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ABSTRACT

Randomized value function has been shown as an effective exploration strategy
for reinforcement learning (RL), which samples from a learned estimation of the
distribution over the randomized Q-value function and then selects the optimal
action. However, value function methods are known to suffer from value estima-
tion error. Overfitting of value function is one of the main reasons to estimation
error. To address this, in this paper, we propose a Bayesian linear regression with
informative prior (IP-BLR) operator to leverage the data-dependent prior in the
learning process of randomized value function, which can leverage the statistics of
training results from previous iterations. We theoretically derive a generalization
error bound for the proposed IP-BLR operation at each learning iteration based
on PAC-Bayesian theory, showing a trade-off between the distribution obtained
by IP-BLR and the informative prior. Since the optimal posterior that minimizes
this generalization error bound is intractable, we alternatively develop an adaptive
noise parameter update algorithm to balance this trade-off. The performance of the
proposed IP-BLR deep Q-network (DQN) with adaptive noise parameter update
is validated through some classical control tasks. It demonstrates that compared
to existing methods using non-informative prior, the proposed IP-BLR DQN can
achieve higher accumulated rewards in fewer interactions with the environment,
due to the capabilities of more accurate value function approximation and better
generalization.

1 INTRODUCTION

Deep reinforcement learning (RL) has demonstrated outstanding performance over many challeng-
ing tasks (Mnih et al., 2015; Silver et al., 2018). However, the design of an efficient exploration
strategy for the intractably large state and action spaces still remains a main challenge. Noise injec-
tion is a commonly used exploration strategy in deep RL. For example, the ε-greedy strategy that
takes action uniformly with probability ε is effective for tabular and linear function approximation-
based Q-learning, and has also succeeded in deep Q-network-based methods (Mnih et al., 2015).
By adding random perturbation into the coefficients of value function, randomized value function
method has been introduced for exploration. In standard RL setting, the value function is determinis-
tic w.r.t. the state and action, which explilcitly indicates how valuable a certain state or action is. Pol-
icy built on randomized value function, on the other hand, can behave stochastically and be induced
to a more efficient exploration. Using linear function approximation, randomized least-squares value
iteration (RLSVI) (Osband et al., 2019) leverages Bayesian linear regression (BLR) (Bishop, 2006)
to learn an approximation to the posterior distribution of the randomized Q-value function. In deep
RL, randomized noise is injected into the parameters of neural network, while the noise parameter
is trained together with the network (Fortunato et al., 2017; Plappert et al., 2017).

RL algorithms are known to suffer from value estimation error, which leads to suboptimal policy.
It has been proved by Hasselt et al. (2016) that estimation error of any kind can lead to overesti-
mation of action’s value in Q-learning. In actor-critic methods, the overestimation bias exists in the
approximation of critic (Fujimoto et al., 2018). In randomized value function method, the value
estimation error is also inevitable. One of the main reasons for the occurrence of estimation error
in function approximation is overfitting on a finite training set by minimizing the empirical error
(risk). If we can learn a regressor by minimizing the expected error (risk) of the true distribution,
e.g., ideally in the setting of supervised learning, then the regressor can be generalized to the unseen
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data (Bishop, 2006). The distance between the empirical risk and true risk is called the generaliza-
tion error (Germain et al., 2016). Theoretically, the generalization error can be reduced to zero by
minimizing directly on the true risk, which, however, is usually infeasible since the true distribution
is unfortunately not available in practice.

