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Abstract

The machine learning community has focused
on computational efficiency, often leveraging
reduced-precision formats such as those below
the standard FP32. In contrast, little attention has
been given to higher-precision formats, such as
FP64, despite their critical role in scientific do-
mains like materials science, where even small
numerical differences can lead to significant inac-
curacies in physicochemical properties. This need
for high precision extends to the emerging field
of machine learning for scientific tasks, yet it has
not been thoroughly investigated. According to
several studies and our toy experiment, models
trained with FP32 exhibit insufficient accuracy
compared to FP64, indicating that higher preci-
sion is also crucial in scientific machine learn-
ing, as it is in traditional scientific computing.
Despite the potential of scientific machine learn-
ing, this precision issue often limits its adoption
as replacements for traditional scientific comput-
ing in practical research. This position paper not
only highlights these precision-related issues but
also recommends reporting comparisons between
FP32 and FP64 results while encouraging the re-
lease of FP64 models. We believe these efforts
can enable machine learning to contribute mean-
ingfully to the natural sciences, ensuring both
scientific reliability and practical applicability.

1. Introduction
The rapid advancements in natural language processing
(NLP) and computer vision (CV) in the machine learning
(ML) field have accelerated the broad application across var-
ious domains (Litjens et al., 2017; Ozbayoglu et al., 2020;
Ren et al., 2021; Lai et al., 2024; Raghu & Schmidt, 2020).
Specifically, ML for scientific tasks–which has begun to re-
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solve intellectually demanding problems in scientific fields–
has been highlighted across disciplines, opening new possi-
bilities for scientific breakthroughs. In recognition of these
breakthroughs, the 2024 Nobel Prize in Chemistry honored
the contributions of scientific ML, highlighting innovations
such as AlphaFold and RoseTTAFold (Jumper et al., 2021;
Baek et al., 2021; The Royal Swedish Academy of Sciences,
2024). These models transformed research by rapidly de-
livering results that once required significant resources and
time-consuming experiments or simulations. Building on
these successes, scientific ML not only addresses traditional
labor-intensive workflows but also finds hidden patterns
within complex data, thereby providing human researchers
with direct insights into novel discoveries across natural
sciences (Webb et al., 2018; Morgan & Jacobs, 2020; Kara-
giorgi et al., 2022; Yoo et al., 2024).

In the context of methodology, the development of scientific
ML naturally follows the broader trends and paradigms
of the ML research field. In the early stages of NLP
and CV, most work focused on discriminative tasks (e.g.,
named entity recognition and image classification) (Walker
et al., 2006; Deng et al., 2009) before gradually shifting
to generative tasks (e.g., machine translation and text-to-
image generation) (Bojar et al., 2014; Schuhmann et al.,
2022). Further, generative approaches themselves have ad-
vanced sequentially, moving from variational autoencoders
(VAEs) to generative adversarial networks (GANs), and
more recently, to diffusion models (Kingma & Welling,
2014; Goodfellow et al., 2014; Ho et al., 2020; Song &
Ermon, 2019). In a similar manner, numerous scientific do-
mains have rapidly adopted the latest advances from the ML
community. For example, among various areas of bioinfor-
matics, research on DNA sequence data initially leveraged
discriminative models such as DeepVariant (Poplin et al.,
2018) and DeepSEA (Zhou & Troyanskaya, 2015), and
over time, this expanded to generative models including
ExpressionGAN (Zrimec et al., 2022) and Evo (Nguyen
et al., 2024). Similarly, material structure prediction in
the field of materials and drug discovery has followed this
trend from VAEs (Sanchez-Lengeling & Aspuru-Guzik,
2018; Gómez-Bombarelli et al., 2018; Lim et al., 2018)
and GANs (Prykhodko et al., 2019; Kim et al., 2020; Ab-
basi et al., 2022) to diffusion models (Hoogeboom et al.,
2022; Peng et al., 2023; Zeni et al., 2025).
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In parallel with these advances, the most recent paradigm
in ML research, often referred to as the scaling law, fo-
cuses on improving performance by progressively increas-
ing the size of models, training datasets, and computational
resources (Kaplan et al., 2020; Snell et al., 2024). Building
upon this idea of continuously expanding scale, researchers
have successfully validated the approach across diverse
fields, including NLP, CV, reinforcement learning, and time-
series forecasting (Zhai et al., 2022; Cherti et al., 2023;
Hilton et al., 2023; Neumann & Gros, 2023; Shi et al., 2024).
Accordingly, the scientific ML domain will also adopt this
paradigm, and in fact, large models designed to address
scientific tasks have already begun to emerge (Nguyen et al.,
2024; Zhang et al., 2024).

