
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PHYSICS-INFORMED INFERENCE TIME SCALING FOR
SOLVING HIGH-DIMENSIONAL PARTIAL DIFFERENTIAL
EQUATIONS VIA DEFECT CORRECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving high-dimensional partial differential equations (PDEs) is a critical chal-
lenge where modern data-driven solvers often lack reliability and rigorous error
guarantees. We introduce Simulation-Calibrated Scientific Machine Learning
(SCaSML), a framework that systematically improves pre-trained PDE solvers at
inference time without any retraining. Our core idea is to use defect correction
method that derive a new PDE, which we term the Structural-preserving
Law of Defect, that precisely describes the error of a given surrogate model.
Because this defect PDE retains the structure of the original problem, we can solve
it efficiently with traditional stochastic simulators, yielding a targeted correction
to the initial machine-learned solution. We prove that SCaSML achieves a faster
convergence rate, with a final error bounded by the product of the surrogate and
simulation errors. On challenging PDEs up to 160 dimensions, SCaSML reduces
the error of various surrogate models, including PINNs and Gaussian Processes,
by 20-80%. SCaSML provides a principled method to fuse the speed of machine
learning with the rigor of numerical simulation, enhancing the trustworthiness of
AI for scientific discovery.

1 INTRODUCTION

Solving high-dimensional partial differential equations (PDEs) is a fundamental challenge across
science and engineering. Many critical phenomena are modeled by semi-linear parabolic PDEs whose
dimensionality scales with the number of underlying components, a challenge often termed the curse
of dimensionality. Key examples include the imaginary-time Schrödinger equation in quantum many-
body systems, nonlinear Black–Scholes equations in finance, and the Hamilton–Jacobi–Bellman
equation in optimal control (Bellman, 1954). Traditional numerical methods, such as finite element
and finite difference schemes, become computationally intractable in high dimensions (Larsson &
Thomée, 2003). While stochastic simulation methods can be effective, they often suffer from high
variance (Briand & Labart, 2014). In response, Scientific Machine Learning (SciML) has emerged
as a powerful alternative, using neural networks and other data-driven models to approximate PDE
solutions (Karniadakis et al., 2021; Han et al., 2018a; Raissi et al., 2017). However, the ”black-box”
nature of these models can introduce subtle biases, and they often lack the rigorous error guarantees
of their traditional counterparts, raising concerns about their reliability for safety-critical applications.

Recent breakthroughs in large language models (LLMs) have shown that allocating additional
computational resources at inference time can dramatically improve output quality, a phenomenon
known as inference-time scaling (Snell et al., 2024; Wei et al., 2022). This success inspires our
central research question:

Can we leverage additional computation at inference time to systematically refine and provably
improve a pre-trained surrogate model—allocating more compute to harder PDE states just as LLMs
spend more search or planning on harder queries—without any retraining or fine-tuning?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we provide an affirmative answer by introducing Simulation-Calibrated Scientific
Machine Learning (SCaSML), a novel physics-informed framework for improving SciML solvers at
inference time. We focus on a broad class of semi-linear parabolic PDEs of the form:{

∂u
∂r + Lu+ F (u, σ⊤∇u) = 0, on [0, T)× Rd

u(T,y) = g(y), on Rd,
(1)

where Lu := ⟨µ,∇u⟩+ 1
2Tr(σ⊤Hess(u)σ) is a second-order linear differential operator. SCaSML

operates in two stages. First, a standard SciML solver û (e.g., a PINN (Raissi et al., 2017), Gaus-
sian Process (Chen et al., 2021), or Tensor Network (Richter et al., 2021)) is trained to find an
approximate solution. At inference time, rather than directly accepting û, we invoke a defect–
correction method (Bank & Weiser, 1985; Stetter, 1978; Böhmer et al., 1984) to derive a gov-
erning equation for the approximation error—its defect—defined as ŭ := u − û. We term this
the Structural-preserving Law of Defect (Figure 1). Crucially, unlike classical grid-
based defect correction which is intractable in high dimensions, we show that this new PDE describing
the exact defect inherits the semi-linear structure of the original problem. This structural preservation
allows us to solve it efficiently using well-established stochastic simulation algorithms based on
the Feynman–Kac formula. This simulation step acts as a targeted correction, leveraging additional
compute to refine the initial surrogate prediction.

Our main contributions are summarized as follows:
• We propose SCaSML, the first physics-informed inference-time scaling framework that improves

a pre-trained Scisurrogate model at inference-time, without any retraining or fine-tuning.
SCaSML uses defect correction method that corrects a pre-trained surrogate SCiML model by
deriving and solving a new PDE via a branching Monte Carlo Simulation that approximates its
error, which we call the Structural-preserving Law of Defect (7). Notably, this
characterization of the defect is, to our knowledge, the first derivation that preserves the semi-linear
structure essential for high-dimensional Monte Carlo solvers.

• We theoretically prove that the final error of SCaSML is bounded by the product of the surro-
gate model’s error and the simulation error. Analogous to the classical defect-correction litera-
ture—where each correction step systematically improves the convergence rate— we establish
an analogous result for our Monte–Carlo defect-correction procedure at the first time. The
improved convergence rate is corroborated empirically in Section 3, with further comprehensive
findings presented in Appendix G.3.

• We conduct extensive numerical experiments on challenging high-dimensional PDEs (up to 160
dimensions). Our results show that SCaSML significantly reduces approximation errors by 20-80%
across various surrogate models with high statistical significance (p ≪ 0.001), demonstrating
its flexibility, practical efficacy and potential to mitigate the curse of dimensionality. We also
demonstrate that, with inference-time scaling, a smaller base PINN can outperform a larger PINN
under the same inference-time compute budget by spending its additional computation on targeted
refinement rather than parameter count. This enables elastic compute: users can trade inference
time for accuracy on demand.

2 METHODOLOGY

The core of our SCaSML framework is the derivation of a new PDE that describes the error of a pre-
trained surrogate model. We term this the Structural-preserving Law of Defect. By
solving this auxiliary PDE at inference time, we can compute a precise correction to the surrogate’s
prediction. To build intuition, we first introduce this concept in the context of linear parabolic
equations before extending it to the general semi-linear case.

2.1 WARM UP: THE STRUCTURAL-PRESERVING LAW OF DEFECT FOR LINEAR
PARABOLIC PDES

Let us begin with a high-dimensional linear parabolic PDE, a simpler setting that clarifies our core
idea: {

∂u
∂r + ⟨µ,∇yu⟩+ 1

2Tr
(
σ⊤Hessyuσ

)
= f(r,y), on [0, T)× Rd,

u(T,y) = g(y), on Rd.
(2)

Suppose we have a pre-trained surrogate model û that approximates the true solution u. This surrogate
is inevitably imperfect, producing a residual when plugged into the PDE. Our goal is to run a defect-
correction method at inference time. The defect–correction method (Böhmer et al., 1984; Stetter,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

a) SCaSML Framework Pipeline
Different Themes for solving
High-Dimensional PDEs

Physics-Informed Inference Times Scaling via
Simulation Calibritaed Scientific Machine learning

Neural Network Tensor Network

Kernel Approximation

Theme 1. Train a Surrogate Model

Theme 2. Stochastic Simulation

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ Δ𝑢𝑢 + 𝑓𝑓(𝑢𝑢) = 0
Feynman-Kac Formula

Step 1. Train a Surrogate Model

Step 2. Model the Residual via PDE

We show that the defect 𝑢𝑢∞ − �𝑢𝑢 can be formulated as the solution
of another semi-linear Parabolic equation. [Fact 1.]

Step 3. Stochastic Simulate the Residual

Stochastic Simulation enables
Inference Time Scaling

�𝑢𝑢

�𝑢𝑢 = 𝑢𝑢∞ − �𝑢𝑢

b) Derivation of the Structural-preserving Law of Defect

Nonlinear term

𝒜u + f(u) = 0 (1)

Linear differential operator

e.g.
𝒜u = ∂u
∂t

+ Δu

Semi-linear PDEs:

𝒜 ̂u + f(̂u) = ϵ ≈ 0 (2)
Step 1: Surrogate Model Step 2: Law of Defect

𝒜(u − ̂u) + f((u − ̂u) + ̂u) − f(̂u) = ϵ
(1)-(2)

Small terms easy to simulate

A new semi-linear equation that characterize the defect Train a surrogate model approximately

solve the equation
̂u

Figure 1: Overview of the SCaSML framework. (a) A pre-trained surrogate model û provides
an initial, approximate solution to the PDE. At inference time, SCaSML calculates the defect
ŭ = u− û via a stochastic simulation and adds it back to the surrogate prediction, yielding a more
accurate final solution u = û + ŭ. (b) The Structural-preserving Law of Defect is
derived by subtracting the PDE approximately satisfied by the surrogate û from the original PDE.
This process yields a new semi-linear PDE that describes the defect ŭ, enabling its estimation through
simulation.

1978) is a classical numerical strategy that improves an approximate solution by formulating and
solving an equation for its residual-induced error. The first step is to find a new equation that describes
the defect ŭ(r,y) := u(r,y)− û(r,y), which represents the true, unknown error. To achieve this,
we define this residual as:

ϵ(r,y) := f(r,y)−
(
∂û

∂r
+ ⟨µ,∇yû⟩+

1

2
Tr
(
σ⊤ Hessy û σ

))
. (3)

By subtracting the equation for û from (2), we arrive at the following governing law.
Definition 2.1 (Structural-preserving Law of Defect for Linear PDEs). The defect ŭ := u− û is the
solution to the linear parabolic PDE:

∂ŭ

∂r
+ ⟨µ,∇yŭ⟩+

1

2
Tr
(
σ⊤ Hessy ŭ σ

)
= ϵ(r,y), on [0, T)× Rd,

ŭ(T,y) = g(y)− û(T,y), on Rd.
(4)

This Structural-preserving Law of Defect allows us to solve for the error ŭ directly.
Since (4) is a linear PDE, its solution can be expressed probabilistically via the Feynman–Kac
formula:

ŭ(s, x) = E
[(
g(Xs,x

T)− û(T,Xs,x
T)

)
+

∫ T

s

ϵ(t,Xs,x
t)dt

]
, (5)

where {Xs,x
t }t∈[s,T] is the stochastic process associated with the PDE’s linear operator. This

representation allows us to estimate the defect ŭ using Monte Carlo simulation.
Remark 2.2 (Regards Training and Inference Separation). Training corresponds to solving the PDE
globally on the entire domain, learning a map that approximates the solution everywhere. In contrast,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

inference-time correction solves the PDE only at a specific, user-specified state. This separation is
natural and parallels standard practices in machine learning: a base model is trained once to answer
all queries, while computationally intensive refinement (like beam search or planning) is invoked
at inference time only when high precision is required for a specific input. This separation enables

”elastic compute,” allowing users to trade inference time for accuracy on demand without incurring
the massive fixed cost of retraining the global model.

Intuition for Faster Convergence. Why does this two-step process converge faster? The variance
of the Monte Carlo estimator for ŭ in (5) depends on the magnitude of the integrand, which is
primarily the surrogate’s residual ϵ. A more accurate surrogate (i.e., smaller ϵ) leads to lower
simulation variance. If the surrogate achieves an error of e(û) ∼ m−γ using m training points, the
residual ϵ will be of a similar order, and the variance of our Monte Carlo estimator will be of order
m−2γ . By averaging over m new Monte Carlo paths at inference time, the final statistical error
becomes

√
m−2γ/m = m−γ−1/2. Thus, for a total budget of 2m function evaluations, SCaSML

achieves a faster convergence rate than both the surrogate (m−γ) and a naive Monte Carlo solver
(m−1/2).
Why Use Monte Carlo for Correction? Neural networks and other common surrogates exhibit
a spectral bias, preferentially learning low-frequency (smooth) components of the solution first
(Rahaman et al., 2019). Consequently, the residual error ϵ is often a high-frequency, irregular function.
While challenging for many function approximators, Monte Carlo methods are perfectly suited for
this scenario, as their convergence rate is independent of the integrand’s smoothness. This makes
Monte Carlo an ideal choice for the correction step, as it can efficiently average out the complex error
signal left behind by the surrogate model.

2.2 EXTENSION TO SEMI-LINEAR PARABOLIC PDES

We now extend the Monte-Carlo based inference time defect-correction procedure to the general
semi-linear PDE in (1). Let û be a surrogate solution. We define its residual with respect to the PDE
dynamics and the terminal condition as:{

ϵ(r,y) := ∂û
∂r + Lû+ F (û, σ⊤∇yû),

ğ(y) := g(y)− û(T,y).
(6)

By subtracting (6) from the original PDE in (1), we obtain the governing law for the defect ŭ = u− û.
Fact 2.3 (Structural-preserving Law of Defect for Semi-linear PDEs). The defect ŭ(r,y) := u(r,y)−
û(r,y) is the solution to the following semi-linear parabolic equation:{

∂ŭ
∂r + Lŭ+ F̆ (ŭ, σ⊤∇yŭ) = 0, on [0, T)× Rd,

ŭ(T,y) = ğ(y), on Rd,
(7)

where the modified nonlinear term F̆ is given by F̆ (ŭ, σ⊤∇yŭ) := F (û+ ŭ, σ⊤(∇yû+∇yŭ))−
F (û, σ⊤∇yû) + ϵ.