Fortunately, by assuming a distribution over coefficients, we can bound the generalization error by
PAC-Bayes. In classification tasks, algorithms derived from PAC-Bayesian theory have been proved
to guarantee a tight generalization error bound (Germain et al., 2009). PAC-Bayes provides an upper
bound for generalization error in terms of the empirical risk and Kullback-Leibler (KL) divergence
between the prior and posterior distributions, which prevents the posterior of coefficients from being
updated to overfitting by minimizing the empirical risk. In previous works, the assumption of prior is
often non-informative, such as fixed Gaussian distribution (Germain et al., 2016). Through a careful
design, however, the prior distribution can also be optimized for a better generalization. For example,
previous works that use data-dependent priors have achieved a tighter bound and better performance
on classification tasks (Parrado-Hernández et al., 2012), where the data-dependent prior can be
obtained by pre-learning on a part of the whole training dataset. This motivates us to incorporate
PAC Bayesian theory with informative prior into the batch RL algorithms, since iterative training
does provide rich data-dependent prior information that can be exploited to reduce the generalization
error incurred by function approximation.

In this paper, we propose to use informative prior for the posterior update in randomized value
function exploration. To further reduce the generalization error incurred by function approximation,
we propose to optimize an upper bound provided by employing PAC-Bayesian theory during the
coefficient update. Our main contributions are as follows.

• We propose to use the Bayesian linear regression with an informative prior (IP-BLR) distribu-
tion to learn the distribution estimation of the randomized Q-value function. For each IP-BLR
iteration, we construct the informative prior by using posterior from the previous iteration.

• We derive an upper bound for the generalization error in each IP-BLR iteration based on the
PAC-Bayesian theory. This generalization error bound shows a trade-off between the posterior
of IP-BLR operation and the informative prior distribution. We further provide an analogy to
the optimal Gibbs posterior (Alquier et al., 2016) that minimizes this generalization error bound,
which is unfortunately intractable and not piratically feasible in the training process.

• Alternatively, we aim to manipulate the noise parameter β to balance the IP-BLR posterior and
the prior in the final posterior distribution, based on which propose a practical deep RL algorithm
called IP-BLR DQN.

• Through extensive experiments, we demonstrate that the proposed IP-BLR DQN presents a
quicker jumpstart for the learning process and significantly improves the asymptotic performance
than the randomized value function baselines, which mainly benefits from the proposed informa-
tive prior and adaptive noise parameter update.

2 BACKGROUND

Reinforcement Learning: In RL setting, the environment is modeled as an MDP, denoted by a tuple
< S,A,R,P > with state space S, action space A, reward space R and environment dynamic P .
An agent improves its policy π by interacting with the environment. At each time step t, the agent
observes the state st ∈ S and takes an action at ∈ A according to its current policy π(at|st) :
S → A. Afterwards, the agent will receive a reward r(st, at) : S × A → R. Then the state of the
environment changes to the next state st+1 with probability P (st+1|st, at) : S × A × S → [0, 1],
which is determined by the environment dynamic P . The RL problem aims to find an optimal
policy that maximizes the accumulated discounted reward Gπt =

∑∞
k=t γ

k−tr(sk, ak), where γ ∈
[0, 1] is a discount factor. The state-action value function Q is defined as the expectation of return
Q(st, at) = E

[∑∞
k=t γ

k−tr(sk, ak)|st, at
]
, with the following Bellman equation specifying the

relationship between the current state-action value and its successor:

Q(st, at) = E [r(st, at))] + γEP,π[Q(st+1, at+1)]. (1)
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The optimal state-action value function Q∗ is given under the optimal policy π∗ that solves the RL
problem. Then the Bellman optimality operator T is given by:

T ∗Q(st, at) = E [r(st, at)] + γEP
[
max
at+1

Q(st+1, at+1)

]
,

which has been proved to be a contraction mapping with a unique fixed point at Q∗. It hence
guarantees the convergence of Q-learning based approaches.

PAC-Bayesian Theory: Suppose that we have M training samples {(Xi, Yi)}Mi=1 ∈ (X × Y)M ,
where Xi = (X1

i , X
2
i , ..., X

p
i )T and Yi is a one-dimensional label. In the context of Q-learning,

X corresponds to S × A and Y is the temporal difference (TD)-target. The goal of supervised
learning is to learn a predictor f ∈ F , where F is the function space : X → Y . To quantify
the prediction performance, a loss function ` : F × X × Y → R is given. Hence the empirical
risk R̂`(f) is defined as the average loss of these M samples R̂`(f) = 1

M

∑M
i=1 `(f(Xi), Yi).

