —log mo(yP|x)] — BKL(mer, mp; ), 9
where ( is an additional tuning parameter that is typically set high enough to only remove the
dis-preferred outcomes from the prior 7. As before, our use of samples s (labelled data) filters
out part of the dataset; in this case, it is the accepted responses which are filtered out, hence the
expectation over D,.. We refer to the appendix for a full derivation. This is a fairly intuitive objective
to optimize. It tells us to minimize the likelihood of dis-preferred examples while staying close to
the reference model. Interestingly, compared to the preferred data case, it has an additional KL
term that appears as a result of the reparameterization of the variational distribution. We will see
in the experiments that this term is required when learning from negative data to avoid arbitrary
solutions where probability is assigned to random out-of-data responses. Intuitively, we can think of
the objective as modifying the reference distribution such that the negative examples are removed.
Interestingly such an additional KL for the M-step has previously been considered in the literature
even for the case where we have access to the preference distribution but must perform optimization
based on a limited set of sampled responses; as in MPO (Abdolmaleki et al., 2018). However,
previous work used the additional KL term to prevent rapid entropy loss. In contrast, our motivation
for incorporating the KL term is to learn from negative samples, as suggested by the derivations.

3.3 LEARNING FROM PREFERRED AND DIS-PREFERRED OUTCOMES

Finally, we can form a combined objective from our two M-step estimates — which both optimize the
same quantity but can utilize different samples. That is, we combine Eq. (6) and Eq. (9):

Jar(mo; ) = OéyN]ED [log 7o (y|z)] *(1*a)y~]ED [log mo(y|x)] — B KL (e, mo5 ), | (10)

r

Learning From Accepted Samples Learning From Rejected Samples

where « is a trade-off parameter between the two estimates. Recall that in practice, this objective
will be aggregated over an entire dataset of conditions x and corresponding datasets D, and D,.
There are a few interesting things to note about this objective. First, we emphasize that our objective
assumes categorization of samples into good/bad or preferred/dis-preferred datasets. As a result, it
can be used even when only positive or only negative samples are available (this is in contrast to
e.g. DPO (Rafailov et al., 2023)) or IPO (Azar et al., 2023) which require relative scores of paired
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Figure 1: Performance of PMPO and DPO on Benchmark Functions - This figure illustrates the
optimization progress of PMPO variants (PMPO-AR, PMPO-A, PMPO-R) on a selection of standard
benchmark functions, showcasing their ability to leverage different types of preference feedback.

positive and negative examples for each query x). Furthermore, the objective has also no restriction
on the number of positive / negative samples per query x and thus it automatically extends to the
multi-sample case for fine-tuning language models. Finally, the objective is intuitive and simple to
implement; it amounts simply to maximizing likelihood of good data while minimizing likelihood
of bad data and staying close to the reference model. The KL term is implemented in closed form
whenever possible. For example, for the autoregressive models used in LLMs, we use the sum of
per-token closed-form KL divergences of categorical distributions. This enable us to learn only from
a negative feedback without access to positive feedback as suggested by our derivations. See the
details in appendix D for KL computation.

4 EXTRACTING PREFERENCES FROM EVALUATION FUNCTIONS

Our algorithm requires access to preference information, which can come directly from human
feedback or be extracted from an evaluation function. This section describes the latter. We consider
improving policies within a traditional reinforcement learning (RL) setting; bandit optimization and
optimization of language models via RLHF. In each setting our preference-based update rule can
be used in the policy improvement step. For this we need to extract preference information from a
(possibly learned) evaluation function. This can be achieved in the following way:

Generate Samples: For a given input or state x, sample one or multiple generations y from the
current reference policy 7yef.

Evaluate Actions: Calculate the evaluation function f(x,y) (e.g. a reward model in RLHF) for each
input-generations pair (x, y).

Classify Actions: If f(z,y) > b(x), classify the generation y as preferred in state z. Otherwise
(f(z,y) < b(x)), classify it as dis-preferred.