Notably, the Structural-preserving Law of Defect (7) retains a semi-linear struc-
ture. This is the key property that allows us to apply powerful stochastic solvers, such as the
Multilevel Picard (MLP) iteration (Hutzenthaler et al., 2019), to estimate the defect ŭ and correct the
initial surrogate û.

How does the Structural-preserving Law of Defect differ from classical defect-
correction methods? Classical finite element methods admit a well-characterized asymptotic error
expansion Strang et al. (1973), which enables defect-correction schemes to systematically remove the
leading error term and improve convergence rates (Zienkiewicz & Zhu, 1992a;b; Bank & Weiser,
1985). In contrast, no such asymptotic structure is available for neural networks: NN approximations
lack any mesh-refinement hierarchy, their errors do not exhibit a polynomial expansion with respect
to a single resolution parameter, and the optimization-induced approximation error provides no
perturbative decomposition. A different family of debiasing techniques in numerical PDEs relies
on iterative solvers such as Newton methods (Stetter, 1978; Dutt et al., 2000; Xu, 1994; Böhmer,
1981) and quasi-Newton methods (Jameson et al., 1974; Heinrichs, 1996). However, these methods
present two fundamental limitations in our setting. First, iterative updates produce only approximate
corrections, whereas our law of defect is an exact analytical identity that delivers a closed-form
unbiased correction in a single step. Second, embedding iterative methods into a Monte–Carlo

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

or Feynman–Kac framework is highly inefficient: each iteration requires recomputing residuals
and Jacobian actions through additional Monte–Carlo estimators, producing a nested simulation
hierarchy whose convergence rate rapidly deteriorates—from the standardO(N−1/2) rate for a single
Monte–Carlo level, to O(N−1/4) for a second iteration, O(N−1/8) for a third, and so on as more
levels are introduced. Practitioners are therefore forced to balance early-termination errors against
the rapidly declining statistical efficiency of nested Monte–Carlo estimates, making these approaches
both computationally expensive and numerically unstable.

Practical Scenarios In many applications, the quantity of interest is required only at a single
state rather than across the full domain. For example, in optimal control and financial pricing (e.g.,
nonlinear Black–Scholes (Eskiizmirliler et al., 2021; Santos & Ferreira, 2024)), practitioners need
the value function and its gradient only at the current state to determine the next action or hedge;
forward simulations can then be used to compute the Bellman error and correct the current decision.
In rare-event analysis and committor problems in molecular dynamics, neural committor estimators
(Khoo et al., 2019; Li et al., 2019; Hua et al., 2024; Lucente et al., 2019) can be refined using a small
number of targeted simulations initiated from designated configurations. In goal-oriented estimation
(Becker & Rannacher, 1996; 2001), the objective is often a specific functional of the solution rather
than the full field. In all such settings, training a surrogate to high global accuracy is computationally
wasteful. Our method uses the surrogate for a fast initial approximation and then applies a targeted
Monte Carlo refinement at inference time, allocating computational effort precisely where accuracy
is needed.

2.3 SIMULATING STRUCTURAL-PRESERVING LAW OF DEFECT USING MULTILEVEL
PICARD ITERATION

The defect PDE (7) is a semi-linear parabolic equation of the same structural form as (24) with
a different closed nonlinear term. Under the standard regularity assumptions, the pair ŭ∞ =
(ŭ∞, [σ]⊤∇yŭ

∞) admits the Feynman–Kac and Bismut–Elworthy–Li representations presented in
(27)–(28). Hence u∞ is the fixed point of the expectation operator Φ on Lip([0, T]× Rd,R1+d):

ŭ∞ = Φ(ŭ∞), (8)
with Φ given exactly as in the appendix at (28). Intuitively, the operator Φ is a Feynman–Kac–type
backward propagator. Given an approximation of the solution at a future time, Φ maps it back
to the present by running a stochastic simulation forward in time and averaging over all resulting
trajectories. Concretely, for each initial state x, it computes the expected terminal payoff together
with the accumulated contribution of the nonlinearity F̆ along the simulated path. The exact solution
u⋆ is therefore characterized as the fixed point of this propagation: inserting u⋆ into the simulation
leaves it unchanged, i.e., Φu⋆ = u⋆. Standard Picard iteration ŭk+1 = Φ(ŭk) converges to u∞

under standard regularity assumptions (Yong & Zhou, 1999, Theorem 3.4).

Multilevel Picard (MLP) method (E et al., 2021; Hutzenthaler et al., 2020a), uses Multilevel
Monte Carlo (MLMC) (Giles, 2008; 2015) to simulate the telescoping formulation E[ŭn] =

E[Φ(ŭ0)] +
∑n−1

l=1 E[Φ(ŭl) − Φ(ŭl−1)]. The MLMC method exploits a hierarchy of approxi-
mations Φ(ŭ0),Φ(ŭ1), . . . ,Φ(ŭn), ranging from the coarsest to the finest resolution. Crucially,
consecutive approximations (Φ(ŭl))

(i) and (Φ(ŭl−1))
(i) are generated using the same underlying

sample path i, which induces a strong positive correlation between them. As a result, the variance
of their difference is significantly reduced. Moreover, as the level l increases, the iterates converge
linearly ŭl − ŭl−1 → 0, and the variance of the difference decreases linearly toward zero. As a
consequence, the required number of samples Mn−l can decrease as l increases, meaning very few
expensive samples are needed at the finest levels. The majority of the computational cost is thereby
shifted to the coarser levels, significantly reducing the overall complexity of the estimation.

Another factor affecting the variance is how the time integral is computed; we used two MLP variants
to simulate Structural-preserving Law of Defect:

• Quadrature MLP: (E et al., 2021) Simulate the time integrals by the Gauss–Legendre quadrature.
• Full-history MLP: (Hutzenthaler et al., 2021) Simulate the time integrals by Monte Carlo.

We leave all the preliminaries and implementation details of the MLP methods in Appendix B.2.1.
The overall SCaSML procedure, which involves first training a surrogate model and then solving the
Structural-preserving Law of Defect with MLP methods to correct it, is summarized
in Algorithm C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Build a surrogate
solution û

Formulate Structural-preserving (7)
Law of Defect describing u − û

Use MLP to simulate (7)
and at inference correct û

Figure 2: Flow diagram of SCaSML. We formulate the error u − û of surrogate solution û
as the solution Structural-preserving Law of Defect (7), a new semi-linear PDE.
At inference time, we approximate u − û via solving Structural-preserving Law of
Defect using Multilevel Picard (MLP) iteration. The generated estimation of u − û helps us to
calibrate the surrogate solution û.

2.4 PROVABLY ACCELERATED CONVERGENCE

We now provide theoretical guarantees for SCaSML, showing that it achieves a provably faster
convergence rate. For simplicity, we present results for the case µ = 0 and σ = sId. Our analysis
relies on the assumption that the pre-trained surrogate is reasonably accurate.

Why SCaSML Enjoys Provable Faster Convergence Rate. The Monte Carlo error in MLP
methods depends on the scale of the terminal defect ğ and the modified nonlinearity F̆ , which
depends on the error of the surrogate model. A more accurate surrogate model yields smaller ğ and
F̆ , resulting in reduced variance during inference. If the surrogate achieves an error of e(û) ∼ m−γ

(Assumption 2.4) from m training points, then the variance is O(m−2γ). During inference, we

average over m additional Monte Carlo paths, which reduces the statistical error
√

m−2γ

m = m−γ− 1
2

(Blanchet et al., 2023). With a total computation cost of 2m function evaluations, SCaSML therefore
attains a convergence rate that surpasses both the surrogate method m−γ and the standard MLP /
Monte-Carlo estimator m−1/2. Full constant-tracking and rigorous proofs are in Appendices F and E.
Assumption 2.4 (Surrogate Model Accuracy). Let the true defect be well-behaved such that
supt∈[0,T] ∥ŭ(t, ·)∥W 1,∞ < ∞. We assume the surrogate error is bounded by a measure e(û),
such that for constants CF,1, CF,2 > 0:

1. L∞ Residual: supr,y |ϵ(r,y)| ≤ CF,1 e(û).

2. W 1,∞ Error: supr ∥ŭ(r, ·)∥W 1,∞ ≤ CF,2 e(û).

Proof Sketch. Our main theoretical result stems from the observation that the computational
complexity of the MLP solver depends on the Lipschitz constant of the nonlinearity F̆ and the
magnitude of the ”source terms”. They appear multiplicatively because nonlinearities—through
their Lipschitz bounds—propagate and magnify variance at every Picard iteration. The ”source
term” driving the Multilevel Picard simulation for the defect is the residual ϵ, already reduced by the
surrogate. At the same time, We show that the regularity in the law of defect is no worse than that of
the original PDE, ensuring that the refinement introduces no additional smoothness requirements.
Combining the previous fact, a more accurate surrogate makes the defect PDE ”easier” to solve. This
leads to our main error bound.
Theorem 2.5 (Global L2 Error Bound). Under standard regularity assumptions on the PDE coeffi-
cients (Assumptions E.2–D.7), the global L2 error of the SCaSML estimator using a full-history MLP
approximation ŬN,M with N levels and use M l Monte Carlo samples at l−th level is bounded by:

sup
(t,x)∈[0,T]×Rd

∥∥∥ŬN,M (t,x)− ŭ(t,x)
∥∥∥
L2
≤ E(M,N) · (CF e(û)), (9)

where ŭ = (ŭ, σ∇xŭ) is the true defect and its gradient, and E(M,N) represents the error term of
the underlying MLP solver, which depends on M and N but is independent of the surrogate.

Theorem 2.5 shows that the final error is the product of the MLP simulation error and the surrogate
model error. This synergistic relationship implies that the computational cost to reach a global
L2 error of ε is reduced from O(d ε−(2+δ)) for a naive MLP solver to O(d ε−(2+δ) e(û)2+δ) for
SCaSML (see Corollary E.9 in Appendix). This means the cost of our correction step decreases as
the quality of the initial surrogate improves. This directly leads to an improved scaling law.
Corollary 2.6 (Improved Scaling Law). Under the assumptions of Theorem 2.5, suppose the surrogate
model’s error scales as e(û) = O(m−γ) with m training points. By allocating an additional m

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparative performance of full-history SCaSML against the surrogate model (SR: PINN
or GP) and a naive MLP solver. We report total runtime (s) and relative errors in L2, L∞, and L1

norms. Bold values indicate the best performance in each category. SCaSML consistently achieves
the lowest error across nearly all settings.

Problem Time (s) Relative L2 Error L∞ Error L1 Error
SR MLP SCaSML SR MLP SCaSML SR MLP SCaSML SR MLP SCaSML

L
C

D

10d 0.45 6.77 13.31 5.20E-02 2.27E-01 2.74E-02 2.50E-01 9.06E-01 1.65E-01 3.39E-02 1.67E-01 1.78E-02
20d 0.54 6.73 17.11 9.00E-02 2.35E-01 4.72E-02 4.72E-01 1.35E+00 3.30E-01 9.37E-02 2.37E-01 4.52E-02
30d 0.46 6.89 22.44 1.45E-01 2.38E-01 9.72E-02 2.04E+00 1.59E+00 7.69E-01 1.61E-01 2.84E-01 1.04E-01
60d 0.28 6.94 37.59 3.13E-01 2.39E-01 1.32E-01 3.24E+00 2.05E+00 1.57E+00 5.35E-01 4.07E-01 2.06E-01

V
B

-P
IN

N 20d 0.54 6.80 10.59 1.17E-02 8.36E-02 4.03E-03 3.26E-02 2.96E-01 2.26E-02 5.36E-03 3.39E-02 1.29E-03
40d 0.29 8.11 14.09 4.06E-02 1.04E-01 2.92E-02 8.43E-02 3.57E-01 7.43E-02 2.00E-02 4.36E-02 1.24E-02
60d 3.14 11.36 38.30 3.95E-02 1.17E-01 2.88E-02 8.20E-02 3.93E-01 7.20E-02 1.94E-02 4.82E-02 1.22E-02
80d 3.65 11.78 42.50 6.74E-02 1.19E-01 5.64E-02 1.90E-01 3.35E-01 1.80E-01 3.21E-02 4.73E-02 2.46E-02

V
B

-G
P

20d 1.74 10.56 61.82 1.47E-01 1.90E-01 6.23E-02 3.54E-01 5.72E-01 2.54E-01 7.01E-02 8.00E-02 2.48E-02
40d 1.78 12.28 61.28 1.81E-01 2.20E-01 8.55E-02 4.00E-01 8.71E-01 3.00E-01 9.19E-02 9.06E-02 3.82E-02
60d 1.68 9.70 57.79 2.40E-01 2.57E-01 1.28E-01 3.84E-01 9.50E-01 2.84E-01 1.27E-01 9.99E-02 6.11E-02
80d 1.69 10.12 60.69 2.66E-01 3.02E-01 1.52E-01 3.61E-01 1.91E+00 2.61E-01 1.45E-01 1.09E-01 7.59E-02

L
Q

G

100d 0.42 8.27 21.33 7.97E-02 5.63E+00 5.53E-02 7.82E-01 1.26E+01 6.82E-01 1.40E-01 1.21E+01 8.72E-02
120d 0.32 8.52 23.98 9.40E-02 5.50E+00 6.66E-02 9.06E-01 1.27E+01 8.06E-01 1.74E-01 1.22E+01 1.06E-01
140d 0.40 8.65 27.31 9.87E-02 5.37E+00 6.84E-02 9.96E-01 1.27E+01 8.96E-01 1.93E-01 1.23E+01 1.12E-01
160d 0.34 8.09 29.95 1.12E-01 5.27E+00 9.94E-02 1.40E+00 1.28E+01 1.30E+00 2.17E-01 1.23E+01 1.79E-01

D
R

100d 0.32 7.59 58.51 1.41E-02 8.99E-02 1.11E-02 9.58E-02 6.37E-01 8.58E-02 1.87E-02 9.74E-02 1.38E-02
120d 0.33 7.16 68.28 1.11E-02 9.13E-02 1.03E-02 7.50E-02 5.74E-01 6.50E-02 1.39E-02 9.97E-02 1.29E-02
140d 0.42 7.73 79.99 3.22E-02 8.97E-02 3.00E-02 1.82E-01 8.56E-01 1.72E-01 4.03E-02 9.77E-02 3.75E-02
160d 0.37 7.22 86.77 3.45E-02 9.00E-02 3.22E-02 2.08E-01 8.02E-01 1.98E-01 4.30E-02 9.75E-02 4.00E-02

samples for the inference-time simulation, the total error of the SCaSML procedure improves from
O(m−γ) to O(m−γ−1/2+o(1)).