Suppose that we have the underlying data distribution D over (X ,Y), the true risk is given by
R`(f) = E(X,Y )∼D [`(f(X), Y )], which measures the predictor f ’s generalization performance.
During the training process, we only have access to the empirical risk that is used to train this
predictor, which may cause overfiting. PAC-Bayesian theory provides an appealing oracle inequality
that bounds the true risk with empirical risk, given in the following (Alquier et al., 2016).
Theorem 1. For a given distribution D over X × Y , any prior distribution Jf and posterior
distribution Pf over the function space F , a non-negative parameter λ, and a loss function
` : F × X × Y → R, with a probability of at least 1− δ we have:

EPf [R`(f)] ≤ EPf [R̂`(f)] +
1

λ

[
DKL(Pf ||Jf ) + ln

C

δ

]
, (2)

where DKL(Pf ||Jf ) denotes the Kullback-Leibler (KL) divergence between Pf and Jf , and C =

E(X′,Y ′)∼DEJf exp
{
λ[R`(f)− R̂`(f)]

}
.

3 DEEP BLR-Q LEARNING WITH INFORMATIVE PRIOR

In randomized least-squares value iteration (RLSVI) (Osband et al., 2019), following the basic as-
sumption of Bayesian linear regression (BLR) (Bishop, 2006), the true Q-value qs,a is considered as
the regression from a linear regression model with Gaussian noise ε ∼ N (0, β−1):

qs,a = Q(s, a) = wTφθ(s, a) + ε, (3)

where φθ(s, a) is the feature vector extracted by the deep neural network with weights θ, and
w denotes the model parameter vector with dimensionality of Ω. For the ease of notation, we
interchangeably use φ(s, a) and φθ(s, a) throughout this paper. Suppose that we have a batch of
transitions {(si, ai, ri, s′i)}Mi=1 for current training iteration. The TD-target value yi ∈ Y is

yi = ri + γmax
a′
wTφθ(s′i, a

′). (4)

Considering statistical independence of different transitions in this batch, which holds by randomly
sampling from the replay buffer (Mnih et al., 2015), the likelihood function can be expressed as

p (y|w, β) =

M∏
i=1

N
(
yi|wTφθ(s, a), β−1

)
. (5)

Assuming the prior distribution asw ∼ N (m,S) and referring to the Bayes rule, we can obtain the
posterior distribution of w, which is still a multivariate Gaussian distribution:

p(w|y, β) = N (w|m′,S′), (6)

with the distribution parameters given by (Bishop, 2006):

m′ = S′ (S−1m+ βΦTy
)
,S′ =

(
S−1 + βΦTΦ

)−1
, (7)

where Φ = (φθ(s1, a1), · · · ,φθ(sM , aM ))T. Refer to Appendix A.1 for more details.
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Figure 1: Example to illustrate the motivation of introducing informative prior to BLR: BLR with
the non-informative prior trained on (a) T[0,6] and (b) T[4,10], respectively, and (c) BLR with the
informative prior trained on T[4,10].

The training of RL is an iterative process. In each iteration, previous randomized value function-
based algorithms assume a non-informative prior distribution to learn the model parameters, which
however is constrained on the current batch. In fact, the posterior distribution of model parameters
w from the last iteration can be utilized as an informative prior for the current training iteration,
able to provide richer information including the estimation of mean and variance parameters from
the previous batches. The advantage of using informative prior comes from the nature of Bayesian
approach, which can be verified by a simple regression task as shown in Figure 1. Here, we aim
to fit function f(x) =

