

000 001 002 003 004 005 006 007 PHYSICS-INFORMED INFERENCE TIME SCALING FOR 008 SOLVING HIGH-DIMENSIONAL PARTIAL DIFFERENTIAL 009 EQUATIONS VIA DEFECT CORRECTION 010 011 012

013 **Anonymous authors**
014 Paper under double-blind review
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Solving high-dimensional partial differential equations (PDEs) is a critical chal-
029 lenge where modern data-driven solvers often lack reliability and rigorous error
030 guarantees. We introduce Simulation-Calibrated Scientific Machine Learning
031 (SCaSML), a framework that systematically improves pre-trained PDE solvers at
032 inference time without any retraining. Our core idea is to use **defect correction**
033 **method that** derive a new PDE, which we term the **Structural-preserving**
034 **Law of Defect**, that precisely describes the error of a given surrogate model.
035 Because this defect PDE retains the structure of the original problem, we can solve
036 it efficiently with traditional stochastic simulators, yielding a targeted correction
037 to the initial machine-learned solution. We prove that SCaSML achieves a faster
038 convergence rate, with a final error bounded by the *product* of the surrogate and
039 simulation errors. On challenging PDEs up to 160 dimensions, SCaSML reduces
040 the error of various surrogate models, including PINNs and Gaussian Processes,
041 by 20-80%. SCaSML provides a principled method to fuse the speed of machine
042 learning with the rigor of numerical simulation, enhancing the trustworthiness of
043 AI for scientific discovery.
044
045

1 INTRODUCTION

046 Solving high-dimensional partial differential equations (PDEs) is a fundamental challenge across
047 science and engineering. Many critical phenomena are modeled by semi-linear parabolic PDEs whose
048 dimensionality scales with the number of underlying components, a challenge often termed the *curse*
049 of *dimensionality*. Key examples include the **imaginary-time** Schrödinger equation in quantum many-
050 body systems, nonlinear Black–Scholes equations in finance, and the Hamilton–Jacobi–Bellman
051 equation in optimal control (Bellman, 1954). Traditional numerical methods, such as finite element
052 and finite difference schemes, become computationally intractable in high dimensions (Larsson &
053 Thomée, 2003). While stochastic simulation methods can be effective, they often suffer from high
054 variance (Briand & Labart, 2014). In response, Scientific Machine Learning (SciML) has emerged
055 as a powerful alternative, using neural networks and other data-driven models to approximate PDE
056 solutions (Karniadakis et al., 2021; Han et al., 2018a; Raissi et al., 2017). However, the "black-box"
057 nature of these models can introduce subtle biases, and they often lack the rigorous error guarantees
058 of their traditional counterparts, raising concerns about their reliability for safety-critical applications.
059
060 Recent breakthroughs in large language models (LLMs) have shown that allocating additional
061 computational resources at *inference time* can dramatically improve output quality, a phenomenon
062 known as inference-time scaling (Snell et al., 2024; Wei et al., 2022). This success inspires our
063 central research question:
064

065 *Can we leverage additional computation at inference time to systematically refine and provably
066 improve a pre-trained surrogate model—allocating more compute to harder PDE states just as LLMs
067 spend more search or planning on harder queries—without any retraining or fine-tuning?*

054 In this work, we provide an affirmative answer by introducing **Simulation-Calibrated Scientific**
 055 **Machine Learning (SCaSML)**, a novel physics-informed framework for improving SciML solvers at
 056 inference time. We focus on a broad class of semi-linear parabolic PDEs of the form:

$$\begin{cases} \frac{\partial u}{\partial r} + \mathcal{L}u + F(u, \sigma^\top \nabla u) = 0, & \text{on } [0, T] \times \mathbb{R}^d \\ u(T, \mathbf{y}) = g(\mathbf{y}), & \text{on } \mathbb{R}^d, \end{cases} \quad (1)$$

060 where $\mathcal{L}u := \langle \mu, \nabla u \rangle + \frac{1}{2} \text{Tr}(\sigma^\top \text{Hess}(u) \sigma)$ is a second-order linear differential operator. SCaSML
 061 operates in two stages. First, a standard SciML solver \hat{u} (e.g., a PINN (Raissi et al., 2017), Gaus-
 062 sian Process (Chen et al., 2021), or Tensor Network (Richter et al., 2021)) is trained to find an
 063 approximate solution. At inference time, rather than directly accepting \hat{u} , we invoke a defect-
 064 correction method (Bank & Weiser, 1985; Stetter, 1978; Böhmer et al., 1984) to derive a gov-
 065 erning equation for the approximation error—its **defect**—defined as $\check{u} := u - \hat{u}$. We term this
 066 the Structural-preserving Law of Defect (Figure 1). Crucially, unlike **classical grid-
 067 based defect correction which is intractable in high dimensions**, we show that this new PDE describing
 068 the exact defect inherits the semi-linear structure of the original problem. **This structural preservation**
 069 **allows** us to solve it efficiently using well-established stochastic simulation algorithms based on
 070 the Feynman–Kac formula. This simulation step acts as a targeted correction, leveraging additional
 071 compute to refine the initial surrogate prediction.

072 Our main contributions are summarized as follows:

- We propose **SCaSML**, the first physics-informed inference-time scaling framework that **improves a pre-trained Scisurrogate model at inference-time, without any retraining or fine-tuning**. SCaSML uses defect correction method that corrects a pre-trained surrogate SCiML model by deriving and solving a new PDE via a branching Monte Carlo Simulation that approximates its **error**, which we call the Structural-preserving Law of Defect (7). Notably, this characterization of the defect is, to our knowledge, the first derivation that preserves the semi-linear structure essential for high-dimensional Monte Carlo solvers.
- We theoretically prove that the final error of SCaSML is bounded by the *product* of the surrogate model’s error and the simulation error. Analogous to the classical defect-correction literature—where each correction step systematically improves the convergence rate—we **establish an analogous result for our Monte–Carlo defect-correction procedure at the first time**. The improved convergence rate is corroborated **empirically** in Section 3, with further comprehensive findings presented in Appendix G.3.
- We conduct extensive numerical experiments on challenging high-dimensional PDEs (up to 160 dimensions). Our results show that SCaSML significantly reduces approximation errors by 20-80% across various surrogate models **with high statistical significance** ($p \ll 0.001$), demonstrating its flexibility, practical efficacy and potential to mitigate the curse of dimensionality. We also demonstrate that, with inference-time scaling, a smaller base PINN can outperform a larger PINN under the same inference-time compute budget by spending its additional computation on targeted refinement rather than parameter count. This enables *elastic compute*: users can trade inference time for accuracy on demand.

092 2 METHODOLOGY

093 The core of our SCaSML framework is the derivation of a new PDE that describes the error of a pre-
 094 trained surrogate model. We term this the Structural-preserving Law of Defect. By
 095 solving this auxiliary PDE at inference time, we can compute a precise correction to the surrogate’s
 096 prediction. To build intuition, we first introduce this concept in the context of linear parabolic
 097 equations before extending it to the general semi-linear case.

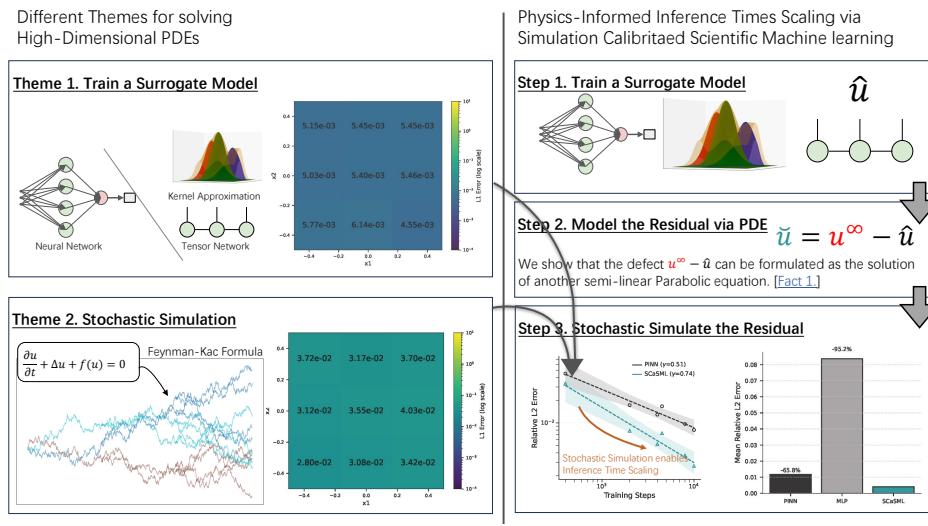
099 2.1 WARM UP: THE STRUCTURAL-PRESERVING LAW OF DEFECT FOR LINEAR 100 PARABOLIC PDEs

101 Let us begin with a high-dimensional linear parabolic PDE, a simpler setting that clarifies our core
 102 idea:

$$\begin{cases} \frac{\partial u}{\partial r} + \langle \mu, \nabla_y u \rangle + \frac{1}{2} \text{Tr}(\sigma^\top \text{Hess}_y u \sigma) = f(r, \mathbf{y}), & \text{on } [0, T] \times \mathbb{R}^d, \\ u(T, \mathbf{y}) = g(\mathbf{y}), & \text{on } \mathbb{R}^d. \end{cases} \quad (2)$$

103 Suppose we have a pre-trained surrogate model \hat{u} that approximates the true solution u . This surrogate
 104 is inevitably imperfect, producing a **residual** when plugged into the PDE. Our goal is to run a defect-
 105 correction method at inference time. The defect-correction method (Böhmer et al., 1984; Stetter,

a) SCaSML Framework Pipeline



b) Derivation of the Structural-preserving Law of Defect

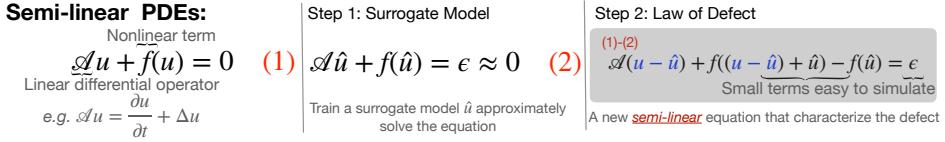


Figure 1: **Overview of the SCaSML framework.** (a) A pre-trained surrogate model \hat{u} provides an initial, approximate solution to the PDE. At inference time, SCaSML calculates the defect $\check{u} = u - \hat{u}$ via a stochastic simulation and adds it back to the surrogate prediction, yielding a more accurate final solution $u = \hat{u} + \check{u}$. (b) The Structural-preserving Law of Defect is derived by subtracting the PDE approximately satisfied by the surrogate \hat{u} from the original PDE. This process yields a new semi-linear PDE that describes the defect \check{u} , enabling its estimation through simulation.

1978) is a classical numerical strategy that improves an approximate solution by formulating and solving an equation for its residual-induced error. The first step is to find a new equation that describes the defect $\check{u}(r, y) := u(r, y) - \hat{u}(r, y)$, which represents the true, unknown error. To achieve this, we define this residual as:

$$\epsilon(r, y) := f(r, y) - \left(\frac{\partial \hat{u}}{\partial r} + \langle \mu, \nabla_y \hat{u} \rangle + \frac{1}{2} \text{Tr}(\sigma^\top \text{Hess}_y \hat{u} \sigma) \right). \quad (3)$$

By subtracting the equation for \hat{u} from (2), we arrive at the following governing law.

Definition 2.1 (Structural-preserving Law of Defect for Linear PDEs). *The defect $\check{u} := u - \hat{u}$ is the solution to the linear parabolic PDE:*

$$\begin{cases} \frac{\partial \check{u}}{\partial r} + \langle \mu, \nabla_y \check{u} \rangle + \frac{1}{2} \text{Tr}(\sigma^\top \text{Hess}_y \check{u} \sigma) = \epsilon(r, y), & \text{on } [0, T] \times \mathbb{R}^d, \\ \check{u}(T, y) = g(y) - \hat{u}(T, y), & \text{on } \mathbb{R}^d. \end{cases} \quad (4)$$

This Structural-preserving Law of Defect allows us to solve for the error \check{u} directly. Since (4) is a linear PDE, its solution can be expressed probabilistically via the Feynman–Kac formula:

$$\check{u}(s, x) = \mathbb{E} \left[(g(X_T^{s,x}) - \hat{u}(T, X_T^{s,x})) + \int_s^T \epsilon(t, X_t^{s,x}) dt \right], \quad (5)$$

where $\{X_t^{s,x}\}_{t \in [s, T]}$ is the stochastic process associated with the PDE’s linear operator. This representation allows us to estimate the defect \check{u} using Monte Carlo simulation.

Remark 2.2 (Regards Training and Inference Separation). *Training corresponds to solving the PDE globally on the entire domain, learning a map that approximates the solution everywhere. In contrast,*

162 *inference-time correction solves the PDE only at a specific, user-specified state. This separation is*
 163 *natural and parallels standard practices in machine learning: a base model is trained once to answer*
 164 *all queries, while computationally intensive refinement (like beam search or planning) is invoked*
 165 *at inference time only when high precision is required for a specific input. This separation enables*
 166 *“elastic compute,” allowing users to trade inference time for accuracy on demand without incurring*
 167 *the massive fixed cost of retraining the global model.*

168 **Intuition for Faster Convergence.** Why does this two-step process converge faster? The variance
 169 of the Monte Carlo estimator for \check{u} in (5) depends on the magnitude of the integrand, which is
 170 primarily the surrogate’s residual ϵ . A more accurate surrogate (i.e., smaller ϵ) leads to lower
 171 simulation variance. If the surrogate achieves an error of $e(\hat{u}) \sim m^{-\gamma}$ using m training points, the
 172 residual ϵ will be of a similar order, and the variance of our Monte Carlo estimator will be of order
 173 $m^{-2\gamma}$. By averaging over m new Monte Carlo paths at inference time, the final statistical error
 174 becomes $\sqrt{m^{-2\gamma}/m} = m^{-\gamma-1/2}$. Thus, for a total budget of $2m$ function evaluations, SCaSML
 175 achieves a faster convergence rate than both the surrogate ($m^{-\gamma}$) and a naive Monte Carlo solver
 176 ($m^{-1/2}$).

177 **Why Use Monte Carlo for Correction?** Neural networks and other common surrogates exhibit
 178 a *spectral bias*, preferentially learning low-frequency (smooth) components of the solution first
 179 (Rahaman et al., 2019). Consequently, the residual error ϵ is often a high-frequency, irregular function.
 180 While challenging for many function approximators, Monte Carlo methods are perfectly suited for
 181 this scenario, as their convergence rate is independent of the integrand’s smoothness. This makes
 182 Monte Carlo an ideal choice for the correction step, as it can efficiently average out the complex error
 183 signal left behind by the surrogate model.

2.2 EXTENSION TO SEMI-LINEAR PARABOLIC PDES

184 We now extend the **Monte-Carlo based inference time defect-correction procedure** to the general
 185 semi-linear PDE in (1). Let \hat{u} be a surrogate solution. We define its residual with respect to the PDE
 186 dynamics and the terminal condition as:

$$\begin{cases} \epsilon(r, \mathbf{y}) := \frac{\partial \hat{u}}{\partial r} + \mathcal{L}\hat{u} + F(\hat{u}, \sigma^\top \nabla_{\mathbf{y}} \hat{u}), \\ \check{g}(\mathbf{y}) := g(\mathbf{y}) - \hat{u}(T, \mathbf{y}). \end{cases} \quad (6)$$

187 By subtracting (6) from the original PDE in (1), we obtain the governing law for the defect $\check{u} = u - \hat{u}$.

188 **Fact 2.3** (Structural-preserving Law of Defect for Semi-linear PDEs). *The defect $\check{u}(r, \mathbf{y}) := u(r, \mathbf{y}) - \hat{u}(r, \mathbf{y})$ is the solution to the following semi-linear parabolic equation:*

$$\begin{cases} \frac{\partial \check{u}}{\partial r} + \mathcal{L}\check{u} + \check{F}(\check{u}, \sigma^\top \nabla_{\mathbf{y}} \check{u}) = 0, & \text{on } [0, T) \times \mathbb{R}^d, \\ \check{u}(T, \mathbf{y}) = \check{g}(\mathbf{y}), & \text{on } \mathbb{R}^d, \end{cases} \quad (7)$$

189 where the modified nonlinear term \check{F} is given by $\check{F}(\check{u}, \sigma^\top \nabla_{\mathbf{y}} \check{u}) := F(\hat{u} + \check{u}, \sigma^\top (\nabla_{\mathbf{y}} \hat{u} + \nabla_{\mathbf{y}} \check{u})) - F(\hat{u}, \sigma^\top \nabla_{\mathbf{y}} \hat{u}) + \epsilon$.

190 Notably, the Structural-preserving Law of Defect (7) **retains a semi-linear structure**. This is the key property that allows us to apply powerful stochastic solvers, such as the
 191 Multilevel Picard (MLP) iteration (Hutzenthaler et al., 2019), to estimate the defect \check{u} and correct the
 192 initial surrogate \hat{u} .

193 **How does the Structural-preserving Law of Defect differ from classical defect-correction methods?** Classical finite element methods admit a well-characterized asymptotic error
 194 expansion Strang et al. (1973), which enables defect-correction schemes to systematically remove the
 195 leading error term and improve convergence rates (Zienkiewicz & Zhu, 1992a;b; Bank & Weiser,
 196 1985). In contrast, no such asymptotic structure is available for neural networks: NN approximations
 197 lack any mesh-refinement hierarchy, their errors do not exhibit a polynomial expansion with respect
 198 to a single resolution parameter, and the optimization-induced approximation error provides no
 199 perturbative decomposition. A different family of debiasing techniques in numerical PDEs relies
 200 on iterative solvers such as Newton methods (Stetter, 1978; Dutt et al., 2000; Xu, 1994; Böhmer,
 201 1981) and quasi-Newton methods (Jameson et al., 1974; Heinrichs, 1996). However, these methods
 202 present two fundamental limitations in our setting. First, iterative updates produce only approximate
 203 corrections, whereas our law of defect is an exact analytical identity that delivers a closed-form
 204 unbiased correction in a single step. Second, embedding iterative methods into a Monte-Carlo

216 or Feynman–Kac framework is highly inefficient: each iteration requires recomputing residuals
 217 and Jacobian actions through additional Monte–Carlo estimators, producing a nested simulation
 218 hierarchy whose convergence rate rapidly deteriorates—from the standard $\mathcal{O}(N^{-1/2})$ rate for a single
 219 Monte–Carlo level, to $\mathcal{O}(N^{-1/4})$ for a second iteration, $\mathcal{O}(N^{-1/8})$ for a third, and so on as more
 220 levels are introduced. Practitioners are therefore forced to balance early-termination errors against
 221 the rapidly declining statistical efficiency of nested Monte–Carlo estimates, making these approaches
 222 both computationally expensive and numerically unstable.

223 **Practical Scenarios** In many applications, the quantity of interest is required only at a single
 224 state rather than across the full domain. For example, in optimal control and financial pricing (e.g.,
 225 nonlinear Black–Scholes (Eskiizmirliler et al., 2021; Santos & Ferreira, 2024)), practitioners need
 226 the value function and its gradient only at the current state to determine the next action or hedge;
 227 forward simulations can then be used to compute the Bellman error and correct the current decision.
 228 In rare-event analysis and committor problems in molecular dynamics, neural committor estimators
 229 (Khoo et al., 2019; Li et al., 2019; Hua et al., 2024; Lucente et al., 2019) can be refined using a small
 230 number of targeted simulations initiated from designated configurations. In goal-oriented estimation
 231 (Becker & Rannacher, 1996; 2001), the objective is often a specific functional of the solution rather
 232 than the full field. In all such settings, training a surrogate to high global accuracy is computationally
 233 wasteful. Our method uses the surrogate for a fast initial approximation and then applies a targeted
 234 Monte Carlo refinement at inference time, allocating computational effort precisely where accuracy
 235 is needed.

236 2.3 SIMULATING STRUCTURAL-PRESERVING LAW OF DEFECT USING MULTILEVEL 237 PICARD ITERATION

238 The defect PDE (7) is a semi-linear parabolic equation of the same structural form as (24) with
 239 a different closed nonlinear term. Under the standard regularity assumptions, the pair $\check{\mathbf{u}}^\infty =$
 240 $(\check{u}^\infty, [\sigma]^\top \nabla_y \check{u}^\infty)$ admits the Feynman–Kac and Bismut–Elworthy–Li representations presented in
 241 (27)–(28). Hence \mathbf{u}^∞ is the fixed point of the expectation operator Φ on $\text{Lip}([0, T] \times \mathbb{R}^d, \mathbb{R}^{1+d})$:

$$242 \check{\mathbf{u}}^\infty = \Phi(\check{\mathbf{u}}^\infty), \quad (8)$$

243 with Φ given exactly as in the appendix at (28). Intuitively, the operator Φ is a Feynman–Kac-type
 244 backward propagator. Given an approximation of the solution at a future time, Φ maps it back
 245 to the present by running a stochastic simulation forward in time and averaging over all resulting
 246 trajectories. Concretely, for each initial state x , it computes the expected terminal payoff together
 247 with the accumulated contribution of the nonlinearity \check{F} along the simulated path. The exact solution
 248 u^* is therefore characterized as the fixed point of this propagation: inserting u^* into the simulation
 249 leaves it unchanged, i.e., $\Phi u^* = u^*$. Standard Picard iteration $\check{\mathbf{u}}_{k+1} = \Phi(\check{\mathbf{u}}_k)$ converges to \mathbf{u}^∞
 250 under standard regularity assumptions (Yong & Zhou, 1999, Theorem 3.4).

251 Multilevel Picard (MLP) method (E et al., 2021; Hutzenthaler et al., 2020a), uses Multilevel
 252 Monte Carlo (MLMC) (Giles, 2008; 2015) to simulate the telescoping formulation $\mathbb{E}[\check{\mathbf{u}}_n] =$
 253 $\mathbb{E}[\Phi(\check{\mathbf{u}}_0)] + \sum_{l=1}^{n-1} \mathbb{E}[\Phi(\check{\mathbf{u}}_l) - \Phi(\check{\mathbf{u}}_{l-1})]$. The MLMC method exploits a hierarchy of approxi-
 254 mations $\Phi(\check{\mathbf{u}}_0), \Phi(\check{\mathbf{u}}_1), \dots, \Phi(\check{\mathbf{u}}_n)$, ranging from the coarsest to the finest resolution. Crucially,
 255 consecutive approximations $(\Phi(\check{\mathbf{u}}_l))^{(i)}$ and $(\Phi(\check{\mathbf{u}}_{l-1}))^{(i)}$ are generated using the same underlying
 256 sample path i , which induces a strong positive correlation between them. As a result, the variance
 257 of their difference is significantly reduced. Moreover, as the level l increases, the iterates converge
 258 linearly $\check{\mathbf{u}}_l - \check{\mathbf{u}}_{l-1} \rightarrow 0$, and the variance of the difference decreases linearly toward zero. As a
 259 consequence, the required number of samples M^{n-l} can decrease as l increases, meaning very few
 260 expensive samples are needed at the finest levels. The majority of the computational cost is thereby
 261 shifted to the coarser levels, significantly reducing the overall complexity of the estimation.

262 Another factor affecting the variance is how the time integral is computed; we used two MLP variants
 263 to simulate Structural-preserving Law of Defect:

- 264 • **Quadrature MLP:** (E et al., 2021) Simulate the time integrals by the Gauss–Legendre quadrature.
- 265 • **Full-history MLP:** (Hutzenthaler et al., 2021) Simulate the time integrals by Monte Carlo.

266 We leave all the preliminaries and implementation details of the MLP methods in Appendix B.2.1.
 267 The overall SCaML procedure, which involves first training a surrogate model and then solving the
 268 Structural-preserving Law of Defect with MLP methods to correct it, is summarized
 269 in Algorithm C.

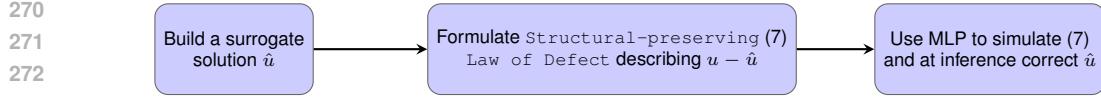


Figure 2: **Flow diagram of SCaSML.** We formulate the error $u - \hat{u}$ of surrogate solution \hat{u} as the solution Structural-preserving Law of Defect (7), a new **semi-linear PDE**. At inference time, we approximate $u - \hat{u}$ via solving Structural-preserving Law of Defect using Multilevel Picard (MLP) iteration. The generated estimation of $u - \hat{u}$ helps us to calibrate the surrogate solution \hat{u} .

2.4 PROVABLY ACCELERATED CONVERGENCE

We now provide theoretical guarantees for SCaSML, showing that it achieves a provably faster convergence rate. For simplicity, we present results for the case $\mu = 0$ and $\sigma = s\mathbf{I}_d$. Our analysis relies on the assumption that the pre-trained surrogate is reasonably accurate.

Why SCaSML Enjoys Provable Faster Convergence Rate. The Monte Carlo error in MLP methods depends on the scale of the terminal defect \check{g} and the modified nonlinearity \check{F} , which depends on the error of the surrogate model. A more accurate surrogate model yields smaller \check{g} and \check{F} , resulting in reduced variance during inference. If the surrogate achieves an error of $e(\hat{u}) \sim m^{-\gamma}$ (Assumption 2.4) from m training points, then the variance is $O(m^{-2\gamma})$. During inference, we average over m additional Monte Carlo paths, which reduces the statistical error $\sqrt{\frac{m^{-2\gamma}}{m}} = m^{-\gamma - \frac{1}{2}}$ (Blanchet et al., 2023). With a total computation cost of $2m$ function evaluations, SCaSML therefore attains a convergence rate that surpasses both the surrogate method $m^{-\gamma}$ and the standard MLP / Monte-Carlo estimator $m^{-1/2}$. Full constant-tracking and rigorous proofs are in Appendices F and E.

Assumption 2.4 (Surrogate Model Accuracy). *Let the true defect be well-behaved such that $\sup_{t \in [0, T]} \|\check{u}(t, \cdot)\|_{W^{1,\infty}} < \infty$. We assume the surrogate error is bounded by a measure $e(\hat{u})$, such that for constants $C_{F,1}, C_{F,2} > 0$:*

1. **L^∞ Residual:** $\sup_{r, y} |\epsilon(r, y)| \leq C_{F,1} e(\hat{u})$.
2. **$W^{1,\infty}$ Error:** $\sup_r \|\check{u}(r, \cdot)\|_{W^{1,\infty}} \leq C_{F,2} e(\hat{u})$.

Proof Sketch. Our main theoretical result stems from the observation that the computational complexity of the MLP solver depends on the Lipschitz constant of the nonlinearity \check{F} and the magnitude of the "source terms". They appear multiplicatively because nonlinearities—through their Lipschitz bounds—propagate and magnify variance at every Picard iteration. The "source term" driving the Multilevel Picard simulation for the defect is the residual ϵ , already reduced by the surrogate. At the same time, we show that the regularity in the law of defect is no worse than that of the original PDE, ensuring that the refinement introduces no additional smoothness requirements. Combining the previous fact, a more accurate surrogate makes the defect PDE "easier" to solve. This leads to our main error bound.

Theorem 2.5 (Global L^2 Error Bound). *Under standard regularity assumptions on the PDE coefficients (Assumptions E.2–D.7), the global L^2 error of the SCaSML estimator using a full-history MLP approximation $\check{\mathbf{U}}_{N,M}$ with N levels and use M^l Monte Carlo samples at l -th level is bounded by:*

$$\sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} \left\| \check{\mathbf{U}}_{N,M}(t, \mathbf{x}) - \check{u}(t, \mathbf{x}) \right\|_{L^2} \leq E(M, N) \cdot (C_F e(\hat{u})), \quad (9)$$

where $\check{u} = (\check{u}, \sigma \nabla_{\mathbf{x}} \check{u})$ is the true defect and its gradient, and $E(M, N)$ represents the error term of the underlying MLP solver, which depends on M and N but is independent of the surrogate.

Theorem 2.5 shows that the final error is the product of the MLP simulation error and the surrogate model error. This synergistic relationship implies that the computational cost to reach a global L^2 error of ε is reduced from $O(d \varepsilon^{-(2+\delta)})$ for a naive MLP solver to $O(d \varepsilon^{-(2+\delta)} e(\hat{u})^{2+\delta})$ for SCaSML (see Corollary E.9 in Appendix). **This means the cost of our correction step decreases as the quality of the initial surrogate improves.** This directly leads to an improved scaling law.

Corollary 2.6 (Improved Scaling Law). *Under the assumptions of Theorem 2.5, suppose the surrogate model's error scales as $e(\hat{u}) = O(m^{-\gamma})$ with m training points. By allocating an additional m*

Table 1: Comparative performance of full-history SCaSML against the surrogate model (**SR**: PINN or GP) and a naive MLP solver. We report total runtime (s) and relative errors in L^2 , L^∞ , and L^1 norms. Bold values indicate the best performance in each category. SCaSML consistently achieves the lowest error across nearly all settings.

Problem	Time (s)			Relative L^2 Error			L^∞ Error			L^1 Error			
	SR	MLP	SCaSML	SR	MLP	SCaSML	SR	MLP	SCaSML	SR	MLP	SCaSML	
LCD	10d	0.45	6.77	13.31	5.20E-02	2.27E-01	2.74E-02	2.50E-01	9.06E-01	1.65E-01	3.39E-02	1.67E-01	1.78E-02
	20d	0.54	6.73	17.11	9.00E-02	2.35E-01	4.72E-02	4.72E-01	1.35E+00	3.30E-01	9.37E-02	2.37E-01	4.52E-02
	30d	0.46	6.89	22.44	1.45E-01	2.38E-01	9.72E-02	2.04E+00	1.59E+00	7.69E-01	1.61E-01	2.84E-01	1.04E-01
	60d	0.28	6.94	37.59	3.13E-01	2.39E-01	1.32E-01	3.24E+00	2.05E+00	1.57E+00	5.35E-01	4.07E-01	2.06E-01
VB-PINN	20d	0.54	6.80	10.59	1.17E-02	8.36E-02	4.03E-03	3.26E-02	2.96E-01	2.26E-02	5.36E-03	3.39E-02	1.29E-03
	40d	0.29	8.11	14.09	4.06E-02	1.04E-01	2.92E-02	8.43E-02	3.57E-01	7.43E-02	2.00E-02	4.36E-02	1.24E-02
	60d	3.14	11.36	38.30	3.95E-02	1.17E-01	2.88E-02	8.20E-02	3.93E-01	7.20E-02	1.94E-02	4.82E-02	1.22E-02
	80d	3.65	11.78	42.50	6.74E-02	1.19E-01	5.64E-02	1.90E-01	3.35E-01	1.80E-01	3.21E-02	4.73E-02	2.46E-02
VB-GP	20d	1.74	10.56	61.82	1.47E-01	1.90E-01	6.23E-02	3.54E-01	5.72E-01	2.54E-01	7.01E-02	8.00E-02	2.48E-02
	40d	1.78	12.28	61.28	1.81E-01	2.20E-01	8.55E-02	4.00E-01	8.71E-01	3.00E-01	9.19E-02	9.06E-02	3.82E-02
	60d	1.68	9.70	57.79	2.40E-01	2.57E-01	1.28E-01	3.84E-01	9.50E-01	2.84E-01	1.27E-01	9.99E-02	6.11E-02
	80d	1.69	10.12	60.69	2.66E-01	3.02E-01	1.52E-01	3.61E-01	1.91E+00	2.61E-01	1.45E-01	1.09E-01	7.59E-02
LQG	100d	0.42	8.27	21.33	7.97E-02	5.63E+00	5.53E-02	7.82E-01	1.26E+01	6.82E-01	1.40E-01	1.21E+01	8.72E-02
	120d	0.32	8.52	23.98	9.40E-02	5.50E+00	6.66E-02	9.06E-01	1.27E+01	8.06E-01	1.74E-01	1.22E+01	1.06E-01
	140d	0.40	8.65	27.31	9.87E-02	5.37E+00	6.84E-02	9.96E-01	1.27E+01	8.96E-01	1.93E-01	1.23E+01	1.12E-01
	160d	0.34	8.09	29.95	1.12E-01	5.27E+00	9.94E-02	1.40E+00	1.28E+01	1.30E+00	2.17E-01	1.23E+01	1.79E-01
DR	100d	0.32	7.59	58.51	1.41E-02	8.99E-02	1.11E-02	9.58E-02	6.37E-01	8.58E-02	1.87E-02	9.74E-02	1.38E-02
	120d	0.33	7.16	68.28	1.11E-02	9.13E-02	1.03E-02	7.50E-02	5.74E-01	6.50E-02	1.39E-02	9.97E-02	1.29E-02
	140d	0.42	7.73	79.99	3.22E-02	8.97E-02	3.00E-02	1.82E-01	8.56E-01	1.72E-01	4.03E-02	9.77E-02	3.75E-02
	160d	0.37	7.22	86.77	3.45E-02	9.00E-02	3.22E-02	2.08E-01	8.02E-01	1.98E-01	4.30E-02	9.75E-02	4.00E-02

samples for the inference-time simulation, the total error of the SCaSML procedure improves from $O(m^{-\gamma})$ to $O(m^{-\gamma-1/2+o(1)})$.