3 NUMERICAL RESULTS

We now empirically validate the SCaSML framework across a suite of challenging high-dimensional
PDEs. In each experiment, we first train a baseline surrogate model û (either a Physics-Informed
Neural Network or a Gaussian Process) to obtain an approximate solution. Then, at inference time,
we apply a full-history Multilevel Picard (MLP) solver to the Structural-preserving Law
of Defect (Fact 2.3) to compute a correction term ŭ. The final SCaSML solution is the sum
uSCaSML = û+ ŭ.

The primary goal of these experiments is to demonstrate the value added by the correction step. Thus,
our key comparison is between the baseline surrogate model (SR) and the final corrected solver
(SCaSML). We also include the naive MLP solver for reference, to show that the hybrid approach
succeeds where pure simulation often fails. Our implementation leverages JAX (Bradbury et al.,
2018) and DeepXDE (Lu et al., 2021) for efficient, parallelized computation.

As shown in Figure 3a, SCaSML consistently tightens the error distribution compared to the base
surrogate. Refer to Appendix G.6 for detailed pointwise error maps. Figure 3b demonstrates
SCaSML’s effective inference-time scaling: as more computational resources (i.e., Monte Carlo
samples) are allocated, the accuracy of the solution progressively improves. A comprehensive
comparison of error metrics and timings is provided in Table 1, and the empirical validation of our
theoretical scaling law is shown in Figure 4. More experiments, including statistical significance
tests (p≪ 0.001, Appendix G.4) and fixed-budget efficiency comparisons (Appendix G.7), are
shown in the Appendix G.

3.1 LINEAR CONVECTION-DIFFUSION EQUATION

Problem Formulation. We investigate a linear convection-diffusion equation given by ∂
∂ru(r,y) +〈

− 1
d1,∇yu(r,y)

〉
+∆yu(r,y) = 0, (r,y) ∈ [0, T)×Rd, with the terminal condition u(T,y) =∑d

i=1 yi + T, y ∈ Rd. This PDE admits the explicit solution u(r,y) =
∑d

i=1 yi + r.

Experimental Setup. The problem is solved over the hypercube [0, 0.5]× [0, 0.5]d for dimensions
d ∈ {10, 20, 30, 60} with Dirichlet boundary conditions enforced by the PINN loss. We deploy
a Physics-Informed Neural Network (PINN) with 5 hidden layers, 50 neurons each, and a tanh
activation function. Training uses the Adam optimizer (learning rate 7× 10−4, β1 = 0.9, β2 = 0.99)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

for 104 iterations. At each iteration, the network is trained on 2.5× 103 interior and 102 boundary
collocation points. For the inference step, we use a 2-level simulation with M = 10 as the basis
of Monte Carlo samples at each level in Multilevel Picard iteration for the tabulated results and
M ∈ {10, . . . , 16} for the scaling study. A clipping threshold of 0.5(d+ 1) is applied to the solution
and gradients for both the naive MLP and SCaSML.

Results. As reported in Table 1 (LCD), SCaSML achieves a reduction in the relative L2 error
from 20% to 56.9% compared to the baseline PINN surrogate. Moreover, SCaSML exhibits robust
inference scaling, with performance improving as more inference time is allocated (see Figure 10).

3.2 VISCOUS BURGERS EQUATION

Problem Formulation. Next, we consider a viscous Burgers equation from (Hutzenthaler et al.,
2019), a standard benchmark for nonlinear PDEs: ∂u

∂r +
〈
−
(

1
d +

σ2
0

2

)
1,∇yu

〉
+

σ2
0

2 ∆yu +

σ0u
∑d

i=1(σ0∇yu)i = 0, with terminal condition u(T,y) =
exp(T+

∑d
i=1 yi)

1+exp(T+
∑d

i=1 yi)
. The exact solution

is u(r,y) = exp(r+
∑d

i=1 yi)

1+exp(r+
∑d

i=1 yi)
.

Experimental Setup. We solve the PDE on [0, 0.5] × [−0.5, 0.5]d for dimensions d ∈
{20, 40, 60, 80} with σ0 =

√
2. We test SCaSML with two types of surrogates. The PINN was

trained for 104 iterations using the Adam optimizer (learning rate 7×10−4, β1 = 0.9, and β2 = 0.99),
utilizing 2,500 interior, 100 boundary, and 160 terminal condition sample points. A Gaussian Process
(GP) regression surrogate was trained over 20 iterations via Newton’s method, using 1,000 interior
and 200 boundary points. For the 2-level MLP and SCaSML solvers with the basis of Monte Carlo
samples M = 10, we set clipping thresholds of 1.0 and 0.01, respectively, to handle the nonlinearity.

Results. SCaSML demonstrates strong performance with both surrogate types. For the PINN
surrogate (VB-PINN), it reduces the relative L2 error by 16.2% to 66.1%. For the GP surrogate
(VB-GP), the reduction is even more pronounced, ranging from 42.7% to 57.5% (Table 1). This
highlights SCaSML’s versatility as a plug-and-play corrector for different SciML models.

3.3 HIGH-DIMENSIONAL HAMILTON-JACOBI-BELLMAN EQUATION

Problem Formulation. To showcase SCaSML on problems central to control theory, we tackle a
high-dimensional Hamilton-Jacobi-Bellman (HJB) equation arising from a linear-quadratic-Gaussian
(LQG) control problem (Han et al., 2018b). The HJB equation is given by ∂u

∂r +∆yu−∥∇yu∥2 = 0,

with terminal condition u(T,y) = log(
1+

∑d−1
i=1 [c1,i(yi−yi+1)

2+c2,iy
2
i+1]

2), where c1,i and c2,i are
independent random draws from interval [0.5, 1.5]. The reference solution is computed via u(r,y) =
− logE exp(−u(T,y +

√
2WT−r)) with sufficiently large sample sizes(e.g. 100d).

Experimental Setup. Following (Hu et al., 2024), we use a complex, non-trivial terminal condition
and evaluate the problem in very high dimensions, d ∈ {100, 120, 140, 160}. The PINN surrogate
is trained for 2.5× 103 iterations on the domain [0, 0.5]× Bd, where Bd is the unit ball in Rd, with
100 interior and 1,000 boundary points per iteration. We use the Adam optimizer with a learning
rate of 10−3, β1 = 0.9, and β2 = 0.99. For inference steps, we set total level n = 2 and the basis of
Monte Carlo samples at each level M = 10, where n is the total level and M l is sample used at level
l for 0 ≤ l ≤ n. To stabilize the simulation for this strongly nonlinear problem, we use a clipping
threshold of 10 for the naive MLP and a much smaller threshold of 0.1 for SCaSML, reflecting
the smaller magnitude of the defect. To accelerate computations, we use Hutchinson’s method to
stochastically estimate the Laplacian and divergence terms, sampling d/4 dimensions at each step
(Hutchinson, 1989; Girard, 1989; Shi et al., 2025).

Results. In this challenging high-dimensional setting (LQG), the naive MLP solver fails entirely,
producing large errors. In contrast, SCaSML successfully refines the PINN solution, reducing the
relative L2 error by 11.7% to 30.8% and achieving the lowest error across all metrics (Table 1).
3.4 DIFFUSION-REACTION EQUATION WITH AN OSCILLATING SOLUTION

Problem Formulation. Finally, we consider a diffusion-reaction system designed to have a highly
oscillatory solution (Gobet & Turkedjiev, 2017; Han et al., 2018b), making it particularly difficult

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Error Distribution of Test Points

VB-PINN, 80d LCD, 60d LQG, 160d DR, 160d

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Ab
so

lu
te

 E
rro

r

PINN MLP SCaSML PINN MLP SCaSML PINN MLP SCaSML PINN MLP SCaSML

(b) Inference-Time Scaling of SCaSML with Increasing Computational Budget

103

Evaluation Numbers

55.0
57.5
60.0
62.5
65.0
67.5
70.0
72.5

Im
pr

ov
em

en
t (

%
)

Improvement (%)

Linear Convection-Diffusion

102 103

Evaluation Numbers

50

55

60

65

Im
pr

ov
em

en
t (

%
)

Improvement (%)

Viscous Burgers

102 103

Evaluation Numbers

26

27

28

29

30

31

Im
pr

ov
em

en
t (

%
)

Improvement (%)

Linear Quadratic Gaussian

102 103

Evaluation Numbers

0

2

4

6

8

10

Im
pr

ov
em

en
t (

%
)

Improvement (%)

Diffusion Reaction
(c) Overall Performance Comparison Across Metrics and Runtimes

LCD VB-PINN VB-GP LQG DR

10 2

10 1

100

Re
la

tiv
e

L²
 E

rro
r (

lo
g

sc
al

e)

Relative L² Error and Computation Time

SR - L² Error MLP - L² Error SCaSML - L² Error
SR - Time MLP - Time SCaSML - Time

100

101

Co
m

pu
ta

tio
n

Ti
m

e
(s

, l
og

 sc
al

e)

L2 Linf L1
Metric

SR-LCD

MLP-LCD

SCaSML-LCD

SR-VB-PINN

MLP-VB-PINN

SCaSML-VB-PINN

SR-VB-GP

MLP-VB-GP

SCaSML-VB-GP

SR-LQG

MLP-LQG

SCaSML-LQG

SR-DR

MLP-DR

SCaSML-DR

M
et

ho
d-

Sy
st

em

5.2e-02 2.5e-01 3.4e-02

2.3e-01 9.1e-01 1.7e-01

2.7e-02 1.6e-01 1.8e-02

1.2e-02 3.2e-02 5.4e-03

8.4e-02 3.0e-01 3.4e-02

4.0e-03 2.2e-02 1.3e-03

1.5e-01 3.5e-01 7.0e-02

1.9e-01 5.7e-01 8.0e-02

6.2e-02 2.5e-01 2.5e-02

8.0e-02 7.8e-01 1.4e-01

5.6e+00 1.3e+01 1.2e+01

5.5e-02 6.8e-01 8.7e-02

9.5e-03 7.5e-02 1.1e-02

9.0e-02 6.4e-01 9.7e-02

8.9e-03 6.5e-02 1.1e-02

Error Metrics Across Methods and Systems

10 2

10 1

100

101

Er
ro

r (
lo

g
sc

al
e)

Figure 3: Efficiency and performance of the SCaSML methodology. (a) Violin plots showing
the distribution of pointwise errors. SCaSML consistently reduces the mean error and tightens the
distribution compared to the surrogate (SR) model. (b) Inference-time scaling. As the number of
inference-time simulation samples increases, SCaSML’s error steadily decreases, demonstrating
effective use of additional compute. (c) Summary of performance. The left panel shows that SCaSML
(blue stars) consistently achieves lower L2 error than both the surrogate (SR) and naive MLP methods
across all problems. The right panel (heatmap) confirms that SCaSML also dominates in L∞ and L1

error metrics.

for standard neural network surrogates ∂u
∂r + 1

2∆yu + min{1, (u − u⋆)2} = 0, where u⋆(r,y) =

1.6 + sin(0.1
∑d

i=1 yi) exp(
0.01d(r−1)

2) is the exact solution.

Experimental Setup. We solve the problem for dimensions d ∈ {100, 120, 140, 160} on the
domain [0, 1] × Bd. The PINN surrogate is trained for 2.5 × 103 iterations with 1,000 interior
and 1,000 boundary points, using the Adam optimizer with a learning rate of 10−3, β1 = 0.9, and
β2 = 0.99. For inference steps, we set total level n = 2 and the basis of Monte Carlo samples at each
level M = 10. The MLP and SCaSML solvers use clipping thresholds of 10 and 0.01, respectively.
Due to the solution’s oscillatory nature, we found that the Hutchinson estimator for the Laplacian
introduced instability; therefore, we computed the full Laplacian in this experiment.