5 EXPERIMENTS

We evaluate our algorithm in a variety of different settings, showcasing its utility as a general
preference optimization algorithm that can deal with many different forms of preference feedback.
We first test it in a Bandit setting (optimizing synthetic benchmark functions) then in a setting where
we transform RL on control and robotics tasks into preference optimization. And finally we showcase
strong performance for RLHF of large language models. To verify our derivations, we evaluate three
different variants of the PMPO algorithm: learning only from accepted samples (o« = 1), learning
only from rejected samples (a = 0), and learning from both accepted and rejected samples (o = 0.5).
We also use MPO (Abdolmaleki et al.l 2018)) and DPO (Rafailov et al.| 2023)) as baselines. For all
the experiments, we will use a beta value of 0.5 for learning from accept&reject, 0.0 for learning
from accept only, and 2.0 for learning from reject only, unless stated otherwise. Furthermore, in all
experiments except experiment 5.3, the reference policy for all baselines is updated every N steps
to allow for multiple policy improvement steps and demonstrate that our algorithm can effectively
optimize the underlying reward function until convergence. For experiment 5.3, we only have access
to samples from the reference policy; therefore, we can make only one improvement step, which
means the reference policy is effectively fixed. Please note that experiment 5.3 is designed to have
access to only positive or negative feedback for each state.
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Figure 2: Comparison of PMPO/DPO/MPO for high-dimensional control tasks from the DeepMind
Control Suite. We plot average reward over time of training (using 100 episodes for each evaluation).

5.1 BANDIT RL: STANDARD FUNCTIONS

First, we evaluate our algorithm on a suite of well-known synthetic benchmark functions, including
the Rosenbrock, Sphere and Schwefel functions (Hansen et al., |2003)); all of which have an optimum
value of zero. Each function optimization problem is framed as a preference optimization problem
analogous to multi-armed bandit optimization (Auer et al.,2002); i.e. there is no state conditioning .
At each iteration, the policy proposes 4 samples within the function’s domain and observes evaluations
(function values) as feedback. The reference distribution used for sampling actions is a time lagged
version of the policy being optimized (updated every 100 optimization steps). Subsequently, the
algorithm utilizes the two top samples as preferred samples and the other two samples as dis-preferred
samples. Figure [T]illustrates the performance of our PMPO algorithm under different feedback
settings (PMPO-AR: uses all 4 samples and thus accepted and rejected samples, PMPO-A: uses
only the accepted samples, PMPO-R: uses only the rejected samples). The results show that all
three variants of our algorithm can successfully learn and optimize the objective functions. This
demonstrates that we can effectively leverage diverse sources of preference information. It may
seem surprising that even just using negative samples is enough to drive optimization towards the
optimum but together with the KL constraint towards the slowly changing reference it can be effective.
DPO, which uses the best and worst action samples among the 4 sample archives, exhibits similar
performance to PMPO-AR.

5.2 FULL ONLINE RL: CONTROL SUITE

We evaluate our algorithm on a range of control tasks from the DeepMind Control Suite (Tunyasu
vunakool et al.| 2020). See appendix for details. We cast the setting of optimizing a policy for the
control suite as a preference optimization problem by leveraging a learned action-value function (a
Q-function)-represented by a separate network trained alongside the policy—to infer preferences for
each observed state and action. This is analogous to the actor-critic setting in classical reinforcement
learning. Similar to the bandit case, at each iteration, the reference policy proposes four actions
for each state in the batch. The top two actions with the highest Q-values are considered preferred
samples, while the two actions with the lowest Q-values are treated as dis-preferred samples. We
consider two different cases, one where the output of the neural network are mean and standard
deviation of a Gaussian control policy and one where the actions are discretized into bins (and the
network outputs categorical logits over these bins).

Figure 2] demonstrates that, as in the bandit case, our algorithm can effectively learn from different
types of available signals (accept/reject, accept-only, reject-only) to solve high-dimensional tasks,
such as controlling humanoid agents to run, stand, and walk, as well as manipulating objects. In all of
them PMPO matches or outperforms the strong MPO baseline. Notably, even with only reject signals
(PMPO-R), the algorithm is capable of achieving good performance. As predicted by the theory, not
using a KL can quickly lead to collapse when using only dis-preferred samples. We also compare
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Figure 3: Impact of the KL weight *beta’ on the performance of PMPO. When learning solely from
dispreferences across various Control Suite tasks (Reject, « = 0), a sufficiently high beta value
is required for effective learning. However, when learning from preferences only (Accept) PMPO
is robustness to the KL weight "beta’ across different Control Suite tasks, confirming theoretical
insights. When both both accept and reject signals are used (Accept & Reject), PMPO shows a partial
sensitivity to KL Weight *beta’. While learning is possible with a wider range of beta values, a beta
higher than 0.5 is generally needed for optimal performance.

to an implementation of DPO (Rafailov et al.,[2023)) which uses the best and worst action sample
among the 4 samples. This still results in a strong algorithm that works well when using a discretized
action representation. However, in the continuous Gaussian case, DPO requires a very high implicit
regularization parameter (8 = 20) which results in slow learning and suboptimal policies. For the
sake of fair comparison with DPO that uses the worst and best generation, we also show results for
PMPO when only the best is labeled as preferred and the worst is labeled as dispreferred, which is
still competitive with DPO.