As these models grow larger and more complex, they in-
evitably require massive computational power, which results
in a significant challenge for both training and inference.
To address this, the lower numerical precision, or quanti-
zation is a widely employed strategy, which helps reduce
the computational expense (Zhu et al., 2024; Micikevicius
et al., 2018). These approaches inevitably involve a trade-
off between accuracy and computational budgets, resulting
in an unwanted loss of accuracy. To minimize such losses,
techniques such as mixed precision training (Micikevicius
et al., 2018) or more advanced quantization methods (Ban-
ner et al., 2019; Dettmers et al., 2022; Liu et al., 2023; Xu
et al., 2024) have been proposed, which allow researchers
to conserve the original accuracy while achieving the ad-
vantages of reduced computational costs. Consequently, the
ML community has accepted slight accuracy degradation as
a natural trade-off for greater efficiency, thereby integrating
these lower-precision techniques into real-world applica-
tions to balance computing cost and performance.

However, the tolerance for lower-precision techniques is
highly problematic in the field of scientific computing.
Scientific computing primarily aims to solve fundamental
physics equations that are difficult to solve manually by
simplifying or discretizing the inherently continuous and
infinite real-world phenomena to make them computation-
ally tractable. As a consequence, even tiny differences in
numerical precision can lead to significant issues regarding
the reliability of computational results. Specifically, our
experimental results show that single precision’s sensitiv-
ity to numerical deviations can substantially influence the
accuracy of fundamental physical equations. As a result of
this high sensitivity, small precision differences can cause
significant changes in physicochemical properties, such as
absorption coefficient, defect energies, or reaction pathway
predictions, thereby reducing the reliability of results, es-
pecially when accurate predictions are crucial for critical
decisions. One critical aspect is that these challenges related
to numerical precision are not confined to traditional com-
putational science, as ML models are increasingly being

utilized in various studies to replace prevalent simulations.
In other words, traditional computational science requires
high precision, making it essential to verify whether FP32
produces valid results before using ML models, as numeri-
cal precision is key to maintaining reliability.

In this position paper, we argue for the significant role of
numerical precision in scientific ML research, emphasiz-
ing the need for evaluating and analyzing its impact on
results derived from varying precision levels. To this end,
we first present real-world examples from previous computa-
tional simulations where numerical precision had a notable
impact on their results. By introducing cases that reflect
real-world scenarios from actual research fields, we aim to
demonstrate the practical existence of numerical precision
issues in scientific simulations. Subsequently, we explain
that the importance of numerical precision is not confined
to traditional scientific computing alone but is also deeply
related to ML applications in scientific domains. Specifi-
cally, we provide examples involving ML potential models
and physics-informed neural networks (PINNs), which are
actively studied in both ML and science domains, demon-
strating the critical role of numerical precision in these ar-
eas (Raissi et al., 2019; Kocer et al., 2022; Käser et al., 2023).
Furthermore, we address the growing use of large language
models (LLMs) in scientific ML and their implications for
precision-related challenges.

In conclusion, we propose actionable recommendations for
the ML community and potential research directions based
on our earlier discussions. We then present alternative view-
points, offer responses, and conclude. Since the main role
of ML in scientific research is to deepen understanding
in traditional domains, the issues we raise must be rigor-
ously examined. When relatively simple actions by ML
researchers can remove barriers that hinder natural scien-
tists from applying ML models, these measures become
essential, not optional. As scientific machine learning is still
in its early stages, we hope that thorough debate will help
minimize trial-and-error in future research.

2. Importance of numerical precision in
scientific computing

In scientific computing, the main goal is solving com-
plex physics equations through computational power, es-
pecially when manual solutions are impractical or nonex-
istent. Many-body problems including multiple object in-
teractions demonstrate the necessity of high-performance
computing solutions. Various computational methods have
emerged to solve fundamental physics equations: molec-
ular dynamics for Newton’s Second Law, density func-
tional theory (DFT) (Jones & Gunnarsson, 1989) for the
Schrödinger equation, and the finite-difference time-domain
(FDTD) (Yee, 1966) method for Maxwell’s equations.
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Modern digital computers use discrete bit-based represen-
tations, creating an inherent challenge. The floating-point
system limits direct solutions to physical equations that oper-
ate in continuous systems, including F = ma, Schrödinger
equation, and Maxwell’s equations. Researchers have de-
veloped workarounds using approximated equations (e.g.
the Kohn-Sham equation (Kohn & Sham, 1965)) or dis-
cretization methods with specific time units and grid sys-
tems (e.g. molecular dynamics). These solutions require
high numerical precision to accurately represent physical
phenomena, typically settling on double precision as a bal-
ance between computational cost and accuracy. For instance,
Quantum ESPRESSO (Giannozzi et al., 2009), a leading
open-source DFT implementation, strictly enforces double
precision throughout its code.

To demonstrate the precision’s crucial role in scientific com-
puting, we present examples showing how small numerical
variations can significantly impact computational results, an-
alyzing these effects in realistic research scenarios. Specifi-
cally, we illustrate the influence on realistic research scenar-
ios, thereby analyzing the implications and identifying the
precise numerical accuracy-related challenges.