Results. Even though the PINN surrogate is already quite accurate for this problem, SCaSML is
still able to provide a consistent refinement. As shown in Table 1 (DR), SCaSML further reduces the
relative L2 error by 6.6% to 10.9%, demonstrating its capability to improve even well-performing
surrogates on complex, high-frequency problems.

4 CONCLUSION AND DISCUSSION

We introduced SCaSML, the first physics-informed inference time scaling framework that
integrates surrogate models with Monte-Carlo numerical simulations for solving high-dimensional

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) Illustration of SCaSML’s Improved Scaling Law
Surrogate Model Feynman Path Simulation

∂
∂t

∂
∂x

∂2

∂x2

∂u
∂t

+ ∂2u
∂x2 + f (u) = 0

Scaling

Law

Methods

Simulation-Calibrated Scientific Machine Learning

ux

ux

Training time Inference time

∂
∂x

∂2

∂x2

∂u
∂t

+ ∂2u
∂x2 + f (u) = 0

∂
∂t

:Residual of

()

 collocation points at training timen collocation points at finest simulationn collocation points at training timen collocation points at finest simulationn

Error: Od(n−γ) Error: Od(n− 1
2) Error: Od(n−γ− 1

2)
error of the

surrogate model
error of the

simulation algorithm

(b) Empirical Verification on the Viscous Burgers Equation

103

Training Size

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Re
la

tiv
e

L2
 E

rro
r

GP (=0.37)
SCaSML (=0.55)

(a) d = 20

103

Training Size

10 1

2 × 10 1

3 × 10 1

4 × 10 1
Re

la
tiv

e
L2

 E
rro

r
GP (=0.37)
SCaSML (=0.55)

(b) d = 40

103

Training Size

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Re
la

tiv
e

L2
 E

rro
r

GP (=0.36)
SCaSML (=0.53)

(c) d = 60

103

Training Size

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Re
la

tiv
e

L2
 E

rro
r

GP (=0.35)
SCaSML (=0.50)

(d) d = 80

Figure 4: Empirical verification of the improved scaling law for SCaSML. (a) Conceptual diagram.
The final SCaSML error is a product of the surrogate error and the simulation error (Theorem 2.5).
By balancing the computational budget between training the surrogate and performing inference-time
simulation, SCaSML achieves a faster overall convergence rate (Corollary 2.6). (b) Numerical results.
We plot the L2 error versus the number of collocation points (m) on a log-log scale for a GP surrogate
and SCaSML. The slope of the line corresponds to the convergence rate γ. SCaSML consistently
exhibits a steeper slope than the base surrogate, empirically confirming its accelerated convergence.

PDE. By introducing Structural-preserving Law of Defect, we use the output of a
pre-trained SciML solver as an efficient starting point for inference-time corrections. Our theory
and experiments show this hybrid approach achieves faster convergence and reduces errors by up to
80% in complex high-dimensional PDEs. SCaSML represents a new approach in hybrid scientific
computing. Unlike previous work that used machine learning for discovering numerical schemes
(Long et al., 2018) or as preconditioners (Hsieh et al., 2019), our framework uses the machine
learning model as a control variate in stochastic simulations to reduce the variance of Monte Carlo
simulation. The surrogate handles the low-frequency part, allowing the simulation to focus on the
small high-frequency residual, and enhances computational efficiency by addressing model bias at
inference time. This establishes an elastic compute paradigm, allowing users to trade inference time
for accuracy on demand—achieving gains that are often computationally intractable through further
training alone. SCaSML is the first inference-time scaling algorithm that enhances the learned
surrogate solution during inference without requiring fine-tuning or retraining.

REFERENCES

Randolph E Bank and Alan Weiser. Some a posteriori error estimators for elliptic partial differential
equations. Mathematics of computation, 44(170):283–301, 1985.

Pau Batlle, Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. Error analysis of
kernel/gp methods for nonlinear and parametric pdes. arXiv preprint arXiv:2305.04962, 05, 2023.

Roland Becker and Rolf Rannacher. A feed-back approach to error control in finite element methods:
Basic analysis and examples. IWR, 1996.

Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori error estimation in
finite element methods. Acta numerica, 10:1–102, 2001.

Richard Bellman. Dynamic programming and a new formalism in the calculus of variations. Pro-
ceedings of the National Academy of Sciences, 40(4):231–235, 1954. doi: 10.1073/pnas.40.4.231.
URL https://www.pnas.org/doi/abs/10.1073/pnas.40.4.231.

10

https://www.pnas.org/doi/abs/10.1073/pnas.40.4.231

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jose Blanchet, Haoxuan Chen, Yiping Lu, and Lexing Ying. When can regression-adjusted control
variate help? rare events, sobolev embedding and minimax optimality. Advances in Neural
Information Processing Systems, 36:36566–36578, 2023.

K Böhmer, PW Hemker, and HJ Stetter. The defect correction approach. In Defect Correction
Methods: Theory and Applications, pp. 1–32. Springer, 1984.

Klaus Böhmer. Discrete newton methods and iterated defect corrections. Numerische Mathematik,
37(2):167–192, 1981.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

P. Briand and C. Labart. Simulation of BSDEs by Wiener chaos expansion. The Annals of Applied
Probability, 24(3):1129–1171, 2014.

Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. Solving and learning
nonlinear pdes with gaussian processes. Journal of Computational Physics, 447:110668, 2021.

Yifan Chen, Houman Owhadi, and Florian Schäfer. Sparse cholesky factorization for solving nonlinear
pdes via gaussian processes, 2024. URL https://arxiv.org/abs/2304.01294.

Giuseppe Da Prato and Jerzy Zabczyk. Differentiability of the feynman-kac semigroup and a control
application. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, 8(3):183–188, 1997.

Alok Dutt, Leslie Greengard, and Vladimir Rokhlin. Spectral deferred correction methods for
ordinary differential equations. BIT Numerical Mathematics, 40(2):241–266, 2000.

Weinan E, Martin Hutzenthaler, Arnulf Jentzen, and Thomas Kruse. Multilevel picard iterations
for solving smooth semilinear parabolic heat equations. Partial Differential Equations and Ap-
plications, 2(6), November 2021. ISSN 2662-2971. doi: 10.1007/s42985-021-00089-5. URL
http://dx.doi.org/10.1007/s42985-021-00089-5.

K David Elworthy and Xue-Mei Li. Formulae for the derivatives of heat semigroups. Journal of
Functional Analysis, 125(1):252–286, 1994.

Saadet Eskiizmirliler, Korhan Günel, and Refet Polat. On the solution of the black–scholes equation
using feed-forward neural networks. Computational Economics, 58(3):915–941, 2021.

Michael B Giles. Multilevel monte carlo path simulation. Operations research, 56(3):607–617, 2008.

Michael B Giles. Multilevel monte carlo methods. Acta numerica, 24:259–328, 2015.

Antoine Girard. A fast ‘monte-carlo cross-validation’procedure for large least squares problems with
noisy data. Numerische Mathematik, 56:1–23, 1989.

E. Gobet and P. Turkedjiev. Adaptive importance sampling in least-squares monte carlo algorithms
for backward stochastic differential equations. Stochastic Processes and their Applications, 127(4):
1171–1203, 2017. ISSN 0304-4149. doi: https://doi.org/10.1016/j.spa.2016.07.011. URL https:
//www.sciencedirect.com/science/article/pii/S0304414916301235.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018a.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510,
2018b. doi: 10.1073/pnas.1718942115. URL https://www.pnas.org/doi/abs/10.
1073/pnas.1718942115.

Wilhelm Heinrichs. Defect correction for convection-dominated flow. SIAM Journal on Scientific
Computing, 17(5):1082–1091, 1996.

11

http://github.com/jax-ml/jax
https://arxiv.org/abs/2304.01294
http://dx.doi.org/10.1007/s42985-021-00089-5
https://www.sciencedirect.com/science/article/pii/S0304414916301235
https://www.sciencedirect.com/science/article/pii/S0304414916301235
https://www.pnas.org/doi/abs/10.1073/pnas.1718942115
https://www.pnas.org/doi/abs/10.1073/pnas.1718942115

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning
neural pde solvers with convergence guarantees. arXiv preprint arXiv:1906.01200, 06, 2019.

Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse of
dimensionality with physics-informed neural networks. Neural Networks, 176:106369, August
2024. ISSN 0893-6080. doi: 10.1016/j.neunet.2024.106369. URL http://dx.doi.org/10.
1016/j.neunet.2024.106369.

Xinru Hua, Rasool Ahmad, Jose Blanchet, and Wei Cai. Accelerated sampling of rare events using a
neural network bias potential. arXiv preprint arXiv:2401.06936, 2024.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Martin Hutzenthaler and Thomas Kruse. Multilevel picard approximations of high-dimensional
semilinear parabolic differential equations with gradient-dependent nonlinearities. SIAM Journal on
Numerical Analysis, 58(2):929–961, January 2020. ISSN 1095-7170. doi: 10.1137/17m1157015.
URL http://dx.doi.org/10.1137/17M1157015.

Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, et al. On multilevel picard numerical approxima-
tions for high-dimensional nonlinear parabolic partial differential equations and high-dimensional
nonlinear backward stochastic differential equations. Journal of Scientific Computing, 79(3):
1534–1571, 2019.

Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, Tuan Anh Nguyen, and Philippe von Wurstem-
berger. Overcoming the curse of dimensionality in the numerical approximation of semilin-
ear parabolic partial differential equations. Proceedings of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, 476(2244), December 2020a. ISSN 1471-2946. doi:
10.1098/rspa.2019.0630. URL http://dx.doi.org/10.1098/rspa.2019.0630.

Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, and Tuan Anh Nguyen. Multilevel picard
approximations for high-dimensional semilinear second-order pdes with lipschitz nonlinearities,
2020b.

Martin Hutzenthaler, Arnulf Jentzen, and Thomas Kruse. Overcoming the curse of dimensionality in
the numerical approximation of parabolic partial differential equations with gradient-dependent
nonlinearities. Foundations of Computational Mathematics, 22(4):905–966, July 2021. ISSN
1615-3383. doi: 10.1007/s10208-021-09514-y. URL http://dx.doi.org/10.1007/
s10208-021-09514-y.

Antony Jameson et al. Iterative solution of transonic flows over airfoils and wings, including flows at
mach 1. Communications on pure and applied mathematics, 27(3):283–309, 1974.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving for high-dimensional committor functions
using artificial neural networks. Research in the Mathematical Sciences, 6(1):1, 2019.

Stig Larsson and Vidar Thomée. Partial differential equations with numerical methods, volume 45.
Springer, 2003.

Qianxiao Li, Bo Lin, and Weiqing Ren. Computing committor functions for the study of rare events
using deep learning. The Journal of Chemical Physics, 151(5), 2019.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International conference on machine learning, pp. 3208–3216. PMLR, 2018.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM Review, 63(1):208–228, January 2021. ISSN 1095-7200.
doi: 10.1137/19m1274067. URL http://dx.doi.org/10.1137/19M1274067.

12

http://dx.doi.org/10.1016/j.neunet.2024.106369
http://dx.doi.org/10.1016/j.neunet.2024.106369
http://dx.doi.org/10.1137/17M1157015
http://dx.doi.org/10.1098/rspa.2019.0630
http://dx.doi.org/10.1007/s10208-021-09514-y
http://dx.doi.org/10.1007/s10208-021-09514-y
http://dx.doi.org/10.1137/19M1274067

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Dario Lucente, Stefan Duffner, Corentin Herbert, Joran Rolland, and Freddy Bouchet. Machine
learning of committor functions for predicting high impact climate events. arXiv preprint
arXiv:1910.11736, 2019.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning
(part i): Data-driven solutions of nonlinear partial differential equations, 2017. URL https:
//arxiv.org/abs/1711.10561.

Research Group on Stochastic Analysis, University of Duisburg-Essen. Multilevel picard approxi-
mation, 2025. URL https://www.uni-due.de/mathematik/ag_stochastische_
analysis/mlp. Accessed: March 26, 2025.

Lorenz Richter, Leon Sallandt, and Nikolas Nüsken. Solving high-dimensional parabolic pdes using
the tensor train format. In International Conference on Machine Learning, pp. 8998–9009. PMLR,
2021.

Daniel de Souza Santos and Tiago Alessandro Espinola Ferreira. Neural network learning of black-
scholes equation for option pricing. arXiv preprint arXiv:2405.05780, 2024.

Sebastian Becker Sebastian Becker, Ramon Braunwarth Ramon Braunwarth, Martin Hutzenthaler
Martin Hutzenthaler, Arnulf Jentzen Arnulf Jentzen, and Philippe von Wurstemberger Philippe von
Wurstemberger. Numerical simulations for full history recursive multilevel picard approximations
for systems of high-dimensional partial differential equations. Communications in Computational
Physics, 28(5):2109–2138, January 2020. ISSN 1815-2406. doi: 10.4208/cicp.oa-2020-0130.
URL http://dx.doi.org/10.4208/cicp.OA-2020-0130.

Zekun Shi, Zheyuan Hu, Min Lin, and Kenji Kawaguchi. Stochastic taylor derivative estimator:
Efficient amortization for arbitrary differential operators, 2025. URL https://arxiv.org/
abs/2412.00088.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024.