3 NUMERICAL RESULTS

We now empirically validate the SCaSML framework across a suite of challenging high-dimensional PDEs. In each experiment, we first train a baseline surrogate model \hat{u} (either a Physics-Informed Neural Network or a Gaussian Process) to obtain an approximate solution. Then, at inference time, we apply a full-history Multilevel Picard (MLP) solver to the Structural-preserving Law of Defect (Fact 2.3) to compute a correction term \tilde{u} . The final SCaSML solution is the sum $u_{\text{SCaSML}} = \hat{u} + \tilde{u}$.

The primary goal of these experiments is to demonstrate the value added by the correction step. Thus, our key comparison is between the baseline surrogate model (SR) and the final corrected solver (SCaSML). We also include the naive MLP solver for reference, to show that the hybrid approach succeeds where pure simulation often fails. Our implementation leverages JAX (Bradbury et al., 2018) and DeepXDE (Lu et al., 2021) for efficient, parallelized computation.

As shown in Figure 3a, SCaSML consistently tightens the error distribution compared to the base surrogate. Refer to Appendix G.6 for detailed pointwise error maps. Figure 3b demonstrates SCaSML’s effective inference-time scaling: as more computational resources (i.e., Monte Carlo samples) are allocated, the accuracy of the solution progressively improves. A comprehensive comparison of error metrics and timings is provided in Table 1, and the empirical validation of our theoretical scaling law is shown in Figure 4. **More experiments, including statistical significance tests ($p \ll 0.001$, Appendix G.4) and fixed-budget efficiency comparisons (Appendix G.7), are shown in the Appendix G.**

3.1 LINEAR CONVECTION-DIFFUSION EQUATION

Problem Formulation. We investigate a linear convection-diffusion equation given by $\frac{\partial}{\partial r}u(r, \mathbf{y}) + \left\langle -\frac{1}{d}\mathbf{1}, \nabla_{\mathbf{y}}u(r, \mathbf{y}) \right\rangle + \Delta_{\mathbf{y}}u(r, \mathbf{y}) = 0$, $(r, \mathbf{y}) \in [0, T] \times \mathbb{R}^d$, with the terminal condition $u(T, \mathbf{y}) = \sum_{i=1}^d y_i + T$, $\mathbf{y} \in \mathbb{R}^d$. This PDE admits the explicit solution $u(r, \mathbf{y}) = \sum_{i=1}^d y_i + r$.

Experimental Setup. The problem is solved over the hypercube $[0, 0.5] \times [0, 0.5]^d$ for dimensions $d \in \{10, 20, 30, 60\}$ with Dirichlet boundary conditions enforced by the PINN loss. We deploy a Physics-Informed Neural Network (PINN) with 5 hidden layers, 50 neurons each, and a tanh activation function. Training uses the Adam optimizer (learning rate 7×10^{-4} , $\beta_1 = 0.9$, $\beta_2 = 0.99$)

378 for 10^4 iterations. At each iteration, the network is trained on 2.5×10^3 interior and 10^2 boundary
 379 collocation points. For the inference step, we use a 2-level simulation with $M = 10$ as the basis
 380 of Monte Carlo samples at each level in Multilevel Picard iteration for the tabulated results and
 381 $M \in \{10, \dots, 16\}$ for the scaling study. A clipping threshold of $0.5(d+1)$ is applied to the solution
 382 and gradients for both the naive MLP and SCaSML.

383 **Results.** As reported in Table 1 (**LCD**), SCaSML achieves a reduction in the relative L^2 error
 384 from 20% to 56.9% compared to the baseline PINN surrogate. Moreover, SCaSML exhibits robust
 385 inference scaling, with performance improving as more inference time is allocated (see Figure 10).

387 3.2 VISCOUS BURGERS EQUATION

389 **Problem Formulation.** Next, we consider a viscous Burgers equation from (Hutzenthaler et al.,
 390 2019), a standard benchmark for nonlinear PDEs: $\frac{\partial u}{\partial r} + \left\langle -\left(\frac{1}{d} + \frac{\sigma_0^2}{2}\right) \mathbf{1}, \nabla_y u \right\rangle + \frac{\sigma_0^2}{2} \Delta_y u +$
 391 $\sigma_0 u \sum_{i=1}^d (\sigma_0 \nabla_y u)_i = 0$, with terminal condition $u(T, \mathbf{y}) = \frac{\exp(T + \sum_{i=1}^d y_i)}{1 + \exp(T + \sum_{i=1}^d y_i)}$. The exact solution
 392 is $u(r, \mathbf{y}) = \frac{\exp(r + \sum_{i=1}^d y_i)}{1 + \exp(r + \sum_{i=1}^d y_i)}$.

394 **Experimental Setup.** We solve the PDE on $[0, 0.5] \times [-0.5, 0.5]^d$ for dimensions $d \in$
 395 $\{20, 40, 60, 80\}$ with $\sigma_0 = \sqrt{2}$. We test SCaSML with two types of surrogates. The PINN was
 396 trained for 10^4 iterations using the Adam optimizer (learning rate 7×10^{-4} , $\beta_1 = 0.9$, and $\beta_2 = 0.99$),
 397 utilizing 2,500 interior, 100 boundary, and 160 terminal condition sample points. A Gaussian Process
 398 (GP) regression surrogate was trained over 20 iterations via Newton’s method, using 1,000 interior
 399 and 200 boundary points. For the 2-level MLP and SCaSML solvers with the basis of Monte Carlo
 400 samples $M = 10$, we set clipping thresholds of 1.0 and 0.01, respectively, to handle the nonlinearity.

402 **Results.** SCaSML demonstrates strong performance with both surrogate types. For the PINN
 403 surrogate (**VB-PINN**), it reduces the relative L^2 error by 16.2% to 66.1%. For the GP surrogate
 404 (**VB-GP**), the reduction is even more pronounced, ranging from 42.7% to 57.5% (Table 1). This
 405 highlights SCaSML’s versatility as a plug-and-play corrector for different SciML models.

408 3.3 HIGH-DIMENSIONAL HAMILTON-JACOBI-BELLMAN EQUATION

410 **Problem Formulation.** To showcase SCaSML on problems central to control theory, we tackle a
 411 high-dimensional Hamilton-Jacobi-Bellman (HJB) equation arising from a linear-quadratic-Gaussian
 412 (LQG) control problem (Han et al., 2018b). The HJB equation is given by $\frac{\partial u}{\partial r} + \Delta_y u - \|\nabla_y u\|^2 = 0$,
 413 with terminal condition $u(T, \mathbf{y}) = \log\left(\frac{1 + \sum_{i=1}^{d-1} [c_{1,i}(y_i - y_{i+1})^2 + c_{2,i}y_{i+1}^2]}{2}\right)$, where $c_{1,i}$ and $c_{2,i}$ are
 414 independent random draws from interval $[0.5, 1.5]$. The reference solution is computed via $u(r, \mathbf{y}) =$
 415 $-\log \mathbb{E} \exp(-u(T, \mathbf{y} + \sqrt{2}W_{T-r}))$ with sufficiently large sample sizes (e.g. $100d$).

416 **Experimental Setup.** Following (Hu et al., 2024), we use a complex, non-trivial terminal condition
 417 and evaluate the problem in very high dimensions, $d \in \{100, 120, 140, 160\}$. The PINN surrogate
 418 is trained for 2.5×10^3 iterations on the domain $[0, 0.5] \times \mathbb{B}^d$, where \mathbb{B}^d is the unit ball in \mathbb{R}^d , with
 419 100 interior and 1,000 boundary points per iteration. We use the Adam optimizer with a learning
 420 rate of 10^{-3} , $\beta_1 = 0.9$, and $\beta_2 = 0.99$. For inference steps, we set total level $n = 2$ and the basis of
 421 Monte Carlo samples at each level $M = 10$, where n is the total level and M^l is sample used at level
 422 l for $0 \leq l \leq n$. To stabilize the simulation for this strongly nonlinear problem, we use a clipping
 423 threshold of 10 for the naive MLP and a much smaller threshold of 0.1 for SCaSML, reflecting
 424 the smaller magnitude of the defect. To accelerate computations, we use Hutchinson’s method to
 425 stochastically estimate the Laplacian and divergence terms, sampling $d/4$ dimensions at each step
 (Hutchinson, 1989; Girard, 1989; Shi et al., 2025).

427 **Results.** In this challenging high-dimensional setting (**LQG**), the naive MLP solver fails entirely,
 428 producing large errors. In contrast, SCaSML successfully refines the PINN solution, reducing the
 429 relative L^2 error by 11.7% to 30.8% and achieving the lowest error across all metrics (Table 1).

430 3.4 DIFFUSION-REACTION EQUATION WITH AN OSCILLATING SOLUTION

431 **Problem Formulation.** Finally, we consider a diffusion-reaction system designed to have a highly
 432 oscillatory solution (Gobet & Turkedjiev, 2017; Han et al., 2018b), making it particularly difficult

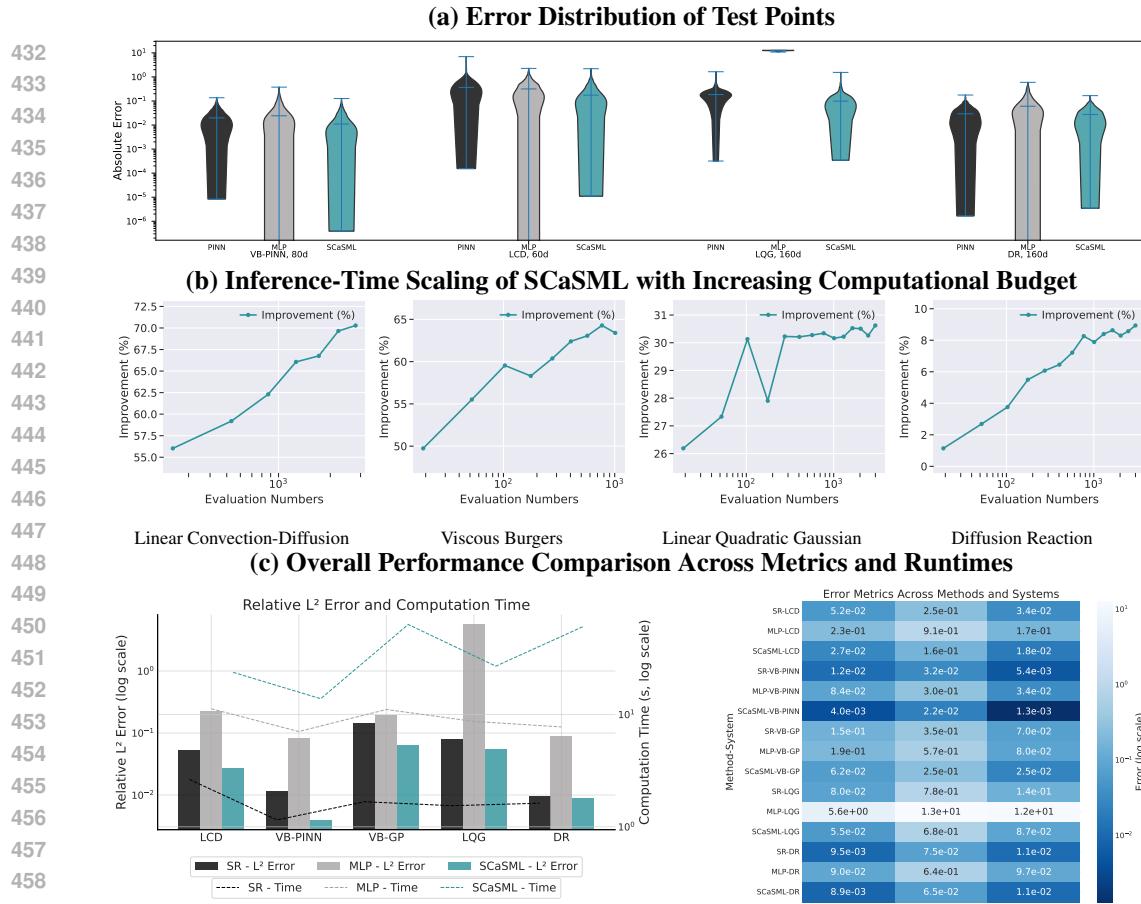


Figure 3: **Efficiency and performance of the SCaSML methodology.** (a) Violin plots showing the distribution of pointwise errors. SCaSML consistently reduces the mean error and tightens the distribution compared to the surrogate (SR) model. (b) Inference-time scaling. As the number of inference-time simulation samples increases, SCaSML’s error steadily decreases, demonstrating effective use of additional compute. (c) Summary of performance. The left panel shows that SCaSML (blue stars) consistently achieves lower L^2 error than both the surrogate (SR) and naive MLP methods across all problems. The right panel (heatmap) confirms that SCaSML also dominates in L^∞ and L^1 error metrics.

for standard neural network surrogates $\frac{\partial u}{\partial r} + \frac{1}{2} \Delta_y u + \min\{1, (u - u^*)^2\} = 0$, where $u^*(r, y) = 1.6 + \sin(0.1 \sum_{i=1}^d y_i) \exp(\frac{0.01d(r-1)}{2})$ is the exact solution.

Experimental Setup. We solve the problem for dimensions $d \in \{100, 120, 140, 160\}$ on the domain $[0, 1] \times \mathbb{B}^d$. The PINN surrogate is trained for 2.5×10^3 iterations with 1,000 interior and 1,000 boundary points, using the Adam optimizer with a learning rate of 10^{-3} , $\beta_1 = 0.9$, and $\beta_2 = 0.99$. For inference steps, we set total level $n = 2$ and the basis of Monte Carlo samples at each level $M = 10$. The MLP and SCaSML solvers use clipping thresholds of 10 and 0.01, respectively. Due to the solution’s oscillatory nature, we found that the Hutchinson estimator for the Laplacian introduced instability; therefore, we computed the full Laplacian in this experiment.

Results. Even though the PINN surrogate is already quite accurate for this problem, SCaSML is still able to provide a consistent refinement. As shown in Table 1 (DR), SCaSML further reduces the relative L^2 error by 6.6% to 10.9%, demonstrating its capability to improve even well-performing surrogates on complex, high-frequency problems.

4 CONCLUSION AND DISCUSSION

We introduced **SCaSML**, the first physics-informed inference time scaling framework that integrates surrogate models with Monte-Carlo numerical simulations for solving high-dimensional

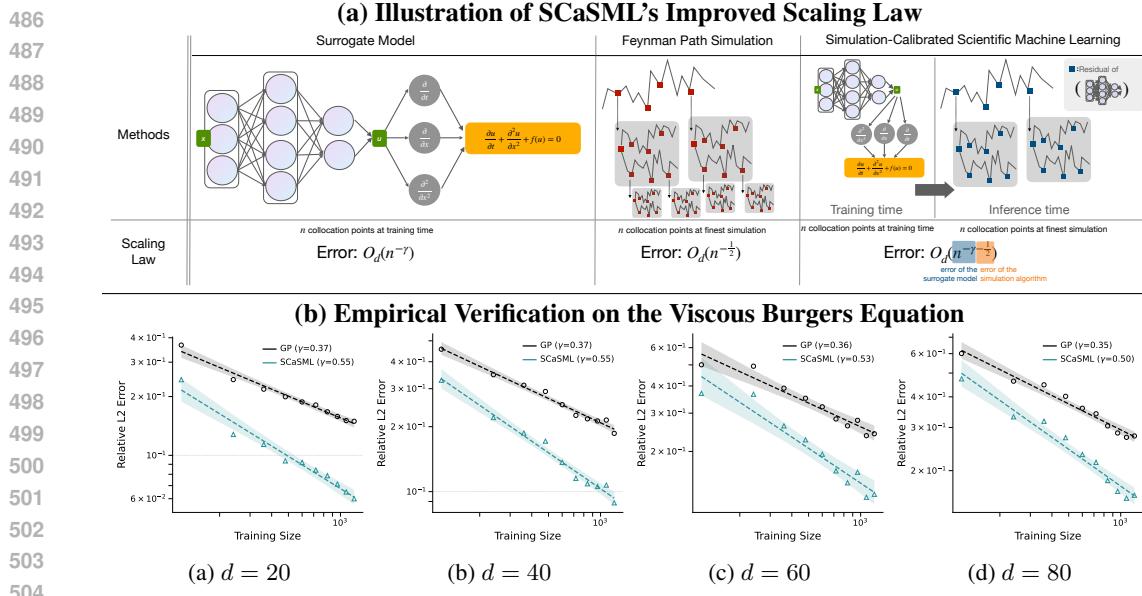


Figure 4: **Empirical verification of the improved scaling law for SCaSML.** (a) Conceptual diagram. The final SCaSML error is a product of the surrogate error and the simulation error (Theorem 2.5). By balancing the computational budget between training the surrogate and performing inference-time simulation, SCaSML achieves a faster overall convergence rate (Corollary 2.6). (b) Numerical results. We plot the L^2 error versus the number of collocation points (m) on a log-log scale for a GP surrogate and SCaSML. The slope of the line corresponds to the convergence rate γ . SCaSML consistently exhibits a steeper slope than the base surrogate, empirically confirming its accelerated convergence.

PDE. By introducing **Structural-preserving Law of Defect**, we use the output of a pre-trained ScIML solver as an efficient starting point for inference-time corrections. Our theory and experiments show this hybrid approach achieves faster convergence and reduces errors by up to 80% in complex high-dimensional PDEs. SCaSML represents a new approach in hybrid scientific computing. Unlike previous work that used machine learning for discovering numerical schemes (Long et al., 2018) or as preconditioners (Hsieh et al., 2019), our framework uses the machine learning model as a control variate in stochastic simulations to reduce the variance of Monte Carlo simulation. The surrogate handles the low-frequency part, allowing the simulation to focus on the small high-frequency residual, and enhances computational efficiency by addressing model bias at inference time. **This establishes an *elastic compute* paradigm, allowing users to trade inference time for accuracy on demand—achieving gains that are often computationally intractable through further training alone. SCaSML is the first inference-time scaling algorithm that enhances the learned surrogate solution during inference without requiring fine-tuning or retraining.**

REFERENCES

Randolph E Bank and Alan Weiser. Some a posteriori error estimators for elliptic partial differential equations. *Mathematics of computation*, 44(170):283–301, 1985.

Pau Batlle, Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. Error analysis of kernel/gp methods for nonlinear and parametric pdes. *arXiv preprint arXiv:2305.04962*, 05, 2023.

Roland Becker and Rolf Rannacher. *A feed-back approach to error control in finite element methods: Basic analysis and examples*. IWR, 1996.

Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. *Acta numerica*, 10:1–102, 2001.

Richard Bellman. Dynamic programming and a new formalism in the calculus of variations. *Proceedings of the National Academy of Sciences*, 40(4):231–235, 1954. doi: 10.1073/pnas.40.4.231. URL <https://www.pnas.org/doi/abs/10.1073/pnas.40.4.231>.

540 Jose Blanchet, Haoxuan Chen, Yiping Lu, and Lexing Ying. When can regression-adjusted control
 541 variate help? rare events, sobolev embedding and minimax optimality. *Advances in Neural*
 542 *Information Processing Systems*, 36:36566–36578, 2023.

543

544 K Böhmer, PW Hemker, and HJ Stetter. The defect correction approach. In *Defect Correction*
 545 *Methods: Theory and Applications*, pp. 1–32. Springer, 1984.

546

547 Klaus Böhmer. Discrete newton methods and iterated defect corrections. *Numerische Mathematik*,
 548 37(2):167–192, 1981.

549

550 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
 551 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
 552 Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
 553 <http://github.com/jax-ml/jax>.

554

555 P. Briand and C. Labart. Simulation of BSDEs by Wiener chaos expansion. *The Annals of Applied*
 556 *Probability*, 24(3):1129–1171, 2014.

557

558 Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. Solving and learning
 559 nonlinear pdes with gaussian processes. *Journal of Computational Physics*, 447:110668, 2021.

560

561 Yifan Chen, Houman Owhadi, and Florian Schäfer. Sparse cholesky factorization for solving nonlinear
 562 pdes via gaussian processes, 2024. URL <https://arxiv.org/abs/2304.01294>.

563

564 Giuseppe Da Prato and Jerzy Zabczyk. Differentiability of the feynman-kac semigroup and a control
 565 application. *Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e*
 566 *Naturali. Rendiconti Lincei. Matematica e Applicazioni*, 8(3):183–188, 1997.

567

568 Alok Dutt, Leslie Greengard, and Vladimir Rokhlin. Spectral deferred correction methods for
 569 ordinary differential equations. *BIT Numerical Mathematics*, 40(2):241–266, 2000.

570

571 Weinan E, Martin Hutzenthaler, Arnulf Jentzen, and Thomas Kruse. Multilevel picard iterations
 572 for solving smooth semilinear parabolic heat equations. *Partial Differential Equations and Ap-*
 573 *plications*, 2(6), November 2021. ISSN 2662-2971. doi: 10.1007/s42985-021-00089-5. URL
 574 <http://dx.doi.org/10.1007/s42985-021-00089-5>.

575

576 K David Elworthy and Xue-Mei Li. Formulae for the derivatives of heat semigroups. *Journal of*
 577 *Functional Analysis*, 125(1):252–286, 1994.

578

579 Saadet Eskiizmirli, Korhan Günel, and Refet Polat. On the solution of the black–scholes equation
 580 using feed-forward neural networks. *Computational Economics*, 58(3):915–941, 2021.

581

582 Michael B Giles. Multilevel monte carlo path simulation. *Operations research*, 56(3):607–617, 2008.

583

584 Michael B Giles. Multilevel monte carlo methods. *Acta numerica*, 24:259–328, 2015.

585

586 Antoine Girard. A fast ‘monte-carlo cross-validation’ procedure for large least squares problems with
 587 noisy data. *Numerische Mathematik*, 56:1–23, 1989.

588

589 E. Gobet and P. Turkedjiev. Adaptive importance sampling in least-squares monte carlo algorithms
 590 for backward stochastic differential equations. *Stochastic Processes and their Applications*, 127(4):
 591 1171–1203, 2017. ISSN 0304-4149. doi: <https://doi.org/10.1016/j.spa.2016.07.011>. URL <https://www.sciencedirect.com/science/article/pii/S0304414916301235>.

592

593 Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
 594 using deep learning. *Proceedings of the National Academy of Sciences*, 115(34):8505–8510, 2018a.

595

596 Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
 597 using deep learning. *Proceedings of the National Academy of Sciences*, 115(34):8505–8510,
 598 2018b. doi: 10.1073/pnas.1718942115. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1718942115>.

599

600 Wilhelm Heinrichs. Defect correction for convection-dominated flow. *SIAM Journal on Scientific*
 601 *Computing*, 17(5):1082–1091, 1996.

594 Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning
 595 neural pde solvers with convergence guarantees. *arXiv preprint arXiv:1906.01200*, 06, 2019.
 596

597 Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse of
 598 dimensionality with physics-informed neural networks. *Neural Networks*, 176:106369, August
 599 2024. ISSN 0893-6080. doi: 10.1016/j.neunet.2024.106369. URL <http://dx.doi.org/10.1016/j.neunet.2024.106369>.
 600

601 Xinru Hua, Rasool Ahmad, Jose Blanchet, and Wei Cai. Accelerated sampling of rare events using a
 602 neural network bias potential. *arXiv preprint arXiv:2401.06936*, 2024.
 603

604 Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
 605 smoothing splines. *Communications in Statistics-Simulation and Computation*, 18(3):1059–1076,
 606 1989.

607 Martin Hutzenthaler and Thomas Kruse. Multilevel picard approximations of high-dimensional
 608 semilinear parabolic differential equations with gradient-dependent nonlinearities. *SIAM Journal on
 609 Numerical Analysis*, 58(2):929–961, January 2020. ISSN 1095-7170. doi: 10.1137/17m1157015.
 610 URL <http://dx.doi.org/10.1137/17m1157015>.
 611

612 Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, et al. On multilevel picard numerical approximations
 613 for high-dimensional nonlinear parabolic partial differential equations and high-dimensional
 614 nonlinear backward stochastic differential equations. *Journal of Scientific Computing*, 79(3):
 615 1534–1571, 2019.

616 Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, Tuan Anh Nguyen, and Philippe von Wurstemberger.
 617 Overcoming the curse of dimensionality in the numerical approximation of semilinear
 618 parabolic partial differential equations. *Proceedings of the Royal Society A: Mathematical,
 619 Physical and Engineering Sciences*, 476(2244), December 2020a. ISSN 1471-2946. doi:
 620 10.1098/rspa.2019.0630. URL <http://dx.doi.org/10.1098/rspa.2019.0630>.
 621

622 Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, and Tuan Anh Nguyen. Multilevel picard
 623 approximations for high-dimensional semilinear second-order pdes with lipschitz nonlinearities,
 624 2020b.

625 Martin Hutzenthaler, Arnulf Jentzen, and Thomas Kruse. Overcoming the curse of dimensionality in
 626 the numerical approximation of parabolic partial differential equations with gradient-dependent
 627 nonlinearities. *Foundations of Computational Mathematics*, 22(4):905–966, July 2021. ISSN
 628 1615-3383. doi: 10.1007/s10208-021-09514-y. URL <http://dx.doi.org/10.1007/s10208-021-09514-y>.
 629

630 Antony Jameson et al. Iterative solution of transonic flows over airfoils and wings, including flows at
 631 mach 1. *Communications on pure and applied mathematics*, 27(3):283–309, 1974.
 632

633 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 634 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

635 Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving for high-dimensional committor functions
 636 using artificial neural networks. *Research in the Mathematical Sciences*, 6(1):1, 2019.
 637

638 Stig Larsson and Vidar Thomée. *Partial differential equations with numerical methods*, volume 45.
 639 Springer, 2003.

640 Qianxiao Li, Bo Lin, and Weiqing Ren. Computing committor functions for the study of rare events
 641 using deep learning. *The Journal of Chemical Physics*, 151(5), 2019.

643 Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
 644 *International conference on machine learning*, pp. 3208–3216. PMLR, 2018.
 645

646 Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
 647 for solving differential equations. *SIAM Review*, 63(1):208–228, January 2021. ISSN 1095-7200.
 doi: 10.1137/19m1274067. URL <http://dx.doi.org/10.1137/19m1274067>.

648 Dario Lucente, Stefan Duffner, Corentin Herbert, Joran Rolland, and Freddy Bouchet. Machine
 649 learning of committor functions for predicting high impact climate events. *arXiv preprint*
 650 *arXiv:1910.11736*, 2019.

651 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
 652 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International conference*
 653 *on machine learning*, pp. 5301–5310. PMLR, 2019.

654 Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning
 655 (part i): Data-driven solutions of nonlinear partial differential equations, 2017. URL <https://arxiv.org/abs/1711.10561>.

656 Research Group on Stochastic Analysis, University of Duisburg-Essen. Multilevel picard approxi-
 657 mation, 2025. URL https://www.uni-due.de/mathematik/ag_stochastische_analysis/mlp. Accessed: March 26, 2025.

658 Lorenz Richter, Leon Sallandt, and Nikolas Nüsken. Solving high-dimensional parabolic pdes using
 659 the tensor train format. In *International Conference on Machine Learning*, pp. 8998–9009. PMLR,
 660 2021.

661 Daniel de Souza Santos and Tiago Alessandro Espinola Ferreira. Neural network learning of black-
 662 scholes equation for option pricing. *arXiv preprint arXiv:2405.05780*, 2024.

663 Sebastian Becker Sebastian Becker, Ramon Braunwarth Ramon Braunwarth, Martin Hutzenthaler
 664 Martin Hutzenthaler, Arnulf Jentzen Arnulf Jentzen, and Philippe von Wurstemberger Philippe von
 665 Wurstemberger. Numerical simulations for full history recursive multilevel picard approximations
 666 for systems of high-dimensional partial differential equations. *Communications in Computational
 667 Physics*, 28(5):2109–2138, January 2020. ISSN 1815-2406. doi: 10.4208/cicp.oa-2020-0130.
 668 URL <http://dx.doi.org/10.4208/cicp.OA-2020-0130>.

669 Zekun Shi, Zheyuan Hu, Min Lin, and Kenji Kawaguchi. Stochastic taylor derivative estimator:
 670 Efficient amortization for arbitrary differential operators, 2025. URL <https://arxiv.org/abs/2412.00088>.

671 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling l1m test-time compute optimally
 672 can be more effective than scaling model parameters, 2024.

673 Hans J Stetter. The defect correction principle and discretization methods. *Numerische Mathematik*,
 674 29(4):425–443, 1978.

675 Gilbert Strang, George J Fix, et al. *An analysis of the finite element method*, volume 212. Prentice-hall,
 676 1973.

677 Michael Unser. A unifying representer theorem for inverse problems and machine learning. *Founda-
 678 tions of Computational Mathematics*, 21(4):941–960, 2021.

679 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 680 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models, 2022.

681 E Weinan, Jiequn Han, and Arnulf Jentzen. Algorithms for solving high dimensional pdes: from
 682 nonlinear monte carlo to machine learning. *Nonlinearity*, 35(1):278, 2021.

683 Jinchao Xu. A novel two-grid method for semilinear elliptic equations. *SIAM Journal on Scientific
 684 Computing*, 15(1):231–237, 1994.

685 Shihao Yang, Samuel WK Wong, and SC Kou. Inference of dynamic systems from noisy and
 686 sparse data via manifold-constrained gaussian processes. *Proceedings of the National Academy of
 687 Sciences*, 118(15):e2020397118, 2021.

688 Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and hjb equations. 1999.
 689 URL <https://api.semanticscholar.org/CorpusID:118042879>.

690 Olgierd Cecil Zienkiewicz and Jian Zhong Zhu. The superconvergent patch recovery and a posteriori
 691 error estimates. part 1: The recovery technique. *International Journal for Numerical Methods in
 692 Engineering*, 33(7):1331–1364, 1992a.

702 Olgierd Cecil Zienkiewicz and Jian Zhong Zhu. The superconvergent patch recovery and a posteriori
703 error estimates. part 2: Error estimates and adaptivity. *International Journal for Numerical Methods
704 in Engineering*, 33(7):1365–1382, 1992b.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 APPENDIX OUTLINE
757758 This appendix provides supplementary materials to support the main paper. We include a centralized
759 notation glossary, detailed background on the methods used, the complete algorithm, full proofs of our
760 theoretical results, and extensive additional experimental validation including statistical significance
761 tests and computational budget analyses.762 The appendix is organized as follows:
763

- **Appendix A: Notations.** We provide a centralized glossary defining the mathematical symbols and operators used throughout the paper and appendices.
- **Appendix B: Preliminaries.** We provide background on the core technical components of the SCaSML framework.
 - *Surrogate Models for PDEs (§B.1):* We detail the architectures used: Physics-Informed Neural Networks (PINNs) and Gaussian Processes (GPs).
 - *Multilevel Picard (MLP) Iterations (§B.2):* We overview the quadrature and full-history MLP methods which form the basis of our inference-time correction.
- **Appendix C: Algorithm.** We present the complete SCaSML algorithm in detailed pseudocode, including practical implementation details like outlier thresholding and Hutchinson’s estimator for high-dimensional Laplacians.
- **Appendix D: Proof Settings.** We establish the common probability space definitions and specific regularity assumptions on the surrogate models required for our theoretical analysis.
- **Appendix E: Proof for Full-History MLP.** We provide the theoretical analysis for the full-history MLP variant using Monte Carlo time integration.
 - *Global L^2 Error Bound (§E.3.2):* We derive the error bound for the full-history case.
 - *Improved Scaling Law (§E.3.3):* We provide the proof for the accelerated asymptotic convergence rate of $O(m^{-\gamma-1/2})$.
- **Appendix F: Proof for Quadrature MLP.** We present the theoretical analysis for SCaSML using the quadrature MLP solver.
 - *Global L^2 Error Bound (§F.2.1):* We derive the error bound showing dependence on the surrogate’s accuracy $e(\hat{u})$.
 - *Computational Complexity (§F.2.2):* We prove the reduction in complexity afforded by the SCaSML framework.
- **Appendix G: Auxiliary Experimental Results.** We include comprehensive additional experiments to validate robustness, statistical significance, and efficiency.
 - *Violin Plots for Error Distribution (§G.1):* Visualizations of the full error distribution for all test cases.
 - *Inference Time Scaling Curves (§G.2 and §G.3):* Plots demonstrating monotonic error reduction with increased inference compute.
 - *Statistical Analysis of L^1 Errors (§G.4):* Detailed tables reporting means, standard deviations, 95% confidence intervals, and p-values from paired t-tests.
 - *Relative L^2 Error Improvement (§G.5):* Visualization of the percentage error reduction across all dimensions.
 - *Pointwise Error Reduction Analysis (§G.6):* Scatter plots confirming that SCaSML systematically reduces error on the vast majority of individual test points.
 - *Performance Comparison Under Fixed Computational Budgets (§G.7):* A Pareto efficiency analysis comparing SCaSML to baselines when total wall-clock time (Training + Inference) is held constant.
 - *Performance Comparison: Large PINN vs. SCaSML Correction (§G.8):* A Pareto efficiency analysis comparing SCaSML to PINN with increasing scales of the same computing budget.