√
x sin( 3

2x) with the test set T[0,10] , {(xi, yi)|xi ∈ [0, 10]}. Under a
non-informative prior assumption on the Gaussian distribution of zero mean and fixed variance, we
first run BLR on training set T[0,6]. The test result for BLR in Figure 1(a) shows huge uncertainty in
unseen area T[6,10]. Then we conduct BLR by treating the posterior distribution of model parameters
from Figure 1(a) as informative prior in training set T[4,10]. The result in Figure 1(c) demonstrates
that the learned estimation for T[0,4] has been retained even though it is not contained in the current
training set T[4,10]. In comparison, with the non-informative prior assumption, Figure 1(b) shows
that the test result for BLR trained on the training set T[4,10] holds huge uncertainty in T[0,4].
Therefore, we propose to utilize the informative prior in BLR to learn a randomized Q-value func-
tion. Note that in RL training, due to the slow update for policy π, the training set may change
slowly and IP-BLR may quickly lose uncertainty, which makes the agent prone to get stuck in a
suboptimal policy. To keep the exploration of uncertainty, we use σ2I as the prior variance instead
of the posterior covariance matrix S′ in (7) from the last iteration. We then give the convergence
proof for the BLR Q-learning with informative prior. Analogous to Bellman optimality operator, we
formally define the IP-BLR Bellman optimality operator, as follows.
Definition 1. (IP-BLR operator) In each iteration, we set σ2I and the posterior mean m′p from
the pervious iteration as the informative prior N (m′p, σ

2I) for the distribution of w, based
on which the prior predictive distribution for Q-value qs,a can be derived as Jq: p(qs,a) ∼
N (m

′T
p φ(s, a), β−1I + σ2φθ(s, a)Tφθ(s, a)). We define the following IP-BLR Bellman optimal-

ity operator H∗ that changes the estimation of Q-value distribution based on BLR with the above
informative prior.

H∗qs,a ∼ N (m′Tφ(s, a), β−1I + φ(s, a)TS′φ(s, a)), (8)

where we havem′ = (I+σ2βΦTΦ)−1(m′p+σ2βΦTy) based on (7). The proof follows eq.(3.59)
in Bishop (2006).

We update the posterior of w by IP-BLR and optimize θ together to the direction of the TD-target.
Thus we can have:

‖Eq − q∗‖∞ ≤
1

1− γ
‖Eq − EH∗q‖∞, (9)

where the equality holds when Eq = q∗.

Proof. See Appendix A.2 for details.
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4 PAC-BAYESIAN GENERALIZATION BOUND FOR RANDOMIZED VALUE
FUNCTION APPROXIMATION

Randomized value functionQ ∈ Q : S×A → Y in (3) provides an efficient method for exploration.
Iteratively applying IP-BLR Bellman operator and update θ to the TD-target can lead the mean of
the estimated distribution for Q-value qs,a to the optimal state-action value q∗s,a, which theoretically
requires the exhausting visit of state-action space. However, in practical RL training, especially
for deep RL algorithms, the true distribution Dπ under current policy π over S × A × Y is not
available. Since we cannot get samples for the whole state-action space, a commonly used alternative
is to sample a batch of transitions for training. In this section, we derive an oracle generalization
inequality for each IP-BLR training process based on the PAC-Bayesian theory.

Theorem 2. Given the true distributionDπ over S×A×Qtarget under the current policy π, in each
IP-BLR training iteration with fixed φ(s, a), for all prior distributions Jw, posterior distributions
Pw over model parameters w and corresponding predictive distribution Jq and Pq over Q-value
qs,a, a non-negative λ, with a probability of at least 1− δ we have:

‖EPqqs,a − q∗s,a‖∞ ≤
EPq (‖qs,a − EH∗qs,a‖2)

1− γ
+

1

λ

[
DKL (Pq||Jq) + ln

EDπ [ψJ (s, a, y)]

δ

]
,

(10)

where ψJ (s, a, y) = EJq exp [λϕ(qs,a)], ϕ (qs,a) = ‖qs,a − q∗s,a‖∞ − 1
1−γ ‖qs,a − EH∗qs,a‖2.

Proof. See Appendix A.3 for details.