Hans J Stetter. The defect correction principle and discretization methods. Numerische Mathematik,
29(4):425–443, 1978.

Gilbert Strang, George J Fix, et al. An analysis of the finite element method, volume 212. Prentice-hall,
1973.

Michael Unser. A unifying representer theorem for inverse problems and machine learning. Founda-
tions of Computational Mathematics, 21(4):941–960, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models, 2022.

E Weinan, Jiequn Han, and Arnulf Jentzen. Algorithms for solving high dimensional pdes: from
nonlinear monte carlo to machine learning. Nonlinearity, 35(1):278, 2021.

Jinchao Xu. A novel two-grid method for semilinear elliptic equations. SIAM Journal on Scientific
Computing, 15(1):231–237, 1994.

Shihao Yang, Samuel WK Wong, and SC Kou. Inference of dynamic systems from noisy and
sparse data via manifold-constrained gaussian processes. Proceedings of the National Academy of
Sciences, 118(15):e2020397118, 2021.

Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and hjb equations. 1999.
URL https://api.semanticscholar.org/CorpusID:118042879.

Olgierd Cecil Zienkiewicz and Jian Zhong Zhu. The superconvergent patch recovery and a posteriori
error estimates. part 1: The recovery technique. International Journal for Numerical Methods in
Engineering, 33(7):1331–1364, 1992a.

13

https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10561
https://www.uni-due.de/mathematik/ag_stochastische_analysis/mlp
https://www.uni-due.de/mathematik/ag_stochastische_analysis/mlp
http://dx.doi.org/10.4208/cicp.OA-2020-0130
https://arxiv.org/abs/2412.00088
https://arxiv.org/abs/2412.00088
https://api.semanticscholar.org/CorpusID:118042879

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Olgierd Cecil Zienkiewicz and Jian Zhong Zhu. The superconvergent patch recovery and a posteriori
error estimates. part 2: Error estimates and adaptivity. International Journal for Numerical Methods
in Engineering, 33(7):1365–1382, 1992b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX OUTLINE

This appendix provides supplementary materials to support the main paper. We include a centralized
notation glossary, detailed background on the methods used, the complete algorithm, full proofs of our
theoretical results, and extensive additional experimental validation including statistical significance
tests and computational budget analyses.

The appendix is organized as follows:

• Appendix A: Notations. We provide a centralized glossary defining the mathematical
symbols and operators used throughout the paper and appendices.

• Appendix B: Preliminaries. We provide background on the core technical components of
the SCaSML framework.

– Surrogate Models for PDEs (§B.1): We detail the architectures used: Physics-Informed
Neural Networks (PINNs) and Gaussian Processes (GPs).

– Multilevel Picard (MLP) Iterations (§B.2): We overview the quadrature and full-history
MLP methods which form the basis of our inference-time correction.

• Appendix C: Algorithm. We present the complete SCaSML algorithm in detailed pseu-
docode, including practical implementation details like outlier thresholding and Hutchinson’s
estimator for high-dimensional Laplacians.

• Appendix D: Proof Settings. We establish the common probability space definitions and
specific regularity assumptions on the surrogate models required for our theoretical analysis.

• Appendix E: Proof for Full-History MLP. We provide the theoretical analysis for the
full-history MLP variant using Monte Carlo time integration.

– Global L2 Error Bound (§E.3.2): We derive the error bound for the full-history case.
– Improved Scaling Law (§E.3.3): We provide the proof for the accelerated asymptotic

convergence rate of O(m−γ−1/2).

• Appendix F: Proof for Quadrature MLP. We present the theoretical analysis for SCaSML
using the quadrature MLP solver.

– Global L2 Error Bound (§F.2.1): We derive the error bound showing dependence on
the surrogate’s accuracy e(û).

– Computational Complexity (§F.2.2): We prove the reduction in complexity afforded by
the SCaSML framework.

• Appendix G: Auxiliary Experimental Results. We include comprehensive additional
experiments to validate robustness, statistical significance, and efficiency.

– Violin Plots for Error Distribution (§G.1): Visualizations of the full error distribution
for all test cases.

– Inference Time Scaling Curves (§G.2 and §G.3): Plots demonstrating monotonic error
reduction with increased inference compute.

– Statistical Analysis of L1 Errors (§G.4): Detailed tables reporting means, standard
deviations, 95% confidence intervals, and p-values from paired t-tests.

– Relative L2 Error Improvement (§G.5): Visualization of the percentage error reduction
across all dimensions.

– Pointwise Error Reduction Analysis (§G.6): Scatter plots confirming that SCaSML
systematically reduces error on the vast majority of individual test points.

– Performance Comparison Under Fixed Computational Budgets (§G.7): A Pareto effi-
ciency analysis comparing SCaSML to baselines when total wall-clock time (Training
+ Inference) is held constant.

– Performance Comparison: Large PINN vs. SCaSML Correction (§G.8): A Pareto
efficiency analysis comparing SCaSML to PINN with increasing scales of the same
computing budget.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A NOTATION

This section establishes the rigorous mathematical framework, including probability spaces, function
classes, and norms used throughout the theoretical analysis. We strictly distinguish between spatial
functional norms and probabilistic norms to ensure clarity in the convergence analysis.

A.1 GENERAL CONVENTIONS AND GEOMETRY

• Let T ∈ (0,∞) be a fixed terminal time. We define the spatiotemporal domain as ΩT :=
[0, T]× Rd, where d ∈ N denotes the spatial dimension.

• We adopt the unified coordinate convention (t,x) ∈ ΩT throughout this appendix. The
notation (r, y) is reserved strictly for integration variables within time integrals.

• B(Rd) denotes the Borel σ-algebra on Rd.

• ⟨x,y⟩ denotes the standard Euclidean inner product for x,y ∈ Rd, and |x| :=
√
⟨x,x⟩

denotes the Euclidean norm.

A.2 NORMS AND FUNCTION SPACES

• Measurable Functions: LetM(A,B) denote the set of all measurable functions mapping
from measurable space A to B.

• Spatial Spaces and Norms:
– For any function ϕ : Rd → Rk, we define the uniform norm ∥ϕ∥∞ := supx∈Rd |ϕ(x)|.
– C1,2([0, T]× Rd) denotes the space of functions that are once continuously differen-

tiable in time and twice continuously differentiable in space.
– W k,∞(Rd) denotes the Sobolev space of functions with essentially bounded weak

derivatives up to order k, equipped with the norm ∥ϕ∥Wk,∞ :=
∑

|α|≤k ∥Dαϕ∥∞.

• Probabilistic Spaces and Norms:
– Let (Ω,F ,P) be a complete probability space equipped with a filtration (Ft)t∈[0,T]

satisfying the usual conditions.
– For p ∈ [1,∞), Lp(Ω;Rk) denotes the Lebesgue space of random variables X : Ω→
Rk with finite p-th moment. We explicitly define the probabilistic norm:

∥X∥Lp(Ω) := (E [|X|p])1/p .

A.3 PDE FORMULATION AND STOCHASTIC PROCESSES

• The Operator: Let µ : [0, T] × Rd → Rd and σ : [0, T] × Rd → Rd×d. We define the
second-order linear differential operator L acting on ϕ ∈ C1,2 as:

Lϕ(t,x) := ⟨µ(t,x),∇xϕ(t,x)⟩+
1

2
Tr
(
σ(t,x)σ(t,x)⊤Hessxϕ(t,x)

)
.

• The SDE: For any (t,x) ∈ ΩT , let Xt,x = (Xt,x
s)s∈[t,T] be the unique strong solution to

the stochastic differential equation (SDE):

Xt,x
s = x+

∫ s

t

µ(r,Xt,x
r)dr +

∫ s

t

σ(r,Xt,x
r)dWr, s ∈ [t, T],

where W is a standard d-dimensional Brownian motion under P.

A.4 DEFECT FORMULATION (THE SCASML OBJECT)

• Surrogate and Defect: Let û ∈ C1,2(ΩT) be the surrogate solution. We define the defect
pointwise as ŭ(t,x) := u(t,x)− û(t,x).

• The Residual: We define the PDE residual ϵ : ΩT → R as:

ϵ(t,x) :=
∂û

∂t
(t,x) + Lû(t,x) + F (û(t,x), σ(t,x)⊤∇xû(t,x)).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Modified Nonlinearity F̆ : Let F̆ : ΩT × R× Rd → R be the modified driver defined by:

F̆ (v,z, t,x) := F (û(t,x) + v, σ⊤(∇xû(t,x) + z))− F (û(t,x), σ⊤∇xû(t,x)) + ϵ(t,x).

Crucially, observe that F̆ (0d+1, t,x) = ϵ(t,x). This identity bridges the deterministic
approximation error and the stochastic driver.

• Terminal Defect: ğ(x) := g(x)− û(T,x).

B PRELIMINARY

In this section, we provide the necessary background on the two main building blocks of the SCaSML
framework. First, we detail the surrogate models—Physics-Informed Neural Networks and Gaussian
Processes—used to generate the initial approximate solution û. Second, we review the Multilevel
Picard (MLP) iteration method, the numerical solver we employ at inference time to solve the
Structural-preserving Law of Defect.

B.1 SURROGATE MODELS FOR PDES

In our experiments, we employ two surrogate models to solve high-dimensional PDEs:a Physics-
Informed Neural Network (PINN) and a Gaussian Process (GP) regression model. Both models are
implemented in JAX (Bradbury et al., 2018) and DeepXDE (Lu et al., 2021) to leverage efficient
parallelization and runtime performance. Furthermore, Hutchinson’s estimator technique 3 as
delineated in (Shi et al., 2025) is incorporated during the training process to substantially decrease
GPU memory consumption, applicable to both the training and inference stages of Physics-Informed
Neural Networks (PINN), as well as the inference phase of Gaussian Processes.

B.1.1 PHYSICS-INFORMED NEURAL NETWORK (PINN)

Physics-Informed Neural Networks (PINNs) are designed to approximate solutions of PDEs by
embedding physical laws into the learning process. In our framework, the neural network û(t,x)
with parameters θ approximates the true solution u∞(t,x) of the given PDE. The training loss is
constructed as a weighted sum of several components, each designed to enforce key aspects of the
problem’s constraints.

The first component is the PDE loss, which ensures that the network output adheres to the governing
differential equation. This is achieved by penalizing deviations from the expected behavior defined
by the differential operator, evaluated at a set of interior collocation points {(tk, xk)}S1

k=1. The PDE
loss is defined as

LPDE(θ) =
1

S1

S1∑
k=1

∣∣∣∂û
∂r

(tk, xk) +
σ2

2
∆yû(tk, xk) + F

(
û, σ∇yû

)
(tk, xk)

∣∣∣2. (10)

In order to satisfy the prescribed boundary conditions, the model employs a Dirichlet boundary loss.
This term minimizes the difference between the network output and the given boundary values h(xk)

at selected boundary points {(tk, xk)}S2

k=1, and is expressed as

LDir(θ) =
1

S2

S2∑
k=1

|û(tk, xk)− h(xk)|2 . (11)

Moreover, the initial conditions of the problem are enforced by an initial loss component. This ensures
that the solution at time t = 0 matches the known initial data q(xk) for the points {(0, xk)}S3

k=1:

Linitial(θ) =
1

S3

S3∑
k=1

|û(0, xk)− q(xk)|2 . (12)

The overall training objective is then formulated as a combination of these losses, with each term
scaled by its corresponding weighting coefficient:

L(θ) = α1 L(θ) + α2 LDir(θ) + α3 Linitial(θ). (13)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

This formulation ensures that the PINN not only fits the observed data but also rigorously respects
the underlying physical laws, boundary conditions, and initial conditions governing the PDE.

B.1.2 GAUSSIAN PROCESSES

In this section, we review the Gaussian Process (GP) framework developed in (Chen et al., 2021; Yang
et al., 2021; Chen et al., 2024) to solve nonlinear PDEs. Consider solving a semi-linear parabolic
PDE 

∂u

∂t
(t,x) = τ

(
u(t,x), ∆xu(t,x), divx u(t,x)

)
, ∀(t,x) ∈ [0, T]× Rd,

u(T,x) = g(x), ∀x ∈ Rd,
(14)

where τ is a nonlinear function of the solution and its derivatives, and g specifies the terminal
condition.

The GP Framework Consider one already sample Min interior points and Mbd boundary points,
denoted as xin = {x1

in, ...,x
Min
in } ⊂ [0, T] × Rd and xbd = {x1

bd, ...,x
Mbd
bd } ⊂ {T} × Rd. Then,

we assign an unknown GP prior to the unknown function u with mean 0 and covariance function
K : ([0, T] × Rd) × ([0, T] × Rd) → R, the method aims to compute the maximum a posterior
estimator of the GP given the sampled PDE data, which leads to the following optimization problem

minimize
u∈U

∥u∥
s.t. ∂u

∂t (x
m
in) = τ(u(xm

in),∆xu(x
m
in),divx u(x

m
in)), for m = 1, . . . ,Min,

u(xm
bd) = g(xm

bd), for m = 1, . . . ,Mbd.