810 **A NOTATION**
811812 This section establishes the rigorous mathematical framework, including probability spaces, function
813 classes, and norms used throughout the theoretical analysis. We strictly distinguish between spatial
814 functional norms and probabilistic norms to ensure clarity in the convergence analysis.
815816 **A.1 GENERAL CONVENTIONS AND GEOMETRY**
817818 • Let $T \in (0, \infty)$ be a fixed terminal time. We define the spatiotemporal domain as $\Omega_T :=$
819 $[0, T] \times \mathbb{R}^d$, where $d \in \mathbb{N}$ denotes the spatial dimension.
820 • We adopt the unified coordinate convention $(t, \mathbf{x}) \in \Omega_T$ throughout this appendix. The
821 notation (r, y) is reserved strictly for integration variables within time integrals.
822 • $\mathcal{B}(\mathbb{R}^d)$ denotes the Borel σ -algebra on \mathbb{R}^d .
823 • $\langle \mathbf{x}, \mathbf{y} \rangle$ denotes the standard Euclidean inner product for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, and $|\mathbf{x}| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$
824 denotes the Euclidean norm.
825826 **A.2 NORMS AND FUNCTION SPACES**
827828 • **Measurable Functions:** Let $\mathcal{M}(A, B)$ denote the set of all measurable functions mapping
829 from measurable space A to B .
830 • **Spatial Spaces and Norms:**
831

- For any function $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^k$, we define the uniform norm $\|\phi\|_\infty := \sup_{\mathbf{x} \in \mathbb{R}^d} |\phi(\mathbf{x})|$.
- $C^{1,2}([0, T] \times \mathbb{R}^d)$ denotes the space of functions that are once continuously differentiable in time and twice continuously differentiable in space.
- $W^{k,\infty}(\mathbb{R}^d)$ denotes the Sobolev space of functions with essentially bounded weak derivatives up to order k , equipped with the norm $\|\phi\|_{W^{k,\infty}} := \sum_{|\alpha| \leq k} \|D^\alpha \phi\|_\infty$.

832 • **Probabilistic Spaces and Norms:**
833

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space equipped with a filtration $(\mathbb{F}_t)_{t \in [0, T]}$
834 satisfying the usual conditions.
- For $p \in [1, \infty)$, $L^p(\Omega; \mathbb{R}^k)$ denotes the Lebesgue space of random variables $X : \Omega \rightarrow$
835 \mathbb{R}^k with finite p -th moment. We explicitly define the probabilistic norm:
836

837
$$\|X\|_{L^p(\Omega)} := (\mathbb{E} [|X|^p])^{1/p}.$$

838
839
840
841
842
843
844

845 **A.3 PDE FORMULATION AND STOCHASTIC PROCESSES**
846847 • **The Operator:** Let $\mu : [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ and $\sigma : [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R}^{d \times d}$. We define the
848 second-order linear differential operator \mathcal{L} acting on $\phi \in C^{1,2}$ as:
849

850
$$\mathcal{L}\phi(t, \mathbf{x}) := \langle \mu(t, \mathbf{x}), \nabla_{\mathbf{x}}\phi(t, \mathbf{x}) \rangle + \frac{1}{2} \text{Tr}(\sigma(t, \mathbf{x})\sigma(t, \mathbf{x})^\top \text{Hess}_{\mathbf{x}}\phi(t, \mathbf{x})).$$

851

852 • **The SDE:** For any $(t, \mathbf{x}) \in \Omega_T$, let $X^{t,\mathbf{x}} = (X_s^{t,\mathbf{x}})_{s \in [t, T]}$ be the unique strong solution to
853 the stochastic differential equation (SDE):
854

855
$$X_s^{t,\mathbf{x}} = \mathbf{x} + \int_t^s \mu(r, X_r^{t,\mathbf{x}}) dr + \int_t^s \sigma(r, X_r^{t,\mathbf{x}}) dW_r, \quad s \in [t, T],$$

856 where W is a standard d -dimensional Brownian motion under \mathbb{P} .
857

858 **A.4 DEFECT FORMULATION (THE SCASML OBJECT)**
859860 • **Surrogate and Defect:** Let $\hat{u} \in C^{1,2}(\Omega_T)$ be the surrogate solution. We define the **defect**
861 pointwise as $\check{u}(t, \mathbf{x}) := u(t, \mathbf{x}) - \hat{u}(t, \mathbf{x})$.
862 • **The Residual:** We define the PDE residual $\epsilon : \Omega_T \rightarrow \mathbb{R}$ as:
863

864
$$\epsilon(t, \mathbf{x}) := \frac{\partial \hat{u}}{\partial t}(t, \mathbf{x}) + \mathcal{L}\hat{u}(t, \mathbf{x}) + F(\hat{u}(t, \mathbf{x}), \sigma(t, \mathbf{x})^\top \nabla_{\mathbf{x}}\hat{u}(t, \mathbf{x})).$$

864 • **Modified Nonlinearity \check{F} :** Let $\check{F} : \Omega_T \times \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}$ be the modified driver defined by:
865 $\check{F}(v, z, t, x) := F(\hat{u}(t, x) + v, \sigma^\top(\nabla_x \hat{u}(t, x) + z)) - F(\hat{u}(t, x), \sigma^\top \nabla_x \hat{u}(t, x)) + \epsilon(t, x).$
866 Crucially, observe that $\check{F}(0_{d+1}, t, x) = \epsilon(t, x)$. This identity bridges the deterministic
867 approximation error and the stochastic driver.
868 • **Terminal Defect:** $\check{g}(x) := g(x) - \hat{u}(T, x)$.

871 **B PRELIMINARY**

874 In this section, we provide the necessary background on the two main building blocks of the SCaSML
875 framework. First, we detail the surrogate models—Physics-Informed Neural Networks and Gaussian
876 Processes—used to generate the initial approximate solution \hat{u} . Second, we review the Multilevel
877 Picard (MLP) iteration method, the numerical solver we employ at inference time to solve the
878 Structural-preserving Law of Defect.

879 **B.1 SURROGATE MODELS FOR PDEs**

881 In our experiments, we employ two surrogate models to solve high-dimensional PDEs: a Physics-
882 Informed Neural Network (PINN) and a Gaussian Process (GP) regression model. Both models are
883 implemented in JAX (Bradbury et al., 2018) and DeepXDE (Lu et al., 2021) to leverage efficient
884 parallelization and runtime performance. Furthermore, Hutchinson’s estimator technique 3 as
885 delineated in (Shi et al., 2025) is incorporated during the training process to substantially decrease
886 GPU memory consumption, applicable to both the training and inference stages of Physics-Informed
887 Neural Networks (PINN), as well as the inference phase of Gaussian Processes.

888 **B.1.1 PHYSICS-INFORMED NEURAL NETWORK (PINN)**

890 Physics-Informed Neural Networks (PINNs) are designed to approximate solutions of PDEs by
891 embedding physical laws into the learning process. In our framework, the neural network $\hat{u}(t, x)$
892 with parameters θ approximates the true solution $u^\infty(t, x)$ of the given PDE. The training loss is
893 constructed as a weighted sum of several components, each designed to enforce key aspects of the
894 problem’s constraints.

895 The first component is the PDE loss, which ensures that the network output adheres to the governing
896 differential equation. This is achieved by penalizing deviations from the expected behavior defined
897 by the differential operator, evaluated at a set of interior collocation points $\{(t_k, x_k)\}_{k=1}^{S_1}$. The PDE
898 loss is defined as

$$900 \quad \mathcal{L}_{\text{PDE}}(\theta) = \frac{1}{S_1} \sum_{k=1}^{S_1} \left| \frac{\partial \hat{u}}{\partial r}(t_k, x_k) + \frac{\sigma^2}{2} \Delta_y \hat{u}(t_k, x_k) + F(\hat{u}, \sigma \nabla_y \hat{u})(t_k, x_k) \right|^2. \quad (10)$$

903 In order to satisfy the prescribed boundary conditions, the model employs a Dirichlet boundary loss.
904 This term minimizes the difference between the network output and the given boundary values $h(x_k)$
905 at selected boundary points $\{(t_k, x_k)\}_{k=1}^{S_2}$, and is expressed as

$$907 \quad \mathcal{L}_{\text{Dir}}(\theta) = \frac{1}{S_2} \sum_{k=1}^{S_2} |\hat{u}(t_k, x_k) - h(x_k)|^2. \quad (11)$$

909 Moreover, the initial conditions of the problem are enforced by an initial loss component. This ensures
910 that the solution at time $t = 0$ matches the known initial data $q(x_k)$ for the points $\{(0, x_k)\}_{k=1}^{S_3}$:

$$912 \quad \mathcal{L}_{\text{initial}}(\theta) = \frac{1}{S_3} \sum_{k=1}^{S_3} |\hat{u}(0, x_k) - q(x_k)|^2. \quad (12)$$

915 The overall training objective is then formulated as a combination of these losses, with each term
916 scaled by its corresponding weighting coefficient:

$$917 \quad \mathcal{L}(\theta) = \alpha_1 \mathcal{L}(\theta) + \alpha_2 \mathcal{L}_{\text{Dir}}(\theta) + \alpha_3 \mathcal{L}_{\text{initial}}(\theta). \quad (13)$$

918 This formulation ensures that the PINN not only fits the observed data but also rigorously respects
 919 the underlying physical laws, boundary conditions, and initial conditions governing the PDE.
 920

921 B.1.2 GAUSSIAN PROCESSES

923 In this section, we review the Gaussian Process (GP) framework developed in (Chen et al., 2021; Yang
 924 et al., 2021; Chen et al., 2024) to solve nonlinear PDEs. Consider solving a semi-linear parabolic
 925 PDE

$$926 \quad \begin{cases} \frac{\partial u}{\partial t}(t, \mathbf{x}) = \tau(u(t, \mathbf{x}), \Delta_{\mathbf{x}} u(t, \mathbf{x}), \operatorname{div}_{\mathbf{x}} u(t, \mathbf{x})), & \forall (t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d, \\ 927 \quad u(T, \mathbf{x}) = g(\mathbf{x}), & \forall \mathbf{x} \in \mathbb{R}^d, \end{cases} \quad (14)$$

929 where τ is a nonlinear function of the solution and its derivatives, and g specifies the terminal
 930 condition.

933 **The GP Framework** Consider one already sample M_{in} interior points and M_{bd} boundary points,
 934 denoted as $\mathbf{x}_{\text{in}} = \{\mathbf{x}_{\text{in}}^1, \dots, \mathbf{x}_{\text{in}}^{M_{\text{in}}}\} \subset [0, T] \times \mathbb{R}^d$ and $\mathbf{x}_{\text{bd}} = \{\mathbf{x}_{\text{bd}}^1, \dots, \mathbf{x}_{\text{bd}}^{M_{\text{bd}}}\} \subset \{T\} \times \mathbb{R}^d$. Then,
 935 we assign an unknown GP prior to the unknown function u with mean 0 and covariance function
 936 $K : ([0, T] \times \mathbb{R}^d) \times ([0, T] \times \mathbb{R}^d) \rightarrow \mathbb{R}$, the method aims to compute the maximum a posterior
 937 estimator of the GP given the sampled PDE data, which leads to the following optimization problem

$$938 \quad \begin{cases} \underset{u \in \mathcal{U}}{\text{minimize}} & \|u\| \\ 939 \quad \text{s.t.} & \frac{\partial u}{\partial t}(\mathbf{x}_{\text{in}}^m) = \tau(u(\mathbf{x}_{\text{in}}^m), \Delta_{\mathbf{x}} u(\mathbf{x}_{\text{in}}^m), \operatorname{div}_{\mathbf{x}} u(\mathbf{x}_{\text{in}}^m)), \quad \text{for } m = 1, \dots, M_{\text{in}}, \\ 940 & u(\mathbf{x}_{\text{bd}}^m) = g(\mathbf{x}_{\text{bd}}^m), \quad \text{for } m = 1, \dots, M_{\text{bd}}. \end{cases} \quad (15)$$

942 Here, $\|\cdot\|$ is the Reproducing Kernel Hilbert Space(RKHS) norm corresponding to the ker-
 943 nel/covariance function K . Regarding consistency, once K is sufficiently regular, the above solution
 944 will converge to the exact solution of the PDE when $M_{\text{in}}, M_{\text{bd}} \rightarrow \infty$; see (Batlle et al., 2023, Theorem
 945 1.2).

946 We denote the measurement functions by

$$948 \quad \begin{aligned} \phi_m^1(u) : u \rightarrow \delta_{\mathbf{x}_{\text{in}}^m} \circ u, 1 \leq m \leq M_{\text{in}}, & \quad \phi_m^2(u) : u \rightarrow \delta_{\mathbf{x}_{\text{bd}}^m} \circ u, 1 \leq m \leq M_{\text{bd}}, \\ 949 \quad \phi_m^3(u) : u \rightarrow \delta_{\mathbf{x}_{\text{in}}^m} \circ \Delta_{\mathbf{x}} u, 1 \leq m \leq M_{\text{in}}, & \quad \phi_m^4(u) : u \rightarrow \delta_{\mathbf{x}_{\text{in}}^m} \circ \frac{\partial u}{\partial t}, 1 \leq m \leq M_{\text{in}}, \\ 950 \quad \phi_m^5(u) : u \rightarrow \delta_{\mathbf{x}_{\text{in}}^m} \circ \operatorname{div}_{\mathbf{x}} u, 1 \leq m \leq M_{\text{in}}, & \end{aligned} \quad (16)$$

953 where $\delta_{\mathbf{x}}$ is the Dirac delta function centered at \mathbf{x} . These functions belong to \mathcal{U}^\top , the dual space of
 954 \mathcal{U} , for sufficiently regular kernel functions. We further use the shorthand notation $\phi^1, \phi^3, \phi^4, \phi^5$ for
 955 M_{in} dimensional vectors and ϕ^2 for M_{bd} dimensional vectors as finite dimensional representation
 956 for corresponding features. We use $[\cdot, \cdot]$ to denote the primal-dual pairing, such that for $u \in \mathcal{U}$ and
 957 $\phi_m^i \in \mathcal{U}^\top, \forall i$ it holds that $[u, \phi_m^i] = \int u(\mathbf{x}) \phi_m^i(\mathbf{x}) d\mathbf{x}$. For instance, for ϕ_m^3 we have $[u, \phi_m^3] =$
 958 $\int u(\mathbf{x}) \phi_m^3(\mathbf{x}) d\mathbf{x} = \frac{\partial u}{\partial t}(\mathbf{x}_m)$. Based on the defined notation, we can rewrite the MAP problem (15)
 959 as

$$960 \quad \begin{cases} \underset{u \in \mathcal{U}}{\text{minimize}} & \|u\| \\ 961 \quad \text{s.t.} & z_m^{(1)} = \phi_m^{(1)}(u), z_m^{(3)} = \phi_m^{(3)}(u), z_m^{(4)} = \phi_m^{(4)}(u), z_m^{(5)} = \phi_m^{(5)}(u), \quad m = 1, \dots, M_{\text{in}}, \\ 962 & z_m^{(1)} = \phi_m^{(1)}(u), m = 1, \dots, M_{\text{bd}}, \\ 963 & z_m^{(4)} = \tau(z_m^{(1)}, z_m^{(3)}, z_m^{(5)}), \quad m = 1, \dots, M_{\text{in}}, \\ 964 & z_m^{(2)} = g(\mathbf{x}_{\text{bd}}^m), \quad m = 1, \dots, M_{\text{bd}}. \end{cases} \quad (17)$$

968 **Finite Dimensional Representation via Representer Theorem** According to Representer The-
 969orem (Chen et al., 2021; Unser, 2021) show that although the original MAP problem (15) is an
 970 infinite-dimensional optimization problem, the minimizer enjoys a finite-dimensional structure

$$971 \quad u^\dagger(\mathbf{x}) = K(\mathbf{x}, \phi)\alpha \quad (18)$$

972 where $K(\mathbf{x}, \phi)$ is the $(4M_{\text{in}} + M_{\text{bd}})$ dimensional vector with entries $\int K(\mathbf{x}, \mathbf{x}') \phi_j(\mathbf{x}') d\mathbf{x}'$ (here the
973 integral notation shall be interpreted as the primal-dual pairing as above), *i.e.*

$$974 \quad 975 \quad K(\mathbf{x}, \phi) = [K(\mathbf{x}, \mathbf{x}_{\text{in}}) \quad K(\mathbf{x}, \mathbf{x}_{\text{bd}}) \quad \Delta_{x'} K(\mathbf{x}, \mathbf{x}_{\text{in}}) \quad \frac{\partial}{\partial t} K(\mathbf{x}, \mathbf{x}_{\text{in}}) \quad \text{div}_{x'} K(\mathbf{x}, \mathbf{x}_{\text{in}})] \in \mathbb{R}^{1 \times (4M_{\text{in}} + M_{\text{bd}})}, \quad (19)$$

976 and $\alpha \in \mathbb{R}^{4M_{\text{in}} + M_{\text{bd}}}$ is the unknown coefficients. Based on the finite dimensional representation (18),
977 we know

$$978 \quad 979 \quad \left[z^{(1)\top}, z^{(2)\top}, z^{(3)\top}, z^{(4)\top}, z^{(5)\top} \right]^\top = K(\phi, \phi) \alpha, \quad (20)$$

980 where $z^{(1)} = [\phi_1^1(u), \phi_2^1(u), \dots, \phi_{M_{\text{in}}}^1(u)]^\top \in \mathbb{R}^{M_{\text{in}}}$, $z^{(2)} = [\phi_1^2(u), \phi_2^2(u), \dots, \phi_{M_{\text{bd}}}^2(u)]^\top \in$
981 $\mathbb{R}^{M_{\text{bd}}}$, $z^{(3)} = [\phi_1^3(u), \phi_2^3(u), \dots, \phi_{M_{\text{in}}}^3(u)]^\top \in \mathbb{R}^{M_{\text{in}}}$, $z^{(4)} = [\phi_1^4(u), \phi_2^4(u), \dots, \phi_{M_{\text{in}}}^4(u)]^\top \in$
982 $\mathbb{R}^{M_{\text{in}}}$, $z^{(5)} = [\phi_1^5(u), \dots, \phi_{M_{\text{in}}}^5(u)]^\top \in \mathbb{R}^{M_{\text{in}}}$, and $K(\phi, \phi)$ is the kernel matrix as the $(4M_{\text{in}} +$
983 $M_{\text{bd}}) \times (4M_{\text{in}} + M_{\text{bd}})$ matrix with entries $\int K(\mathbf{x}, \mathbf{x}') \phi_m(\mathbf{x}) \phi_j(\mathbf{x}') d\mathbf{x} d\mathbf{x}'$ where ϕ_m denotes the
984 entries of ϕ . Precisely $K(\phi, \phi)$ can be written down explicitly as:

$$985 \quad 986 \quad K(\phi, \phi) = \begin{bmatrix} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{bd}}) & \Delta_{x'} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & \frac{\partial}{\partial t} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & \text{div}_{x'} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) \\ K(\mathbf{x}_{\text{bd}}, \mathbf{x}'_{\text{in}}) & K(\mathbf{x}_{\text{bd}}, \mathbf{x}'_{\text{bd}}) & \Delta_{x'} K(\mathbf{x}_{\text{bd}}, \mathbf{x}'_{\text{in}}) & \frac{\partial}{\partial t} K(\mathbf{x}_{\text{bd}}, \mathbf{x}'_{\text{bd}}) & \text{div}_{x'} K(\mathbf{x}_{\text{bd}}, \mathbf{x}'_{\text{in}}) \\ \Delta_x K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & \Delta_x K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{bd}}) & \Delta_x \Delta_{x'} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & \Delta_x \frac{\partial}{\partial t} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & \Delta_x \text{div}_{x'} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) \\ \frac{\partial}{\partial t} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & \frac{\partial}{\partial t} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{bd}}) & \frac{\partial}{\partial t} \Delta_{x'} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & \frac{\partial}{\partial t} \frac{\partial}{\partial t} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & \frac{\partial}{\partial t} \text{div}_{x'} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) \\ \text{div}_x K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & \text{div}_x K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{bd}}) & \text{div}_x \Delta_{x'} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & \text{div}_x \frac{\partial}{\partial t} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) & \text{div}_x \text{div}_{x'} K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) \end{bmatrix}, \quad (21)$$

991 Here we adopt the convention that if the variable inside a function is a set, it means that this function is
992 applied to every element in this set; the output will be a vector or a matrix, *e.g.* $K(\mathbf{x}_{\text{in}}, \mathbf{x}'_{\text{in}}) = \exp \left(- \frac{\|\mathbf{x}_{\text{in}}^m - \mathbf{x}_{\text{in}}^j\|_2^2}{2(\sigma \sqrt{d})^2} \right)$, $1 \leq m, j \leq M_{\text{in}}$, $\in \mathbb{R}^{M_{\text{in}} \times M_{\text{in}}}$ in the Gaussian kernel of our numerical experiment, where
993 σ is the variance of the equation. Thus the finite dimensional representation (18) can be rewritten in
994 terms of the function (derivative) values

$$995 \quad 996 \quad u^\dagger(\mathbf{x}) = K(\mathbf{x}, \phi) K(\phi, \phi)^{-1} z^\dagger, \quad (22)$$

1000 where $z^\dagger = [z^{(1)\top}, z^{(2)\top}, z^{(3)\top}, z^{(4)\top}, z^{(5)\top}]^\top \in \mathbb{R}^{4M_{\text{in}} + M_{\text{bd}}}$.

1001 Plug the finite-dimensional representation (22) to the original MAP problem (17) we have that z^\dagger is
1002 the solution to the following finite-dimensional quadratic optimization optimization problem with
1003 nonlinear constraints

$$1004 \quad 1005 \quad \min_{z \in \mathbb{R}^{4M_{\text{in}} + M_{\text{bd}}}} z^\top K(\phi, \phi)^{-1} z \\ 1006 \quad \text{subject to} \quad (23)$$

$$1007 \quad z_m^{(4)} = \tau(z_m^{(1)}, z_m^{(3)}, z_m^{(5)}), \quad m = 1, \dots, M_{\text{in}}, \\ 1008 \quad z_m^{(2)} = g(\mathbf{x}_{\text{bd}}^m), \quad m = 1, \dots, M_{\text{bd}}.$$

1011 **Solving the Optimization Formulation** To develop efficient optimization algorithms for (23),
1012 observing that the constraints $z_m^{(4)} = \tau(z_m^{(1)}, z_m^{(3)}, z_m^{(5)})$ and $z_m^{(2)} = g(\mathbf{x}_{\text{bd}}^m)$ express $z_m^{(4)}$ and $z_m^{(2)}$
1013 in terms of the other variables, (Chen et al., 2021; 2024) reformulate the optimization problem as an
1014 unconstrained problem

$$1015 \quad \min_{z^{(1)}, z^{(3)}, z^{(5)} \in \mathbb{R}^{M_{\text{in}}}} [z^{(1)}; g(\mathbf{x}_{\text{bd}}); z^{(3)}; \tau(z^{(1)}, z^{(3)}, z^{(5)}); z^{(5)}]^\top K(\phi, \phi)^{-1} [z^{(1)}; g(\mathbf{x}_{\text{bd}}); z^{(3)}; \tau(z^{(1)}, z^{(3)}, z^{(5)}); z^{(5)}].$$

1017 We apply Sparse Cholesky decomposition to the positive-definite $(K(\phi, \phi) + \eta I)$ as LL^T . In turn,
1018 $b^T (K(\phi, \phi) + \eta I)^{-1} b = b^T (LL^T)^{-1} b = (L^{-1} b)^T (L^{-1} b) = \|L^{-1} b\|_2^2$. Hence, the loss function is
1019 defined as $\mathcal{J}(z^{(1)}, z^{(3)}, z^{(5)}) = \|L^{-1} b\|^2$. Optimization is carried out via a Newton method in 20
1020 iterations. We initialize $z^{(1)}, z^{(3)}, z^{(5)} \in \mathbb{R}^{M_{\text{in}}}$ following $N(0, 10^{-6} I_{M_{\text{in}}})$. In each iteration, the
1021 gradient $\nabla \mathcal{J}$ and Hessian $\nabla^2 \mathcal{J}$ are computed via automatic differentiation, and the Newton direction
1022 Δz is obtained by solving $(\nabla^2 \mathcal{J} + \lambda I) \Delta z = -\nabla \mathcal{J}$, where $\lambda = 10^{-4}$ is an regularization parameter.
1023 Then, update \mathcal{J} at Newton direction with step size $\alpha = 1$. Early stopping is triggered when the
1024 gradient norm falls below 10^{-5} . Finally, to apply the representer theorem in 22, the algorithm solves
1025 the linear system $(K(\phi, \phi) + \eta I) w^\dagger = z^\dagger$ to obtain the weight vector w^\dagger and the final PDE solution
is given as $u^\dagger(\mathbf{x}) = K(\mathbf{x}, \phi) w^\dagger$.

1026 **B.2 QUADRATURE MULTILEVEL PICARD ITERATIONS AND FULL-HISTORY MULTILEVEL**
 1027 **PICARD ITERATIONS**
 1028

1029 Multilevel Picard Iteration (MLP) method (Hutzenthaler et al., 2019) is a simulation-based solver
 1030 which solves a semilinear parabolic PDEs (Hutzenthaler et al., 2019; Han et al., 2018a; Weinan et al.,
 1031 2021), represented as the following.

$$1032 \begin{cases} \frac{\partial}{\partial r} u^\infty + \langle \mu, \nabla_y u^\infty \rangle + \frac{1}{2} \text{Tr}(\sigma^\top \text{Hess } u^\infty \sigma) + F(u^\infty, \sigma^\top \nabla_y u^\infty) = 0, \text{ on } [0, T] \times \mathbb{R}^d \\ 1033 u^\infty(T, \mathbf{y}) = g(\mathbf{y}), \text{ on } \mathbb{R}^d. \end{cases} \quad (24)$$

1034 where $T > 0, d \in \mathbb{N}, g : \mathbb{R}^d \rightarrow \mathbb{R}, u^\infty : [0, T] \times \mathbb{R}^{d+1} \rightarrow \mathbb{R}, \mu : [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$. Additionally,
 1035 let σ be a regular function mapping $[0, T] \times \mathbb{R}^d$ to a real $d \times d$ invertible matrix.

1036 The MLP method reformulates the PDE into a fixed-point problem using the Feynman–Kac formula
 1037 to represent the solution as the expected value of a stochastic process’s functional. A Picard scheme
 1038 iteratively solves this fixed-point problem. The MLP method employs a multilevel Monte Carlo
 1039 approach(Giles, 2008), blending coarse and fine discretizations and allocating more samples to
 1040 deeper iterations to control variance. This strategy ensures computational costs increase moderately
 1041 with accuracy. According to Feynman–Kac and Bismut-Elworthy-Li formula(Elworthy & Li, 1994;
 1042 Da Prato & Zabczyk, 1997), the solution $\mathbf{u}^\infty = (u, \sigma^\top \nabla_y u)$ of semilinear parabolic PDE (24)
 1043 satisfies the fixed-point equation $\Phi(\mathbf{u}^\infty) = \mathbf{u}^\infty$ where $\Phi: \text{Lip}([0, T] \times \mathbb{R}^d, \mathbb{R}^{1+d}) \rightarrow \text{Lip}([0, T] \times \mathbb{R}^d, \mathbb{R}^{1+d})$ is defined as

$$1044 \begin{aligned} \Phi(\mathbf{v})(s, x) = & \mathbb{E} \left[g(X_T^{s,x}) \left(1, \frac{[\sigma(s, x)]^\top}{T-s} \int_s^T [\sigma(r, X_r^{s,x})^{-1} D_r^{s,x}]^\top dW_r \right) \right] \\ 1045 & + \int_s^T \mathbb{E} \left[F(\mathbf{v}(t, X_t^{s,x})) \left(1, \frac{[\sigma(s, x)]^\top}{t-s} \int_s^t [\sigma(r, X_r^{s,x})^{-1} D_r^{s,x}]^\top dW_r \right) \right] dt. \end{aligned} \quad (25)$$

1046 Here $X_t^{s,x}$ and $D_t^{s,x}$ are defined as

$$1047 \begin{aligned} X_t^{s,x} = & x + \int_s^t \mu(r, X_r^{s,x}) dr + \sum_{j=1}^d \int_s^t \sigma_j(r, X_r^{s,x}) dW_r^j, \\ 1048 D_t^{s,x} = & \mathbf{I}_{\mathbb{R}^{d \times d}} + \int_s^t \left(\frac{\partial}{\partial x} \mu \right)(r, X_r^{s,x}) D_r^{s,x} dr + \sum_{j=1}^d \int_s^t \left(\frac{\partial}{\partial x} \sigma_j \right)(r, X_r^{s,x}) D_r^{s,x} dW_r^j. \end{aligned} \quad (26)$$

1049 where $W_t : [0, T] \times \Omega \rightarrow \mathbb{R}^d$ is a standard $(\mathbb{F}_t)_{t \in [0, T]}$ -adapted Brownian motion.

1050 The Feynman–Kac formula gives

$$1051 u^\infty(s, x) = \mathbb{E}[g(X_T^{s,x})] + \int_s^T \mathbb{E}[F(u^\infty(t, X_t^{s,x}), [\sigma(t, X_t^{s,x})]^\top (\nabla_y u^\infty)(t, X_t^{s,x}))] dt. \quad (27)$$

1052 Note that $\sigma^\top \nabla_y u^\infty$ appeared on the right-hand side in the fixed point iteration, which necessitates
 1053 a new representation formula of it to be simultaneous with 27. And that is Bismut-Elworthy-Li
 1054 formula(Elworthy & Li, 1994; Da Prato & Zabczyk, 1997), which gives

$$1055 \begin{aligned} [\sigma(s, x)]^\top (\nabla_y u^\infty)(s, x) = & \mathbb{E} \left[g(X_T^{s,x}) \frac{[\sigma(s, x)]^\top}{T-s} \int_s^T [\sigma(r, X_r^{s,x})^{-1} D_r^{s,x}]^\top dW_r \right] \\ 1056 & + \int_s^T \mathbb{E} \left[F(u^\infty(t, X_t^{s,x}), [\sigma(t, X_t^{s,x})]^\top (\nabla_y u^\infty)(t, X_t^{s,x})) \right. \\ 1057 & \left. \frac{[\sigma(s, x)]^\top}{t-s} \int_s^t [\sigma(r, X_r^{s,x})^{-1} D_r^{s,x}]^\top dW_r \right] dt, \end{aligned} \quad (28)$$

Concatenating the solution as $\mathbf{u}^\infty = (u, \sigma^\top \nabla_y u)$, we can define the iteration operator $\Phi: \text{Lip}([0, T] \times \mathbb{R}^d, \mathbb{R}^{1+d}) \rightarrow \text{Lip}([0, T] \times \mathbb{R}^d, \mathbb{R}^{1+d})$ as the following

$$\begin{aligned} \Phi(\mathbf{v})(s, x) &= \mathbb{E} \left[g(X_T^{s,x}) \left(1, \frac{[\sigma(s, x)]^\top}{T-s} \int_s^T [\sigma(r, X_r^{s,x})^{-1} D_r^{s,x}]^\top dW_r \right) \right] \\ &\quad + \int_s^T \mathbb{E} \left[F(\mathbf{v}(t, X_t^{s,x})) \left(1, \frac{[\sigma(s, x)]^\top}{t-s} \int_s^t [\sigma(r, X_r^{s,x})^{-1} D_r^{s,x}]^\top dW_r \right) \right] dt, \end{aligned} \quad (29)$$

and 27, 28 yield

$$\mathbf{u}^\infty = \Phi(\mathbf{u}^\infty). \quad (30)$$

The Multilevel Picard iteration considers simulating the Picard iteration $\mathbf{u}_k(s, x) = (\Phi(\mathbf{u}_{k-1}))(s, x)$, $k \in \mathbb{N}_+$, which is guaranteed to converge to \mathbf{u}^∞ as $k \rightarrow \infty$ for any $s \in [0, T]$, $x \in \mathbb{R}^d$ (Yong & Zhou, 1999, Page 360, Theorem 3.4). Formally, the MLP method uses MLMC(Giles, 2008; 2015) to simulate the following telescope expansion problem derived from the Picard iteration.

$$\begin{aligned} \mathbf{u}_k(s, x) &= \mathbf{u}_1(s, x) + \sum_{l=1}^{k-1} [\mathbf{u}_{l+1}(s, x) - \mathbf{u}_l(s, x)] = \Phi(\mathbf{u}_1)(s, x) + \sum_{l=1}^{k-1} [\Phi(\mathbf{u}_l)(s, x) - \Phi(\mathbf{u}_{l-1})(s, x)] \\ &= (g(\mathbf{x}), \mathbf{0}_d) + \mathbb{E} \left[(g(X_T^{s,x}) - g(\mathbf{x})) \left(1, \frac{[\sigma(s, x)]^\top}{T-s} \int_s^T [\sigma(r, X_r^{s,x})^{-1} D_r^{s,x}]^\top dW_r \right) \right] \\ &\quad + \sum_{l=0}^{k-1} \int_s^T \mathbb{E} \left[(F(\mathbf{u}_l(t, X_t^{s,x})) - \mathbf{1}_N(l) F(\mathbf{u}_{l-1}(t, X_t^{s,x}))) \right. \\ &\quad \left. \left(1, \frac{[\sigma(s, x)]^\top}{t-s} \int_s^t [\sigma(r, X_r^{s,x})^{-1} D_r^{s,x}]^\top dW_r \right) \right] dt. \end{aligned} \quad (31)$$

One can either estimate these integrations with the quadrature method(quadrature MLP (E et al., 2021)) or the Monte-Carlo method(full-history MLP (Hutzenthaler et al., 2020b)), detailed instruction is shown in demonstrated in B.2. A comprehensive summary of MLP variants can be found at (Research Group on Stochastic Analysis, University of Duisburg-Essen, 2025).