2.1. Impact on density functional theory simulation

Quantum mechanics, beginning with Planck’s quantum hy-
pothesis (Planck, 1900), revolutionized our understanding
of microscopic phenomena. While exact calculations are
only possible for simple systems like the hydrogen atom,
the Kohn-Sham equation introduced density functional the-
ory (DFT) as an efficient approach for many-body electron
problems. Using Python-based Simulations of Chemistry
Framework (PySCF), we performed geometry optimiza-
tion calculations for water (H2O) using both Hartree-Fock
(HF) and DFT calculations with B3LYP functional and 6-
311++G(d,p) basis set (Andersson & Uvdal, 2005; Tirado-
Rives & Jorgensen, 2008; Yanai et al., 2004).

Figure 1 shows the results of geometry-optimized water
molecules obtained from HF and DFT calculations under
different numerical precision conditions: FP32 and FP64.
When utilizing FP64, both HF and DFT calculations suc-
cessfully converged within three optimization steps with
satisfying the convergence criteria. Since DFT explicitly
accounts for electron correlation effects (Becke, 1988), it is
generally expected to provide more accurate results than HF,
a trend that is also reflected in our findings. Comparing bond
lengths, the reference (Bowen & Sutton, 1958) O-H bond
length is 0.957 Å, while HF exhibits a deviation of 0.016 Å
(1.7 % error), and DFT yields a smaller deviation of 0.005
Å (0.5 % error). Similarly, for the bond angle, HF deviates
by 1.7 °(0.7 % error) from the reference value of 104.52
°, whereas DFT shows a smaller deviation of 0.55 °(0.5 %
error). However, when using FP32, significant numerical

DFT (B3LYP)HF

FP64

FP32

106.22°

115.15°

105.07°

0.421Å

0.962Å
0.941Å

0.421Å

Figure 1. Water molecule geometry optimizations comparing
FP64 (top) and FP32 (bottom) using HF (left) and DFT (right)
methods. FP64 yields physically valid structures while FP32 pro-
duces unrealistic geometries.

Table 1. Atomic coordinates and total energy comparison of
geometry-optimized H2O at FP32 and FP64 precision using 6-
311++G(d,p) basis set. (*) FP32 failed to converge in both HF and
DFT methods, while FP64 showed consistent results.

HF
6-311++G(d,p)

DFT (B3LYP)
6-311++G(d,p)

FP32 FP64 FP32 FP64

A
to

m
ic

co
or

di
na

te
s

(Å
) Ox -0.000356* 0.000000 0.009524* 0.000000

Oy 0.246311* 0.014028 0.578655* 0.000780
Oz 0.000000* 0.000000 0.000000* 0.000000

H1x 0.453099* 0.752792 0.026584* 0.763642
H1y 0.534244* 0.578999 0.998814* 0.585902
H1z 0.000000* 0.000000 0.000000* 0.000000
H2x -0.453725* -0.752792 -0.024889* -0.763642
H2y 0.534404* 0.578999 0.998054* 0.585902
H2z 0.000000* 0.000000 0.000000* 0.000000

Total energy
(Ha) -74.938* -76.053 N/A* -76.458

*Not Converged

instabilities arise, preventing the convergence of optimiza-
tion steps. In the case of HF calculations, the gradient of
hydrogen atoms stagnates between 0.2–0.4 Ha/Bohr, which
is significantly above the desired convergence threshold of
10−6 Ha/Bohr. For DFT calculations, the issue becomes
even more pronounced, as the gradient values rapidly di-
verge beyond 105 Ha/Bohr, resulting in termination before
reaching the maximum step. As a result, when using FP32,
the HF calculation exhibits a substantial 50 % error, while
the DFT calculation produces a molecular structure impos-
sible to exist in reality, as illustrated in Figure 1.

A detailed examination of the atomic coordinates in Table 1
further highlights the differences. While the coordinates
obtained from FP64 differ only by approximately 0.01 Å
for oxygen and hydrogen atoms, FP32 results display con-
siderable deviation. Notably, the FP32-calculated atomic
positions deviate by up to 0.4 Å from those obtained using
FP64, a significant difference considering that the O-H bond
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Figure 2. Transmittance spectra comparison between FP32 (top)
and FP64 (bottom) in Kerr media, showing FP32’s failure to ac-
curately model higher harmonics and low-power wave patterns
below 10−10 W/m2.

length itself is only 0.957 Å. In addition, the total energy
difference between FP32 and FP64 calculations is approxi-
mately 1.1 Hartree (equivalent to 29.93 eV), which exceeds
the formation energy of water (2.9 eV) by more than an
order of magnitude. This clearly indicates that the FP32
result corresponds to a structure that is impossible to exist in
reality. These results demonstrate that FP32 lacks the numer-
ical precision necessary to achieve sufficient convergence
tolerance in scientific computations. The failure of a sim-
ple molecular system such as water to reach an optimized
structure under FP32 precision indicates its fundamental
limitations in scientific calculations.