We further ablate the impact of the KL term on learning solely from dispreferences (o = 0), solely
from preferences (o = 1), and from both (o« = 0.5). For each of these settings, we sweep over the 3
parameter in the range (0.0, 0.5,1.0,1.5,2.0). As depicted in Figure when learning exclusively
from dispreferences (PMPO-R), the performance is highly sensitive to 8. To achieve effective
learning, we need to set 3 sufficiently high (> 1.0), which aligns with our theoretical derivations.
In contrast, Figure [3]shows that the algorithm is insensitive to the setting of 3 when learning only
from preferred samples (PMPO-A), again confirming our theoretical insights. When learning from
both types of signals (PMPO-AR), as shown in Figure[3] we observe a partial sensitivity to the KL
weight 5. While the algorithm can learn with a wider range of beta values, a (3 larger than 0.5 is still
necessary to ensure optimal performance across all tasks.

5.3 OFFLINE RL USING ADVANTAGE FUNCTION

In a final set of experiment on control domains we want to show that our algorithm can also be
applied to a setting where we have only access to one sample with either a reject or an accept
label per state conditioning x. We consider the RGB Stacking benchmark 2021), a
pick-and-place manipulation task with image observations (see appendix for details). We investigate
the effect of positive and negative feedback in the context of offline RL to exclude cascading effects
from exploration. To this end we take a dataset of 140k episodes from a multi-task RL experiment
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trained to convergence (Lampe et al., [2024)). We then train a value function on all data and use it
to label the transitions in the first 40k episodes as accept (positive advantage) or reject (negative
advantage). Different combinations of acceptance, rejection, and BC losses are then compared in
order to understand their respective effects. In summary we use: i) the full 140k episodes to train a
value function and label the first 40k episodes as accept or reject ; ii) the first 40k episodes to compute
the positive weighted part of the loss if labeled as accept and to compute the negatively weighted part
of the loss if labeled as reject. The KL part of the loss is calculated on all 140k episodes. Note that
the value function is only used to transform the reward annotations into accept and reject labels.

Table [Tl shows the achieved reward for different loss combinations. First we run BC on the full 140k
episodes and we can observe that the performance is mediocre due to the data containing a significant
amount of bad episodes. Using only the accepted transitions for BC training does not result in better
performance; this is due to the limited number of positive examples contained in the first 40k episodes.
When combining both BC and using the positive (accept) part of the loss, performance does not
significantly improve as the large number of negative episodes is not compensated for. On the other
hand, combining BC with the negative (reject) part of the loss does significantly improve performance.
This is due to the rejection loss successfully pushing the policy away from the negative examples
(while keeping close on all other data due to the KL constraint). Finally, best performance is achieved
when combining all three losses; and thus effectively utilizing all data. While in this example we
have constructed the dataset in a way that the effect is strong, and this might be less the case in more
natural settings, it nevertheless shows that using a negative signal can have a significant effect on
performance by masking the effect of bad data.

| BC | Accept+BC | Accept | Reject+BC | Accept+Reject+BC
Reward | 24 | 26 |27 77 \ 93

Table 1: Comparing different mixtures of acceptance, rejection and BC losses. We measure average
reward (over 100 evaluation episodes) across stacking of all 5 triplets. Training with BC is corrupted
by bad examples. Training on only accepted examples lacks data. Only when integrating the rejection
loss bad data can be masked and performance goes up. Best performance is achieved when combining
acceptance, rejection and BC loss signals.