B.2.1 IMPLEMENTING MULTILEVEL PICARD ITERATIONS

Suppose we are given effective simulators (e.g., Euler–Maruyama or Milstein) parameterized by φ (e.g. discretization level), which produce the numerical approximations

$$\mathcal{X}_{k,\varphi}^{(l,i)}(s, x, t) \approx X_t^{s,x}, \quad \mathcal{I}_{k,\varphi}^{(l,i)}(s, x, t) \approx \left(1, \frac{[\sigma(s, x)]^\top}{t-s} \int_s^t [\sigma(r, X_r^{s,x})^{-1} D_r^{s,x}]^\top dW_r \right), \quad (32)$$

where k denotes the total level, l the current level, and i (which may be negative) indexes the sample path. To implement the Multilevel Picard Iterations, we need a numerical approximation to the integral $\int_s^T \mathbb{E} F(\mathbf{u}_l(t, X_t^{s,x})) dt$. Following (E et al., 2021; Hutzenthaler et al., 2021), we examine the following two methodologies, using quadrature rule and Monte Carlo algorithm to approximate the integral $\int_s^T \mathbb{E} F(\mathbf{u}_l(t, X_t^{s,x})) dt$:

Quadrature MLP In this approach (E et al., 2021), quadrature rules are employed to approximate the time integrals that appear in the MLP formulation. This quadrature-based technique is motivated by the need to efficiently and accurately resolve time integration errors while maintaining the stability of the multilevel scheme. By leveraging well-established Gauss–Legendre quadrature, we obtain a deterministic and high-order accurate approximation that is well-suited to the recursive structure of the SCaSML algorithm.

1134
 1135 **Definition B.1** (Gauss–Legendre quadrature). For each $n \in \mathbb{N}$, let $(c_i^n)_{i=1}^n \subseteq [-1, 1]$ denote the
 1136 n distinct roots of the Legendre polynomial $x \mapsto \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$, and define the function
 1137 $q^{n,[a,b]} : [a, b] \rightarrow \mathbb{R}$ by

$$1138 \quad 1139 \quad 1140 \quad 1141 \quad 1142 \quad 1143 \quad q^{n,[a,b]}(t) = \begin{cases} \int_a^b \prod_{\substack{i=1, \dots, n \\ c_i^n \neq \frac{2t-(a+b)}{b-a}}} \frac{2x - (b-a)c_i^n - (a+b)}{2t - (b-a)c_i^n - (a+b)} dx, & \text{if } a < b \text{ and } \frac{2t-(a+b)}{b-a} \in \{c_1^n, \dots, c_n^n\}, \\ 0, & \text{otherwise.} \end{cases} \quad (33)$$

1144
 1145 The Gauss–Legendre quadrature serve as a fundamental building block to discretize the time variable
 1146 in the Picard iteration. With these polynomials, one can approximate the time integrals with high-order
 1147 accuracy while controlling the error propagation in the recursive iterations.

1148
 1149 **Definition B.2** (Quadrature Multilevel Picard Iteration). Let $\{\mathbf{U}_{n,M,Q}^{(l,j)}\}_{l,j \in \mathbb{Z}} \subseteq \mathcal{M}(\mathcal{B}([0, T] \times$
 1150 $\mathbb{R}^d) \otimes \mathcal{F}, \mathcal{B}(\mathbb{R} \times \mathbb{R}^d))$ be a family of measurable functions satisfying, for all $l, j \in \mathbb{N}$ and $(s, x) \in$
 1151 $[0, T) \times \mathbb{R}^d$, we start with $\mathbf{U}_{n,M,Q}^{(0,\pm j)}(s, x) = \mathbf{0}_{d+1}$. For $n > 0$, we define the quadrature SCaSML
 1152 iteration as

$$1153 \quad 1154 \quad 1155 \quad 1156 \quad 1157 \quad 1158 \quad \mathbf{U}_{n,M,Q}(s, x) = (g(\mathbf{x}), \mathbf{0}_d) + \frac{1}{M^n} \sum_{i=1}^{M^n} (g(\mathcal{X}_{k,\varphi}^{(0,-i)}(s, x, T)) - g(\mathbf{x})) \mathcal{I}_{k,\varphi}^{(0,-i)}(s, x, T) \\ 1159 \quad 1160 \quad 1161 \quad 1162 \quad 1163 \quad + \sum_{l=0}^{n-1} \sum_{t \in (s, T)} \frac{q^{Q,[s,T]}(t)}{M^{n-l}} \sum_{i=1}^{M^{n-l}} (F(\mathbf{U}_{n,M,Q}^{(l,i)}(t, \mathcal{X}_{k-l,\varphi}^{(l,i)}(s, x, t))) - \mathbf{1}_{\mathbb{N}}(l) F(\mathbf{U}_{n,M,Q}^{(l-1,-i)}(t, \mathcal{X}_{k-l,\varphi}^{(l,i)}(s, x, t)))) \\ 1164 \quad 1165 \quad \cdot \mathcal{I}_{k-l,\varphi}^{(l,i)}(s, x, t). \quad (34)$$

1166 The use of quadrature in this context is motivated by its ability to yield a systematic error control
 1167 over the temporal discretization, thereby enhancing the stability and accuracy of the multilevel Picard
 1168 iteration in the simulation-calibrated framework.

1169
 1170 **Full-history MLP** The full-history MLP scheme (Hutzenthaler et al., 2021) adopts a Monte Carlo
 1171 approach to approximate the time integral $\int_s^T \mathbb{E} F(\mathbf{u}_l(t, X_t^{s,x})) dt$ instead of deterministic quadrature
 1172 rules with fixed time grids. This modification considerably simplifies error analysis (Hutzenthaler
 1173 et al., 2020a) and avoids all temporal discretization error.

1174 In the full-history MLP, we employ a time-sampler that guarantees an unbiased Monte Carlo ap-
 1175 proximation of time integrals. Let $\mathbf{r} : \Omega \rightarrow (0, 1)$ be a collection of independent and identically
 1176 distributed random variables with density ρ satisfying $\mathbb{P}(\mathbf{r}^{(l,i)} \leq b) = \int_0^b \rho(s) ds$. Consider numeri-
 1177 cally approximating the integral $I(f; s, t) = \int_s^t f(r) dr$ with $t \in (s, T)$, we construct an importance
 1178 sampling estimator with sample size N : $\hat{I}(f; s, t) = \frac{1}{N} \sum_{i=1}^N \frac{f(R^{(i)}) \mathbf{1}_{\{R^{(i)} \leq t\}}}{\varrho(R^{(i)}, s)}$, where ϱ is the the
 1179 rescaled density ρ on (s, T) defined as $\varrho(r, s) = \frac{\rho\left(\frac{r-s}{T-s}\right)}{T-s}$ and R is the random sample from the
 1180 density $\varrho(\cdot, s)$ on (s, T) via $R = s + (T-s)\mathbf{r}$.

1181
 1182 **Definition B.3** (Full-history Multilevel Picard Iteration (Hutzenthaler et al., 2020a)). Let
 1183 $\{\mathbf{U}_{n,M}^{(l,j)}\}_{l,j \in \mathbb{Z}} \subseteq \mathcal{M}(\mathcal{B}([0, T] \times \mathbb{R}^d) \otimes \mathcal{F}, \mathcal{B}(\mathbb{R} \times \mathbb{R}^d))$ be a family of measurable functions satisfying,
 1184 for all $l, j \in \mathbb{N}$ and $(s, x) \in [0, T) \times \mathbb{R}^d$, we start with $\mathbf{U}_{n,M}^{(0,\pm j)}(s, x) = \mathbf{0}_{d+1}$. Then, for $n > 0$,

1188 define the full-history SCaSML iteration as
 1189

$$\begin{aligned}
 \mathbf{U}_{n,M}(s, x) &= \left(g(\mathbf{x}), \mathbf{0}_d \right) + \frac{1}{M^n} \sum_{i=1}^{M^n} \left(g(\mathcal{X}_{k,\varphi}^{(0,-i)}(s, x, T)) - g(\mathbf{x}) \right) \mathcal{I}_{k,\varphi}^{(0,-i)}(s, x, T) \\
 &\quad + \sum_{l=0}^{n-1} \frac{1}{M^{n-l}} \sum_{i=1}^{M^{n-l}} \frac{1}{\varrho(s, \mathcal{R}_s^{(l,i)})} \left(F(\mathbf{U}_{n,M}^{(l,i)}(\mathcal{R}_s^{(l,i)}, \mathcal{X}_{k-l,\varphi}^{(l,i)}(s, x, \mathcal{R}_s^{(l,i)}))) \right. \\
 &\quad \left. - \mathbf{1}_{\mathbb{N}}(l) F(\mathbf{U}_{n,M}^{(l-1,-i)}(\mathcal{R}_s^{(l,i)}, \mathcal{X}_{k-l,\varphi}^{(l,i)}(s, x, \mathcal{R}_s^{(l,i)}))) \right) \cdot \mathcal{I}_{k-l,\varphi}^{(l,i)}(s, x, \mathcal{R}_s^{(l,i)}),
 \end{aligned} \tag{35}$$

1198 here $\mathcal{R}_s^{(l,i)}$ is i -th sampled time point after t at level l which is defined as as $\mathcal{R}_s^{(l,i)} = s + (T - s) \mathbf{r}^{(l,i)}$.
 1199

C ALGORITHM

1200 In this section, we describe the complete procedure of Simulation-Calibrated Scientific Machine
 1201 Learning (SCaSML) for solving high-dimensional partial differential equations (1). The SCaSML
 1202 framework at any space-time point (t, \mathbf{x}) can be summarized as follows:

- 1203 • **Step 1: Train a Base Surrogate.** First, a surrogate model \hat{u} is trained to approximately solve
 1204 the target PDE (1), serving as a preliminary estimate of the true solution.
- 1205 • **Step 2: Physics-Informed Inference-Time Scaling via the Structural-preserving Law of
 1206 Defect.** Recognizing that the defect $\check{u} := u - \hat{u}$ satisfies a semi-linear parabolic equation,
 1207 termed the *Structural-preserving Law of Defect*,

$$\begin{cases} \frac{\partial}{\partial r} \check{u} + \langle \mu, \nabla_y \check{u} \rangle + \frac{1}{2} \text{Tr}(\sigma^\top \text{Hess}_y \check{u} \sigma) + \check{F}(\check{u}, \sigma^\top \nabla_y \check{u}) = 0, & \text{on } [0, T) \times \mathbb{R}^d, \\ \check{u}(T, \mathbf{y}) = \check{g}(\mathbf{y}), & \text{on } \mathbb{R}^d, \end{cases} \tag{36}$$

1208 one obtains an estimate of $\check{u}(t, \mathbf{x})$ by employing Multilevel Picard iteration, either through
 1209 quadrature-based MLP (Definition B.2) or full-history MLP (Definition B.3).

- 1210 • **Step 3: Final Estimation.** The final estimate of the solution is then given by $u(t, \mathbf{x}) \approx$
 1211 $\hat{u}(t, \mathbf{x}) + \check{u}(t, \mathbf{x})$.

1212 The entire algorithm is detailed in Algorithm 1.

1213 We emphasize that the sample-wise iteration in Algorithm 1 can be substituted by vectorized operations,
 1214 thereby enabling the algorithm to be applied concurrently to multiple points. These performance
 1215 enhancements were implemented using JAX and DeepXDE, resulting in a time reduction by a factor
 1216 of $5\times$ to $10\times$.

1217 Additionally, methods such as thresholding (Sebastian Becker et al., 2020) and Hutchinson's estimator
 1218 (Hutchinson, 1989; Shi et al., 2025) could also be employed within the principal algorithm.
 1219 Thresholding (Algorithm 2) mitigates numerical instability by methodically "clipping" the defect
 1220 estimator $\check{\mathbf{U}}$, a critical action when the surrogate model yields outlier values or when unbounded
 1221 growth may manifest during iterative correction phases. Hutchinson's estimator (Algorithm 3) al-
 1222 leviates the computational and memory demands of ϵ_{PDE} in \check{F} by forming an unbiased estimator
 1223 that necessitates only a subset of second-order derivatives approximating the Laplacian. This partial
 1224 evaluation not only expedites the simulation process but also minimizes peak memory consumption,
 1225 thus averting out-of-memory issues.

D PROOF SETTINGS

1230 In the following sections, we establish the rigorous mathematical framework for analyzing the
 1231 SCaSML method. We proceed in three steps:

- 1232 1. **Notations and Definitions:** We define the probability spaces, norms, and function spaces
 1233 used throughout the proofs.

Algorithm 1 Simulation-Calibrated Scientific Machine Learning for Solving High-Dimensional Partial Differential Equation

Require: Level n , sample base M , target point (s, x) , a surrogate model \hat{u} , threshold ε , (quadrature order Q for using Quadrature MLP)

- 1: Train a base surrogate model \hat{u} to approximate the PDE solution.
- 2: Take $\text{MLP_Law_of_Defect}(s, x, n, M, Q) \cdot (1, \mathbf{0}_d) + \hat{u}(s, x)$ as estimation of $u(s, x)$
- 3: **function** $\text{MLP_LAW_OF_DEFECT}(s, x, n, M, Q)$
- 4: $\hat{\mathbf{u}}(s, x) \leftarrow \left(\hat{u}(s, x), \sigma^\top(s, x) \nabla_y \hat{u}(s, x) \right)$
- 5: **if** $n = 0$ **then** ▷ Start Inference-Time Scaling via Simulating the Structural-preserving Law of Defect
- 6: $\check{\mathbf{U}}_{n, M, Q}(s, x) \leftarrow \mathbf{0}_{d+1}$
- 7: **return** $\check{\mathbf{U}}_{n, M, Q}(s, x)$
- 8: **end if**
- 9: $\check{\mathbf{U}}_{n, M, Q}(s, x) \leftarrow (\check{g}(\mathbf{x}), \mathbf{0}_d)$
- 10: **for** $i = 1$ to M^n **do**
- 11: Sample Feyman-Kac Path $\mathcal{X}_{k, \varphi}^{(0, -i)}(s, x, T)$ and Derivative Process $\mathcal{I}_{k, \varphi}^{(0, -i)}(s, x, T)$ in (32)
- 12: $\check{\mathbf{U}}_{n, M, Q}(s, x) \leftarrow \check{\mathbf{U}}_{n, M, Q}(s, x) + \frac{1}{M^n} \left(\check{g}(\mathcal{X}_{k, \varphi}^{(0, -i)}(s, x, T)) - \check{g}(\mathbf{x}) \right) \cdot \mathcal{I}_{k, \varphi}^{(0, -i)}(s, x, T)$
- 13: **end for**
- 14: **for** $l = 0$ to $n - 1$ **do**
- 15: **for** $i = 1$ to M^{n-l} **do**
- 16: **if** using Quadrature MLP to calibrate **then**
- 17: Compute Q quadrature points with corresponding weights $q^{Q, [s, T]}(t)$ by B.1
- 18: **for** all quadrature points $t \in [s, T]$ **do**
- 19: Sample Feyman-Kac Path $\mathcal{X}_{k, \varphi}^{(l, i)}(s, x, t)$ and Derivative Process $\mathcal{I}_{k, \varphi}^{(l, i)}(s, x, t)$ according to formula (32)
- 20: $\mathbf{z} \leftarrow \text{MLP_Law_of_Defect}(t, \mathcal{X}_{k-l, \varphi}^{(l, i)}(s, x, t), l, M, Q)$
- 21: **if** $l > 0$ **then**
- 22: $\mathbf{z}_{\text{prev}} \leftarrow \text{MLP_Law_of_Defect}(t, \mathcal{X}_{k-l, \varphi}^{(l, i)}(s, x, t), l - 1, M, Q)$
- 23: $\Delta \check{F} \leftarrow \check{F}(\mathbf{z}) - \check{F}(\mathbf{z}_{\text{prev}})$
- 24: **else**
- 25: $\Delta \check{F} \leftarrow \check{F}(\mathbf{z})$
- 26: **end if**
- 27: $\check{\mathbf{U}}_{n, M, Q}(s, x) \leftarrow \check{\mathbf{U}}_{n, M, Q}(s, x) + \frac{q^{Q, [s, T]}(t)}{M^{n-l}} \Delta \check{F} \cdot \mathcal{I}_{k-l, \varphi}^{(l, i)}(s, x, t)$
- 28: **end for**
- 29: **end if**
- 30: **if** using Full History MLP to calibrate **then**
- 31: Sample time step $\mathcal{R}_s^{(l, i)} \sim \varrho(s, T)$
- 32: Sample Feyman-Kac Path $\mathcal{X}_{k, \varphi}^{(l, i)}(s, x, \mathcal{R}_s^{(l, i)})$ and Derivative Process $\mathcal{I}_{k, \varphi}^{(l, i)}(s, x, \mathcal{R}_s^{(l, i)})$ according to formula (32)
- 33: $\mathbf{z} \leftarrow \text{MLP_Law_of_Defect}(\mathcal{R}_s^{(l, i)}, \mathcal{X}_{k-l, \varphi}^{(l, i)}(s, x, \mathcal{R}_s^{(l, i)}), l, M, Q)$
- 34: **if** $l > 0$ **then**
- 35: $\mathbf{z}_{\text{prev}} \leftarrow \text{MLP_Law_of_Defect}(\mathcal{R}_s^{(l, i)}, \mathcal{X}_{k-l, \varphi}^{(l, i)}(s, x, \mathcal{R}_s^{(l, i)}), l - 1, M, Q)$
- 36: $\Delta \check{F} \leftarrow \check{F}(\mathbf{z}) - \check{F}(\mathbf{z}_{\text{prev}})$
- 37: **else**
- 38: $\Delta \check{F} \leftarrow \check{F}(\mathbf{z})$
- 39: **end if**
- 40: $\check{\mathbf{U}}_{n, M, Q}(s, x) \leftarrow \check{\mathbf{U}}_{n, M, Q}(s, x) + \frac{1}{M^{n-l}} \cdot \frac{1}{\varrho(s, \mathcal{R}_s^{(l, i)})} \cdot \Delta \check{F} \cdot \mathcal{I}_{k-l, \varphi}^{(l, i)}(s, x, \mathcal{R}_s^{(l, i)})$
- 41: **end if**
- 42: **end for**
- 43: **end for**
- 44: $\check{\mathbf{U}}_{n, M, Q}(s, x) \leftarrow \text{Thresholding}(\varepsilon, \check{\mathbf{U}}_{n, M, Q}(s, x))$ ▷ Threshold outliers using Algorithm 2
- 45: **return** $\check{\mathbf{U}}_{n, M, Q}(s, x)$
- 46: **end function**

1296

Algorithm 2 Thresholding the outliers (Sebastian Becker et al., 2020)

1297

Require: Threshold ε , defect estimator \check{U}

1298

```

1: function THRESHOLDING( $\varepsilon$ ,  $\check{U}$ )
2:   for  $\varsigma = 1$  to  $d + 1$  do
3:     if  $\check{U}_\varsigma > \varepsilon$  then
4:        $\check{U}_\varsigma \leftarrow \varepsilon$ 
5:     end if
6:     if  $\check{U}_\varsigma < -\varepsilon$  then
7:        $\check{U}_\varsigma \leftarrow -\varepsilon$ 
8:     end if
9:   end for
10:  return Clipped  $\check{U}$ 
11: end function

```

1309

1310

Algorithm 3 Hutchison's estimator for estimating Laplacian (Shi et al., 2025)

1311

Require: Sample size K , target function f

1312

```

1: function HTE( $K, f$ )
2:   Draw  $K$  different indices from  $1, \dots, d$  with equal probability  $1/d$ , denoted as  $j_1, \dots, j_K$ 
3:   Compute  $D_{j_k}^2 f$ ,  $1 \leq \varsigma \leq d$ 
4:   Compute estimator  $\text{HTE} \leftarrow \frac{d}{K} \sum_{i=1}^K D_{j_i}^2 f$ 
5:   return Laplacian estimator  $\text{HTE}$ 
6: end function

```

1318

1319

1320

2. **Problem Setup:** We explicitly state the regularity assumptions on the original PDE coefficients and the stochastic basis.
3. **Surrogate and Defect Properties:** We formally define the surrogate model, the defect PDE, and the transfer of Lipschitz properties from the original problem to the defect problem.

1325

1326

D.1 MATHEMATICAL FRAMEWORK AND DEFINITIONS

1327

In this section, we rigorously define the measure-theoretic structures, function spaces, and norms required for the convergence analysis. Our framework aligns with the standard stochastic analysis settings found in (Hutzenthaler et al., 2020a; E et al., 2021).

1330

1331

1332

Definition D.1 (Coordinate System and Vector Norms). *Throughout this article, we fix a time horizon $T \in (0, \infty)$ and a spatial dimension $d \in \mathbb{N}$. We denote the time-space domain by $\Lambda := [0, T] \times \mathbb{R}^d$. We consistently use the coordinate notation (t, \mathbf{x}) with $t \in [0, T]$ and $\mathbf{x} \in \mathbb{R}^d$.*

1333

1334

1335

For any vector $v = (v_1, \dots, v_d) \in \mathbb{R}^d$, we denote the standard Euclidean norm by $|v| := (\sum_{i=1}^d |v_i|^2)^{1/2}$ and the inner product by $v \cdot w$. For a generic vector $z \in \mathbb{R}^n$ (e.g., neural network parameters), we define the discrete p -norm ($p \in [1, \infty)$) and ∞ -norm as:

1336

1337

1338

1339

$$\|z\|_p := \left(\sum_{i=1}^n |z_i|^p \right)^{1/p}, \quad \text{and} \quad \|z\|_\infty := \max_{1 \leq i \leq n} |z_i|.$$

1340

1341

1342

Definition D.2 (Measurable Spaces and Functions). *We denote by $\mathcal{B}(\mathbb{R}^d)$ the Borel σ -algebra on \mathbb{R}^d . For any two measurable spaces (S_1, \mathcal{F}_1) and (S_2, \mathcal{F}_2) , we define $\mathcal{M}(S_1, S_2)$ as the set of all measurable mappings from S_1 to S_2 :*

1343

$$\mathcal{M}(S_1, S_2) := \{f : S_1 \rightarrow S_2 \mid \forall A \in \mathcal{F}_2, f^{-1}(A) \in \mathcal{F}_1\}.$$

1344

1345

When the σ -algebras are clear from context (e.g., Borel for topological spaces), we simply write $\mathcal{M}(\mathbb{R}^d, \mathbb{R})$.

1346

1347

1348

1349

Definition D.3 (Probability Space and L^p Norms). *Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space. For any measurable random variable $X \in \mathcal{M}(\Omega, \mathbb{R})$ and $p \in [1, \infty)$, the $L^p(\Omega)$ -norm is defined as:*

$$\|X\|_{L^p(\Omega)} := (\mathbb{E}[|X|^p])^{1/p} = \left(\int_{\Omega} |X(\omega)|^p d\mathbb{P}(\omega) \right)^{1/p}.$$

1350 For $p = \infty$, the essential supremum norm is defined as:
 1351 $\|X\|_{L^\infty(\Omega)} := \inf\{C \geq 0 : \mathbb{P}(|X| > C) = 0\}.$
 1352

1353 **Definition D.4 (Function Spaces).** Let $D \subseteq \mathbb{R}^d$ be an open set. For $k \in \mathbb{N}$ and $p \in [1, \infty]$, the
 1354 Sobolev space $W^{k,p}(D)$ consists of all functions $u \in L^p(D)$ such that for every multi-index $\alpha \in \mathbb{N}_0^d$
 1355 with $|\alpha| \leq k$, the weak derivative $D^\alpha u$ exists and belongs to $L^p(D)$. We define the norm for
 1356 $W^{k,\infty}(D)$ as $\|u\|_{W^{k,\infty}(D)} := \sum_{|\alpha| \leq k} \|D^\alpha u\|_{L^\infty(D)}.$

1357 Furthermore, let $C^{1,2}([0, T] \times \mathbb{R}^d)$ denote the space of functions $\phi(t, x)$ that are once continuously
 1358 differentiable in t and twice continuously differentiable in x . This regularity is required for the
 1359 classical solution u and the surrogate \hat{u} .

1360 **Definition D.5 (Extended Real Arithmetic).** To handle singularities in complexity analysis, we adopt
 1361 the standard conventions for the extended real number line $\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$. Specifically, we
 1362 define $\frac{0}{0} = 0$, $0 \cdot \infty = 0$, $0^0 = 1$, and $\sqrt{\infty} = \infty$. For any $a > 0$ and $b \in \mathbb{R}$, we set $\frac{a}{0} = \infty$,
 1363 $\frac{-a}{0} = -\infty$, $0^{-a} = \infty$, $\frac{1}{0^a} = \infty$, $\frac{b}{\infty} = 0$, and $0^a = 0$.
 1364

1365 D.2 PROBLEM SETUP AND REGULARITY ASSUMPTIONS

1367 We now formalize the specific partial differential equation and the stochastic framework used for our
 1368 theoretical analysis.

1370 D.2.1 STOCHASTIC BASIS

1371 Let $T \in (0, \infty)$ be the terminal time and $d \in \mathbb{N}$ be the spatial dimension. Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathbb{F}_t)_{t \in [0, T]})$
 1372 be all stochastic processes are assumed to be adapted to the usual Filtration $(\mathbb{F}_t)_{t \in [0, T]}$.
 1373

1374 To facilitate the Multilevel Picard (MLP) analysis, we assume the existence of a family of independent
 1375 standard Brownian motions. Specifically, let $\{W^{(l,j)} : l, j \in \mathbb{Z}\}$ be a collection of independent
 1376 d -dimensional standard Brownian motions adapted to $(\mathbb{F}_t)_{t \in [0, T]}$. Here, the index l corresponds to
 1377 the level in the MLP hierarchy, and j corresponds to the Monte Carlo sample index within that level.
 1378

1379 D.2.2 THE TARGET PDE

1380 While the SCaML framework applies to general semi-linear parabolic PDEs, we perform the
 1381 theoretical analysis on the semi-linear heat equation. This corresponds to the generator \mathcal{L} with drift
 1382 $\mu \equiv 0$ and diffusion $\sigma \equiv s\mathbf{I}_d$ for a constant $s \in \mathbb{R} \setminus \{0\}$.
 1383

1384 The classical solution $u \in C^{1,2}([0, T] \times \mathbb{R}^d, \mathbb{R})$ satisfies the terminal value problem:

$$1385 \quad \frac{\partial u}{\partial t}(t, x) + \mathcal{L}u(t, x) + F(u(t, x), \sigma^\top \nabla_x u(t, x)) = 0, \quad (t, x) \in [0, T] \times \mathbb{R}^d, \quad (37)$$

1386 where $\mathcal{L}v := \frac{\sigma^2}{2} \Delta v$, and subject to the terminal condition $u(T, x) = g(x)$.
 1387

1388 The nonlinearity $F : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}$ and terminal condition $g : \mathbb{R}^d \rightarrow \mathbb{R}$ are assumed to be Borel
 1389 measurable functions.
 1390

1391 D.2.3 REGULARITY ASSUMPTIONS

1393 The MLP method achieves dimension-independent convergence rates under Lipschitz continuity
 1394 conditions on the problem data. These conditions ensure bounded variance propagation across Picard
 1395 iterations (Hutzenthaler et al., 2021).

1396 **Assumption D.6** (Lipschitz Continuity of Nonlinearity and Terminal Condition). We assume the
 1397 following:

1398 1. **Nonlinearity:** There exists a constant $L \geq 0$ such that for all $(v_1, z_1), (v_2, z_2) \in \mathbb{R} \times \mathbb{R}^d$
 1399 and $(t, x) \in [0, T] \times \mathbb{R}^d$:

$$1400 \quad |F(v_1, z_1, t, x) - F(v_2, z_2, t, x)| \leq L(|v_1 - v_2| + \|z_1 - z_2\|_1). \quad (38)$$

1402 2. **Terminal Condition:** There exists a constant $K \geq 0$ such that for all $x, y \in \mathbb{R}^d$:

$$1403 \quad |g(x) - g(y)| \leq K\|x - y\|_1. \quad (39)$$

1404 D.3 SURROGATE MODEL AND DEFECT PROPERTIES
1405

1406 In this section, we rigorously define the relationship between the pre-trained surrogate model and
1407 the defect (error) we aim to estimate. We first state the regularity assumptions on the surrogate, then
1408 derive the properties of the Defect PDE.

1409 D.3.1 SURROGATE REGULARITY
1410

1411 To ensure the classical defect PDE is well-defined, we assume the surrogate is sufficiently smooth.
1412 Let $\hat{u} \in C^{1,2}([0, T] \times \mathbb{R}^d, \mathbb{R})$ be a deterministic approximation of u . To ensure the defect terminal
1413 condition is well-behaved, we require the following:

1414 **Assumption D.7** (Lipschitz Continuity of the Surrogate Terminal). *There exists a constant $\hat{K} \in$
1415 $[0, \infty)$ such that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$:*

$$1417 |\hat{u}(T, \mathbf{x}) - \hat{u}(T, \mathbf{y})| \leq \hat{K} \|\mathbf{x} - \mathbf{y}\|_1. \quad (40)$$

1419 D.3.2 THE STRUCTURAL-PRESERVING LAW OF DEFECT
1420

1421 We define the **defect** $\check{u} : [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R}$ as the pointwise error:

$$1422 \check{u}(t, \mathbf{x}) := u(t, \mathbf{x}) - \hat{u}(t, \mathbf{x}). \quad (41)$$

1424 The core of SCaSML is the observation that \check{u} satisfies a semi-linear PDE of the same structure as the
1425 original. We explicitly define the coefficients of this new PDE below.

1426 **Definition D.8** (Modified Nonlinearity and PDE Residual). *Let $\epsilon : [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R}$ be the PDE
1427 residual of the surrogate \hat{u} defined by:*

$$1429 \epsilon(t, \mathbf{x}) := \frac{\partial \hat{u}}{\partial t}(t, \mathbf{x}) + \mathcal{L}\hat{u}(t, \mathbf{x}) + F(\hat{u}(t, \mathbf{x}), \sigma^\top \nabla_{\mathbf{x}} \hat{u}(t, \mathbf{x})).$$

1431 We define the modified nonlinearity $\check{F} : \mathbb{R} \times \mathbb{R}^d \times [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R}$ for the defect PDE as follows.
1432 For any state $v \in \mathbb{R}$ and gradient-state $\mathbf{z} \in \mathbb{R}^d$ at a spacetime point (t, \mathbf{x}) :

$$1434 \check{F}(v, \mathbf{z}, t, \mathbf{x}) := F(\hat{u}(t, \mathbf{x}) + v, \sigma^\top \nabla_{\mathbf{x}} \hat{u}(t, \mathbf{x}) + \mathbf{z}) - F(\hat{u}(t, \mathbf{x}), \sigma^\top \nabla_{\mathbf{x}} \hat{u}(t, \mathbf{x})) + \epsilon(t, \mathbf{x}). \quad (42)$$

1435 We similarly define the defect terminal condition $\check{g}(\mathbf{x}) := g(\mathbf{x}) - \hat{u}(T, \mathbf{x})$.