In Theorem 2, we provide an upper bound for the proposed IP-BLR optimality Bellman operator.
The LHS of (10) provides a oracle distance between optimal Q-function and current mean of ran-
domized Q-function. On the RHS, the first term indicates that the posterior Pq should match with the
mean of IP-BLR, while the second term specifies a divergence between Pq and Jq . The third term
measures the distance between the optimal Q-function and the mean of randomized value function
after IP-BLR operation. When δ and prior Jw are selected, the model parametersw’ posterior distri-
bution Pw is the unique one that can be optimized. Therefore the bound in (10) suggests a trade-off
redbetween the IP-BLR operator H∗qs,a and the prior distribution Jq , resulting in the following
optimization problem:

min
Pq

EPq
1

1− γ
‖qs,a − EH∗qs,a‖2 +DKL(Pq||Jq). (11)

This objective function is convex over Pq . By applying the KKT condition, we can get the optimal
Gibbs posterior (Alquier et al., 2016) as

Pq : p(qs,a) =
1

Z
Jq(qs,a) exp{− λ

1− γ
‖qs,a − EH∗qs,a‖2} (12)

where Z =
∫
Jq(q

′) exp{− λ
1−γ ‖q

′ − EH∗qs,a)‖2}dq′ is the normalization term. This Gibbs pos-
terior is hard to compute and sample due to the intractable term Z. Markov Chain Monte-Carlo
(MCMC) method is a commonly used method to sample the Gibbs posterior (Alquier & Biau,
2013), but it is too slow for big datasets. Another method is to approximate Gibbs posterior by
a set of Gaussian distribution based on the variantional inference (VI) (Alquier et al., 2016). How-
ever, solving the variantional lower bound is still costly in our iterative setting. Instead, in the next
section, we alternatively propose to manipulate noise parameter β.

5 ADAPTIVE NOISE PARAMETER UPDATE

Reviewing (7), the relationship between the informative prior m, S and the current information Φ,
y is controlled by the noise distribution parameter β. In BLR, β is a preset hyper-parameter (Bishop,
2006). Recalling the suggestion of Theorem 2, we should solve the trade-off between the IP-BLR
and prior. In this section, we assume that the prior of β follows uniform distribution and propose an
adaptive noise parameter update.
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From Bayes rule, we have

p(y|w, β)p(w) = p(w|y, β)p(y|β). (13)

Substituting (5), (6) and prior distribution p(w) = N (w;m, σ2I) into (13), we obtain

p(y|β) ∝ |Σy|−
1
2 exp

{
−1

2
(y − µ)TΣ−1y (y − µ)

}
, (14)

where µT = βσ−2mTS′ΦΣy and Σ−1y = βI+β2ΦS′ΦT . According to the maximum likelihood
estimation, we want to maximize β’s posterior p(β|y) ∝ p(y|β)p(β) (Tipping, 2001), which is
equivalent to the following optimization problem:

max
β
−1

2
log |Σy| −

1

2
(y − µ)TΣ−1y (y − µ). (15)

The objective function is concave over β. By setting derivatives w.r.t. β of (15) to zero, we get the
update for the noise parameter β:

βnew = 2M/
[
Tr(Σy) + ‖y −Φm′‖2

]
(16)

The first term in the denominator is the trace of the covariance matrix of the Q-value’s posterior dis-
tribution conditioned on β, which reflects the uncertainty for the estimation of Q-value. The second
term is the mean square error (MSE) with respect to the BLR’s posterior mean. The value of these
two terms consistently reflect the performance of the posterior parameter in the IP-BLR operator.
A larger trace of posterior covariance matrix or a larger MSE will incur a worse performance and
a smaller β, which in turn will make the posterior distribution closer to the prior distribution. As
shown in (7) and (15), the update of β will result in the change of the posterior parameters (m′,S′)
and vice versa. Hence we alternately perform the IP-BLR operation and β update as shown in
Algorithm 2 to find an appropriate update for (m′,S′, β).