5.4 LANGUAGE ALIGNMENT EXPERIMENTS

We apply different versions of the PMPO algorithm to the task of aligning large language models.
Specifically, we fine-tune a Gemma 2B pre-trained model using a trained reward model (Gemma
Team et al.| |2024) using prompts from the LMSYS-chat-1M dataset (Zheng et al}2023). The reward
model has been trained on human preference data with a Bradley-Terry modelisation as explained
in (Christiano et al.,[2017)). In these experiments, we perform one epoch of training, processing a
dataset of 500k prompts in approximatively 4000 learner steps, meaning that each batch is composed
of 128 prompts and 4 generations per prompt. Similar to the typical RLHF setting, at each iteration,
for each prompt in a batch, we sample four generations from the model and rank them based on their
reward values. The top two generations are labeled as preferred, and the bottom two as dis-preferred.
For the sake of fair comparison with DPO that uses the top one (best) and bottom one (worst)
generation, we also show results for PMPO when only the top one is labeled as preferred and the
bottom one is labeled as dispreferred. Note that this particular choice could be refined further and
tailored to the task. First, Fig. @] showcases the best PMPO setting, leveraging both accept and reject
signals (PMPO-AR) (and we compare to use either feedback signal in isolation). Notably, utilizing
both types of feedback leads to faster learning compared to using either signal in isolation (PMPO-A
or PMPO-R) and overall our approach is competitive to DPO, which is applicable in this setting
by using only the best and worst sample respectively per prompt but would be more restrictive in
general (i.e. it cannot naturally make use of unbalanced preference data). As shown on the right,
when performing a side by side comparison using GPT-4 (OpenAl et al., [2024)) to judge whether
our model is preferred over the base Gemma model (using a set of held-out test prompts) the PMPO
fine-tuned model wins over the base model. Note in Fig. @] right, we see some drop indicating some
exploitation of the imperfect reward model; known as reward hacking (Skalse et al.||2022). We can
see that PMPO-AR is the quickest to "hack the reward"(see Fig.[]left), it reaches a good performance
but then in the middle of training its start hacking the reward and learns a pathological behaviour
that makes it performs worse on the independent benchmark. This phenomenon has been observed
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consistently in RLHF. Overall, our language alignment experiments provide strong evidence for the
effectiveness and versatility of PMPO. Finally, we illustrate in Figure 5] that, again, our algorithm
demonstrates the ability to learn effectively from various preference signals, including scenarios with
only accept (PMPO-A), only reject (PMPO-R), or both accept/reject (PMPO-AR) feedback. These
results highlight the versatility of our approach to different preference acquisition settings. The results
also underline the critical role of the KL term in enabling learning exclusively from dis-preferred
generations (PMPO-R). As predicted by our derivation, a sufficiently high value 8 > (1 — «) is
necessary to stabilize learning in this scenario. In contrast, when learning solely from preferred
samples (PMPO-A), the algorithm is insensitive to the value of 3 in terms of stability.

Win Rate vs Initial Checkpoint

Mean Reward

—— DPO (Accept{Best] & Reject[Worst])
—— PMPO (Accept & Reject) [@beta=0.5]

—— PMPO (Accept{Best] & Reject[Worst]) [@beta=0.5]
—— PMPO (Accept) [@beta=0] —— Win Rate for PMPO (Reject)

—— PMPO (Reject) [@beta=2] Win Rate for PMPO (Accept&Reject)
—— Win Rate for PMPO (Accept)

0.0 05 10 15 2.0 25 3.0 35 4.0 0 500 1000 1500 2000 2500 3000 3500 4000
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Figure 4: Left: Impact of Combining Accept and Reject Signals - The plot demonstrates the learning
progress of PMPO-AR (using both accept and reject signals) compared to PMPO-A and PMPO-R,
showcasing faster learning when leveraging both types of feedback in language alignment task and
is competitive with DPO. Right: Win-rate when doing A/B comparisons on held-out prompts for
PMPO against the base Gemma checkpoint as judged by GPT-4.
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Figure 5: Rewards obtained by the policy at each training step, averaged over the batch and smoothed.
Each curve corresponds to a configuration of g specified in the legend. This figure illustrates the
ability of PMPO to learn effectively from various preference signals (accept-only, reject-only, or both)
in language alignment tasks. highlighting its adaptability to different preference acquisition settings.

6 CONCLUSION

We propose a novel algorithm for policy optimization from preference feedback derived from the
perspective of RL as probabilistic inference. Our policy improvement algorithm has a clear and
intuitive objective: it maximizes the likelihood of preferred data while minimizing the likelihood
of dis-preferred data. We show that doing the latter in a stable way requires a regularization term
forcing the policy to stay close to a reference model. This regularization term follows naturally
from the derivation. The main advantage of our algorithm over existing preference optimization
algorithms such as DPO is that it does not rely on defining/fitting an explicit model of the preferences
and can thus use data containing partial preference information; i.e. we can use data where instead
of comparisons between samples we only have accept (or only reject) labels and make no further
assumptions on their distribution. In a large number of settings, ranging from classical continuous
control to modern LLM finetuning tasks, we show that our method is effective at training policies
from such binary preference feedback, without requiring a balanced dataset of positive and negative
examples.
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