2.2. Impact on finite difference time domain simulation

Electromagnetism, established by Maxwell’s equa-
tions (Maxwell, 2010; 1865), provides the theoretical
foundation for understanding electromagnetic waves.
However, solving Maxwell’s equations for complex
phenomena is computationally challenging. To address this,
FDTD discretizes Maxwell’s equations in time and space.
Using Meep (Oskooi et al., 2010), which an open-source
FDTD software, we investigated numerical precision effects
on electromagnetic simulations, comparing FP32 and
FP64 in nonlinear Kerr media simulations. We simulated
a Kerr medium (refractive index=1.65) excited by an
electromagnetic wave source (λ=1.55 µm, ∆λ=0.15 µm).

Figure 2 presents the transmission spectrum of the nonlin-
ear Kerr medium under FP32 and FP64 precision settings.
From left to right, the spectral peaks correspond to the
fundamental generation induced by the source, the second

Figure 3. Computed second harmonic susceptibility shown in
FP64 (red) and FP32 lines (blue dashed) compared to theoreti-
cal quadratic behavior (black). FP64 maintains accuracy to 10−8

m/V, while FP32 deviates above 10−6 m/V, rendering it unsuitable
for typical nonlinear materials.

harmonic generation (SHG), and the third harmonic genera-
tion (THG). While the fundamental peak exhibits minimal
differences between FP32 and FP64, notable discrepancies
arise in the SHG and THG regions. Specifically, FP32 cal-
culations display pronounced background signal instability
and intensity variations in harmonic generation, which re-
sult from imprecise numerical computation. A particularly
notable difference appears in the behavior of the background
signal. In FP64 calculations, the background follows a well-
defined periodic pattern governed by the electromagnetic
wave, whereas in FP32, the background signal appears as un-
structured Gaussian-like noise. This phenomenon indicates
that the lack of numerical precision in FP32 significantly dis-
rupts the accurate computation of low-intensity transmitted
power, particularly for electromagnetic waves in the range
of 10−11 W/m2. These findings highlight the fundamental
limitations of single precision (FP32) in reliably capturing
weak electromagnetic signals and nonlinear optical effects.

To further analyze the impact of numerical precision, we
examined the relationship between second-order nonlinear
susceptibility (χ2) and the transmittance-to-incident power
ratio. As shown in Figure 3, the black upward-sloping line
represents a quadratic line, serving as a reference line in-
dicating the expected computational trend of transmittance
over incident power ratio as nonlinear susceptibility varies.
Ideally, the computationally simulated values should align
with this reference trend, maintaining the same slope. Com-
paring the results obtained from FP64 (red solid line) and
FP32 (blue dashed line), we observe that as nonlinear sus-
ceptibility decreases beyond a certain threshold, the ratio
begins to saturate. This saturation point effectively defines
the lower bound of computational precision achievable un-
der each numerical setting.
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Specifically, for values of χ2 above 10`6, both FP64 and
FP32 provide reliable computational precision. However,
for values below this threshold, FP32 results begin to ex-
hibit saturation, rendering further calculations meaningless
due to the loss of numerical resolution. In contrast, FP64
maintains simulation accuracy down to approximately 10−8,
demonstrating a computational precision that is at least two
orders of magnitude higher than that of FP32. This result
implies that for most nonlinear materials with χ2 values be-
low 10−6, transmittance spectrum simulations using FP32
become inherently unreliable. These findings highlight the
critical role of numerical precision in computational science,
particularly in fields where small numerical deviations can
lead to substantial errors. As demonstrated in both DFT and
FDTD simulations, the limitations of single precision intro-
duce significant inaccuracies, especially in cases involving
highly sensitive physical properties. This also highlights the
necessity of carefully selecting numerical precision levels
when conducting computational simulations–particularly in
scientific ML applications–where maintaining the reliability
of results is essential.

3. Numerical precision issue in scientific ML
As demonstrated in the previous section, numerical pre-
cision can significantly affect the outcomes of traditional
scientific simulations and potentially influence the results
of scientific research. This naturally leads to an important
question: Do ML models designed for scientific tasks also
suffer from similar precision-related issues? To inves-
tigate this question, we survey various studies that apply
ML to scientific research, searching for cases where the
precision issue has been reported. We also conduct simple
toy experiments to further assess the impact of numerical
precision in ML-based scientific tasks. Through these anal-
yses, we seek to determine whether the precision issue is a
significant challenge or just a theoretical concern.

3.1. Impact on machine learning potential

The first example we present is an ML potential1 (Kocer
et al., 2022; Käser et al., 2023), which is closely related
to Section 2.1. Fundamentally, ML potential models aim
to compute potential energy and the associated forces for
a given material structure, offering a much faster alterna-
tive to traditional quantum mechanical calculations. Due to
their wide range of applications, ML potentials have been
extensively studied not only in physics, materials science,
chemistry, and biology but also within the ML commu-
nity (Behler & Parrinello, 2007; Pukrittayakamee et al.,
2009; Smith et al., 2017; Gilmer et al., 2017; Schütt et al.,
2017). In addition, closely related topics, such as property

1In other domains, the term machine learning interatomic po-
tential (MLIP) is also used.

prediction and generation for material or drug discovery
have also been actively explored, making ML potentials a
familiar subject for ML researchers. In this position paper,
we specifically focus on ML potentials based on neural net-
works, i.e., neural network potentials. Since ML research
often treats energy and force values in the same manner as
other material properties, our discussion extends naturally
to broader property prediction tasks.