(15)

Here, ∥ · ∥ is the Reproducing Kernel Hilbert Space(RKHS) norm corresponding to the ker-
nel/covariance function K. Regarding consistency, once K is sufficiently regular, the above solution
will converge to the exact solution of the PDE when Min,Mbd →∞; see (Batlle et al., 2023, Theorem
1.2).

We denote the measurement functions by

ϕ1
m(u) : u→ δxm

in
◦ u, 1 ≤ m ≤Min, ϕ2

m(u) : u→ δxm
bd
◦ u, 1 ≤ m ≤Mbd,

ϕ3
m(u) : u→ δxm

in
◦∆xu, 1 ≤ m ≤Min, ϕ4

m(u) : u→ δxm
in
◦ ∂u
∂t

, 1 ≤ m ≤Min,

ϕ5
m(u) : u→ δxm

in
◦ divx u, 1 ≤ m ≤Min,

(16)

where δx is the Dirac delta function centered at x. These functions belong to U⊤, the dual space of
U , for sufficiently regular kernel functions. We further use the shorthand notation ϕ1, ϕ3, ϕ4, ϕ5 for
Min dimensional vectors and ϕ2 for Mbd dimensional vectors as finite dimensional representation
for corresponding features. We use [·, ·] to denote the primal-dual pairing, such that for u ∈ U and
ϕi
m ∈ U⊤,∀i it holds that [u, ϕi

m] =
∫
u(x)ϕi

m(x)dx. For instance, for ϕ3
m we have [u, ϕ3

m] =∫
u(x)ϕ3

m(x)dx = ∂u
∂t (xm). Based on the defined notation, we can rewrite the MAP problem (15)

as

minimize
u∈U

∥u∥

s.t. z
(1)
m = ϕ

(1)
m (u), z

(3)
m = ϕ

(3)
m (u), z

(4)
m = ϕ

(4)
m (u), z

(5)
m = ϕ

(5)
m (u), m = 1, . . . ,Min,

z
(1)
m = ϕ

(1)
m (u),m = 1, . . . ,Mbd,

z
(4)
m = τ(z

(1)
m , z

(3)
m , z

(5)
m), m = 1, . . . ,Min,

z
(2)
m = g(xm

bd), m = 1, . . . ,Mbd.
(17)

Finite Dimensioanl Representation via Representer Theorem According to Representer The-
orem (Chen et al., 2021; Unser, 2021) show that although the original MAP problem (15) is an
infinite-dimensional optimization problem, the minimizer enjoys a finite-dimensional structure

u†(x) = K(x, ϕ)α (18)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where K(x, ϕ) is the (4Min +Mbd) dimensional vector with entries
∫
K(x, x′)ϕj(x′)dx′ (here the

integral notation shall be interpreted as the primal-dual pairing as above), i.e.

K(x, ϕ) =
[
K(x,xin) K(x,xbd) ∆x′K(x,xin)

∂
∂tK(x,xin) divx′ K(x,xin)

]
∈ R1×(4Min+Mbd),

(19)
and α ∈ R4Min+Mbd is the unknown coeficients. Based on the finite dimensional representation (18),
we know [

z(1)
⊤
, z(2)

⊤
, z(3)

⊤
, z(4)

⊤
, z(5)

⊤]⊤
= K(ϕ, ϕ)α, (20)

where z(1) = [ϕ1
1(u), ϕ

1
2(u), · · · , ϕ1

Min
(u)]⊤ ∈ RMin , z(2) = [ϕ2

1(u), ϕ
2
2(u), · · · , ϕ2

Mbd
(u)]⊤ ∈

RMbd , z(3) = [ϕ3
1(u), ϕ

3
2(u), · · · , ϕ3

Min
(u)]⊤ ∈ RMin , z(4) = [ϕ4

1(u), ϕ
4
2(u), · · · , ϕ4

Min
(u)]⊤ ∈

RMin , z(5) = [ϕ5
1(u), · · · , ϕ5

Min
(u)]⊤ ∈ RMin , and K(ϕ, ϕ) is the kernel matrix as the (4Min +

Mbd) × (4Min + Mbd) matrix with entries
∫
K(x, x′)ϕm(x)ϕj(x′)dxdx′ where ϕm denotes the

entries of ϕ. Precisely K(ϕ, ϕ) can be written down explicitly as:

K(ϕ, ϕ) =


K(xin, x′

in) K(xin, x′bd) ∆x′K(xin, x′in)
∂
∂tK(xin, x′in) divx′ K(xin, x′in)

K(xbd, x′in) K(xbd, x′bd) ∆x′K(xbd, x′in)
∂
∂tK(xbd, x′bd) divx′ K(xbd, x′in)

∆xK(xin, x′in) ∆xK(xin, x′bd) ∆x∆x′K(xin, x′
in) ∆x

∂
∂tK(xin, x′in) ∆x divx′ K(xin, x′in)

∂
∂tK(xin, x′

in)
∂
∂tK(xin, x′bd)

∂
∂t∆x′K(xin, x′in)

∂
∂t

∂
∂tK(xin, x′

in)
∂
∂t divx′ K(xin, x′

in)
divx K(xin, x′in) divx K(xin, x′bd) divx ∆x′K(xin, x′

in) divx
∂
∂tK(xin, x′in) divx divx′ K(xin, x′in)

 ,

(21)
Here we adopt the convention that if the variable inside a function is a set, it means that this function is

applied to every element in this set; the output will be a vector or a matrix, e.g. K(xin, x′
in) = exp

(
−

∥xmin −xjin∥
2
2

2(σ
√
d)2

)
, 1 ≤ m, j ≤Min,∈ RMin×Min in the Gaussian kernel of our numerical experiment, where

σ is the variance of the equation. Thus the finite dimensional representation (18) can be rewritten in
terms of the function (derative) values

u†(x) = K(x, ϕ)K(ϕ, ϕ)−1z†, (22)

where z† =
[
z(1)

⊤
, z(2)

⊤
, z(3)

⊤
, z(4)

⊤
, z(5)

⊤]⊤ ∈ R4Min+Mbd .

Plug the finite-dimensional representation (22) to the original MAP problem (17) we have that z† is
the solution to the following finite-dimensional quadratic optimization optimization problem with
nonlinear constraints

min
z∈R4Min+Mbd

z⊤K(ϕ, ϕ)−1z

subject to

z(4)m = τ(z(1)m , z(3)m , z(5)m), m = 1, . . . ,Min,

z(2)m = g(xm
bd), m = 1, . . . ,Mbd.

(23)

Solving the Optimization Formulation To develop efficient optimization algorithms for (23),
observing that the constraints z(4)m = τ

(
z
(1)
m , z

(3)
m , z

(5)
m

)
and z

(2)
m = g

(
xm
bd

)
express z(4)m and z

(2)
m

in terms of the other variables, (Chen et al., 2021; 2024) reformulate the optimization problem as an
unconstrained problem

min
z(1), z(3), z(5)∈RMin

[z(1); g(xbd); z
(3); τ(z(1), z(3), z(5)); z(5)]⊤K(ϕ, ϕ)−1[z(1); g(xbd); z

(3); τ(z(1), z(3), z(5)); z(5)].

We apply Sparse Cholesky decomposition to the positive-definite (K(ϕ, ϕ) + ηI) as LLT . In turn,
bT (K(ϕ, ϕ) + ηI)−1b = bT (LLT)−1b = (L−1b)T (L−1b) = ∥L−1b∥22. Hence, the loss function is
defined as J (z(1), z(3), z(5)) = ∥L−1b∥2. Optimization is carried out via a Newton method in 20
iterations. We initialize z(1), z(3), z(5) ∈ RMin following N(0, 10−6IMin). In each iteration, the
gradient∇J and Hessian∇2J are computed via automatic differentiation, and the Newton direction
∆z is obtained by solving

(
∇2J + λI

)
∆z = −∇J , where λ = 10−4 is an regularization parameter.

Then, update J at Newton direction with step size α = 1. Early stopping is triggered when the
gradient norm falls below 10−5. Finally, to apply the representer theorem in 22, the algorithm solves
the linear system (K(ϕ, ϕ) + ηI)w† = z† to obtain the weight vector w† and the final PDE solution
is given as u†(x) = K(x, ϕ)w†.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.2 QUADRATURE MULTILEVEL PICARD ITERATIONS AND FULL-HISTORY MULTILEVEL
PICARD ITERATIONS

Multilevel Picard Iteration (MLP) method (Hutzenthaler et al., 2019) is a simulation-based solver
which solves a semilinear parabolic PDEs (Hutzenthaler et al., 2019; Han et al., 2018a; Weinan et al.,
2021), represented as the following.

∂

∂r
u∞ + ⟨µ,∇yu

∞⟩+ 1

2
Tr(σ⊤Hess u∞ σ) + F (u∞, σ⊤∇yu

∞) = 0, on [0, T)× Rd

u∞(T,y) = g(y), on Rd.

(24)

where T > 0, d ∈ N, g : Rd → R, u∞ : [0, T]× Rd+1 → R, µ : [0, T]× Rd → Rd. Additionally,
let σ be a regular function mapping [0, T]× Rd to a real d× d invertible matrix.

The MLP method reformulates the PDE into a fixed-point problem using the Feynman–Kac formula
to represent the solution as the expected value of a stochastic process’s functional. A Picard scheme
iteratively solves this fixed-point problem. The MLP method employs a multilevel Monte Carlo
approach(Giles, 2008), blending coarse and fine discretizations and allocating more samples to
deeper iterations to control variance. This strategy ensures computational costs increase moderately
with accuracy. According to Feynman–Kac and Bismut-Elworthy-Li formula(Elworthy & Li, 1994;
Da Prato & Zabczyk, 1997), the solution u∞ = (u, σ⊤∇yu) of semilinear parabolic PDE (24)
satisfies the fixed-point equation Φ(u∞) = u∞ where Φ:Lip([0, T] × Rd,R1+d) → Lip([0, T] ×
Rd,R1+d) is defined as

(Φ(v)) (s, x) =E

[
g(Xs,x

T)

(
1,

[σ(s, x)]⊤

T − s

∫ T

s

[
σ(r,Xs,x

r)−1Ds,x
r

]⊤
dWr

)]

+

∫ T

s

E
[
F (v(t,Xs,x

t))

(
1,

[σ(s, x)]⊤

t− s

∫ t

s

[
σ(r,Xs,x

r)−1Ds,x
r

]⊤
dWr

)]
dt.

(25)

Here Xs,x
t and Ds,x

t are defined as

Xs,x
t = x+

∫ t

s

µ(r,Xs,x
r)dr +

d∑
j=1

∫ t

s

σj(r,X
s,x
r)dW j

r ,

Ds,x
t = IRd×d +

∫ t

s

(
∂

∂x
µ)(r,Xs,x

r)Ds,x
r dr +

d∑
j=1

∫ t

s

(
∂

∂x
σj)(r,X

s,x
r)Ds,x

r dW j
r .

(26)

where Wt : [0, T]× Ω→ Rd is a standard (Ft)t∈[0,T]-adapted Brownian motion.

The Feynman-Kac formula gives

u∞(s, x) = E[g(Xs,x
T)] +

∫ T

s

E[F (u∞(t,Xs,x
t), [σ(t,Xs,x

t)]⊤(∇yu
∞)(t,Xs,x

t))]dt. (27)

Note that σ⊤∇yu
∞ appeared on the right-hand side in the fixed point iteration, which necessitates

a new representation formula of it to be simultaneous with 27. And that is Bismut-Elworthy-Li
formula(Elworthy & Li, 1994; Da Prato & Zabczyk, 1997), which gives

[σ(s, x)]⊤(∇yu
∞)(s, x) =E

[
g(Xs,x

T)
[σ(s, x)]⊤

T − s

∫ T

s

[
σ(r,Xs,x

r)−1Ds,x
r

]⊤
dWr

]

+

∫ T

s

E
[
F (u∞(t,Xs,x

t), [σ(t,Xs,x
t)]⊤(∇yu

∞)(t,Xs,x
t))

[σ(s, x)]⊤

t− s

∫ t

s

[
σ(r,Xs,x

r)−1Ds,x
r

]T
dWr

]
dt,

(28)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Concatenating the solution as u∞ = (u, σ⊤∇yu), we can define the iteration operator Φ:Lip([0, T]×
Rd,R1+d)→ Lip([0, T]× Rd,R1+d) as the following

(Φ(v)) (s, x) =E

[
g(Xs,x

T)

(
1,

[σ(s, x)]⊤

T − s

∫ T

s

[
σ(r,Xs,x

r)−1Ds,x
r

]⊤
dWr

)]

+

∫ T

s

E
[
F (v(t,Xs,x

t))

(
1,

[σ(s, x)]⊤

t− s

∫ t

s

[
σ(r,Xs,x

r)−1Ds,x
r

]⊤
dWr

)]
dt,

(29)

and 27, 28 yield

u∞ = Φ(u∞). (30)

The Multilevel Picard iteration considers simulating the Picard iteartion uk(s, x) =
(Φ(uk−1))(s, x), k ∈ N+, which is guaranteed to converge to u∞ as k →∞ for any s ∈ [0, T), x ∈
Rd (Yong & Zhou, 1999, Page 360, Theorem 3.4). Formally, the MLP method uses MLMC(Giles,
2008; 2015) to simulate the following telescope expansion problem derived from the Picard iteration.

uk(s, x) = u1(s, x) +

k−1∑
l=1

[
ul+1(s, x)− ul(s, x)

]
= Φ

(
u1

)
(s, x) +

k−1∑
l=1

[
Φ
(
ul

)
(s, x)− Φ

(
ul−1

)
(s, x)

]
.