1436 **Lemma D.9** (Structural-Preserving Law of Defect). *The defect \check{u} is a classical solution to the
1437 following semi-linear parabolic PDE:*

$$1439 \frac{\partial \check{u}}{\partial t}(t, \mathbf{x}) + \mathcal{L}\check{u}(t, \mathbf{x}) + \check{F}(\check{u}, \sigma^\top \nabla_{\mathbf{x}} \check{u}, t, \mathbf{x}) = 0, \forall (t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d \quad \check{u}(T, \mathbf{x}) = \check{g}(\mathbf{x}). \quad (43)$$

1441 **Remark D.10** (Why Law of Defect is Easier to Solve). *The complexity of MLP depends on the
1442 magnitude of source term \check{F} (Hutzenthaler et al., 2020b, Theorem 3.1). Based on the Lipschitz
1443 continuity of \check{F} and the variance-reduction structure inherent to MLMC, Hutzenthaler et al. (2021)
1444 shows that the overall computational complexity of MLP is governed solely by the value of \check{F} at
1445 the origin. Substituting $v = 0$ and $\mathbf{z} = \mathbf{0}$ into Definition D.8: $\check{F}(0, 0, t, \mathbf{x}) = \epsilon(t, \mathbf{x})$. The "source
1446 term" driving the Multilevel Picard simulation for the defect is the residual ϵ , already reduced by
1447 an approximate surrogate. If the surrogate is perfect ($\epsilon \rightarrow 0$), the driving force vanishes, and the
1448 variance of the Monte Carlo estimator approaches zero. In our later theorem, we show that the
1449 variance of MLP can be controlled by the magnitude of ϵ .*

1451 D.3.3 REGULARITY ESTIMATIONS
1452

1453 MLP complexity is governed by both the smoothness and magnitude of the source term; these factors
1454 enter multiplicatively because nonlinearities—via their Lipschitz bounds—propagate and amplify
1455 variance through each Picard iteration. Remark D.10 established that the magnitude component in the
1456 law of defect can be improved using the surrogate. It remains to show that the regularity appearing
1457 in the law of defect is no worse than that of the original PDE, ensuring that the refinement does not
introduce additional smoothness requirements.

1458
 1459 **Lemma D.11** (Preservation of Lipschitz Constants). *Suppose F satisfies Assumption D.6 with*
 1460 *Lipschitz constants L . Then, the modified nonlinearity \check{F} satisfies the same Lipschitz condition with*
 1461 *the same constants. Specifically, for any fixed (t, \mathbf{x}) , and any vectors $(\check{v}_1, \mathbf{z}_1), (\check{v}_2, \mathbf{z}_2) \in \mathbb{R} \times \mathbb{R}^d$:*

$$1462 \quad |\check{F}(\check{v}_1, \mathbf{z}_1, t, \mathbf{x}) - \check{F}(\check{v}_2, \mathbf{z}_2, t, \mathbf{x})| \leq L(|\check{v}_1 - \check{v}_2| + \|\mathbf{z}_1 - \mathbf{z}_2\|_1), \quad (44)$$

1463 *Furthermore, the defect terminal condition \check{g} is Lipschitz continuous with constants $\check{K} = K + \hat{K}$.*

1465 *Proof.* Let $\mathbf{w}_1 = (\check{v}_1, \mathbf{z}_1)$ and $\mathbf{w}_2 = (\check{v}_2, \mathbf{z}_2)$. We define the background state vector of the surrogate
 1466 as $\hat{\mathbf{U}} = (\hat{u}(t, \mathbf{x}), \sigma^\top \nabla_{\mathbf{x}} \hat{u}(t, \mathbf{x}))$. From Definition D.8, the difference is:

$$1468 \quad \check{F}(\mathbf{w}_1, t, \mathbf{x}) - \check{F}(\mathbf{w}_2, t, \mathbf{x}) = [F(\hat{\mathbf{U}} + \mathbf{w}_1) - F(\hat{\mathbf{U}}) + \epsilon] - [F(\hat{\mathbf{U}} + \mathbf{w}_2) - F(\hat{\mathbf{U}}) + \epsilon] \\ 1469 \quad = F(\hat{\mathbf{U}} + \mathbf{w}_1) - F(\hat{\mathbf{U}} + \mathbf{w}_2).$$

1471 *Note that the shift terms $F(\hat{\mathbf{U}})$ and the residual $\epsilon(t, \mathbf{x})$ cancel out exactly. Thus, the Lipschitz*
 1472 *continuity of F (Assumption D.6) transfers directly to \check{F} :*

$$1474 \quad |F(\hat{\mathbf{U}} + \mathbf{w}_1) - F(\hat{\mathbf{U}} + \mathbf{w}_2)| \leq L\|(\hat{\mathbf{U}} + \mathbf{w}_1) - (\hat{\mathbf{U}} + \mathbf{w}_2)\|_1 = L\|\mathbf{w}_1 - \mathbf{w}_2\|_1.$$

1475 This confirms that \check{F} inherits the Lipschitz constants L . For the terminal condition, since $\hat{u} \in$
 1476 $C^{1,2}([0, T] \times \mathbb{R}^d)$ by Assumption D.7, the map $x \mapsto \hat{u}(T, x)$ is Lipschitz with constants \hat{K} . The
 1477 triangle inequality applied to $\check{g} = g - \hat{u}(T, \cdot)$ then yields $\check{K} \leq K + \hat{K}$. \square

1479 E PROOF OF FULL-HISTORY MULTILEVEL PICARD ITERATION

1481 This section establishes the theoretical guarantees for SCaSML when the
 1482 Structural-preserving Law of Defect is solved using the Full-History Multi-
 1483 level Picard (MLP) iteration. In contrast to the quadrature method, this approach utilizes Monte
 1484 Carlo sampling for time integration, which relaxes the regularity requirements on the solution.

1486 For the theoretical analysis, we retain the setting of the semi-linear heat equation where $\mu = \mathbf{0}_d$ and
 1487 $\sigma = s\mathbf{I}_d$ for a constant $s \in \mathbb{R}$.

1488 E.1 PROBABILISTIC SETUP AND TIME SAMPLING

1490 To analyze the Full-History estimator, we must extend our stochastic basis to support random time
 1491 stepping.

1493 **Definition E.1** (Extended Probability Space and Time Sampling). *Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability*
 1494 *space that supports the following independent families of random variables:*

- 1495 1. **Brownian Motions:** A collection $\{W^{(l,j)}\}_{l,j \in \mathbb{Z}}$ of independent d -dimensional standard
 1496 Brownian motions.
- 1497 2. **Time Step Samples:** A collection $\{\tau^{(l,j)}\}_{l,j \in \mathbb{Z}}$ of independent random variables distributed
 1498 on $(0, 1)$ according to a probability density function $\rho : (0, 1) \rightarrow (0, \infty)$.

1500 For our analysis and experiments, we specifically select the density $\rho(s) = (1 - \alpha)s^{-\alpha}$ for a
 1501 parameter $\alpha \in (0, 1)$. This ensures that the cumulative distribution function is $F_\rho(b) = b^{1-\alpha}$,
 1502 facilitating efficient inverse transform sampling.

1504 E.2 RELAXED SURROGATE ASSUMPTIONS

1505 A key advantage of the Full-History MLP is its robustness. Unlike the quadrature scheme, which
 1506 incurs a time discretization error scaling with high-order time derivatives of the solution, the Monte
 1507 Carlo time integration is unbiased. Consequently, we can drop the higher-order regularity requirement
 1508 (Assumption F.1, Item 3) imposed in Appendix F.

1510 **Assumption E.2** (Accuracy of the Surrogate Model for Full-History MLP). *Let \check{u} be the solution to*
 1511 *the Defect PDE. We assume $\sup_{t \in [0, T]} \|\check{u}(t, \cdot)\|_{W^{1,\infty}(\mathbb{R}^d)} < \infty$. There exist constants $C_{F,1}, C_{F,2} > 0$*
independent of \hat{u} such that the surrogate error measure $e(\hat{u})$ controls the following:

1512 1. **Residual Bound** (L^∞):
 1513

$$1514 \quad \sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} |\epsilon(t, \mathbf{x})| \leq C_{F,1} e(\hat{u}).$$

1516 2. **Defect Bound** ($W^{1,\infty}$):
 1517

$$1518 \quad \sup_{t \in [0, T]} \|\check{u}(t, \cdot)\|_{W^{1,\infty}(\mathbb{R}^d)} \leq C_{F,2} e(\hat{u}).$$

1521 However, the singularity of density ρ requires a specific moment condition to ensure finite variance.

1522 **Assumption E.3** (Integrability of the Residual). *There exists $p \in \mathbb{N}$ with $p \geq 2$ such that for all
 1523 $t \in [0, \bar{T}]$ and $q \in [1, p)$:*

$$1524 \quad \int_0^1 \frac{1}{s^{q/2} \rho(s)^{q-1}} ds + \sup_{s \in [t, T]} \mathbb{E} \left[|\epsilon(t, \mathbf{x} + \sigma W_s - \sigma W_t)|^q \right] < \infty. \quad (45)$$

1528 **Remark E.4.** In Assumption E.3, we explicitly identified $\check{F}(\mathbf{0}_{d+1})$ with the residual ϵ . This assumption
 1529 ensures that the surrogate’s residual does not grow too fast in expectation along Brownian paths,
 1530 and that the time sampling density ρ puts sufficient probability mass near $t = 0$ to counteract the
 1531 singularity.

1532 E.3 MAIN RESULTS

1534 We now show that, with an appropriately trained surrogate model, the Structural-preserving
 1535 Law of Defect can be simulated with lower complexity than the original PDE. In particular, the
 1536 error of the full-history MLP is upper-bounded by the surrogate model’s error measure $e(\hat{u})$.
 1537

1538 E.3.1 SKETCH OF PROOF

1540 The computational complexity of the MLP solver depends on the Lipschitz constant of the nonlinearity
 1541 \check{F} and the magnitude of the “source terms”. The “source term” driving the Multilevel Picard
 1542 simulation for the defect is the residual ϵ , already reduced by the surrogate. At the same time, we
 1543 show that the regularity in the law of defect is no worse than that of the original PDE, ensuring that
 1544 the refinement introduces no additional smoothness requirements. Combining the previous fact, a
 1545 more accurate surrogate makes the defect PDE “easier” to solve. This leads to our main error bound.

1. **Improved Source Magnitude.** Since the source term $\check{F}(\mathbf{0}_{d+1}, t, \mathbf{x}) = \epsilon(t, \mathbf{x})$ is the
 1547 surrogate’s residual by Definition D.8. Consequently, as the surrogate improves with
 1548 additional training data, the variance of the Monte Carlo estimator decreases proportionally.
 1549 Lemma E.5 formalizes this argument.
2. **Complexity of MLP** Hutzenthaler et al. (2021) show that the complexity of MLP depends
 1551 on both the smoothness and the size of the source term; these contributions combine
 1552 multiplicatively since nonlinearities, controlled by their Lipschitz constants, propagate
 1553 and amplify variance throughout successive Picard iterations. Then we analyze both the
 1554 magnitude of the source term in Law of Defect and its regularity.
3. **Preservation of Regularity.** By Lemma D.11, the defect nonlinearity \check{F} inherits the
 1556 Lipschitz constants L of the original F exactly. Thus, the regularity requirements for the
 1557 MLP solver remains unchanged, ensuring that the refinement does not introduce additional
 1558 smoothness constraints.
4. **Error Bound.** Based on the previous intuition, Theorem E.6 bounds the total L^2 -error
 1560 as a multiplicative form, combining the classical MLP complexity with the surrogate’s
 1561 approximation error. Thus this can leads to faster convergence rate if the surrogate’s
 1562 approximation error consistently improves.
5. **Complexity Estimate.** Substituting the reduced source magnitude into the standard MLP
 1564 bound yields a multiplicative error reduction. Combined with Theorem E.11, we improve
 1565 $O(d\varepsilon^{-(2+\delta)})$ to $O(d e(\hat{u})^{2+\delta} \varepsilon^{-(2+\delta)})$.

1566 E.3.2 BOUND ON GLOBAL L^2 ERROR
1567

1568 Our proof still utilizes the insight that the overall L^2 error in the MLP mainly hinges on the Lipschitz
1569 continuity of the PDE's terminal and solution, as well as the extent of nonlinearity at the origin.
1570 We illustrate that the parameter linked to the Structural-preserving Law of Defect is
1571 constrained by the surrogate error. Initially, we present a lemma demonstrating how the complexity
1572 of MLP can be capped by the error assessment.

1573 **Lemma E.5** (Complexity Estimation via Surrogate Error for Full-History MLP). *Under Assumptions
1574 D.6, D.7, E.2, and E.3, suppose $p \geq 2$. There exists a constant $C_F > 0$ independent of the surrogate
1575 such that for all $M, N \geq 2$:*

$$1576 \sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} \left\{ \frac{\sigma \sqrt{\max\{T-t, 3\}} \check{K}}{\sqrt{M}} + \frac{C \sup_{s \in [t, T]} \|\check{F}(\mathbf{0}_{d+1}, s, \mathbf{x} + \sigma W_s - \sigma W_t)\|_{L^{\frac{2p}{p-2}}(\Omega)}}{2\sqrt{M}} \right. \\ 1577 \left. + \frac{C \sup_{s \in [t, T], \varsigma \in \{1, \dots, d+1\}} \|\check{\mathbf{u}}(s, \mathbf{x} + \sigma W_s - \sigma W_t)_\varsigma\|_{L^{\frac{2p}{p-2}}(\Omega)}}{2} \right\} \leq C_F e(\hat{u}), \\ 1582 \quad (46)$$

1583 where the constant C is defined as:

$$1584 C = \max \left\{ 1, 2T^{\frac{1}{2}} \left| \Gamma \left(\frac{p}{2} \right) \right|^{\frac{1}{p}} (1-\alpha)^{\frac{1}{p}-1} \max\{1, L\} \max \left\{ T^{\frac{1}{2}}, 2^{\frac{1}{2}} \left| \Gamma \left(\frac{p+1}{2} \right) \right|^{\frac{1}{p}} \pi^{-\frac{1}{2p}} \right\} \right\}.$$

1585 *Proof.* We bound the three terms on the left-hand side of equation 46 using the L^∞ bounds provided
1586 by the surrogate accuracy Assumption E.2. We utilize the fact that for any bounded random variable
1587 Z , $\|Z\|_{L^q(\Omega)} \leq \|Z\|_{L^\infty(\Omega)}$.

1588 **Step 1: Bounding the Terminal Condition.** As shown in the proof of Lemma F.4 (Step 2), we have:

$$1589 \check{K} \leq \|\check{u}(T, \cdot)\|_{W^{1,\infty}(\mathbb{R}^d)} \leq \sup_{r \in [0, T]} \|\check{u}(r, \cdot)\|_{W^{1,\infty}(\mathbb{R}^d)}. \quad (47)$$

1590 Applying the Defect Bound from Assumption E.2 (Item 2):

$$1591 \check{K} \leq C_{F,2} e(\hat{u}). \quad (48)$$

1592 **Step 2: Bounding the Residual Term.** Recall that $\check{F}(\mathbf{0}_{d+1}, t, \mathbf{x}) = \epsilon(t, \mathbf{x})$. The second term
1593 involves the $L^{\frac{2p}{p-2}}(\Omega)$ norm of this residual evaluated along Brownian paths. Since the residual is
1594 essentially bounded in space-time:

$$1595 \|\check{F}(\mathbf{0}_{d+1}, s, \mathbf{x} + \sigma W_s - \sigma W_t)\|_{L^{\frac{2p}{p-2}}(\Omega)} = \|\epsilon(s, \mathbf{x} + \sigma W_s - \sigma W_t)\|_{L^{\frac{2p}{p-2}}(\Omega)} \\ 1596 \leq \sup_{\omega \in \Omega} |\epsilon(s, \mathbf{x} + \sigma W_s(\omega) - \sigma W_t(\omega))| \\ 1597 \leq \sup_{y \in \mathbb{R}^d} |\epsilon(s, y)|. \quad (49)$$

1598 Applying the Residual Bound from Assumption E.2 (Item 1):

$$1599 \sup_{s \in [t, T]} \|\check{F}(\mathbf{0}_{d+1}, s, \cdot)\|_{L^{\frac{2p}{p-2}}} \leq C_{F,1} e(\hat{u}). \quad (50)$$

1600 **Step 3: Bounding the Defect Norm.** The third term involves the $L^{\frac{2p}{p-2}}$ norm of the defect solution $\check{\mathbf{u}}$
1601 and its gradient. Similarly, we bound the stochastic L^q norm by the deterministic uniform norm:

$$1602 \|\check{\mathbf{u}}(s, \mathbf{x} + \sigma W_s - \sigma W_t)_\varsigma\|_{L^{\frac{2p}{p-2}}(\Omega)} \leq \|\check{\mathbf{u}}(s, \cdot)\|_{L^\infty(\mathbb{R}^d)} \\ 1603 \leq \|\check{u}(s, \cdot)\|_{W^{1,\infty}(\mathbb{R}^d)}. \quad (51)$$

1604 Applying the Defect Bound from Assumption E.2 (Item 2):

$$1605 \sup_{s \in [t, T]} \|\check{u}(s, \cdot)\|_{W^{1,\infty}(\mathbb{R}^d)} \leq C_{F,2} e(\hat{u}). \quad (52)$$

1620 Substituting the bounds equation 48, equation 50, and equation 52 back into equation 46:
1621

$$\begin{aligned} 1622 \text{LHS} &\leq \frac{\sigma\sqrt{T+3}C_{F,2}e(\hat{u})}{\sqrt{M}} + \frac{CC_{F,1}e(\hat{u})}{2\sqrt{M}} + \frac{CC_{F,2}e(\hat{u})}{2} \\ 1623 &= \left[\left(\frac{\sigma\sqrt{T+3}}{\sqrt{M}} + \frac{C}{2} \right) C_{F,2} + \frac{C}{2\sqrt{M}} C_{F,1} \right] e(\hat{u}). \end{aligned} \quad (53)$$

1624 Since $M \geq 1$, we can simplify the coefficient by defining $C_F := \sigma\sqrt{T+3}C_{F,2} + \frac{C}{2}(C_{F,1} + C_{F,2})$.
1625 This proves the lemma. \square
1626

1627 The above lemma, together with standard error estimates for the full-history MLP, yields the following
1628 result.
1629

1630 **Theorem E.6** (Bound of Global L^2 Error). *Under assumptions D.6, D.7, E.3 and E.2, suppose
1631 $p \geq 2$, $\alpha \in (\frac{p-2}{2(p-1)}, \frac{p}{2(p-1)})$, $t \in [0, T]$, $x \in \mathbb{R}^d$, $\beta = \frac{\alpha}{2} - \frac{(1-\alpha)(p-2)}{2p}$. For $\check{U}_{N,M}(t, x)$ with level
1632 N and sample base M as defined in Algorithm 1, it holds that*

$$1633 \sup_{(t,x) \in [0,T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| (\check{U}_{N,M}(t, x) - \check{u}(t, x))_{\varsigma} \right\|_{L^2} \leq E(M, N) \cdot (C_F e(\hat{u})), \quad (54)$$

$$1634 \text{where } E(M, N) = \frac{\left[e\left(\frac{pN}{2} + 1\right) \right]^{\frac{1}{8}} (2C)^{N-1} \exp\left(\beta M^{\frac{1}{2\beta}}\right)}{\sqrt{M^{N-1}}}.$$

1635 *Proof.* Under assumptions E.3 and D.6, combined with the integrability argument in (Hutzenthaler
1636 et al., 2021, Lemma 3.3), the proof of (Hutzenthaler et al., 2021, Proposition 3.5) holds. Setting
1637 $n = N$ in this proposition, for all $\varsigma \in \{1, \dots, d+1\}$, we have
1638

$$1639 \left\| (\check{U}_{N,M}(t, x) - \check{u}(t, x))_{\varsigma} \right\|_{L^2} \leq E(M, N) \cdot \left\{ \frac{\sigma\sqrt{\max\{T-t, 3\}}\check{K}}{\sqrt{M}} \right. \quad (55)$$

$$1640 + \frac{C \sup_{s \in [t, T]} \|\check{F}(\mathbf{0}_{d+1})(s, x + \sigma W_s - \sigma W_t)\|_{L^{\frac{2p}{p-2}}}}{2\sqrt{M}} \quad (56)$$

$$1641 + \frac{C \sup_{s \in [t, T], \varsigma \in \{1, \dots, d+1\}} \|\check{u}(s, x + \sigma W_s - \sigma W_t)_{\varsigma}\|_{L^{\frac{2p}{p-2}}}}{2} \left. \right\}. \quad (57)$$

1642 Take $\sup_{(t,x) \in [0,T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}}$ for the LHS, and note that the RHS does not depend on ς ,
1643 we get
1644

$$1645 \sup_{(t,x) \in [0,T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| (\check{U}_{N,M}(t, x) - \check{u}(t, x))_{\varsigma} \right\|_{L^2} \quad (58)$$

$$1646 \leq E(M, N) \cdot \sup_{(t,x) \in [0,T] \times \mathbb{R}^d} \left\{ \frac{\sigma\sqrt{\max\{T-t, 3\}}\check{K}}{\sqrt{M}} + \frac{C \sup_{s \in [t, T]} \|\check{F}(\mathbf{0}_{d+1})(s, x + \sigma W_s - \sigma W_t)\|_{L^{\frac{2p}{p-2}}}}{2\sqrt{M}} \right. \quad (59)$$

$$1647 + \frac{C \sup_{s \in [t, T], \varsigma \in \{1, \dots, d+1\}} \|\check{u}(s, x + \sigma W_s - \sigma W_t)_{\varsigma}\|_{L^{\frac{2p}{p-2}}}}{2} \left. \right\}.$$

1648 Substituting the sup term in 58 by Lemma E.5 immediately yields the stated result. \square
1649

1650 In practice, a common choice for M is $\lfloor N^{2\beta N} \rfloor$. Plugging it in E.7, we get the error order of the
1651 solver w.r.t. N :
1652

1653 **Corollary E.7** (Error Order for $M = \lfloor N^{2\beta N} \rfloor$). *Under assumptions D.6, D.7, E.3 and E.2, suppose
1654 $p \geq 2$, $\alpha \in (\frac{p-2}{2(p-1)}, \frac{p}{2(p-1)})$, $t \in [0, T]$, $x \in \mathbb{R}^d$, $\beta = \frac{\alpha}{2} - \frac{(1-\alpha)(p-2)}{2p}$. It holds that*

$$1655 \sup_{(t,x) \in [0,T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| (\check{U}_{N,M}(t, x) - \check{u}(t, x))_{\varsigma} \right\|_{L^2} \leq \exp\left(N \log N(-\beta + o(1))\right) \cdot (C_F e(\hat{u})). \quad (61)$$

1674 *Proof.* First, we rewrite $E(M, N)$ in E.6 as exponential form:
 1675

$$1676 \quad E(M, N) = \frac{\left[e\left(\frac{pN}{2} + 1\right) \right]^{\frac{1}{8}} (2C)^{N-1} \exp\left(\beta M^{\frac{1}{2\beta}}\right)}{\sqrt{M^{N-1}}} \quad (62)$$

$$1679 \quad = \exp\left(o(N) + N \log(2C) + \beta M^{1/2\beta} - \frac{N-1}{2} \log M\right) \quad (63)$$

1681 Note that $\lfloor N^{2\beta N} \rfloor \leq N^{2\beta N}$ and that $M = \lfloor N^{2\beta N} \rfloor \Rightarrow \log M \geq \log(N^{2\beta N} - 1) \geq \log(N^{2\beta N}) - 1 = 2\beta \log N - 1$ for $N \geq 2^{1/2\beta}$. We can simplify 62 to

$$1684 \quad \exp\left(o(N) + N \log(2C) + \beta M^{1/2\beta} - \frac{N-1}{2} \log M\right) \quad (64)$$

$$1687 \quad \leq \exp\left(o(N) + N \log(2C) + \beta N - \frac{N-1}{2}(2\beta \log N - 1)\right) \quad (65)$$

$$1689 \quad = \exp\left(N(o(1) + \log(2C) + \beta - \frac{1}{2}(2\beta \log N - 1))\right) \quad (66)$$

$$1692 \quad = \exp\left(N \log N(-\beta + o(1))\right). \quad (67)$$

1693 Plugging 64 to the conclusion of E.6, we get the result we want. \square

1695 **Corollary E.8** (Improved Scaling Law for $M = \lfloor N^{2\beta N} \rfloor$). *Under Assumptions D.6, D.7, E.3 and E.2,
 1696 suppose that $p \geq 2$, $\alpha \in \left(\frac{p-2}{2(p-1)}, \frac{p}{2(p-1)}\right)$, $t \in [0, T)$, $x \in \mathbb{R}^d$, and define $\beta = \frac{\alpha}{2} - \frac{(1-\alpha)(p-2)}{2p}$.*

1698 *Assume that the error at (t, \mathbf{x}) of the surrogate model decays polynomially with respect to the
 1699 number of training points; namely, $e(\hat{u}) = O(m^{-\gamma})$, for some $\gamma > 0$. Suppose further that
 1700 $m = (d+1)5^N N^{2\beta N}$. Then, for all sufficiently large m , the SCaSML procedure improves the error
 1701 bound from $O(m^{-\gamma})$ to $O\left(m^{-\gamma - \frac{1}{2} + o(1)}\right)$ with same points number.*

1703 *Proof.* In what follows, we adopt the notation $f(m) \sim g(m)$ to signify that $\lim_{m \rightarrow \infty} \frac{f(m)}{g(m)} = 1$.
 1704 Since m is a continuous and strictly increasing function of N , there exists a unique inverse function
 1705 $N = N(m)$. Taking logarithms, we obtain $\log m = \log(d+1) + N(m) \log 5 + 2\beta N(m) \log N(m)$
 1706 which follows immediately that $\log m \sim 2\beta N(m) \log N(m)$

1707 Define

$$1709 \quad z = \frac{\log m}{2\beta} - \frac{\log(d+1) + N(m) \log 5}{2\beta}$$

1711 and set $x = \log N$, so that the relation $x e^x = z$ holds. The inverse of this equation is given by the
 1712 Lambert W function, i.e., $x = W(z)$. Therefore,

$$1713 \quad N(m) = e^x = e^{W(z)} = \frac{z}{W(z)} = \frac{\frac{\log m}{2\beta} - \frac{\log(d+1) + N(m) \log 5}{2\beta}}{W\left(\frac{\log m}{2\beta} - \frac{\log(d+1) + N(m) \log 5}{2\beta}\right)}.$$

1717 Since $W(z) \sim \log z - \log \log z$, we can deduce that $N(m) \sim \frac{\log m}{\log(\log m)} = \frac{\log m}{2\beta \log \log m}$. Equivalently,
 1718 $N(m) = \frac{\log m}{2\beta \log \log m} + o\left(\frac{\log m}{2\beta \log \log m}\right)$.

1721 In contrast to the surrogate model, which uses all m points to achieve an error of $O(m^{-\gamma})$, the
 1722 SCaSML method allocates $5^N N^{2\beta N}$ points for training and $d5^N N^{2\beta N}$ points for inference (see Foot-
 1723 note E.9), thereby yielding an error bound of the form $O\left(N \log N (-\beta + o(1)) (5^N N^{2\beta N})^{-\gamma}\right) =$
 1724 $O\left(N^{-\beta N(1+o(1))} m^{-\gamma}\right)$. Substituting the asymptotic expression for $N(m)$, and noting that

$$1726 \quad N(m)^{-\beta N(m)} = \frac{\sqrt{d+1} \exp\left(\frac{\log 5}{2} N(m)\right)}{\sqrt{m}} \quad (68)$$

$$\begin{aligned}
1728 &= \sqrt{d+1} \exp\left(\frac{\log 5}{2} \log m\left(\frac{N(m)}{\log m} - \frac{1}{\log 5}\right)\right) & (69) \\
1729 \\
1730 &= \sqrt{d+1} \exp\left(\frac{\log 5}{2} \log m\left(-\frac{1}{\log 5} + o\left(\frac{1}{\log \log m}\right)\right)\right) & (70) \\
1731 \\
1732 &= \sqrt{d+1} \exp\left(-\left(\frac{1}{2} - o\left(\frac{1}{\log \log m}\right)\right) \log m\right) & (71) \\
1733 \\
1734 &= \sqrt{d+1} m^{-\frac{1}{2}+o\left(\frac{1}{\log \log m}\right)} = O\left(m^{-\frac{1}{2}+o\left(\frac{1}{\log \log m}\right)}\right). & (72) \\
1735 \\
1736
\end{aligned}$$

We obtain the SCaSML error bound $O\left(m^{-\gamma} m^{-\frac{1}{2}+o\left(\frac{1}{\log \log m}\right)}(1+o(1))\right) = O\left(m^{-\gamma-\frac{1}{2}+o(1)}\right)$. Hence, for high-dimensional problems where $m \gg 1$ and for any fixed $\gamma > 0$, we conclude that $O\left(m^{-\gamma-\frac{1}{2}+o(1)}\right) \ll O\left(m^{-\gamma}\right)$, thereby demonstrating that the SCaSML procedure attains a strictly faster rate of convergence. \square

Corollary E.9 (Error Order for $M = \lfloor N^{2\beta N} \rfloor$). *Under Assumptions E.2, E.3, D.6 and D.7, suppose $p \geq 2$, $\alpha \in (\frac{p-2}{2(p-1)}, \frac{p}{2(p-1)})$, $t \in [0, T)$, $x \in \mathbb{R}^d$, $\beta = \frac{\alpha}{2} - \frac{(1-\alpha)(p-2)}{2p}$. It holds that*

$$\sup_{(t, x) \in [0, T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| \left(\tilde{\mathbf{U}}_{N, \lfloor N^{2\beta N} \rfloor}(t, x) - \tilde{\mathbf{u}}(t, x) \right)_\varsigma \right\|_{L^2} \leq \exp\left(N \log N(-\beta + o(1))\right) \cdot \left(C_F e(\hat{u}) \right). \quad (73)$$

Specifically, this approximator $\tilde{\mathbf{U}}_{N, \lfloor N^{2\beta N} \rfloor}$ requires at most $d(5 \lfloor N^{2\beta N} \rfloor)^N$ points for evaluation, as detailed in (Hutzenthaler et al., 2020a, Lemma 3.6).

E.3.3 BOUND ON COMPUTATIONAL COMPLEXITY

We now define two indicators to quantify the computational complexity of full-history SCaSML: the number of realization variables (RV) and the number of function evaluations (FE).

Definition E.10 (Computational Complexity of full-history SCaSML). *We define the following complexity:*

- Let $\{\text{RV}_{n, M}\}_{n, M \in \mathbb{Z}} \subset \mathbb{N}$ satisfy $\text{RV}_{0, M} = 0$ and, for all $n, M \in \mathbb{N}$,

$$\text{RV}_{n, M} \leq d M^n + \sum_{l=0}^{n-1} \left[M^{n-l} \left(1 + d + \text{RV}_{l, M} + \mathbf{1}_{\mathbb{N}}(l) \text{RV}_{l-1, M} \right) \right]. \quad (74)$$

This quantity captures the number of scalar normal and uniform time realizations required to compute one sample of $\tilde{\mathbf{U}}_{n, M}(s, x)$.

- Let $\{\text{FE}_{n, M}\}_{n, M \in \mathbb{Z}} \subset \mathbb{N}$ satisfy $\text{FE}_{0, M} = 0$ and, for all $n, M \in \mathbb{N}$,

$$\text{FE}_{n, M} \leq M^n + \sum_{l=0}^{n-1} \left[M^{n-l} \left(1 + \text{FE}_{l, M} + \mathbf{1}_{\mathbb{N}}(l) + \mathbf{1}_{\mathbb{N}}(l) \text{FE}_{l-1, M} \right) \right]. \quad (75)$$

This reflects the number of evaluations of \tilde{F} and \tilde{g} required to compute one sample of $\tilde{\mathbf{U}}_{n, M}(s, x)$.