To summarize, we propose IP-BLR DQN with adaptive noise parameter in Algorithm 1 in Appendix
A.4. The agent explores the environment guided by the variance of Q-value estimation instead of
randomly injected noise. The parameter θ from feature extraction layer is learned by vanilla DQN
backpropagation with w fixed. Besides, we periodically update the distribution parameters of w
using Algorithm 2 in Appendix A.4.

6 EXPERIMENTS

In this section, we conduct several empirical experiments to validate the effectiveness of our pro-
posed IP-BLR methods. We compare our method with Bayesian DQN (BDQN) (Azizzadenesheli
et al., 2018) and NoisyNet DQN (Fortunato et al., 2017), which all are randomized value function
baselines. In NoisyNet, noise is added to the weights of deep RL to introduce randomized value
function for exploration. Besides, we empirically show the outcome of the adaptive noise param-
eter update. We also conduct experiments to study how the vital hyper-parameters (i.e., feature
dimension and prior variance σ) affect the overall performance.

6.1 COMPARISON ON CLASSICAL CONTROL TASKS

We choose classical control tasks: MountainCar, CartPole and Acrobot provide by OpenAI (Brock-
man et al., 2016) and use the basic reward function setting. In MountainCar and Acrobot, the agent
will get reward −1 for each time step, until the episode ends. In CartPole, the agent will get reward
+1 for keeping the pole upright until the pole and cart deviate too much from the perpendicular and
the center, respectively. We set the maximum time steps for one episode to 1000 for CartPole and
MountainCar, and to 500 for Acrobot.

We use a neural network to represent Q-value function in NoisyNet and feature extraction in BDQN
and IP-BLR DQN, which has the same dense layers setting in all the three algorithms. Besides, in
BDQN and our IP-BLR DQN, we use the same feature dimension and σ2. In our IP-BLR DQN, we
perform 20 iterations in Algorithm 2.
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Figure 2: Comparison between IP-BLR DQN, BDQN and NoisyNet on CartPole, MountainCar and
Acrobot.
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(d) Ω = 256

Figure 3: IP-BLR DQN with Tanh and ReLU after the last dense layer with the feature dimension
Ω=[2, 6, 128, 256] on CartPole.

We run each training process for 1000 episodes and plot the learning curves on three test environ-
ments in Figure 2. The results are obtained by running each algorithms with five different random
seeds. The accumulated reward averages on the last 100 episodes. We can see that IP-BLR DQN has
the best asymptotic performance on all the three environments, while BDQN is mostly better than
NoisyNet. IP-BLR DQN has less performance degradation during the training process compared to
the other two comparison methods, and presents a quicker jumpstart on the training process.

6.2 HYPER-PARAMETERS

In order to demonstrate the effectiveness of the proposed IP-BLR operator and the adaptive noise
parameter update, we conduct several experiments to study and provide an empirical analysis of the
hyper-parameter selection for our IP-BLR DQN.

The feature dimension Ω is a vital hyper-parameter for both BDQN and IP-BLR DQN. A small
dimension may not be representative for the value function of a task, while a large dimension may
exceed the capability of BLR in the high-dimensional space. We plot the learning curves of IP-
BLR DQN with Tanh and ReLU activation after the last dense layer in MountainCar, with feature
dimension set to [2, 6, 128, 256] in Figure 3. The results show that the feature dimension affects the
performance of IP-BLR DQN, and the training process suffers from a too small or too large feature
dimension, which is mainly dependent on the task and the activation function used. With Tanh as
the activation function, we suggest that the feature dimension should be comparable to the range
of Q-value in tasks, since Tanh ranges from −1 to 1. In comparison, with ReLU as the activation
function, the performance is not that sensitive to Ω. However, as shown in Figure 3(a) and 3(d), a
too large or too small Ω still will degrade the performance.