= (g(x),0d) + E

[
(g(Xs,x

T)− g(x))

(
1,

[σ(s, x)]⊤

T − s

∫ T

s

[
σ(r,Xs,x

r)−1Ds,x
r

]⊤
dWr

)]

+

k−1∑
l=0

∫ T

s

E
[
(F (ul(t,X

s,x
t))− 1N(l)F (ul−1(t,X

s,x
t)))(

1,
[σ(s, x)]⊤

t− s

∫ t

s

[
σ(r,Xs,x

r)−1Ds,x
r

]⊤
dWr

)]
dt.

(31)

One can either estimate these integrations with the quadrature method(quadrature MLP (E et al.,
2021)) or the Monte-Carlo method(full-history MLP (Hutzenthaler et al., 2020b)), detialed intruction
is shown in demonstrated in B.2. A comprehensive summary of MLP variants can be found at
(Research Group on Stochastic Analysis, University of Duisburg-Essen, 2025).

B.2.1 IMPLEMENTING MULTILEVEL PICARD ITERATIONS

Suppose we are given effective simulators (e.g., Euler–Maruyama or Milstein) parameterized by φ
(e.g. discretization level), which produce the numerical approximations

X (l,i)
k,φ (s, x, t) ≈ Xs,x

t , I(l,i)k,φ (s, x, t) ≈

(
1,

[σ(s, x)]⊤

t− s

∫ t

s

[
σ(r,Xs,x

r)−1Ds,x
r

]⊤
dWr

)
, (32)

where k denotes the total level, l the current level, and i (which may be negative) indexes the sample
path. To implement the Multilevel Picard Iterations, we need a numerical approximation to the
integral

∫ T

s
EF (ul(t,X

s,x
t))dt. Following (E et al., 2021; Hutzenthaler et al., 2021), we examine the

following two methodologies, using quadrature rule and Monte Carlo algorithm to approximate the
integral

∫ T

s
EF (ul(t,X

s,x
t))dt:

Quadrature MLP In this approach (E et al., 2021), quadrature rules are employed to approximate
the time integrals that appear in the MLP formulation. This quadrature-based technique is motivated
by the need to efficiently and accurately resolve time integration errors while maintaining the stability
of the multilevel scheme. By leveraging well-established Gauss–Legendre quadrature, we obtain a
deterministic and high-order accurate approximation that is well-suited to the recursive structure of
the SCaSML algorithm.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Definition B.1 (Gauss–Legendre quadrature). For each n ∈ N, let (cni)
n
i=1 ⊆ [−1, 1] denote the

n distinct roots of the Legendre polynomial x 7→ 1
2nn!

dn

dxn

[
(x2 − 1)n

]
, and define the function

qn,[a,b] : [a, b]→ R by

qn,[a,b](t) =


∫ b

a

∏
i=1,...,n

cni ̸=
2t−(a+b)

b−a

2x− (b− a)cni − (a+ b)

2t− (b− a)cni − (a+ b)
dx, if a < b and 2t−(a+b)

b−a ∈ {cn1 , . . . , cnn},

0, otherwise.
(33)

The Gauss–Legendre quadrature serve as a fundamental building block to discretize the time variable
in the Picard iteration. With these polynomials, one can approximate the time integrals with high-order
accuracy while controlling the error propagation in the recursive iterations.

Definition B.2 (Quadrature Multilevel Picard Iteration). Let
{
U

(l,j)
n,M,Q

}
l,j∈Z

⊆ M
(
B([0, T] ×

Rd)⊗F ,B(R× Rd)
)

be a family of measurable functions satisfying, for all l, j ∈ N and (s, x) ∈

[0, T) × Rd, we start with U
(0,±j)
n,M,Q(s, x) = 0d+1. For n > 0, we define the quadrature SCaSML

iteration as

Un,M,Q(s, x) =
(
g(x),0d

)
+

1

Mn

Mn∑
i=1

(
g
(
X (0,−i)

k,φ (s, x, T)
)
− g(x)

)
I(0,−i)
k,φ (s, x, T)

+

n−1∑
l=0

∑
t∈(s,T)

qQ,[s,T](t)

Mn−l

Mn−l∑
i=1

(
F
(
U

(l,i)
n,M,Q(t,X

(l,i)
k−l,φ(s, x, t))

)
− 1N(l)F

(
U

(l−1,−i)
n,M,Q (t,X (l,i)

k−l,φ(s, x, t))
))

· I(l,i)k−l,φ(s, x, t).

(34)

The use of quadrature in this context is motivated by its ability to yield a systematic error control
over the temporal discretization, thereby enhancing the stability and accuracy of the multilevel Picard
iteration in the simulation-calibrated framework.

Full-history MLP The full-history MLP scheme (Hutzenthaler et al., 2021) adopts a Monte Carlo
approach to approximate the time integral

∫ T

s
EF (ul(t,X

s,x
t))dt instead of deterministic quadrature

rules with fixed time grids. This modification considerably simplifies error analysis(Hutzenthaler
et al., 2020a) and avoids all temporal discretization error.

In the full-history MLP, we employ a time-sampler that guarantees an unbiased Monte Carlo ap-
proximation of time integrals. Let r : Ω → (0, 1) be a collection of independent and identically
distributed random variables with density ρ satisfying P

(
r(l,i) ≤ b

)
=
∫ b

0
ρ(s) ds. Consider numeri-

cally approximating the integral I(f ; s, t) =
∫ t

s
f(r) dr with t ∈ (s, T), we construct an importance

sampling estimator with sample size N :Î(f ; s, t) = 1
N

∑N
i=1

f(R(i)) 1{R(i)≤t}
ϱ(R(i),s)

, where ϱ is the the

rescaled density ρ on (s, T) defined as ϱ(r, s) =
ρ

(
r−s
T−s

)
T−s and R is the random sample from the

density ϱ(·, s) on (s, T) via R = s+ (T − s) r.

Definition B.3 (Full-history Multilevel Picard Iteration (Hutzenthaler et al., 2020a)). Let{
U

(l,j)
n,M

}
l,j∈Z

⊆M
(
B([0, T]×Rd)⊗F ,B(R×Rd)

)
be a family of measurable functions satisfying,

for all l, j ∈ N and (s, x) ∈ [0, T) × Rd, we start with U
(0,±j)
n,M (s, x) = 0d+1. Then, for n > 0,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

define the full-history SCaSML iteration as

Un,M (s, x) =
(
g(x),0d

)
+

1

Mn

Mn∑
i=1

(
g
(
X (0,−i)

k,φ (s, x, T)
)
− g(x)

)
I(0,−i)
k,φ (s, x, T)

+

n−1∑
l=0

1

Mn−l

Mn−l∑
i=1

1

ϱ(s,R(l,i)
s)

(
F
(
U

(l,i)
n,M (R(l,i)

s ,X (l,i)
k−l,φ(s, x,R

(l,i)
s))

)
− 1N(l)F

(
U

(l−1,−i)
n,M (R(l,i)

s ,X (l,i)
k−l,φ(s, x,R

(l,i)
s))

))
· I(l,i)k−l,φ

(
s, x,R(l,i)

s

)
,

(35)

hereR(l,i)
s is i-th sampled time point after t at level l which is defined as asR(l,i)

s = s+(T −s) r(l,i).

C ALGORITHM

In this section, we describe the complete procedure of Simulation-Calibrated Scientific Machine
Learning (SCaSML) for solving high-dimensional partial differential equations (1). The SCaSML
framework at any space-time point (t,x) can be summarized as follows:

• Step 1:Train a Base Surrogate. First, a surrogate model û is trained to approximately solve
the target PDE (1), serving as a preliminary estimate of the true solution.

• Step 2:Physics-Informed Inference-Time Scaling via the Structural-preserving Law of
Defect. Recognizing that the defect ŭ := u− û satisfies a semi-linear parabolic equation,
termed the Structural-preserving Law of Defect,{

∂
∂r ŭ+ ⟨µ,∇yŭ⟩+ 1

2 Tr
(
σ⊤ Hessy ŭ σ

)
+ F̆

(
ŭ, σ⊤∇yŭ

)
= 0, on [0, T)× Rd,

ŭ(T,y) = ğ(y), on Rd,
(36)

one obtains an estimate of ŭ(t,x) by employing Multilevel Picard iteration, either through
quadrature-based MLP (Definition B.2) or full-history MLP (Definition B.3).

• Step 3:Final Estimation. The final estimate of the solution is then given by u(t,x) ≈
û(t,x) + ŭ(t,x).

The entire algorithm is detailed in Algorithm 1.

We emphasize that the sample-wise iteration in Algorithm 1 can be substituted by vectorized opera-
tions, thereby enabling the algorithm to be applied concurrently to multiple points. These performance
enhancements were implemented using JAX and DeepXDE, resulting in a time reduction by a factor
of 5× to 10×.

Additionally, methods such as thresholding (Sebastian Becker et al., 2020) and Hutchinson’s esti-
mator (Hutchinson, 1989; Shi et al., 2025) could also be employed within the principal algorithm.
Thresholding (Algorithm 2) mitigates numerical instability by methodically ”clipping” the defect
estimator Ŭ, a critical action when the surrogate model yields outlier values or when unbounded
growth may manifest during iterative correction phases. Hutchinson’s estimator (Algorithm 3) al-
leviates the computational and memory demands of ϵPDE in F̆ by forming an unbiased estimator
that necessitates only a subset of second-order derivatives approximating the Laplacian. This partial
evaluation not only expedites the simulation process but also minimizes peak memory consumption,
thus averting out-of-memory issues.

D PROOF SETTINGS

In the following sections, we establish the rigorous mathematical framework for analyzing the
SCaSML method. We proceed in three steps:

1. Notations and Definitions: We define the probability spaces, norms, and function spaces
used throughout the proofs.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 1 Simulation-Calibrated Scientific Machine Learning for Solving High-Dimensional
Partial Differential Equation

Require: Level n, sample base M , target point (s, x), a surrogate model û, threshold ε, (quadrature
order Q for using Qudrature MLP)

1: Train a base surrogate model û to approximate the PDE solution.
2: Take MLP Law of Defect(s, x, n,M,Q) · (1,0d) + û(s, x) as estimation of u(s, x)
3: function MLP LAW OF DEFECT(s, x, n, M , Q)
4: û(s, x)←

(
û(s, x), σ⊤(s, x)∇yû(s, x)

)
5: if n = 0 then ▷ Start Inference-Time Scaling via Simulating the

Structural-preserving Law of Defect
6: Ŭn,M,Q(s, x)← 0d+1

7: return Ŭn,M,Q(s, x)
8: end if
9: Ŭn,M,Q(s, x)← (ğ(x),0d)

10: for i = 1 to Mn do
11: Sample Feyman-Kac Path X (0,−i)

k,φ (s, x, T) and Derivative Process I(0,−i)
k,φ (s, x, T) in

(32)
12: Ŭn,M,Q(s, x)← Ŭn,M,Q(s, x) +

1
Mn

(
ğ
(
X (0,−i)

k,φ (s, x, T)
)
− ğ(x)

)
· I(0,−i)

k,φ (s, x, T)

13: end for
14: for l = 0 to n− 1 do
15: for i = 1 to Mn−l do
16: if using Quadrature MLP to calibrate then
17: Compute Q quadrature points with corresponding weights qQ,[s,T](t) by B.1
18: for all quadrature points t ∈ [s, T] do
19: Sample Feyman-Kac Path X (l,i)

k,φ (s, x, t) and Derivative Process I(l,i)k,φ (s, x, t)
according to formula (32)

20: z← MLP Law of Defect(t,X (l,i)
k−l,φ(s, x, t), l,M,Q)

21: if l > 0 then
22: zprev ← MLP Law of Defect(t,X (l,i)

k−l,φ(s, x, t), l − 1,M,Q)

23: ∆F̆ ← F̆ (z)− F̆ (zprev)
24: else
25: ∆F̆ ← F̆ (z)
26: end if
27: Ŭn,M,Q(s, x)← Ŭn,M,Q(s, x) +

qQ,[s,T](t)
Mn−l ∆F̆ · I(l,i)k−l,φ(s, x, t)

28: end for
29: end if
30: if using Full History MLP to calibrate then
31: Sample time stepR(l,i)

s ∼ ϱ(s, T)

32: Sample Feyman-Kac Path X (l,i)
k,φ (s, x,R(l,i)

s) and Derivative Process

I(l,i)k,φ (s, x,R(l,i)
s) according to formula (32)

33: z← MLP Law of Defect(R(l,i)
s ,X (l,i)

k−l,φ(s, x,R
(l,i)
s), l,M,Q)

34: if l > 0 then
35: zprev ← MLP Law of Defect(R(l,i)

s ,X (l,i)
k−l,φ(s, x,R

(l,i)
s), l − 1,M,Q)

36: ∆F̆ ← F̆ (z)− F̆ (zprev)
37: else
38: ∆F̆ ← F̆ (z)
39: end if
40: Ŭn,M,Q(s, x)← Ŭn,M,Q(s, x) +

1
Mn−l · 1

ϱ(s,R(l,i)
s)
·∆F̆ · I(l,i)k−l,φ(s, x,R

(l,i)
s)

41: end if
42: end for
43: end for
44: Ŭn,M,Q(s, x)← Thresholding(ε, Ŭn,M,Q(s, x)) ▷ Threshold outliers using Algorithm 2
45: return Ŭn,M,Q(s, x)
46: end function

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 2 Thresholding the outliers (Sebastian Becker et al., 2020)

Require: Threshold ε, defect estimator Ŭ
1: function THRESHOLDING(ε, Ŭ)
2: for ς = 1 to d+ 1 do
3: if Ŭς > ε then
4: Ŭς ← ε
5: end if
6: if Ŭς < −ε then
7: Ŭς ← −ε
8: end if
9: end for

10: return Clipped Ŭ
11: end function

Algorithm 3 Hutchison’s estimator for estimating Laplacian (Shi et al., 2025)

Require: Sample size K, target function f
1: function HTE(K,f)
2: Draw K different indices from 1, . . . , d with equal probability 1/d, denoted as j1, . . . , jK
3: Compute D2

jk
f, 1 ≤ ς ≤ d

4: Compute estimator HTE← d
K

∑K
i=1 D

2
ji
f

5: return Laplacian estimator HTE
6: end function

2. Problem Setup: We explicitly state the regularity assumptions on the original PDE coeffi-
cients and the stochastic basis.