A key challenge in ML potential studies lies in effectively
representing and processing atomic information in three-
dimensional space while ensuring rotational and transla-
tional equivariance or invariance. To tackle this, the field
has evolved from vanilla graph neural networks (Scarselli
et al., 2009) and transformers (Vaswani et al., 2017) to
more specialized architectures that satisfy these constraints,
achieving higher prediction accuracy (Schütt et al., 2017;
Gasteiger et al., 2021; Satorras et al., 2021; Batzner et al.,
2022; Batatia et al., 2022; Fuchs et al., 2020; Thölke &
Fabritiis, 2022; Liao & Smidt, 2023). As a result, many
recent models are now integrated into widely used libraries
or simulation software, such as the Atomic Simulation En-
vironment (ASE) (Bahn & Jacobsen, 2002; Larsen et al.,
2017) and LAMMPS (Plimpton, 1995; Thompson et al.,
2022). This demonstrates that ML potential models are
increasingly employed in practical research; thus, any nu-
merical precision issues arising in these models could have
significant implications for scientific discoveries.

Consequently, we aimed to investigate whether existing
ML potential models suffer from precision issues. To this
end, we surveyed the pretrained checkpoints of various ML
potential models available in the ASE library to determine
whether they support FP64 precision. Interestingly, among
several models in ASE, only MACE (Batatia et al., 2022)
provides pretrained checkpoints trained in FP64, while other
models appear not to have considered FP64 training. Even
before detailed analysis, this observation suggests that the
ML potential community may not be fully aware of the
potential significance of numerical precision.

To preliminarily understand the effect of precision, we con-
ducted a toy experiment using MACE, the only model that
provides FP64-trained parameters. We selected an ethanol
molecule as a manageable small organic system containing
multiple atom types (C, H, O), then moved one of its carbon
atoms (specifically the one closest to oxygen) along a certain
path (shown in the top of Figure 4) and observed changes
in the potential energy and forces. We compared the results
obtained in FP32 with those in FP64 by applying built-in
type conversion in the MACE code to the FP64-trained
checkpoint. The upper plot in Figure 4 illustrates the over-
all trends in energy and force, while the lower plot shows
the direct differences between FP32 and FP64. Our results
show that the differences remain within approximately 1
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Figure 4. MACE model calculations showing energy (red) and
force (blue) changes during carbon atom displacement in ethanol.
FP32 versus FP64 precision reveals minimal deviations (1 meV
energy, 0.02 meV/Å force), though broader testing needed.

meV for energy and 0.02 meV/Å for force, which is often
considered acceptable in small-molecule simulations.

However, this experiment was deliberately simplistic, and
the results should not be overinterpreted as evidence that
FP32 models are generally reliable. Larger or more complex
systems, such as polymers or proteins, could exhibit more
substantial numerical errors. Additionally, the FP32 model
tested here was originally trained in FP64 and then converted
to FP32 for inference; a model trained entirely in FP32 from
the outset might behave differently. In fact, Batatia et al.
(2025) report that NequIP (Batzner et al., 2022) exhibits
different numerical sensitivity when trained in FP32 versus
FP64, and Maxson et al. (2024) also discuss similar issues.
These observations highlight the importance of carefully
assessing numerical precision in ML potential models and
the need for systematic benchmarks regarding precision.

3.2. Impact on physics-informed neural network

Beyond the fundamental equations mentioned in the previ-
ous section, various subfields of natural science describe
natural phenomena using differential equations. For ex-
ample, in fluid dynamics, including weather prediction,
Navier-Stokes, continuity, and heat transfer equations are
commonly used (Tritton, 2012; Bauer et al., 2015). More-
over, differential equations such as the Black-Scholes equa-
tion (Black & Scholes, 1973) are also employed in fields be-
yond natural sciences, such as financial engineering. Many
of these equations either lack general analytical solutions

or are too complex to be solved manually. As a result, nu-
merical methods have been developed over time, leading to
techniques such as the Euler method, Runge-Kutta methods,
and Picard method (Butcher, 2016; Strauss, 2007). These
techniques have also influenced modern approaches in ML,
including diffusion models, NeuralODEs, and deep equilib-
rium models (Ho et al., 2020; Song & Ermon, 2019; Chen
et al., 2018; Bai et al., 2019).

The concept of the PINNs (Raissi et al., 2019) leverages
automatic differentiation (autograd), fundamental to back-
propagation, to solve differential equations using neural
networks. Due to its simple yet powerful approach, PINNs
have been widely adopted in scientific domains that rely on
numerical methods. This section explores whether numer-
ical precision issues also arise in PINNs and investigates
related challenges through a literature survey.