In addition, IP-BLR DQN reduces to BDQN without the proposed informative prior distribution
and adaptive noise parameter update. To validate the effectiveness of the utilization of informative
prior distribution, we further compare IP-BLR DQN with BDQN and IP-BLR DQN without the
adaptive β update. Referring to Theorem 2, we propose the adaptive update for β to balance the
trade-off between the IP-BLR operation and informative prior. We compare the performance on
Cartpole achieved by BDQN with β = 100, IP-BLR DQN with adaptive noise parameter update,
and IP-BLR DQN with fixed β ∈ [0.1, 1, 100, 10000] in Figure 4(a). It shows that the training
process of IP-BLR DQN is more stable and has a quick jumpstart, which mainly benefits from the
adaptive noise parameter update. In addition, under the same preset β = 100, IP-BLR DQN has
faster convergence than BDQN, which demonstrates the effectiveness of utilizing the informative
prior. The curves of β during the training process in three environments are shown in Figure 4(b),

7



Under review as a conference paper at ICLR 2021

0 200 400 600 800 1000
episodes

0

200

400

600

800

1000

ac
cu

m
ul

at
ed

 re
wa

rd adaptive beta
BDQN
beta=0.1
beta=100
beta=10000

(a) Ω = 6

0 10 20 30 40 50
(ep / update_interval) in Algorithm 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Acrobot
CartPole
MountainCar

(b) Ω = 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Adaptive update iterations for 

0

20

40

60

80

100

M
ea

n 
sq

ua
re

 e
rro

r (
M

SE
)

(c) Ω = 12

Figure 4: (a) Comparison between IP-BLR DQN with/without adaptive β update and BDQN, (b)
dynamic trend of β during training, (c) trend of the MSE reduction.

presenting a dynamic trend. The trend of MSE reduction that is averaged on all the update based on
Algorithm 2 is shown in Figure 4(c), demonstrating that our iterative update for β can effectively
reduce the MSE loss during training in DQN.

6.3 EXPERIMENT SETUP

In all the experiments, we use Adam optimizer for learning the neural network with two hidden
layers of dimensions 50 and 256, respectively, by using the learning rate 3 × 10−4. For RL hyper-
parameters, we set the discounted factor to γ = 0.99, replay buffer size to 1 × 105 and mini-batch
size to 64. For BDQN and IP-BLR DQN, we set the training set size as 1000.

7 RELATED WORK

Previous attempts to extend randomized value function strategy to deep RL include the direct Q-
function approximation by DNN (Azizzadenesheli et al., 2018) and duplicates of Q-networks to
approximate the posterior distribution (Osband et al., 2016). In statistic learning, PAC-Bayesian
theory firstly provides a probably approximately correct (PAC) guarantee on generalization error
for Bayesian algorithms (McAllester, 1999). For regression setting, a PAC-Bayesian bound with
unbounded loss function is given by (Germain et al., 2016) and a practical Gaussian process re-
gression algorithm is studied in (Reeb et al., 2018). In RL, a PAC-Bayes generalization bound on
reparameterized RL is provided with randomization on policy parameters by Wang et al. (2019),
while our work is done on standard RL with randomization on value function parameters. Fard
& Pineau (2010) propose a PAC-Bayes bound for model-free RL on discrete state spaces without
introducing function approximation, while our bound and algorithm are derived for the complex
continuous state space and randomized value function.

PAC learning has also been introduced to RL for the measure of exploration efficiency, which is
known as probably approximately correct in Markov decision processes (PAC-MDP). PAC-MDP
requires RL algorithms to behave non-optimal compared to optimal performance within a small
range in a certain number of time steps that is polynomial w.r.t. the size of state space and action
space. RL algorithms such as E3 (Kearns & Singh, 2002) and R-max (Brafman & Tennenholtz,
2003) that satisfy PAC-MDP all show efficient exploration since near-optimal policy can be achieved
in polynomial time. Recent studies have advanced PAC-MDP to being capable of dealing with rich
observations (Dann et al., 2018; Du et al., 2019).