Theorem E.11 (Computational Complexity of full-history SCaSML). *Under assumptions D.6, D.7, E.3 and E.2, suppose $p \geq 2$, $\alpha \in (\frac{p-2}{2(p-1)}, \frac{p}{2(p-1)})$ and $\beta = \frac{\alpha}{2} - \frac{(1-\alpha)(p-2)}{2p} \in (0, \frac{\alpha}{2})$. For any $N \geq 2$ and $\delta > 0$, taking $M = \lfloor N^{2\beta N} \rfloor$, we have*

$$\begin{aligned}
1777 &\text{RV}_{N, M} + \text{FE}_{N, M} \leq \exp\left(N \log N\left(-\beta\delta + o(1)\right)\right) \\
1778 \\
1779 &(d+1)(C_F e(\hat{u}))^{2+\delta} \left[\sup_{(t, x) \in [0, T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| \left(\tilde{\mathbf{U}}_{N, M}(t, x) - \mathbf{u}^\infty(t, x) \right)_\varsigma \right\|_{L^2} \right]^{-(2+\delta)}. & (76) \\
1780 \\
1781
\end{aligned}$$

1782 *Proof.* From (Hutzenthaler et al., 2020a, Lemma 3.6), we derive that
 1783

$$1784 \text{RV}_{N,M} \leq d(5M)^N, \text{FE}_{N,M} \leq (5M)^N. \quad (77)$$

1786 Suppose the maximum error is ε . To compensate for the $(5M)^N$ term in the complexity by the
 1787 denominator of Theorem E.6, we multiply the complexity by $\varepsilon^{2+\delta}$ and then divide it, and put
 1788 everything into the exponent:

$$1789 \text{RV}_{N,M} + \text{FE}_{N,M} \quad (78)$$

$$1790 \leq (d+1)(5M)^N \quad (79)$$

$$1792 = (d+1)(5M)^N \varepsilon^{2+\delta} \varepsilon^{-(2+\delta)} \quad (80)$$

$$1794 \leq \left[\frac{\left[e \left(\frac{pN}{2} + 1 \right) \right]^{\frac{1}{8}} (2C)^{N-1} \exp \left(\beta M^{\frac{1}{2\beta}} \right)}{\sqrt{M^{N-1}}} \right]^{2+\delta} (\mathcal{C}_{Fe}(\hat{u}))^{2+\delta} (d+1)(5M)^N \quad (81)$$

$$1797 = \left[\sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| (\tilde{\mathbf{U}}_{N,M}(t, \mathbf{x}) - \mathbf{u}^\infty(t, \mathbf{x}))_\varsigma \right\|_{L^2} \right]^{-(2+\delta)} \quad (82)$$

$$1800 = \exp \left(N \left((2+\delta) \log(2C) + \log 5 \right) + (2+\delta)\beta M^{1/2\beta} + \log M - \frac{\delta}{2}(N-1) \log M + o(N) \right) \quad (83)$$

$$1803 (d+1)(\mathcal{C}_{Fe}(\hat{u}))^{2+\delta} \left[\sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| (\tilde{\mathbf{U}}_{N,M}(t, \mathbf{x}) - \mathbf{u}^\infty(t, \mathbf{x}))_\varsigma \right\|_{L^2} \right]^{-(2+\delta)} \quad (84)$$

$$1807 = \exp \left(N \left((2+\delta) \log(2C) + \log 5 + \frac{(2+\delta)\beta}{N} M^{1/2\beta} - \left(\frac{\delta}{2} - \frac{2+\delta}{2N} \right) \log M + o(1) \right) \right) \quad (85)$$

$$1810 (d+1)(\mathcal{C}_{Fe}(\hat{u}))^{2+\delta} \left[\sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| (\tilde{\mathbf{U}}_{N,M}(t, \mathbf{x}) - \mathbf{u}^\infty(t, \mathbf{x}))_\varsigma \right\|_{L^2} \right]^{-(2+\delta)} \quad (86)$$

$$1814 \leq \exp \left(N \left((2+\delta) \log(2C) + \log 5 + \frac{(2+\delta)\beta}{N} M^{1/2\beta} - \left(\frac{\delta}{2} - \frac{2+\delta}{2N} \right) \log M + o(1) \right) \right) \quad (87)$$

$$1817 (d+1)(\mathcal{C}_{Fe}(\hat{u}))^{2+\delta} \left[\sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| (\tilde{\mathbf{U}}_{N,M}(t, \mathbf{x}) - \mathbf{u}^\infty(t, \mathbf{x}))_\varsigma \right\|_{L^2} \right]^{-(2+\delta)} \quad (88)$$

1820 Note that $\lfloor N^{2\beta N} \rfloor^{1/2\beta} \leq N$ and $\beta < \frac{\alpha}{2}$, thus $\frac{(2+\delta)\beta}{N} M^{1/2\beta} \leq (2+\delta)\beta \leq \alpha(1 + \frac{\delta}{2})$. Therefore, by
 1821 78:

$$1824 \exp \left(N \left((2+\delta) \log(2C) + \log 5 + \frac{(2+\delta)\beta}{N} M^{1/2\beta} - \left(\frac{\delta}{2} - \frac{2+\delta}{2N} \right) \log M + o(1) \right) \right) \quad (89)$$

$$1827 (d+1)(\mathcal{C}_{Fe}(\hat{u}))^{2+\delta} \left[\sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| (\tilde{\mathbf{U}}_{N,M}(t, \mathbf{x}) - \mathbf{u}^\infty(t, \mathbf{x}))_\varsigma \right\|_{L^2} \right]^{-(2+\delta)} \quad (90)$$

$$1830 \leq \exp \left(N \left((2+\delta) \log(2C) + \log 5 + \alpha(1 + \frac{\delta}{2}) - \left(\frac{\delta}{2} - \frac{2+\delta}{2N} \right) \log M + o(1) \right) \right) \quad (91)$$

$$1833 (d+1)(\mathcal{C}_{Fe}(\hat{u}))^{2+\delta} \left[\sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| (\tilde{\mathbf{U}}_{N,M}(t, \mathbf{x}) - \mathbf{u}^\infty(t, \mathbf{x}))_\varsigma \right\|_{L^2} \right]^{-(2+\delta)}. \quad (92)$$

1836 Since $M = \lfloor N^{2\beta N} \rfloor \Rightarrow \log M \geq \log(N^{2\beta N} - 1) \geq \log(N^{2\beta N}) - 1 = 2\beta \log N - 1$ for $N \geq 2^{1/2\beta}$,
 1837 we can further reduce 89 to:

$$1838 \exp \left(N \left((2 + \delta) \log(2C) + \log 5 + \alpha(1 + \frac{\delta}{2}) - (\frac{\delta}{2} - \frac{2 + \delta}{2N}) \log M + o(1) \right) \right) \quad (93)$$

$$1841 (d + 1) (\mathcal{C}_{\mathbf{F}e}(\hat{u}))^{2+\delta} \left[\sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} \max_{s \in \{1, \dots, d+1\}} \left\| \left(\tilde{\mathbf{U}}_{N,M}(t, \mathbf{x}) - \mathbf{u}^\infty(t, \mathbf{x}) \right)_s \right\|_{L^2} \right]^{-(2+\delta)} \quad (94)$$

$$1845 \leq \exp \left(N \left((2 + \delta) \log(2C) + \log 5 + \alpha(1 + \frac{\delta}{2}) + (\frac{\delta}{2} - \frac{2 + \delta}{2N}) - (\frac{\delta}{2} - \frac{2 + \delta}{2N}) \cdot 2\beta \log N + o(1) \right) \right) \quad (95)$$

$$1849 (d + 1) (\mathcal{C}_{\mathbf{F}e}(\hat{u}))^{2+\delta} \left[\sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} \max_{s \in \{1, \dots, d+1\}} \left\| \left(\tilde{\mathbf{U}}_{N,M}(t, \mathbf{x}) - \mathbf{u}^\infty(t, \mathbf{x}) \right)_s \right\|_{L^2} \right]^{-(2+\delta)} \quad (96)$$

$$1852 = \exp \left(N \log N \left(-\beta\delta + o(1) \right) \right) \quad (97)$$

$$1856 (d + 1) (\mathcal{C}_{\mathbf{F}e}(\hat{u}))^{2+\delta} \left[\sup_{(t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d} \max_{s \in \{1, \dots, d+1\}} \left\| \left(\tilde{\mathbf{U}}_{N,M}(t, \mathbf{x}) - \mathbf{u}^\infty(t, \mathbf{x}) \right)_s \right\|_{L^2} \right]^{-(2+\delta)}. \quad (98)$$

1859 The right-hand side of this expression is clearly decreasing for large enough N , and in turn, finite.
 1860 Hence, quadrature SCaSML boosts a quadrature MLP with complexity $O(d\varepsilon^{-(2+\delta)})$ to a
 1861 corresponding physics-informed inference solver with complexity $O(de(\hat{u})^{2+\delta}\varepsilon^{-(2+\delta)})$. \square

1863 F PROOF FOR QUADRATURE MULTILEVEL PICARD ITERATION

1865 In this section, we present the proof for the Quadrature Multilevel Picard (MLP) iteration method.
 1866 For simplicity, we consider the case where $\mu = 0$ and $\sigma = s\mathbf{I}_d$ ($s \in \mathbb{R}$) in the proof. We first establish
 1867 the mathematical framework and underlying assumptions, then analyze the convergence properties
 1868 and computational complexity of our proposed simulation-calibrated variant. The result shows that
 1869 the error of SCaSML is bounded by the product of MLP error and surrogate error. Likewise, the
 1870 complexity is bounded by the product of MLP error and surrogate error. Both indicate that surrogate
 1871 models can substantially reduce computational complexity while maintaining accuracy guarantees.

1872 Since the Structural-preserving Law of Defect is also a semi-linear heat equation,
 1873 we can use the quadrature/full-history multilevel Picard iteration to obtain an estimation $\tilde{\mathbf{U}}(s, x)$ of
 1874 $u(s, x) - \hat{u}(s, x)$. In this section, we study the theoretical properties of SCaSML that using Quadrature
 1875 Multilevel Picard Iteration to solve the Structural-preserving Law of Defect and we
 1876 investigate the full-history multilevel Picard iteration in the next section.

1878 F.1 SURROGATE ACCURACY AND INTEGRABILITY ASSUMPTIONS

1879 To derive improved convergence rates for the Quadrature MLP, we must quantify the quality of the
 1880 pre-trained surrogate \hat{u} . We introduce a scalar error measure $e(\hat{u}) \in [0, \infty)$ which serves as a uniform
 1881 bound on both the PDE residual and the approximation error of the surrogate.

1882 **Assumption F.1** (Accuracy of the Surrogate Model for Quadrature MLP). *Assumption needed for
 1883 quadrature MLP builds directly on Assumption E.2, augmenting it with an additional higher-order
 1884 regularity condition required for the quadrature rule.*

1886 **3. Higher-Order Regularity:** *To ensure rapid convergence of the time quadrature rules, we
 1887 assume the defect satisfies the following Gevrey-class regularity bounds:*

$$1888 \sup_{k \in \mathbb{N}_0} \frac{\|(1, \sigma^\top \nabla_{\mathbf{x}}) \left((\frac{\partial}{\partial t} + \frac{\sigma^2}{2} \Delta_{\mathbf{x}})^k \tilde{u} \right)(t, \mathbf{x})\|_{L^\infty}}{(k!)^{3/4}} \leq C_{Q,3} e(\hat{u}),$$

1890 *This condition is required only for the Quadrature MLP variant (Appendix F) and is relaxed*
 1891 *for the Full-History variant (Appendix E).*

1892 **Assumption F.2** (Quadrature Integrability). *To ensure the well-posedness of the Feynman-Kac*
 1893 *expectations, we assume polynomial growth bounds. There exists $p \in \mathbb{N}$ such that for the zero vector*
 1894 $\mathbf{0}_{d+1} \in \mathbb{R}^{d+1}$:

$$1895 \quad \sup_{x \in \mathbb{R}^d} \frac{|\check{g}(x)|}{1 + \|x\|_1^p} + \sup_{t \in [0, T], x \in \mathbb{R}^d} \frac{|\check{F}(\mathbf{0}_{d+1}, t, x)|}{1 + \|x\|_1^p} < \infty. \quad (99)$$

1898 **Remark F.3** (Magnitude of Nonlinearity at Zero). *Recall from Definition D.8 that $\check{F}(\mathbf{0}_{d+1}, t, x) \equiv$*
 1899 $\epsilon(t, x)$. *Thus, the second term in Assumption F.2 effectively bounds the growth of the surrogate's*
 1900 *residual. In the standard Picard iteration for the defect \check{u} , the first iteration is driven solely by this*
 1901 *term. A small "magnitude at zero" implies that the fixed-point iteration starts very close to the true*
 1902 *solution (zero), minimizing the Monte Carlo work required.*

1903 F.2 MAIN RESULTS

1905 We now present our main theoretical results, which characterize both the accuracy and computational
 1906 complexity of our proposed method. These results demonstrate the substantial efficiency gains
 1907 achieved by incorporating surrogate models into the multilevel Picard framework.

1909 F.2.1 BOUND ON GLOBAL L^2 ERROR

1911 Follows the sam proof sketch as Section E.3.1, the convergence analysis proceeds in two steps. First,
 1912 we establish a "Bridge Lemma" that bounds the complexity-determining constants of the Defect
 1913 PDE (specifically the magnitude of the nonlinearity at zero and the Lipschitz constant of the terminal
 1914 condition) linearly by the surrogate error $e(\hat{u})$. Second, we substitute these bounds into the standard
 1915 error estimate for Multilevel Picard iterations to prove that the final error is the product of the
 1916 simulation error and the surrogate error.

1917 **Lemma F.4** (The Bridge Lemma: Complexity Estimation via Surrogate Error). *Suppose Assumptions*
 1918 *D.6, D.7, F.1, and F.2 hold. Then there exists a constant $C_Q > 0$ independent of the surrogate \hat{u} such*
 1919 *that:*

$$1920 \quad \sup_{(t, x) \in [0, T] \times \mathbb{R}^d} \left\{ \left| \check{F}(\mathbf{0}_{d+1}, t, x) \right| + \sigma \sqrt{T+3} \check{K} + \sup_{k \in \mathbb{N}} \frac{\left\| (1, \nabla_x) \left(\left(\frac{\partial}{\partial t} + \frac{\sigma^2}{2} \Delta_x \right)^k \check{u} \right) (t, x) \right\|_{L^\infty}}{(k!)^{3/4}} \right\} \leq C_Q e(\hat{u}). \quad (100)$$

1924 *Proof.* We bound each of the three terms on the left-hand side of equation 100 using the surrogate
 1925 accuracy assumptions defined in Assumption F.1.

1926 **Step 1: Bounding the Residual Term.** Recall from Remark F.3 that $\check{F}(\mathbf{0}_{d+1}, t, x) \equiv \epsilon(t, x)$.
 1927 Applying the L^∞ residual bound from Assumption F.1 (Item 1):

$$1929 \quad \sup_{(t, x) \in [0, T] \times \mathbb{R}^d} |\check{F}(\mathbf{0}_{d+1}, t, x)| = \sup_{(t, x) \in [0, T] \times \mathbb{R}^d} |\epsilon(t, x)| \leq C_{Q,1} e(\hat{u}). \quad (101)$$

1931 **Step 2: Bounding the Terminal Lipschitz Constant.** Let e_α be the standard basis vector at index α
 1932 in \mathbb{R}^d . The L^1 norm of \check{K} satisfies:

$$1934 \quad \check{K} \leq \sum_{\alpha=1}^d \|D^{e_\alpha} \check{g}\|_{L^\infty} = \sum_{\alpha=1}^d \|D^{e_\alpha} \check{u}(T, \cdot)\|_{L^\infty} \leq \|\check{u}(T, \cdot)\|_{W^{1,\infty}(\mathbb{R}^d)}. \quad (102)$$

1936 Using the Defect Bound from Assumption F.1 (Item 2):

$$1938 \quad \check{K} \leq \sup_{t \in [0, T]} \|\check{u}(t, \cdot)\|_{W^{1,\infty}} \leq C_{Q,2} e(\hat{u}). \quad (103)$$

1940 **Step 3: Bounding the Higher-Order Regularity Term.** The third term is directly controlled by the
 1941 Higher-Order Regularity condition in Assumption F.1 (Item 3):

$$1943 \quad \sup_{k \in \mathbb{N}} \frac{\left\| (1, \nabla_x) \left(\left(\frac{\partial}{\partial t} + \frac{\sigma^2}{2} \Delta_x \right)^k \check{u} \right) (t, x) \right\|_{L^\infty}}{(k!)^{3/4}} \leq C_{Q,3} e(\hat{u}). \quad (104)$$

1944 Summing the bounds from Steps 1-3, we define $C_Q := C_{Q,1} + \sigma\sqrt{T+3}C_{Q,2} + C_{Q,3}$. This yields
 1945 the desired inequality. \square
 1946

1947 We now combine this lemma with the general convergence theory of Multilevel Picard iterations to
 1948 state our main result.

1949 **Theorem F.5** (Global L^2 Error Bound). *Under Assumptions D.6, D.7, F.1, and F.2, the error of the*
 1950 *SCaSML estimator $\check{\mathbf{U}}_{N,N,N}$ with level N , sample base N and quadrature order N (as defined in*
 1951 *Algorithm 1) satisfies:*

$$1953 \sup_{(t,\mathbf{x}) \in [0,T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| \left(\check{\mathbf{U}}_{N,N,N}(t, \mathbf{x}) - (\check{u}(t, \mathbf{x}), \sigma \nabla_{\mathbf{x}} \check{u}(t, \mathbf{x})) \right)_{\varsigma} \right\|_{L^2} \leq E(N) \cdot (C_Q e(\hat{u})), \quad (105)$$

1955 where the convergence factor $E(N)$ is defined as:

$$1957 E(N) = \frac{7C^N 2^{N-1} e^N}{\sqrt{N^{N-3}}} + \frac{(14(4C)^{N-1} + 1)T^{2N+1}}{\sqrt{N^N}},$$

1960 with constant $C = 2(\sqrt{T} + 1)\sqrt{T\pi}(L + 1) + 1$.

1962 *Proof.* We apply the general error bound for Quadrature MLP from (Hutzenthaler & Kruse, 2020) to
 1963 the specific case of the Defect PDE. (Hutzenthaler & Kruse, 2020, Corollary 4.7) provides a bound of
 1964 the form:

$$1965 \sup_{(t,\mathbf{x}) \in [0,T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| \left(\check{\mathbf{U}}_{N,N,N}(t, \mathbf{x}) - (\check{u}(t, \mathbf{x}), \sigma \nabla_{\mathbf{x}} \check{u}(t, \mathbf{x})) \right)_{\varsigma} \right\|_{L^2} \quad (106)$$

$$1968 \leq E(N) \times \sup_{(t,\mathbf{x}) \in [0,T] \times \mathbb{R}^d} \left\{ |\check{F}(\mathbf{0}_{d+1}, t, \mathbf{x})| + \sigma\sqrt{T+3} \check{K} + \sup_{k \in \mathbb{N}} \frac{\|(1, \nabla_{\mathbf{x}}) \left(\left(\frac{\partial}{\partial t} + \frac{\sigma^2}{2} \Delta_{\mathbf{x}} \right)^k \check{u} \right)(t, \mathbf{x})\|_{L^\infty}}{(k!)^{3/4}} \right\}. \quad (107)$$

1972 Specifically, the second term is the supremum bounded in Lemma F.4. By substituting the result of
 1973 Lemma F.4 directly into the corollary, we replace the generic PDE constants with the term $C_Q e(\hat{u})$,
 1974 thereby proving the factorization. \square

1975 **Corollary F.6** (Asymptotic Error Decay). *Under the assumptions of Theorem F.5, the convergence*
 1976 *factor $E(N)$ satisfies the following asymptotic bound as $N \rightarrow \infty$:*

$$1978 E(N) = \exp \left(-\frac{1}{2} N \log N + O(N) \right). \quad (108)$$

1980 Consequently, the error decays super-polynomially with respect to the computational depth N .

1982 *Proof.* We determine the leading order asymptotic behavior of $\log E(N)$ by analyzing the two
 1983 summands in the definition of $E(N)$ separately. Recall:

$$1984 E(N) = \underbrace{\frac{7C^N 2^{N-1} e^N}{\sqrt{N^{N-3}}}}_{=:T_1(N)} + \underbrace{\frac{(14(4C)^{N-1} + 1)T^{2N+1}}{\sqrt{N^N}}}_{=:T_2(N)}.$$

1989 **Step 1: Asymptotic of the First Term $T_1(N)$.**

1990 Taking the natural logarithm of $T_1(N)$:

$$1992 \log T_1(N) = \log(7 \cdot 2^{-1}) + N \log(2Ce) - \frac{N-3}{2} \log N \quad (109)$$

$$1994 = -\frac{1}{2} N \log N + N \log(2Ce) + \frac{3}{2} \log N + \log(3.5). \quad (110)$$

1995 Observing that as $N \rightarrow \infty$, the term $-\frac{1}{2} N \log N$ dominates linear terms $O(N)$, we have:

$$1997 \log T_1(N) = -\frac{1}{2} N \log N + O(N). \quad (111)$$

1998 **Step 2: Asymptotic of the Second Term $T_2(N)$.**1999 We bound the numerator: $14(4C)^{N-1} + 1 \leq 15(4C)^{N-1}$ for sufficiently large C, N . Thus:

2000
$$\log T_2(N) \leq \log(15(4C)^{N-1}T^{2N+1}) - \frac{N}{2} \log N \quad (112)$$

2001
$$= \log(15 \cdot (4C)^{-1} \cdot T) + N \log(4C) + 2N \log T - \frac{1}{2}N \log N \quad (113)$$

2002
$$= -\frac{1}{2}N \log N + N(\log(4C) + 2 \log T) + O(1). \quad (114)$$

2003 Similar to Step 1, the dominant term is $-\frac{1}{2}N \log N$:

2004
$$\log T_2(N) = -\frac{1}{2}N \log N + O(N). \quad (115)$$

2005 Since $E(N) = T_1(N) + T_2(N)$, we have $\log E(N) \leq \log(2 \max\{T_1, T_2\}) = \log 2 + \max\{\log T_1, \log T_2\}$. Substituting equation 111 and equation 115:

2006
$$\log E(N) \leq \log 2 + \left(-\frac{1}{2}N \log N + O(N) \right) = -\frac{1}{2}N \log N + O(N).$$

2007 Exponentiating both sides yields the claim. \square 2008 **F.2.2 BOUND ON COMPUTATIONAL COMPLEXITY**

2009 To fully assess the efficiency of our method, we now analyze its computational complexity. We 2010 introduce two key metrics that capture different aspects of the computational cost.

2011 **Definition F.7** (Computational Complexity of Quadrature SCaSML). *We define the following complexity measures:*2012 *First, let $\{\text{RN}_{n,M,Q}\}_{n,M,Q \in \mathbb{Z}} \subset \mathbb{N}$ satisfy $\text{RN}_{0,M,Q} = 0$ and, for all $n, M, Q \in \mathbb{N}$,*

2013
$$\text{RN}_{n,M,Q} \leq d M^n + \sum_{l=0}^{n-1} \left[Q M^{n-l} \left(d + \text{RN}_{l,M,Q} + \mathbf{1}_{\mathbb{N}}(l) \text{RN}_{l-1,M,Q} \right) \right]. \quad (116)$$

2014 *This number represents the total scalar normal random variable realizations required for computing 2015 one sample of $\check{\mathbf{U}}_{n,M,Q}(s, x)$.*2016 *Second, let $\{\text{FE}_{n,M,Q}\}_{n,M,Q \in \mathbb{Z}} \subset \mathbb{N}$ satisfy $\text{FE}_{0,M,Q} = 0$ and, for all $n, M, Q \in \mathbb{N}$,*

2017
$$\text{FE}_{n,M,Q} \leq M^n + \sum_{l=0}^{n-1} \left[Q M^{n-l} \left(1 + \text{FE}_{l,M,Q} + \mathbf{1}_{\mathbb{N}}(l) + \mathbf{1}_{\mathbb{N}}(l) \text{FE}_{l-1,M,Q} \right) \right]. \quad (117)$$

2018 *This quantity reflects the number of evaluations of \check{F} and \check{g} necessary to compute of one sample of 2019 $\check{\mathbf{U}}_{n,M,Q}(s, x)$.*2020 These metrics provide a comprehensive measure of the computational resources required by our 2021 method. The first metric, $\text{RN}_{n,M,Q}$, accounts for the cost of generating random variables, while the 2022 second, $\text{FE}_{n,M,Q}$, captures the number of function evaluations needed.2023 **Theorem F.8** (Complexity of Quadrature SCaSML). *Under assumptions D.6, D.7, F.2 and F.1, for 2024 any $\delta > 0$ and all $N \in \mathbb{N}$, we have*

2025
$$\begin{aligned} \text{RN}_{N,N,N} + \text{FE}_{N,N,N} &\leq \left[\sup_{(t,\mathbf{x}) \in [0,T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| \left(\tilde{\mathbf{U}}_{N,N,N}(t, \mathbf{x}) - \mathbf{u}^\infty(t, \mathbf{x}) \right)_\varsigma \right\|_{L^2} \right]^{-(4+\delta)} \\ &\quad \cdot 8(d+1)(C_Q e(\hat{u}))^{4+\delta} \exp \left(N \log N \left(-\frac{\delta}{2} + o(1) \right) \right) < \infty. \end{aligned} \quad (118)$$

2052 *Proof.* From established results in (Hutzenthaler et al., 2020a, Lemma 3.6), we know that for all
 2053 $N \in \mathbb{N}$,

$$2054 \quad \text{RN}_{N,N,N} \leq 8dN^{2N}, \quad \text{FE}_{N,N,N} \leq 8N^{2N}. \quad (119)$$

2056 We want to use the $O(N^{N/2})$ denominator in Theorem F.5 to compensate for the N^{2N} term in the
 2057 complexity. Suppose the maximum error is ε , and note that $N^{2N} = (N^{N/2})^4 < (N^{N/2})^{4+\delta}, \forall \delta > 0$,
 2058 we multiply the complexity by $\varepsilon^{4+\delta}$, i.e.

$$\begin{aligned} 2060 \quad & (\text{RN}_{N,N,N} + \text{FE}_{N,N,N}) \left[\sup_{(t,\mathbf{x}) \in [0,T] \times \mathbb{R}^d} \max_{\varsigma \in \{1, \dots, d+1\}} \left\| \left(\tilde{\mathbf{U}}_{N,N,N}(t, \mathbf{x}) - \mathbf{u}^\infty(t, \mathbf{x}) \right)_\varsigma \right\|_{L^2} \right]^{(4+\delta)} \\ 2061 \quad & \leq 8(d+1)N^{2N} \cdot \left(\frac{7 \left(2(\sqrt{T}+1)\sqrt{T\pi}(L+1)+1 \right)^N 2^{N-1} e^N}{\sqrt{N^{N-3}}} \right. \\ 2063 \quad & \quad \left. + \frac{(14(8(\sqrt{T}+1)\sqrt{T\pi}(L+1)+4)^{N-1}+1)T^{2N+1}}{\sqrt{N^N}} \right)^{(4+\delta)} (C_Q e(\hat{u}))^{4+\delta} \\ 2064 \quad & \leq 8(d+1)N^{2N} \cdot \left((24(T+1))^{3N} (L+1)^N \sqrt{N^{-N}} \right)^{(4+\delta)} (C_Q e(\hat{u}))^{4+\delta} \\ 2065 \quad & \leq 8(d+1)(C_Q e(\hat{u}))^{4+\delta} \exp \left(N \log N \left(-\frac{\delta}{2} + o(1) \right) \right). \end{aligned} \quad (120)$$

2073 The right-hand side of this expression is clearly decreasing for large enough N , and in turn, finite.
 2074 Hence, quadrature SCaSML boosts a quadrature MLP with complexity $O(d\varepsilon^{-(4+\delta)})$ to a
 2075 corresponding physics-informed inference solver with complexity $O(de(\hat{u})^{4+\delta}\varepsilon^{-(4+\delta)})$ \square

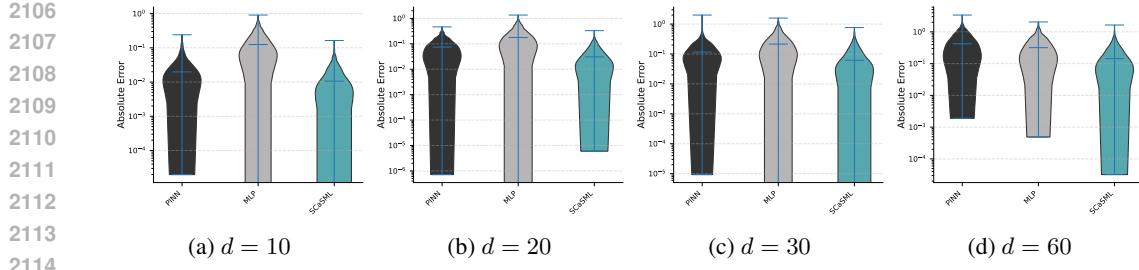
2079 This theorem provides a comprehensive characterization of the computational complexity of our
 2080 method. The inclusion of the surrogate model error measure $e(\hat{u})$ in the complexity bound demon-
 2081 strates how the quality of the surrogate model directly influences the computational efficiency of our
 2082 approach. Specifically, a more accurate surrogate model (smaller $e(\hat{u})$) leads to a lower computational
 2083 cost for achieving a given level of accuracy.

2084 G AUXILIARY EXPERIMENTS RESULTS

2087 We include supplementary experimental results that further validate our claims, including detailed
 2088 error distribution plots (violin plots) and additional inference-time scaling curves for all PDE test
 2089 cases.

2091 G.1 VIOLIN PLOT FOR ERROR DISTRIBUTION

2092 In this section, we present violin plots of the absolute error distributions for the base surrogate
 2093 model, the MLP, and the SCaSML method. We uniformly select the test points. By combining
 2094 kernel density estimation with boxplot-style summaries, these plots capture both the spread and
 2095 central tendency of the errors. A violin plot exposes the full distribution—its density, variability,
 2096 skewness, and outliers—offering much deeper insight into model performance. The width of each
 2097 violin at a given error level reflects the density of the observations. The results indicate that SCaSML
 2098 reduces the largest absolute error, lowers the median and produces more accurate points for a majority
 2099 of equations compared to the surrogate and MLP, demonstrating its robustness across different
 2100 dimensions and equations.



2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Figure 5: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray), applying quadrature SCaSML (teal) to calibrate the PINN surrogate on linear convection-diffusion equation for $d = 10, 20, 30, 60$.

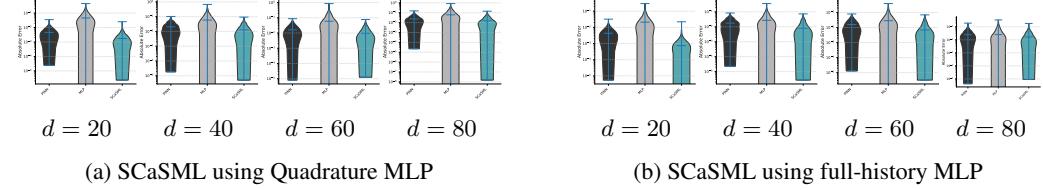


Figure 6: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray), applying quadrature SCaSML (teal) to calibrate the PINN surrogate on viscous Burgers' equation equation for $d = 10, 20, 30, 60$.

G.2 INFERENCE TIME SCALING CURVE

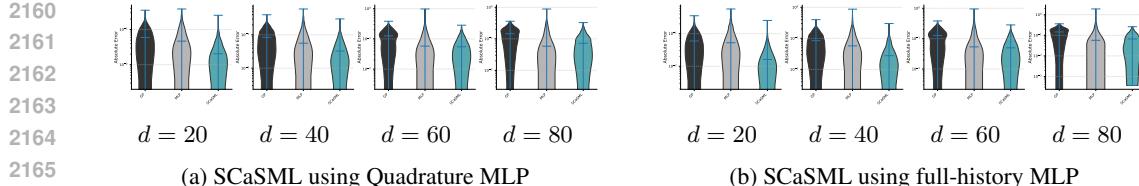
In this section, we illustrate how SCaSML enhances estimation accuracy as the number of inference-time collocation points increases, as outlined in 2.1 and 2.2. Our findings indicate that allocating additional computational resources during inference consistently improves estimation accuracy.