First, Nakamura et al. (2022) explicitly discussed the impact
of numerical precision in scientific research, reporting that
training PINNs with FP32 failed, whereas FP64 did not:
from a comprehensive standpoint, FP32 computation has
a risk of failure for the present problem compared with
FP64. This work applies PINNs to a specific fluid dynamics
problem involving surface tension modeling, which requires
up to fourth-order derivatives, making it a specialized case of
differential equations. Although this is a specific scenario, it
is a real-world scientific study, demonstrating that precision
issues can significantly impact the practical use of PINNs.

Meanwhile, Sharma & Shankar (2022) were well aware
of precision issues and leveraged this understanding to im-
prove the methodology of PINNs. The key idea of their work
is to replace certain autograd operations in PINNs with a
specialized FD method, reducing the computational cost
associated with autograd. Here, to compensate for the loss
of accuracy introduced by finite difference approximations,
the authors proposed using high-precision (FP64) training.
As a result, the reduction in computational cost from by-
passing autograd exceeds the overhead introduced by FP64
operations, leading to an overall speedup that makes their
approach faster than a vanilla PINN in FP32. Beyond the
fields of PINNs and scientific ML, this study introduces
a novel perspective on utilizing high-precision models in
neural network research.

Thus, in the context of PINNs, a comprehensive study is
needed to systematically assess the impact of numerical pre-
cision issues on scientific research. Fortunately, many fields
share similar types of differential equations, e.g., Laplace
equation in electrostatics and fluid dynamics, where it de-
scribes electric potential distribution and velocity potential
in inviscid flow, respectively. By focusing on the precision
challenges of commonly used differential equations and
rigorously validating PINNs in this context, such research
could have a substantial impact across multiple domains.
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3.3. Challenges for large language models

The emergence of LLMs in scientific applications is acceler-
ating, further raising concerns about numerical precision in
such domains. To investigate these concerns, we examine
both existing studies and empirical evidence that highlight
precision-related challenges in LLM applications. The inte-
gration of LLMs in scientific domains follows two distinct
approaches. The first involves direct inference without archi-
tectural modifications, where scientific data is transformed
into natural language format for existing LLM architec-
tures (Rubungo et al., 2024; Jacobs et al., 2024; Liu et al.,
2024). The second approach develops specialized architec-
tures that combine domain-specific encoders with fine-tuned
language models, preserving the intrinsic properties of sci-
entific data while leveraging LLM capabilities (Li et al.,
2024; Park et al., 2024).

Regarding the first approach, unlike conventional scientific
models, LLMs generate outputs based on tokens, which may
compromise prediction accuracy. Numerous studies have
demonstrated that LLMs struggle with symbolic tasks (Wei
et al., 2022; Yao et al., 2023), similar to their difficulties in
numerical predictions. For instance, these models often fail
to accurately count the occurrences of specific characters
within words (e.g., counting the letter ‘r’ in ‘strawberry’) or
comparing the size of decimal numbers (e.g., determining
whether 3.9 is larger than 3.112). This limitation stems from
their fundamental architecture, where words are processed
as sequences of tokens rather than as individual alphabetic
characters or numbers. Although various studies (Wei et al.,
2022; Kojima et al., 2022; Yao et al., 2023; Besta et al.,
2024) have been proposed to address these challenges, sym-
bolic manipulation remains a significant obstacle for LLMs.
Consequently, their application in scientific tasks requires
careful consideration and validation.

Another critical consideration in LLM deployment is the
continuous increase in model size. For instance, the open-
source Llama series demonstrates this trend clearly: LLaMA
(65B parameters) grew to Llama-2 (70B) and further to
Llama-3.1 (405B) (Touvron et al., 2023a;b; Llama Team,
2024), and more recently, DeepSeek-v3 has pushed this ex-
pansion even further, reaching 671B (DeepSeek-AI, 2024).
Such explosive growth in model sizes across LLMs has
resulted in a substantial increase in computational costs
for both training and inference. To mitigate the bud-
get, researchers commonly employ parameter quantization
techniques by reducing model precision to lower-bit for-
mats (Liu et al., 2021; Dettmers et al., 2022; Liu et al., 2023),
sometimes even 1-bit representations (Xu et al., 2024).

2In January 2025, GPT-4o incorrectly answers that 3.11 is
larger than 3.9, due to tokenization: 3.9 as [‘3’, ‘.’, ‘9’] and 3.11
as [‘3’, ‘.’, ‘11’], leading to a direct comparison of 9 and 11.

However, these approaches directly contradict the high pre-
cision requirements of scientific computing, which we have
emphasized throughout this discussion. This issue is particu-
larly critical for the second approach, where domain-specific
encoders—often derived from scientific ML models—serve
as feature extractors. If quantization significantly reduces
the precision of the extracted features, the LLM may fail
to process them accurately, potentially degrading overall
model performance. For example, Li et al. (2024) employed
UniMol (Zhou et al., 2023), a model broadly categorized as
an ML potential, as an encoder. Even if the encoder provides
highly precise features, the LLM’s lower precision repre-
sentations may obscure this information, ultimately leading
to inaccurate final predictions. This inherent trade-off be-
tween computational efficiency and numerical precision
highlights the importance of carefully designing LLM in-
tegration strategies in scientific applications to ensure both
accuracy and practicality.