8 CONCLUSION

In this paper, we have proposed for the randomized value function-based RL an IP-BLR operator
by leveraging the data-dependent prior in training to reduce the estimation error of value function.
Based on PAC-Bayesian theory, we theoretically derived a generalization error bound for the pro-
posed IP-BLR operation at each training iteration, and developed an practically feasible algorithm
for adaptive noise parameter update to balance the trade-off between the posterior of IP-BLR op-
eration and the informative prior distribution. Experiments on classical control tasks have shown
that due to the more accurate value function approximation and better generalization, the proposed
IP-BLR DQN could achieve higher accumulated rewards in fewer interactions with the environment.
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A APPENDIX

A.1 PROOF OF (7)

Proof. Assuming Gaussian prior for w as N (w;µ, β−1I), for a batch of training data
{(si, ai, yi)}Mi=1, the likelihood function can be expressed as

p (y|w, β) =

M∏
i=1

N
(
yi;w

Tφθ(si, ai), β
−1) .

= (
2π

β
)−

M
2 exp

{
−β

2
(y −Φw)T (y −Φw)

}
(17)

Then the posterior p (y|w, β) is also Gaussian distribution. By reformulating (17) as a standard
Gaussian distribution, we can get the posterior meanm′ and covariance S′:

m′ = S′ (S−1m+ βΦTy
)
,S′ =

(
S−1 + βΦTΦ

)−1

A.2 PROOF OF (9)

Proof.

‖Eq − q∗‖∞ =‖Eq − EH∗q + EH∗q − q∗‖∞
≤‖Eq − EH∗q‖∞ + ‖T ∗Eq − T ∗q∗‖∞
≤‖Eq − EH∗q‖∞ + γ‖Eq − q∗‖∞

Then we have:

‖Eq − q∗‖∞ ≤
1

1− γ
‖Eq − EH∗q‖∞

A.3 PROOF OF THEOREM 2

Proof. Referring to the change of measure inequality (Roy et al., 2016), we obtain:

λEPqϕ(qs,a) ≤ DKL(Pq||Jq) + lnψJ (18)

Hence,

λEPq‖qs,a − q∗s,a‖∞ ≤ λEPq
1

1− γ s,a
− EH∗qs,a‖2 +DKL(Pq||Jq) + lnψJ .

From Jensen’s inequality, we have

‖EPqqs,a − q∗s,a‖∞ ≤ EPq‖qs,a − q∗s,a‖∞. (19)

Applying Markov’s inequality, we have

p (ψJ(s, a, y)) ≤ α) ≥ 1− Es,a,y [ψJ (s, a, y)]

α
. (20)

By letting δ =
Es,a,y [ψJ (s,a,y)]

α and integrating (19) and (20) into (18), the inequality in (10) holds.
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A.4 ALGORITHMS

Algorithm 1 IP-BLR DQN
1: Initialize feature extraction parameters θ
2: Initialize target network’s feature extraction parameters θ− ← θ
3: Initialize IP-BLR parametersm, σ, S, β
4: Initialize replay buffer B
5: for episode ep = 1, . . . , N do
6: for step t = 1, . . . , T do
7: Draw w from N (m,S)
8: Select an action at = argmaxaw

Tφθ(st, a)
9: Execute action at and receive rt and s′t

10: Store transition (st, at, rt, s
′
t) in B

11: Sample a random batch of transitions {(si, ai, ri, s′i)}Mi=1 from B

12: yi =

{
ri, for terminal s′i
caculated from (4), otherwise

13: Update θ through one step gradient descent on (yi −mTφθ(st, a))2

14: end for
15: if ep mod update interval == 0 then
16: (m,S)←−Algorithm 2(m, σ, {(φθ(si, ai), yi)}Mi=1)
17: end if
18: update target network: θ− ← θ
19: end for

Algorithm 2 IP-BLR with adaptive noise parameter
Input: prior parametersm, σ and training set {(φθ(si, ai), yi)}Mi=1
Output: posterior parametersm′, S′

1: for each iteration do
2: Update (m′,S′) through (7) with S = σ2I
3: Update β through (16)
4: end for
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