G.3 IMPROVED SCALING LAW OF SCASML ALGORITHMS

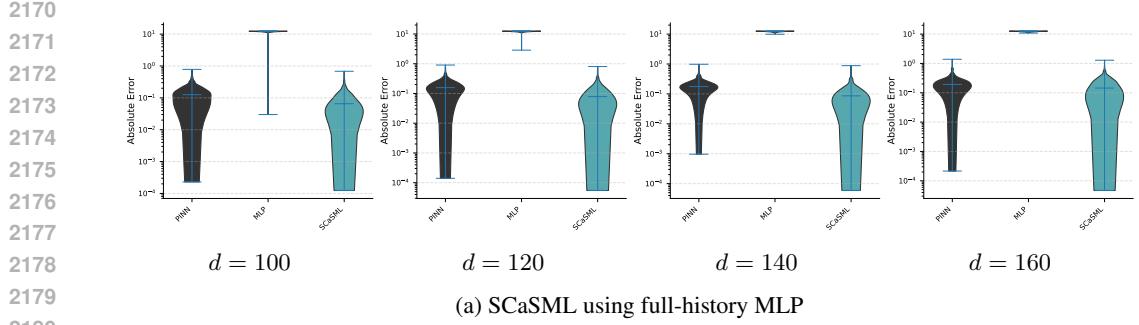
In this section, we consider the viscous Burgers equation as an illustrative example to demonstrate the improved convergence of SCaSML algorithms, as suggested by Corollary E.8.

We implemented a physics-informed neural network (PINN) with five hidden layers, each containing 50 neurons and employing hyperbolic tangent activation functions. Because the number of training points, m , is proportional to the number of iterations in the PINN, the control group was trained using the Adam optimizer (learning rate 7×10^{-4} , $\beta_1 = 0.9$, $\beta_2 = 0.99$) over iterations set to 400, 2 000, 4 000, 6 000, 8 000, and 10 000 (as illustrated along the x -axis). The dataset comprised 2 500 interior points, 100 boundary points, and 160 initial points uniformly sampled from $[0, 0.5] \times [-0.5, 0.5]^d$, ensuring that $m \gg 1$. To replicate the conditions of Corollary E.8, the SCaSML group was trained over iterations set to $\lfloor 400/(d+1) \rfloor$, $\lfloor 2 000/(d+1) \rfloor$, $\lfloor 1 000/(d+1) \rfloor$, $\lfloor 6 000/(d+1) \rfloor$, $\lfloor 8 000/(d+1) \rfloor$, and $\lfloor 10 000/(d+1) \rfloor$. In addition, we set the inference level as $N = \lfloor \log m/(2\beta \log \log m) \rfloor$ with $\beta = 1/2$. Theoretically, SCaSML exhibits an improvement in γ of $\frac{1}{2} + o(1)$ relative to the control group.

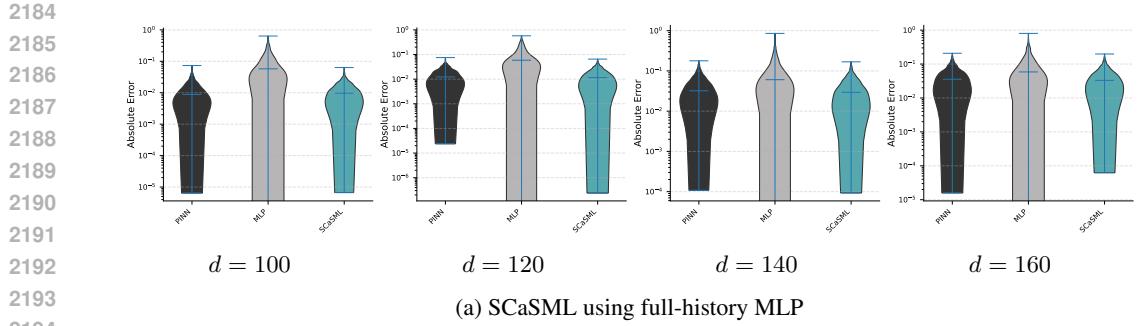
For the Gaussian process regression surrogate model, training was performed over 20 iterations using Newton's method. Due to the increasing inference parameters with m and the consequent GPU memory constraints, it was not possible to replicate the conditions of Corollary E.8 exactly for the Gaussian process model. Consequently, both the control and SCaSML groups employed identical training sizes, which theoretically does not alter the asymptotic convergence rate (i.e. the slope). Specifically, the training data consisted of the following pairs of interior and boundary points: (100, 20), (200, 40), (300, 60), (400, 80), (500, 100), (600, 120), (700, 140), (800, 160), (900, 180), and (1 000, 200), with the x -axis representing the total number of training points. Again, the inference level was chosen as $N = \lfloor \log m/(2\beta \log \log m) \rfloor$ with $\beta = 1/2$, and the SCaSML continues to exhibit an improvement in γ of $\frac{1}{2} + o(1)$ relative to the control group.



2167
2168
2169
Figure 7: Violin Plot for comparison of the baseline Gaussian Process surrogate (black), MLP (gray),
2167 applying quadrature SCaSML (teal) to calibrate the Gaussian Process surrogate on viscous Burgers'
2168 equation for $d = 20, 40, 60, 80$.
2169



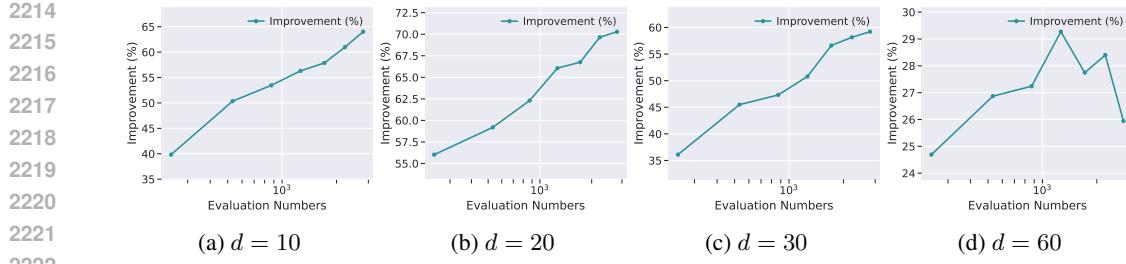
2181
2182
2183
Figure 8: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray),
2181 applying quadrature SCaSML (teal) to calibrate the PINN surrogate on LQG control problem for
2182 $d = 100, 120, 140, 160$.
2183



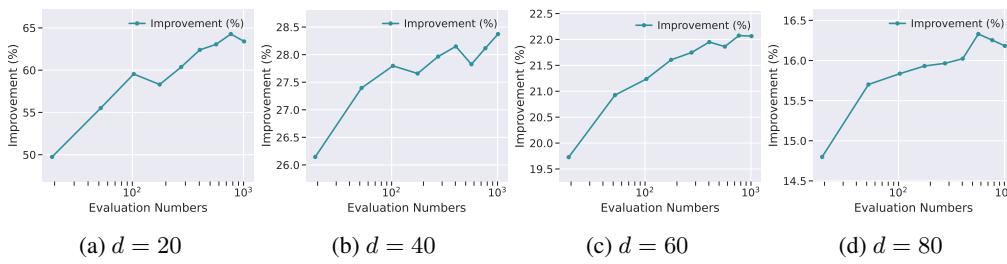
2195
2196
2197
Figure 9: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray),
2195 applying quadrature SCaSML (teal) to calibrate the PINN surrogate on diffusion reaction equation for $d =$
2196 $100, 120, 140, 160$.
2197

2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

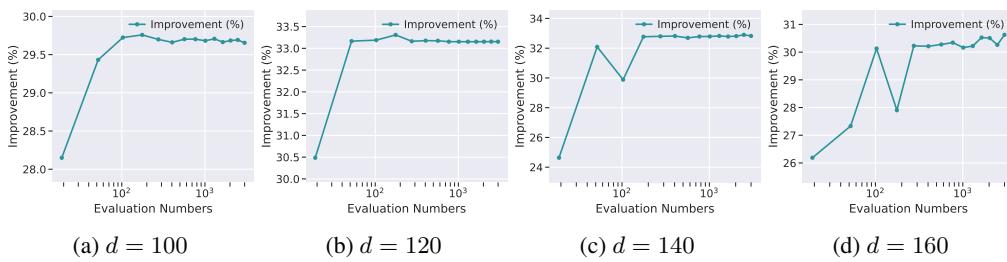
We observe that, for the PINNs, full-history SCaSML achieves near-monotonic error reduction across resolutions (with d ranging from 20 to 80), outperforming quadrature SCaSML, which displays oscillatory behavior at higher dimensions. The Gaussian process-based SCaSML similarly accelerates convergence during training. In both cases, the error trajectories generated by SCaSML are generally shifted downward relative to the base models, underscoring its capacity to enhance accuracy without altering the fundamental training dynamics. These findings underscore SCaSML's robustness in diverse settings, ensuring reliable convergence even in high-dimensional or non-monotonic scenarios.



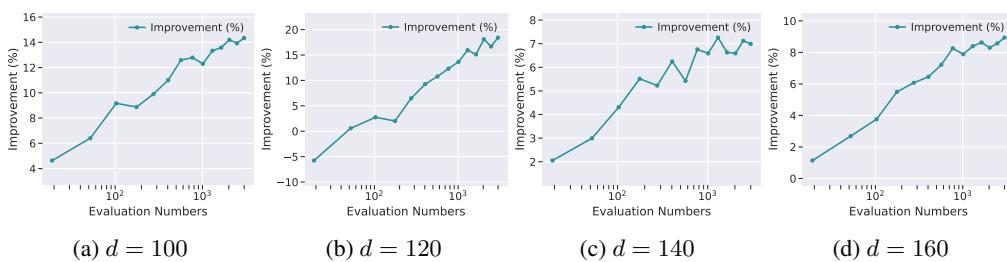
2223 For the linear convection-diffusion equation, SCaSML for PINNs reliably enhances
2224 performance with increased computational resources. Notably, scaling effects are more pronounced
2225 in lower dimensions, potentially due to the MLP’s convergence rate exhibiting a linear dependency
2226 on the dimensionality d .



2237 For the viscous Burgers equation, SCaSML with PINN consistently improves performance
2238 as the sample size M increases exponentially.



2249 For the HJB equation, SCaSML with PINN consistently enhances performance with
2250 increases in the exponential base of the sample size M . However, the scaling curve plateaus at
2251 $M = 14$, likely due to the relatively small clipping range of SCaSML compared to the solution
2252 magnitude. In general, a larger clipping threshold permits more outliers, thereby requiring additional
2253 samples to mitigate variance and ultimately enhancing accuracy; this trade-off must be considered in
2254 light of available computational resources.



2264 For the Diffusion Reaction equation, SCaSML with PINN consistently improves perfor-
2265 mance as the exponential base of the sample size M increases.

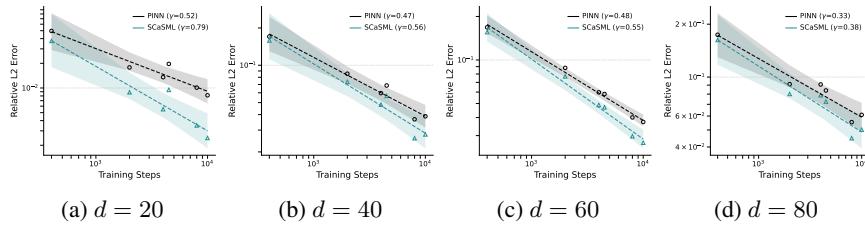
2268
2269
2270
2271
2272
2273

Figure 14: We apply quadrature SCaSML to calibrate a PINN surrogate for the d -dimensional viscous Burgers equation. All plots employ logarithmic scales on both axes, and the slope γ denotes the polynomial convergence rate. Numerical results demonstrate that, when collocation points for testing and inference are increased simultaneously, SCaSML achieves a faster scaling law than the base surrogate model.

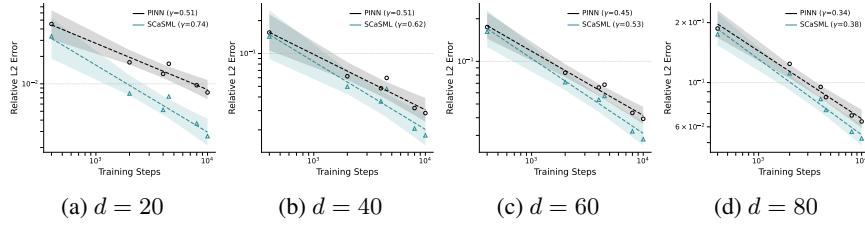
2280
2281
2282
2283
2284
2285

Figure 15: We apply full-history SCaSML to calibrate a PINN surrogate for the d -dimensional viscous Burgers equation. Numerical results demonstrate that, when collocation points for testing and inference are increased simultaneously, SCaSML achieves a faster scaling law than the base surrogate model.

G.4 STATISTICAL ANALYSIS OF ERROR REDUCTION AND CONFIDENCE INTERVALS

In response to reviewer feedback requesting a rigorous statistical validation of our results, we conducted a repeated experiment analysis. Unlike the single-run statistics, this procedure accounts for the randomness inherent in both the training process (e.g., neural network initialization, optimizer noise) and the inference process (Monte Carlo sampling seeds).

G.4.1 EXPERIMENTAL DESIGN AND METHODOLOGY

For each problem configuration, we repeated the entire experiment $N_{reps} = 10$ times with different random seeds. In each repetition, we performed the following steps:

1. **Model Training:** A new surrogate model (PINN or GP) was trained from scratch (where applicable). Settings are the same with G.1.
2. **Inference:** The baseline surrogate, the naive MLP solver, and the SCaSML framework were evaluated on a fixed test set of $N_{test} = 1200$ points.
3. **Metric Calculation:** We computed the Mean Relative L^2 Error, Mean L^1 Error, Mean Squared L^2 Error, and for each run.

From these N_{reps} repetitions, we calculated the following statistics:

- **Mean and Standard Deviation:** Computed across the 10 independent runs.
- **95% Confidence Interval (CI):** Calculated for the mean metric as $[a, b] = [\mu - 1.96 \frac{\sigma}{\sqrt{N_{reps}}}, \mu + 1.96 \frac{\sigma}{\sqrt{N_{reps}}}]$.
- **Paired t-test:** We performed paired t-tests to compare the error distributions of SCaSML against the baselines (GP/PINN and MLP) across the repetitions. The null hypothesis is that the mean difference in error is zero.

The tables below present the full results. Note that while SCaSML requires more execution time (as expected for inference-time scaling), it achieves statistically significant error reductions ($p \ll 0.001$) across all accuracy metrics and dimensions.

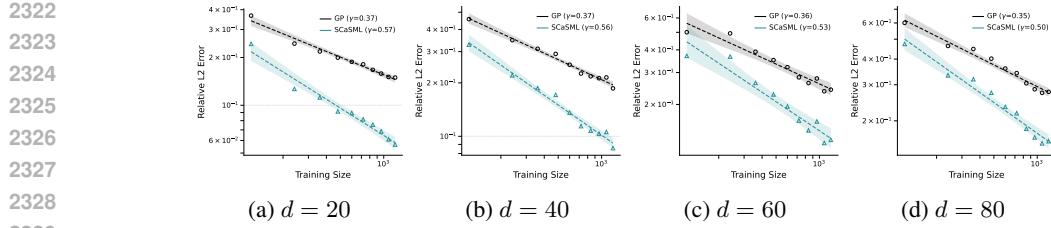


Figure 16: We apply quadrature SCaSML to calibrate a Gaussian Process surrogate for the d -dimensional viscous Burgers equation. Numerical results demonstrate that, when collocation points for testing and inference are increased simultaneously, SCaSML achieves a faster scaling law than the base surrogate model.

Table 2: Statistical analysis for Viscous Burgers (VB) with **GP Surrogate** (10 repetitions). Comparisons are pairwise against SCaSML.

Metric	Method	20d			40d		
		Mean \pm Std	95% CI	Stat (vs SCaSML)	Mean \pm Std	95% CI	Stat (vs SCaSML)
Rel L^2	GP	1.46e-1 \pm 2.8e-3	[1.43e-1, 1.50e-1]	$t=158, p=8e-17$	1.84e-1 \pm 4.2e-3	[1.76e-1, 1.91e-1]	$t=127, p=6e-16$
	MLP	1.84e-1 \pm 3.4e-3	[1.77e-1, 1.89e-1]	$t=80.0, p=4e-14$	2.27e-1 \pm 6.4e-3	[2.17e-1, 2.38e-1]	$t=73.1, p=9e-14$
	SCaSML	6.16e-2 \pm 2.1e-3	[5.80e-2, 6.50e-2]	—	8.91e-2 \pm 3.1e-3	[8.55e-2, 9.60e-2]	—
L^1	GP	6.97e-2 \pm 1.4e-3	[6.80e-2, 7.20e-2]	$t=131, p=4e-16$	9.42e-2 \pm 1.3e-3	[9.28e-2, 9.66e-2]	$t=129, p=5e-16$
	MLP	7.62e-2 \pm 1.8e-3	[7.34e-2, 7.94e-2]	$t=81.7, p=3e-14$	9.35e-2 \pm 1.8e-3	[9.10e-2, 9.79e-2]	$t=80.6, p=4e-14$
	SCaSML	2.49e-2 \pm 6.8e-4	[2.39e-2, 2.63e-2]	—	4.01e-2 \pm 1.0e-3	[3.83e-2, 4.20e-2]	—
L^2 (sq)	GP	7.63e-3 \pm 3.1e-4	[7.26e-3, 8.18e-3]	$t=79.8, p=4e-14$	1.29e-2 \pm 4.3e-4	[1.25e-2, 1.39e-2]	$t=110, p=2e-15$
	MLP	1.22e-2 \pm 5.3e-4	[1.13e-2, 1.28e-2]	$t=59.3, p=6e-13$	1.95e-2 \pm 1.2e-3	[1.80e-2, 2.19e-2]	$t=46.9, p=5e-12$
	SCaSML	1.37e-3 \pm 9.1e-5	[1.25e-3, 1.53e-3]	—	3.02e-3 \pm 2.0e-4	[2.75e-3, 3.50e-3]	—
Metric	Method	60d			80d		
		Mean \pm Std	95% CI	Stat (vs SCaSML)	Mean \pm Std	95% CI	Stat (vs SCaSML)
		2.34e-1 \pm 6.2e-3	[2.22e-1, 2.42e-1]	$t=174, p=4e-17$	2.67e-1 \pm 4.6e-3	[2.58e-1, 2.72e-1]	$t=141, p=2e-16$
Rel L^2	MLP	2.52e-1 \pm 8.5e-3	[2.40e-1, 2.64e-1]	$t=36.9, p=4e-11$	2.75e-1 \pm 8.2e-3	[2.62e-1, 2.89e-1]	$t=43.7, p=9e-12$
	SCaSML	1.23e-1 \pm 4.7e-3	[1.14e-1, 1.28e-1]	—	1.53e-1 \pm 3.0e-3	[1.48e-1, 1.57e-1]	—
	GP	1.26e-1 \pm 2.0e-3	[1.23e-1, 1.30e-1]	$t=222, p=4e-18$	1.49e-1 \pm 2.6e-3	[1.46e-1, 1.54e-1]	$t=134, p=4e-16$
L^1	MLP	1.01e-1 \pm 3.9e-3	[9.43e-2, 1.07e-1]	$t=26.3, p=8e-10$	1.09e-1 \pm 2.9e-3	[1.04e-1, 1.13e-1]	$t=35.6, p=5e-11$
	SCaSML	5.98e-2 \pm 1.7e-3	[5.68e-2, 6.20e-2]	—	7.90e-2 \pm 1.6e-3	[7.65e-2, 8.25e-2]	—
	GP	2.15e-2 \pm 6.8e-4	[2.05e-2, 2.26e-2]	$t=124, p=8e-16$	2.89e-2 \pm 8.1e-4	[2.80e-2, 3.05e-2]	$t=118, p=1e-15$
L^2 (sq)	MLP	2.50e-2 \pm 2.1e-3	[2.23e-2, 2.84e-2]	$t=27.1, p=6e-10$	3.07e-2 \pm 2.2e-3	[2.73e-2, 3.36e-2]	$t=31.8, p=1e-10$
	SCaSML	6.00e-3 \pm 3.2e-4	[5.40e-3, 6.41e-3]	—	9.49e-3 \pm 3.7e-4	[8.98e-3, 1.03e-2]	—

G.5 RELATIVE L^2 ERROR IMPROVEMENT

In this section, we provide supplementary plots that visualize the relative improvement in L^2 error achieved by SCaSML over the baseline surrogate model (PINN or GP). The percentage improvement is calculated as:

$$\text{Improvement \%} = \left(\frac{\|\text{Error}_{\text{Surrogate}}\|_{L^2} - \|\text{Error}_{\text{SCaSML}}\|_{L^2}}{\|\text{Error}_{\text{Surrogate}}\|_{L^2}} \right) \times 100$$

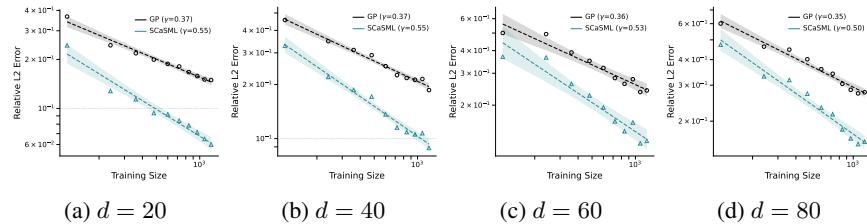


Figure 17: We apply full-history SCaSML to calibrate a Gaussian Process surrogate for the d -dimensional viscous Burgers equation. Numerical results demonstrate that, when collocation points for testing and inference are increased simultaneously, SCaSML achieves a faster scaling law than the base surrogate model.

Table 3: Statistical analysis for Viscous Burgers (VB) with PINN Surrogate (10 repetitions).

Metric	Method	20d			40d		
		Mean \pm Std	95% CI	Stat (vs SCaSML)	Mean \pm Std	95% CI	Stat (vs SCaSML)
Rel L^2	PINN	1.25e-2 \pm 3.9e-4	[1.19e-2, 1.31e-2]	t=172, p=4e-17	4.51e-2 \pm 1.3e-3	[4.23e-2, 4.67e-2]	t=135, p=3e-16
	MLP	8.34e-2 \pm 2.2e-3	[8.08e-2, 8.78e-2]	t=108, p=3e-15	1.06e-1 \pm 2.2e-3	[1.03e-1, 1.10e-1]	t=111, p=2e-15
	SCaSML	4.37e-3 \pm 2.9e-4	[3.90e-3, 4.78e-3]	—	3.38e-2 \pm 1.1e-3	[3.16e-2, 3.53e-2]	—
L^1	PINN	5.83e-3 \pm 1.8e-4	[5.48e-3, 6.11e-3]	t=84.5, p=2e-14	2.16e-2 \pm 4.5e-4	[2.08e-2, 2.22e-2]	t=77.7, p=5e-14
	MLP	3.43e-2 \pm 1.1e-3	[3.29e-2, 3.61e-2]	t=93.5, p=9e-15	4.38e-2 \pm 9.8e-4	[4.27e-2, 4.55e-2]	t=104, p=3e-15
	SCaSML	1.44e-3 \pm 4.8e-5	[1.38e-3, 1.55e-3]	—	1.41e-2 \pm 3.5e-4	[1.36e-2, 1.45e-2]	—
L^2 (sq)	PINN	5.63e-5 \pm 3.6e-6	[5.03e-5, 6.23e-5]	t=57.4, p=7e-13	7.72e-4 \pm 3.3e-5	[7.19e-4, 8.17e-4]	t=96.6, p=7e-15
	MLP	2.50e-3 \pm 0.0	[2.30e-3, 2.82e-3]	t=48.0, p=4e-12	4.29e-3 \pm 2.4e-4	[3.91e-3, 4.72e-3]	t=51.6, p=2e-12
	SCaSML	6.90e-6 \pm 9.4e-7	[5.55e-6, 8.30e-6]	—	4.34e-4 \pm 2.2e-5	[4.03e-4, 4.66e-4]	—
Metric	Method	60d			80d		
		Mean \pm Std	95% CI	Stat (vs SCaSML)	Mean \pm Std	95% CI	Stat (vs SCaSML)
Rel L^2	PINN	4.62e-2 \pm 1.1e-3	[4.43e-2, 4.75e-2]	t=203, p=9e-18	6.59e-2 \pm 2.0e-3	[6.17e-2, 6.95e-2]	t=168, p=5e-17
	MLP	1.17e-1 \pm 3.2e-3	[1.14e-1, 1.23e-1]	t=75.0, p=7e-14	1.22e-1 \pm 3.7e-3	[1.15e-1, 1.28e-1]	t=44.8, p=7e-12
	SCaSML	3.53e-2 \pm 9.8e-4	[3.36e-2, 3.65e-2]	—	5.51e-2 \pm 1.9e-3	[5.13e-2, 5.90e-2]	—
L^1	PINN	2.24e-2 \pm 4.4e-4	[2.14e-2, 2.29e-2]	t=134, p=4e-16	3.20e-2 \pm 6.6e-4	[3.10e-2, 3.31e-2]	t=182, p=2e-17
	MLP	4.79e-2 \pm 1.7e-3	[4.55e-2, 5.04e-2]	t=56.8, p=8e-13	4.94e-2 \pm 1.2e-3	[4.74e-2, 5.12e-2]	t=50.0, p=3e-12
	SCaSML	1.50e-2 \pm 4.3e-4	[1.41e-2, 1.55e-2]	—	2.46e-2 \pm 6.9e-4	[2.34e-2, 2.58e-2]	—
L^2 (sq)	PINN	8.40e-4 \pm 2.9e-5	[7.72e-4, 8.71e-4]	t=128, p=5e-16	1.76e-3 \pm 8.6e-5	[1.64e-3, 1.95e-3]	t=136, p=3e-16
	MLP	5.44e-3 \pm 3.5e-4	[4.99e-3, 6.09e-3]	t=44.0, p=8e-12	6.08e-3 \pm 3.5e-4	[5.37e-3, 6.55e-3]	t=36.9, p=4e-11
	SCaSML	4.92e-4 \pm 2.2e-5	[4.43e-4, 5.18e-4]	—	1.23e-3 \pm 7.5e-5	[1.13e-3, 1.41e-3]	—

Table 4: Statistical analysis for Linear Convection-Diffusion (LCD) (10 repetitions).

Metric	Method	10d			20d		
		Mean \pm Std	95% CI	Stat (vs SCaSML)	Mean \pm Std	95% CI	Stat (vs SCaSML)
Rel L^2	PINN	4.85e-2 \pm 2.2e-3	[4.43e-2, 5.23e-2]	t=34.1, p=8e-11	8.60e-2 \pm 3.6e-3	[7.80e-2, 9.03e-2]	t=39.2, p=2e-11
	MLP	2.30e-1 \pm 5.5e-3	[2.20e-1, 2.36e-1]	t=134, p=4e-16	2.41e-1 \pm 5.5e-3	[2.32e-1, 2.48e-1]	t=129, p=5e-16
	SCaSML	2.77e-2 \pm 8.6e-4	[2.60e-2, 2.90e-2]	—	5.07e-2 \pm 1.8e-3	[4.84e-2, 5.37e-2]	—
L^1	PINN	3.01e-2 \pm 1.1e-3	[2.83e-2, 3.23e-2]	t=35.0, p=6e-11	8.71e-2 \pm 2.2e-3	[8.24e-2, 8.95e-2]	t=71.5, p=1e-13
	MLP	1.68e-1 \pm 1.7e-3	[1.65e-1, 1.70e-1]	t=285, p=4e-19	2.38e-1 \pm 3.0e-3	[2.31e-1, 2.42e-1]	t=241, p=2e-18
	SCaSML	1.77e-2 \pm 4.3e-4	[1.71e-2, 1.84e-2]	—	4.67e-2 \pm 1.3e-3	[4.50e-2, 4.83e-2]	—
L^2 (sq)	PINN	2.20e-3 \pm 1.8e-4	[1.98e-3, 2.58e-3]	t=26.7, p=7e-10	1.29e-2 \pm 7.9e-4	[1.15e-2, 1.41e-2]	t=36.7, p=4e-11
	MLP	4.96e-2 \pm 1.0e-3	[4.85e-2, 5.16e-2]	t=154, p=1e-16	1.02e-1 \pm 3.1e-3	[9.47e-2, 1.05e-1]	t=102, p=4e-15
	SCaSML	7.20e-4 \pm 2.3e-5	[6.82e-4, 7.54e-4]	—	4.50e-3 \pm 2.8e-4	[4.05e-3, 4.91e-3]	—
Metric	Method	30d			60d		
		Mean \pm Std	95% CI	Stat (vs SCaSML)	Mean \pm Std	95% CI	Stat (vs SCaSML)
Rel L^2	PINN	1.57e-1 \pm 9.5e-3	[1.43e-1, 1.74e-1]	t=19.7, p=1e-08	2.85e-1 \pm 8.7e-3	[2.74e-1, 2.96e-1]	t=55.2, p=1e-12
	MLP	2.42e-1 \pm 8.1e-3	[2.29e-1, 2.54e-1]	t=83.3, p=3e-14	2.46e-1 \pm 4.8e-3	[2.38e-1, 2.52e-1]	t=106, p=3e-15
	SCaSML	9.69e-2 \pm 4.6e-3	[9.12e-2, 1.02e-1]	—	1.25e-1 \pm 2.8e-3	[1.21e-1, 1.30e-1]	—
L^1	PINN	1.81e-1 \pm 6.0e-3	[1.72e-1, 1.89e-1]	t=37.0, p=4e-11	4.90e-1 \pm 8.2e-3	[4.77e-1, 4.99e-1]	t=83.4, p=3e-14
	MLP	2.89e-1 \pm 4.6e-3	[2.82e-1, 2.95e-1]	t=316, p=2e-19	4.18e-1 \pm 4.5e-3	[4.11e-1, 4.24e-1]	t=219, p=4e-18
	SCaSML	1.05e-1 \pm 3.8e-3	[1.01e-1, 1.11e-1]	—	1.96e-1 \pm 4.7e-3	[1.86e-1, 2.02e-1]	—
L^2 (sq)	PINN	6.43e-2 \pm 9.2e-3	[5.50e-2, 8.25e-2]	t=14.4, p=2e-07	4.13e-1 \pm 1.7e-2	[3.87e-1, 4.39e-1]	t=55.7, p=1e-12
	MLP	1.52e-1 \pm 6.3e-3	[1.43e-1, 1.62e-1]	t=81.8, p=3e-14	3.06e-1 \pm 7.7e-3	[2.96e-1, 3.20e-1]	t=134, p=4e-16
	SCaSML	2.44e-2 \pm 2.1e-3	[2.20e-2, 2.80e-2]	—	7.97e-2 \pm 3.9e-3	[7.36e-2, 8.54e-2]	—

These plots directly visualize the 20-80% error reduction claimed in the main text and demonstrate the effectiveness of our correction framework across all test cases and dimensions. The experimental settings are identical to those used for violin plots in Appendix G.1.

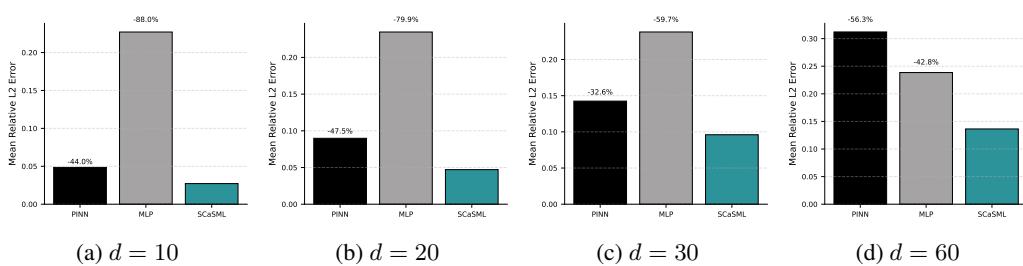
Figure 18: Relative L^2 error improvement (%) of SCaSML (full-history) over the baseline PINN surrogate on the linear convection-diffusion equation for $d = 10, 20, 30, 60$.

Table 5: Statistical analysis for Hamilton-Jacobi-Bellman (LQG) (10 repetitions).