4. Suggestions for Advancing Scientific ML
Building on previous discussions, we outline key directions
for the ML community to advance scientific tasks.

Exploring high-precision models and mixed high-
precision training Most ML research has primarily ex-
plored lower-precision formats such as FP16, BF16, and
INT8, whereas comparisons between FP32 and FP64 remain
relatively limited. We argue that researchers should explore
the potential benefits of double precision beyond the com-
monly used FP16 and FP32. Inspired by mixed-precision
training, we propose extending this idea to high-precision
training. Similar to conventional mixed-precision training,
which employs lower precision for the majority of layers
while preserving higher precision for numerically sensitive
operations (e.g., batch normalization and softmax), we pro-
pose identifying sensitive layers and selectively training
them in FP64. This direction is especially relevant from an
energy efficiency perspective, as FP64 training inherently
consumes more energy than FP32. While scientific ML is
often considered advantageous over traditional scientific
computing in terms of runtime, its energy consumption re-
mains a critical concern. Investigating novel model architec-
tures and training techniques that preserve high numerical
precision while enhancing energy efficiency will be crucial
for the widespread adoption of scientific ML.

Benchmarking and reporting FP32 vs. FP64 results
Scientific ML typically demands higher numerical precision
than general ML applications to ensure computational re-
liability. While predictive accuracy is the primary focus,
other factors such as training and inference time remain
significant , as well as energy efficiency. Consequently,
researchers should explicitly report the numerical preci-
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sion used in their studies, compare FP32- and FP64-trained
models where applicable, and publicly release FP64-trained
models to enhance reproducibility and facilitate further ad-
vancements. To support meaningful evaluations, standard-
ized benchmarks that capture precision sensitivity across di-
verse scientific tasks are essential. Such benchmarks would
provide a consistent framework for quantifying trade-offs
between numerical precision, computational efficiency, and
reproducibility in scientific ML research.

Collaboration with natural scientists Achieving mean-
ingful progress in scientific ML requires close collaboration
with natural scientists. This is not merely a conceptual
argument but a practical requirement, as ML researchers
often lack the domain-specific intuition to determine the ap-
propriate level of numerical precision for a given scientific
task. For instance, research on ML potential is published in
both traditional scientific journals and ML conferences, yet
the evaluation criteria and priorities differ significantly be-
tween these communities (Batatia et al., 2022; Kovács et al.,
2023). Strengthening interdisciplinary collaboration will
help bridge this gap, ensuring that precision requirements
align with both scientific validity and practical usability.

Integrating ML into traditional computational methods
Rather than solely focusing on developing high-precision
ML models, an alternative approach is to integrate ML into
traditional computational methods to achieve both accuracy
and efficiency. One promising strategy is to first employ
ML models while acknowledging their inherent numerical
limitations and using them to generate an approximate so-
lution (Arisaka & Li, 2023; Saverio, 2023; Napier, 2024).
These ML-generated approximations can then serve as an
initial guess for traditional computational methods, signifi-
cantly accelerating convergence while preserving precision.
This hybrid approach presents a compelling solution for
scientific applications where both computational speed and
numerical accuracy are critical.

5. Alternative Views
This section presents alternative views that challenge our
position and provides responses to address these concerns.

Q1: Is the issue really about numerical precision, or
could it be a capacity limitation of the model? An alter-
native view holds that the observed inaccuracies stem from
fundamental limitations in network architecture or training
methods, rather than numerical precision constraints. Ac-
cording to this viewpoint, neural networks may not yet be
sufficiently expressive to solve the given task, regardless of
numerical precision constraints. To distinguish numerical
issues from capacity concerns, we can leverage numerical
analysis tools, such as condition numbers and numerical

sensitivity analysis, to determine whether errors arise from
numerical instability. Since modern neural networks rely
heavily on matrix operations, existing research on matrix
sensitivity provides a robust foundation for further analy-
sis. These insights can help clarify the relationship between
numerical stability and model expressivity.

Q2: If certain scientific computing tasks are not sensi-
tive to numerical precision, does it matter? It is true
that not all scientific tasks require high numerical precision
because certain tasks can tolerate lower levels of precision.
However, our focus should be on fields where high precision
is essential, such as quantum chemistry, materials science,
and nonlinear physics, where even slight inaccuracies can
lead to significant deviations. Currently, there is still limited
understanding of which tasks, models, and environments
are most affected by numerical precision and what factors
contribute to these sensitivities. A systematic analysis is
necessary to identify precision-critical cases before making
broad assumptions about acceptable precision levels. Until
a clear understanding is established, a precision-aware ap-
proach should be prioritized, while relaxed conditions can
be applied to tasks that do not require high precision.

Moreover, certain scientific tasks may not require explicit
consideration of numerical precision. For example, in tasks
where logical reasoning is more critical than numerical ac-
curacy, such as those that rely on LLMs, precision con-
straints may be less significant. These include (1) Explain-
ing or summarizing experimental results or literature (Xie
et al., 2024), (2) generating new hypotheses for scientific
research (Kumbhar et al., 2025; Lu et al., 2024), (3) provid-
ing guidance for tasks where the methodology is not clearly
defined (e.g., retrosynethsis), and (4) assisting scientific ed-
ucations (Bewersdorff et al., 2025). In such cases, the role
of ML extends beyond numerical fidelity, focusing instead
on knowledge synthesis and interpretability.

6. Conclusions
Scientific ML has become a major field in modern ML re-
search, with the goal of developing models that contribute
to scientific discovery. This position paper highlights the
impact of precision issues, which can affect the practical
usability of scientific ML models but have been largely over-
looked. The precision issues in scientific ML are closely
tied to ethical concerns regarding the reliability and explain-
ability of scientific findings. In summary, our contribution
lies in a practical step toward making scientific ML models
more reliable, reducing the risk of misleading scientific in-
sights due to numerical inaccuracies. If our simple yet easily
actionable proposal becomes widely adopted in scientific
ML research, it can enhance the practicality of models and
thereby accelerate scientific discovery.
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A. Details in quantum mechanical calculation
Quantum mechanical calculations (also known as quantum chemistry calculations) were performed using PySCF (Python-
based Simulations of Chemistry Framework, version 2.7.0). The input water molecule consists of a single oxygen atom at
(0.000000, 0.000000, 0.000000) and two hydrogen atoms at (0.757000, 0.586000, 0.000000) and (-0.757000, 0.586000,
0.000000), respectively. All simulations were conducted using two nodes of an AMD EPYC 7543 32-Core Processor. To
compare the geometry optimization result of a water molecule based on different exchange functionals, we performed both
Hartree-Fock calculations and density functional theory calculations using the B3LYP functional. For both methods, we
employed the 6-311++G(d,p) basis set. To evaluate the impact of numerical precision, we conducted the same calculations
using both single precision (FP32) and double precision (FP64) by declaring np.float32 and np.float64, respectively. The
default convergence tolerances for structural stabilization were set as follows: |∆E| < 1.00 × 10`6, RMS-Grad < 3.00 ×
10`4, Max-Grad < 4.50 × 10`4, RMS-Disp < 1.20 × 10`3, and Max-Disp < 1.80 × 10`3.

B. Finite-difference time-domain calculation
B.1. Nonlinear Material Properties

In this study, Kerr media were modeled with a second-order nonlinear susceptibility (χ2) ranging from 10−12 to 10−2 and
the refractive index was set to 1.65 to mimic the conventional nonlinear materials like beta barium borate. The nonlinear
polarization of the material was expressed as:

P = ϵ0(χ
(1)E + χ(2)E2 + χ(3)E3 + ...) (1)

And the second-order nonlinear polarization term is represented as: P (2) = ϵ0χ
(2)E2. Meep incorporates such nonlinear

polarization terms into Maxwell’s equations to simulate interactions between electromagnetic waves and the material in the
time domain

▽×H = ϵ0
∂E

∂t
+

∂P

∂t
(2)

▽× E = −µ0
∂H

∂t
(3)

B.2. Simulation Setup

The simulation domain consisted of a 100 µm medium, a 1 µm thick boundary layer, and 2 µm buffer regions at both ends.
The spatial resolution was user-defined to capture fine electromagnetic field characteristics. Kerr media were placed at the
center of the domain, with χ2 explicitly defined. The calculations were conducted using both FP32 and FP64 precision on
single core of AMD Ryzen5 8500G.

B.3. Source and Monitor Definition

The source was defined as a Gaussian plane wave with a central wavelength of 1.55 µm and a bandwidth of 0.15. Both
the source and monitors were positioned 1 µm outside the nonlinear medium, with the electric field oscillating along the
x-axis. Simulations were executed to allow sufficient decay of the fields after the source was turned off to confirm accurate
measurements.

B.4. Harmonic Generation and Analysis

Using the Meep’s add flux function, the optical flux outside the nonlinear medium was measured, and the transmitted power
spectra of the fundamental frequency (ω) and harmonic components (2ω, 3ω) were calculated. The add flux function records
the time-domain values of electric and magnetic fields at specific locations, then performs a Fourier transform to convert
them into the frequency domain to compute flux. This process allows precise analysis of the intensity of each frequency
component within the user-defined frequency range and intervals. The analysis frequency range extended from ω/2 to 3.5ω,
encompassing all relevant frequency bands of interest. Flux measurements were particularly useful for understanding the
interaction between newly generated harmonic components and existing frequency components caused by the material’s
nonlinearity.
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B.5. Results and Reproducibility

Simulation results demonstrated how the intensity and distribution of harmonic components varied with changes in χ2. The
nonlinear modeling capabilities of Meep enabled precise analysis of harmonic generation characteristics in nonlinear optical
materials.
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