Metric	Method	100d			120d		
		Mean \pm Std	95% CI	Stat (vs SCaSML)	Mean \pm Std	95% CI	Stat (vs SCaSML)
Rel L^2	PINN	9.05e-2 \pm 2.5e-3	[8.57e-2, 9.49e-2]	t=6.5, p=1e-04	9.13e-2 \pm 2.0e-3	[8.77e-2, 9.43e-2]	t=25.9, p=9e-10
	MLP	5.69e+0 \pm 2.0e-2	[5.66e+0, 5.73e+0]	t=927, p=1e-23	5.50e+0 \pm 1.7e-2	[5.48e+0, 5.53e+0]	t=1073, p=3e-24
	SCaSML	7.27e-2 \pm 9.4e-3	[6.48e-2, 9.85e-2]	—	6.42e-2 \pm 1.7e-3	[6.17e-2, 6.68e-2]	—
L^1	PINN	1.50e-1 \pm 3.0e-3	[1.44e-1, 1.55e-1]	t=7.2, p=5e-05	1.68e-1 \pm 3.3e-3	[1.62e-1, 1.74e-1]	t=146, p=2e-16
	MLP	1.21e+1 \pm 1.3e-2	[1.21e+1, 1.21e+1]	t=1599, p=7e-26	1.22e+1 \pm 1.4e-2	[1.21e+1, 1.22e+1]	t=2531, p=1e-27
	SCaSML	1.09e-1 \pm 1.8e-2	[9.68e-2, 1.59e-1]	—	1.02e-1 \pm 2.3e-3	[9.81e-2, 1.05e-1]	—
L^2 (sq)	PINN	3.70e-2 \pm 1.8e-3	[3.34e-2, 4.00e-2]	t=6.2, p=2e-04	4.09e-2 \pm 1.8e-3	[3.79e-2, 4.39e-2]	t=75.8, p=6e-14
	MLP	1.46e+2 \pm 2.8e-1	[1.46e+2, 1.47e+2]	t=1623, p=7e-26	1.48e+2 \pm 3.0e-1	[1.48e+2, 1.49e+2]	t=1576, p=8e-26
	SCaSML	2.42e-2 \pm 7.0e-3	[1.91e-2, 4.37e-2]	—	2.02e-2 \pm 1.1e-3	[1.88e-2, 2.20e-2]	—
140d							
Metric	Method	Mean \pm Std	95% CI	Stat (vs SCaSML)	Mean \pm Std	95% CI	Stat (vs SCaSML)
Rel L^2	PINN	1.03e-1 \pm 1.8e-3	[1.01e-1, 1.06e-1]	t=3.7, p=5e-03	1.10e-1 \pm 2.4e-3	[1.06e-1, 1.14e-1]	t=21.7, p=4e-09
	MLP	5.36e+0 \pm 2.0e-2	[5.34e+0, 5.40e+0]	t=823, p=3e-23	5.26e+0 \pm 1.9e-2	[5.24e+0, 5.29e+0]	t=870, p=2e-23
	SCaSML	8.52e-2 \pm 1.5e-2	[7.45e-2, 1.15e-1]	—	8.48e-2 \pm 5.0e-3	[7.88e-2, 9.49e-2]	—
L^1	PINN	1.92e-1 \pm 3.5e-3	[1.87e-1, 1.99e-1]	t=4.3, p=2e-03	2.11e-1 \pm 3.3e-3	[2.05e-1, 2.17e-1]	t=26.0, p=9e-10
	MLP	1.23e+1 \pm 1.4e-2	[1.22e+1, 1.23e+1]	t=866, p=2e-23	1.23e+1 \pm 1.3e-2	[1.23e+1, 1.23e+1]	t=2170, p=5e-27
	SCaSML	1.41e-1 \pm 3.8e-2	[1.16e-1, 2.14e-1]	—	1.43e-1 \pm 1.0e-2	[1.32e-1, 1.61e-1]	—
L^2 (sq)	PINN	5.55e-2 \pm 1.8e-3	[5.35e-2, 5.89e-2]	t=3.4, p=8e-03	6.60e-2 \pm 2.5e-3	[6.15e-2, 7.04e-2]	t=25.3, p=1e-09
	MLP	1.50e+2 \pm 3.1e-1	[1.50e+2, 1.51e+2]	t=1485, p=1e-25	1.52e+2 \pm 3.0e-1	[1.51e+2, 1.52e+2]	t=1583, p=8e-26
	SCaSML	3.90e-2 \pm 1.5e-2	[2.90e-2, 6.74e-2]	—	3.95e-2 \pm 4.7e-3	[3.43e-2, 4.87e-2]	—

Table 6: Statistical analysis for Diffusion-Reaction (DR) (10 repetitions).

Metric	Method	100d			120d		
		Mean \pm Std	95% CI	Stat (vs SCaSML)	Mean \pm Std	95% CI	Stat (vs SCaSML)
Rel L^2	PINN	9.83e-3 \pm 2.6e-4	[9.45e-3, 1.02e-2]	t=14.3, p=2e-07	1.10e-2 \pm 3.0e-4	[1.04e-2, 1.13e-2]	t=25.9, p=9e-10
	MLP	8.62e-2 \pm 2.6e-3	[8.20e-2, 9.05e-2]	t=92.6, p=1e-14	9.01e-2 \pm 1.2e-3	[8.78e-2, 9.17e-2]	t=249, p=1e-18
	SCaSML	9.19e-3 \pm 2.8e-4	[8.63e-3, 9.61e-3]	—	1.00e-2 \pm 2.8e-4	[9.61e-3, 1.03e-2]	—
L^1	PINN	1.20e-2 \pm 3.2e-4	[1.14e-2, 1.24e-2]	t=14.1, p=2e-07	1.36e-2 \pm 4.0e-4	[1.29e-2, 1.41e-2]	t=16.7, p=4e-08
	MLP	9.37e-2 \pm 2.6e-3	[8.97e-2, 9.77e-2]	t=102, p=4e-15	9.77e-2 \pm 1.9e-3	[9.51e-2, 1.01e-1]	t=142, p=2e-16
	SCaSML	1.14e-2 \pm 3.4e-4	[1.07e-2, 1.19e-2]	—	1.24e-2 \pm 2.8e-4	[1.20e-2, 1.28e-2]	—
L^2 (sq)	PINN	2.48e-4 \pm 1.3e-5	[2.29e-4, 2.68e-4]	t=14.2, p=2e-07	3.09e-4 \pm 1.7e-5	[2.79e-4, 3.29e-4]	t=24.3, p=2e-09
	MLP	1.91e-2 \pm 1.1e-3	[1.73e-2, 2.08e-2]	t=53.1, p=1e-12	2.09e-2 \pm 4.9e-4	[1.98e-2, 2.15e-2]	t=132, p=4e-16
	SCaSML	2.17e-4 \pm 1.3e-5	[1.91e-4, 2.35e-4]	—	2.57e-4 \pm 1.4e-5	[2.38e-4, 2.72e-4]	—
140d							
Metric	Method	Mean \pm Std	95% CI	Stat (vs SCaSML)	Mean \pm Std	95% CI	Stat (vs SCaSML)
Rel L^2	PINN	3.23e-2 \pm 5.4e-4	[3.14e-2, 3.34e-2]	t=47.4, p=4e-12	3.59e-2 \pm 8.1e-4	[3.47e-2, 3.71e-2]	t=72.4, p=9e-14
	MLP	8.96e-2 \pm 2.3e-3	[8.69e-2, 9.47e-2]	t=80.6, p=4e-14	8.74e-2 \pm 2.5e-3	[8.28e-2, 9.17e-2]	t=62.1, p=4e-13
	SCaSML	3.00e-2 \pm 4.8e-4	[2.92e-2, 3.09e-2]	—	3.37e-2 \pm 8.2e-4	[3.24e-2, 3.48e-2]	—
L^1	PINN	4.05e-2 \pm 8.0e-4	[3.91e-2, 4.21e-2]	t=33.5, p=9e-11	4.50e-2 \pm 9.5e-4	[4.36e-2, 4.67e-2]	t=35.5, p=5e-11
	MLP	9.89e-2 \pm 2.3e-3	[9.53e-2, 1.04e-1]	t=84.2, p=2e-14	9.61e-2 \pm 2.3e-3	[9.34e-2, 1.01e-1]	t=62.9, p=3e-13
	SCaSML	3.77e-2 \pm 6.5e-4	[3.64e-2, 3.88e-2]	—	4.22e-2 \pm 9.9e-4	[4.06e-2, 4.39e-2]	—
L^2 (sq)	PINN	2.67e-3 \pm 8.7e-5	[2.53e-3, 2.85e-3]	t=41.8, p=1e-11	3.31e-3 \pm 1.5e-4	[3.10e-3, 3.53e-3]	t=68.9, p=1e-13
	MLP	2.06e-2 \pm 1.0e-3	[1.93e-2, 2.30e-2]	t=55.5, p=1e-12	1.96e-2 \pm 1.1e-3	[1.77e-2, 2.15e-2]	t=46.9, p=5e-12
	SCaSML	2.31e-3 \pm 7.0e-5	[2.19e-3, 2.44e-3]	—	2.91e-3 \pm 1.4e-4	[2.70e-3, 3.10e-3]	—

G.6 POINTWISE ERROR REDUCTION ANALYSIS

To further investigate the robustness of our method, we present scatter plots visualizing the pointwise error difference between the baseline methods (Surrogate and Naive MLP) and our proposed SCaSML. The settings are still the same with Appendix G.1.

For a given test point x , we calculate the difference in absolute error:

$$\Delta\text{Error}(x) = |\text{Error}_{\text{Baseline}}(x)| - |\text{Error}_{\text{SCaSML}}(x)|$$

In the following figures:

- Red points ($\Delta\text{Error} > 0$) indicate locations where SCaSML has lower error than the baseline.
- Blue points ($\Delta\text{Error} < 0$) indicate locations where SCaSML has higher error.

We provide comparisons for both baselines: Surrogate vs. SCaSML (showing the correction of the initial model) and Naive MLP vs. SCaSML (showing the benefit of using the surrogate as a control

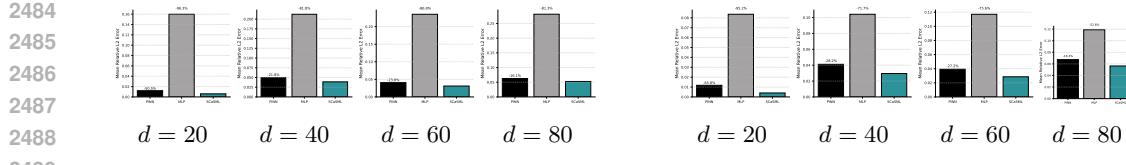


Figure 19: **Relative L^2 error improvement (%) of SCaSML over the baseline PINN surrogate on the viscous Burgers’ equation for $d = 20, 40, 60, 80$.**

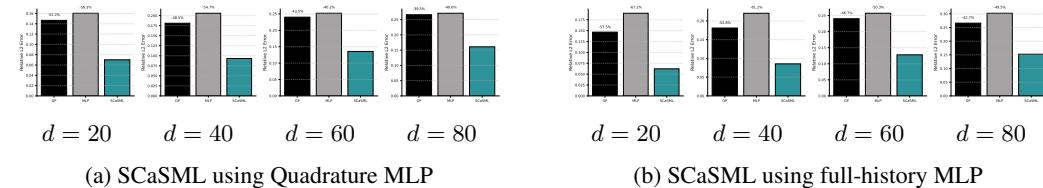


Figure 20: **Relative L^2 error improvement (%) of SCaSML over the baseline Gaussian Process surrogate on the viscous Burgers’ equation for $d = 20, 40, 60, 80$.**

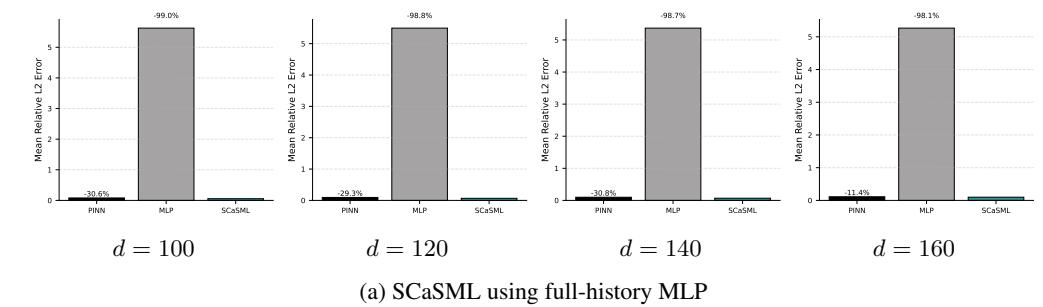
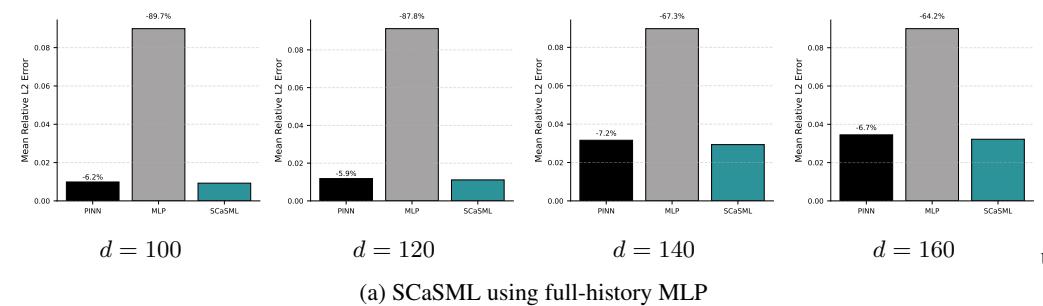
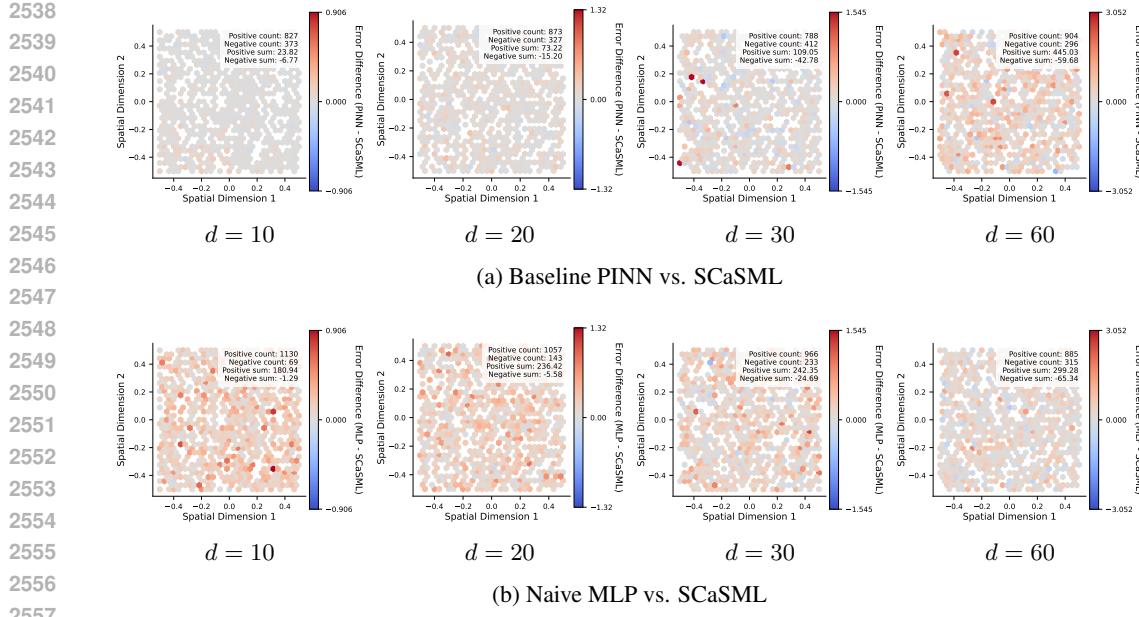
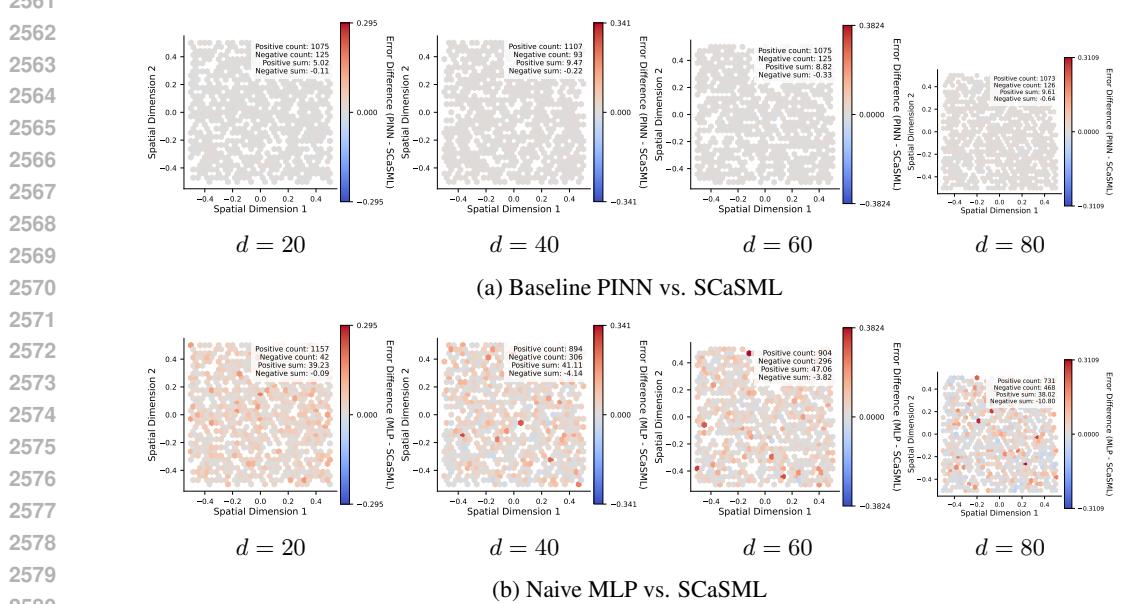


Figure 21: **Relative L^2 error improvement (%) of SCaSML (full-history) over the baseline PINN surrogate on the LQG control problem for $d = 100, 120, 140, 160$.**





2558 Figure 23: Pointwise error differences for the Linear Convection-Diffusion equation. SCaSML
2559 outperforms both the pre-trained PINN and the naive MLP solver across all dimensions.



2581 Figure 24: Pointwise error differences for the Viscous Burgers' equation (PINN Surrogate). We
2582 observe that SCaSML corrects the PINN's error (top) and significantly outperforms the standalone
2583 MLP (bottom).

G.7 PERFORMANCE COMPARISON UNDER FIXED COMPUTATIONAL BUDGETS

2584
2585
2586
2587
2588
2589
2590
2591

A central question regarding inference-time scaling is whether the performance gain is simply a result of increased wall-clock time, or if the SCaSML framework utilizes computational resources more efficiently than standard training. To address this, we conducted a Fixed Computational Budget analysis.

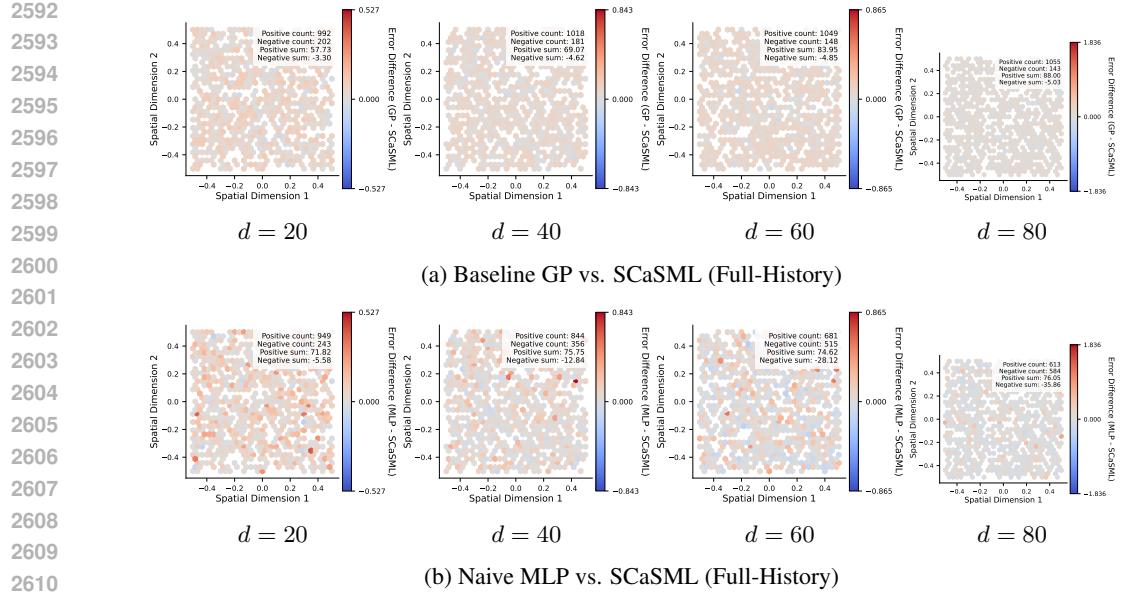


Figure 25: Pointwise error differences for the Viscous Burgers' equation (Gaussian Process Surrogate).

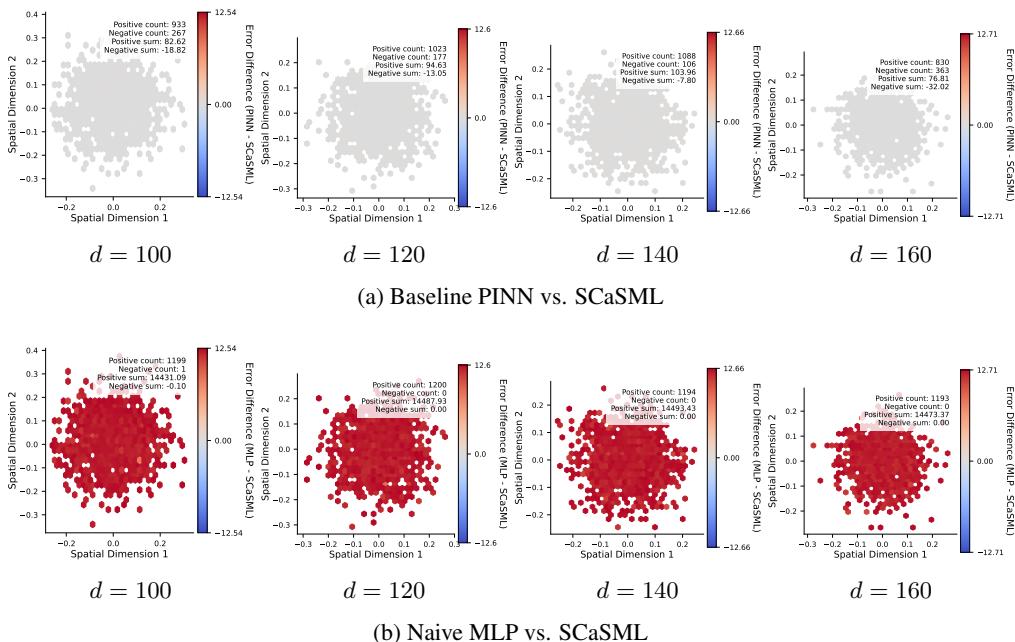


Figure 26: Pointwise error differences for the LQG control problem. The contrast in the bottom row highlights that the naive MLP fails in high dimensions, whereas SCaSML (stabilized by the surrogate) performs well.

We define a "unit budget" based on a baseline number of training iterations (e.g., 2,000 iterations for a PINN), other settings are still the same with G.1. We then scale this budget by factors of $\times 1, \times 2, \dots, \times 16$. For each budget level, we compare three allocation strategies:

1. **Pure Training (Baseline PINN):** The entire time budget is allocated to training the neural network. A budget of $\times k$ implies training for $k \times N_{base}$ iterations.

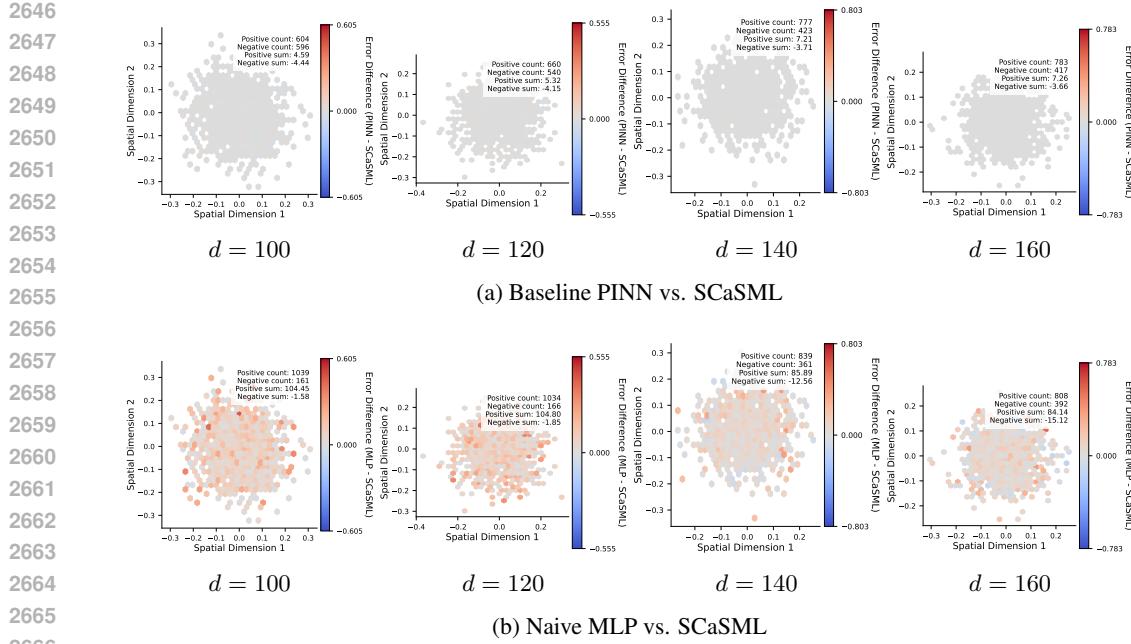


Figure 27: Pointwise error differences for the Diffusion-Reaction equation.

2. **Pure Simulation (Naive MLP):** The entire time budget is allocated to generating Monte Carlo paths for the MLP solver.
3. **Hybrid Allocation (SCaSML):** This represents our proposed strategy. We allocate a small fraction of the budget (specifically $1/(d+1)$) to training a "weak" surrogate, and allocate the remaining majority of the budget to inference-time correction via the Structural-preserving Law of Defect.

This setup ensures a fair comparison where all methods consume approximately the same total wall-clock time (Training Time + Inference Time). We performed this analysis on the Linear Convection-Diffusion (LCD) equation ($d = 10, 20$) and the Viscous Burgers (VB) equation ($d = 20$) using the full-history SCaSML variant.

The results are visualized in Figure 28.

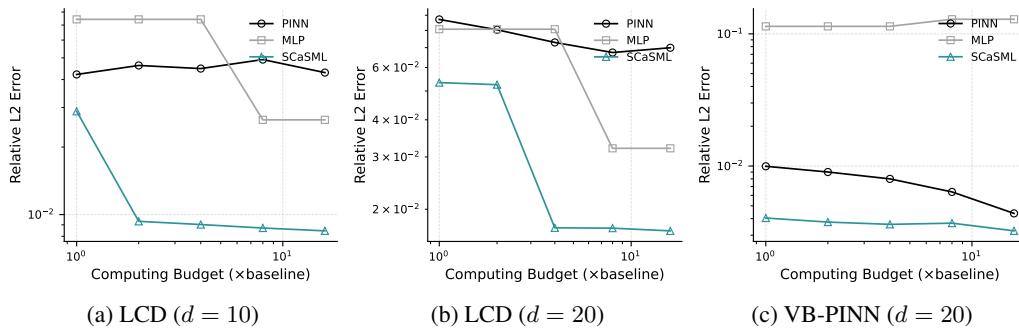


Figure 28: **Error vs. Computational Budget.** The x-axis represents the total computational budget multiplier (log scale), and the y-axis represents the Relative L^2 Error (log scale). SCaSML (teal triangles) consistently achieves lower error than the Baseline PINN (black circles) and Naive MLP (gray squares) for the same total cost.

As shown in Figure 28, the SCaSML error curve consistently lies below the PINN training curve. This confirms that allocating marginal compute to inference-time correction yields a higher return on investment (ROI) than allocating it to further training.

2700 Specifically, for the Viscous Burgers equation ($d = 20$), we observe that training the PINN for
 2701 significantly longer (moving right on the x-axis) results in diminishing returns due to the optimiza-
 2702 tion difficulty of high-frequency error components. In contrast, SCaSML leverages the rigorous
 2703 convergence rate of the Monte Carlo correction to reduce error rapidly. This empirically validates
 2704 our theoretical claim that the hybrid ML+MC scaling law ($O(m^{-\gamma-1/2})$) is superior to the pure ML
 2705 scaling law ($O(m^{-\gamma})$).
 2706

2707 G.8 PERFORMANCE COMPARISON: LARGE PINN vs. SCaSML CORRECTION

2709 A critical question in SciML is whether the computational budget is better spent on training a larger,
 2710 more expressive neural network (increasing model capacity) or on post-hoc inference-time correction
 2711 (SCaSML). To address this, we conducted a second Fixed Budget analysis where we scaled the **model**
 2712 **architecture** while keeping the number of training iterations fixed.

2713 We define a "unit budget" ($B = 1$) corresponding to our standard PINN configuration: a fully
 2714 connected network with width $W_{base} = 50$ and depth $D_{base} = 5$. As the budget B increases by
 2715 factors of $\times 1, \times 2, \times 4$, we scale the network architecture to increase its capacity. Specifically, the
 2716 scaled width W_B and depth D_B are defined as:

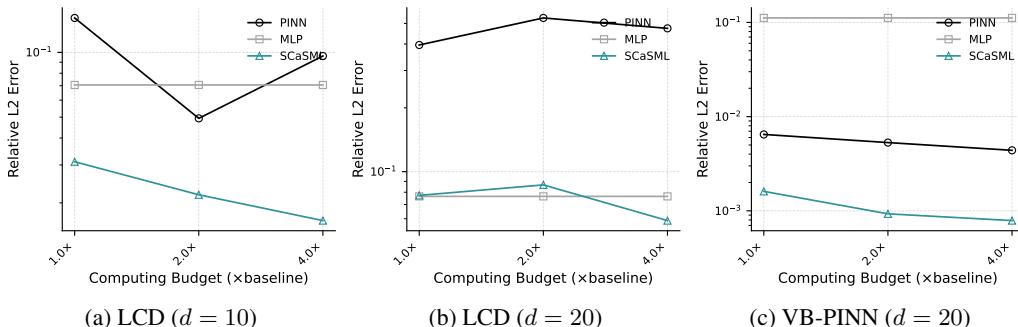
$$2717 W_B = \lfloor W_{base} \cdot \sqrt{B} \rfloor, \quad D_B = \max(D_{base}, \lfloor D_{base} + \log_2(B) \rfloor). \quad (121)$$

2719 This scaling strategy ensures that the network's parameter count and computational cost per iteration
 2720 grow with the budget, allowing us to test the limits of model capacity.

2721 We compare three strategies under these scaling rules using the Linear Convection-Diffusion ($d =$
 2722 $10, 20$) and Viscous Burgers ($d = 20$) equations:

- 2724 **1. Large PINN (Model Scaling):** We train the scaled network architecture (W_B, D_B) for a
 2725 fixed number of iterations ($N_{iter} = 2000$). The optimizer is Adam with a learning rate of
 2726 7×10^{-4} and Glorot normal initialization. The increased computational cost arises entirely
 2727 from the more expensive forward and backward passes of the larger model.
- 2728 **2. SCaSML (Inference Correction):** We employ the SCaSML framework where the surrogate
 2729 backbone utilizes the available budget. Crucially, the method allocates resources to the
 2730 inference-time Monte Carlo correction (using the full-history MLP solver with basis $M = 10$
 2731 and levels $N = 2$) rather than relying solely on the surrogate's capacity.
- 2732 **3. Naive MLP (Pure Simulation):** The entire time budget is allocated to generating Monte
 2733 Carlo paths for the MLP solver, serving as a pure simulation baseline.

2735 The results (Figure 29) demonstrate that simply increasing the PINN's capacity yields diminishing
 2736 returns; the model hits a "data efficiency wall" where additional parameters do not translate to
 2737 proportionally lower errors for high-frequency defects. In contrast, SCaSML consistently achieves
 2738 lower error for the same total compute time, proving that inference-time correction is a more efficient
 2739 user of marginal compute than model scaling for these high-dimensional problems.



2751 **Figure 29: Large PINN vs. SCaSML.** Comparison of error rates when the computational budget is
 2752 used to scale up the PINN architecture (black) versus performing inference-time correction (teal).
 2753