3. Surrogate and Defect Properties: We formally define the surrogate model, the defect PDE,
and the transfer of Lipschitz properties from the original problem to the defect problem.

D.1 MATHEMATICAL FRAMEWORK AND DEFINITIONS

In this section, we rigorously define the measure-theoretic structures, function spaces, and norms
required for the convergence analysis. Our framework aligns with the standard stochastic analysis
settings found in (Hutzenthaler et al., 2020a; E et al., 2021).
Definition D.1 (Coordinate System and Vector Norms). Throughout this article, we fix a time horizon
T ∈ (0,∞) and a spatial dimension d ∈ N. We denote the time-space domain by Λ := [0, T]× Rd.
We consistently use the coordinate notation (t,x) with t ∈ [0, T] and x ∈ Rd.

For any vector v = (v1, . . . , vd) ∈ Rd, we denote the standard Euclidean norm by |v| :=

(
∑d

i=1 |vi|2)1/2 and the inner product by v · w. For a generic vector z ∈ Rn (e.g., neural net-
work parameters), we define the discrete p-norm (p ∈ [1,∞)) and∞-norm as:

∥z∥p :=

(
n∑

i=1

|zi|p
)1/p

, and ∥z∥∞ := max
1≤i≤n

|zi|.

Definition D.2 (Measurable Spaces and Functions). We denote by B(Rd) the Borel σ-algebra on
Rd. For any two measurable spaces (S1,F1) and (S2,F2), we defineM(S1, S2) as the set of all
measurable mappings from S1 to S2:

M(S1, S2) := {f : S1 → S2 | ∀A ∈ F2, f
−1(A) ∈ F1}.

When the σ-algebras are clear from context (e.g., Borel for topological spaces), we simply write
M(Rd,R).
Definition D.3 (Probability Space and Lp Norms). Let (Ω,F ,P) be a complete probability space.
For any measurable random variable X ∈M(Ω,R) and p ∈ [1,∞), the Lp(Ω)-norm is defined as:

∥X∥Lp(Ω) := (E [|X|p])1/p =

(∫
Ω

|X(ω)|p dP(ω)
)1/p

.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

For p =∞, the essential supremum norm is defined as:
∥X∥L∞(Ω) := inf{C ≥ 0 : P(|X| > C) = 0}.

Definition D.4 (Function Spaces). Let D ⊆ Rd be an open set. For k ∈ N and p ∈ [1,∞], the
Sobolev space W k,p(D) consists of all functions u ∈ Lp(D) such that for every multi-index α ∈ Nd

0
with |α| ≤ k, the weak derivative Dαu exists and belongs to Lp(D). We define the norm for
W k,∞(D) as ∥u∥Wk,∞(D) :=

∑
|α|≤k ∥Dαu∥L∞(D).

Furthermore, let C1,2([0, T]× Rd) denote the space of functions ϕ(t,x) that are once continuously
differentiable in t and twice continuously differentiable in x. This regularity is required for the
classical solution u and the surrogate û.
Definition D.5 (Extended Real Arithmetic). To handle singularities in complexity analysis, we adopt
the standard conventions for the extended real number line R = R ∪ {−∞,∞}. Specifically, we
define 0

0 = 0, 0 · ∞ = 0, 00 = 1, and
√
∞ = ∞. For any a > 0 and b ∈ R, we set a

0 = ∞,
−a
0 = −∞, 0−a =∞, 1

0a =∞, b
∞ = 0, and 0a = 0.

D.2 PROBLEM SETUP AND REGULARITY ASSUMPTIONS

We now formalize the specific partial differential equation and the stochastic framework used for our
theoretical analysis.

D.2.1 STOCHASTIC BASIS

Let T ∈ (0,∞) be the terminal time and d ∈ N be the spatial dimension. Let (Ω,F ,P, (Ft)t∈[0,T])
be all stochastic processes are assumed to be adapted to the usual Filtration (Ft)t∈[0,T].

To facilitate the Multilevel Picard (MLP) analysis, we assume the existence of a family of independent
standard Brownian motions. Specifically, let {W (l,j) : l, j ∈ Z} be a collection of independent
d-dimensional standard Brownian motions adapted to (Ft)t∈[0,T]. Here, the index l corresponds to
the level in the MLP hierarchy, and j corresponds to the Monte Carlo sample index within that level.

D.2.2 THE TARGET PDE

While the SCaSML framework applies to general semi-linear parabolic PDEs, we perform the
theoretical analysis on the semi-linear heat equation. This corresponds to the generator L with drift
µ ≡ 0 and diffusion σ ≡ sId for a constant s ∈ R \ {0}.
The classical solution u ∈ C1,2([0, T]× Rd,R) satisfies the terminal value problem:

∂u

∂t
(t,x) + Lu(t,x) + F (u(t,x), σ⊤∇xu(t,x)) = 0, (t,x) ∈ [0, T)× Rd, (37)

where Lv := σ2

2 ∆v, and subject to the terminal condition u(T,x) = g(x).

The nonlinearity F : R × Rd → R and terminal condition g : Rd → R are assumed to be Borel
measurable functions.

D.2.3 REGULARITY ASSUMPTIONS

The MLP method achieves dimension-independent convergence rates under Lipschitz continuity
conditions on the problem data. These conditions ensure bounded variance propagation across Picard
iterations (Hutzenthaler et al., 2021).
Assumption D.6 (Lipschitz Continuity of Nonlinearity and Terminal Condition). We assume the
following:

1. Nonlinearity: There exists a constant L ≥ 0 such that for all (v1, z1), (v2, z2) ∈ R× Rd

and (t,x) ∈ [0, T)× Rd:
|F (v1, z1, t,x)− F (v2, z2, t,x)| ≤ L(|v1 − v2|+ ∥z1 − z2∥1). (38)

2. Terminal Condition: There exists a constant K ≥ 0 such that for all x,y ∈ Rd:
|g(x)− g(y)| ≤ K∥x− y∥1. (39)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.3 SURROGATE MODEL AND DEFECT PROPERTIES

In this section, we rigorously define the relationship between the pre-trained surrogate model and
the defect (error) we aim to estimate. We first state the regularity assumptions on the surrogate, then
derive the properties of the Defect PDE.

D.3.1 SURROGATE REGULARITY

To ensure the classical defect PDE is well-defined, we assume the surrogate is sufficiently smooth.
Let û ∈ C1,2([0, T]× Rd,R) be a deterministic approximation of u. To ensure the defect terminal
condition is well-behaved, we require the following:

Assumption D.7 (Lipschitz Continuity of the Surrogate Terminal). There exists a constant K̂ ∈
[0,∞) such that for all x,y ∈ Rd:

|û(T,x)− û(T,y)| ≤ K̂ ∥x− y∥1. (40)

D.3.2 THE STRUCTURAL-PRESERVING LAW OF DEFECT

We define the defect ŭ : [0, T]× Rd → R as the pointwise error:

ŭ(t,x) := u(t,x)− û(t,x). (41)

The core of SCaSML is the observation that ŭ satisfies a semi-linear PDE of the same structure as the
original. We explicitly define the coefficients of this new PDE below.

Definition D.8 (Modified Nonlinearity and PDE Residual). Let ϵ : [0, T] × Rd → R be the PDE
residual of the surrogate û defined by:

ϵ(t,x) :=
∂û

∂t
(t,x) + Lû(t,x) + F (û(t,x), σ⊤∇xû(t,x)).

We define the modified nonlinearity F̆ : R× Rd × [0, T]× Rd → R for the defect PDE as follows.
For any state v ∈ R and gradient-state z ∈ Rd at a spacetime point (t,x):

F̆ (v,z, t,x) := F (û(t,x) + v, σ⊤∇xû(t,x) + z)− F (û(t,x), σ⊤∇xû(t,x)) + ϵ(t,x). (42)

We similarly define the defect terminal condition ğ(x) := g(x)− û(T,x).

Lemma D.9 (Structural-Preserving Law of Defect). The defect ŭ is a classical solution to the
following semi-linear parabolic PDE:

∂ŭ

∂t
(t,x) + Lŭ(t,x) + F̆ (ŭ, σ⊤∇xŭ, t,x) = 0,∀(t,x) ∈ [0, T)× Rd ŭ(T,x) = ğ(x). (43)

Remark D.10 (Why Law of Defect is Easier to Solve). The complexity of MLP depends on the
magnitude of source term F̆ (Hutzenthaler et al., 2020b, Theorem 3.1). Based on the Lipschitz
continuity of F̆ and the variance-reduction structure inherent to MLMC, Hutzenthaler et al. (2021)
shows that the overall computational complexity of MLP is governed solely by the value of F̆ at
the origin. Substituting v = 0 and z = 0 into Definition D.8: F̆ (0,0, t,x) = ϵ(t,x). The ”source
term” driving the Multilevel Picard simulation for the defect is the residual ϵ, already reduced by
an approximate surrogate. If the surrogate is perfect (ϵ → 0), the driving force vanishes, and the
variance of the Monte Carlo estimator approaches zero. In our later theorem, we show that the
variance of MLP can be controlled by the magnitude of ϵ.

D.3.3 REGULARITY ESTIMATIONS

MLP complexity is governed by both the smoothness and magnitude of the source term; these factors
enter multiplicatively because nonlinearities—via their Lipschitz bounds—propagate and amplify
variance through each Picard iteration. Remark D.10 established that the magnitude component in the
law of defect can be improved using the surrogate. It remains to show that the regularity appearing
in the law of defect is no worse than that of the original PDE, ensuring that the refinement does not
introduce additional smoothness requirements.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Lemma D.11 (Preservation of Lipschitz Constants). Suppose F satisfies Assumption D.6 with
Lipschitz constants L. Then, the modified nonlinearity F̆ satisfies the same Lipschitz condition with
the same constants. Specifically, for any fixed (t,x), and any vectors (v̆1, z1), (v̆2, z2) ∈ R× Rd:

|F̆ (v̆1, z1, t,x)− F̆ (v̆2, z2, t,x)| ≤ L(|v̆1 − v̆2|+ ∥z1 − z2∥1), (44)

Furthermore, the defect terminal condition ğ is Lipschitz continuous with constants K̆ = K + K̂.

Proof. Let w1 = (v̆1, z1) and w2 = (v̆2, z2). We define the background state vector of the surrogate
as Û = (û(t,x), σ⊤∇xû(t,x)). From Definition D.8, the difference is:

F̆ (w1, t,x)− F̆ (w2, t,x) =
[
F (Û +w1)− F (Û) + ϵ

]
−
[
F (Û +w2)− F (Û) + ϵ

]
= F (Û +w1)− F (Û +w2).

Note that the shift terms F (Û) and the residual ϵ(t,x) cancel out exactly. Thus, the Lipschitz
continuity of F (Assumption D.6) transfers directly to F̆ :

|F (Û +w1)− F (Û +w2)| ≤ L∥(Û +w1)− (Û +w2)∥1 = L∥w1 −w2∥1.

This confirms that F̆ inherits the Lipschitz constants L. For the terminal condition, since û ∈
C1,2([0, T] × Rd) by Assumption D.7, the map x 7→ û(T,x) is Lipschitz with constants K̂. The
triangle inequality applied to ğ = g − û(T, ·) then yields K̆ ≤ K + K̂.

E PROOF OF FULL-HISTORY MULTILEVEL PICARD ITERATION

This section establishes the theoretical guarantees for SCaSML when the
Structural-preserving Law of Defect is solved using the Full-History Multi-
level Picard (MLP) iteration. In contrast to the quadrature method, this approach utilizes Monte
Carlo sampling for time integration, which relaxes the regularity requirements on the solution.

For the theoretical analysis, we retain the setting of the semi-linear heat equation where µ = 0d and
σ = sId for a constant s ∈ R.

E.1 PROBABILISTIC SETUP AND TIME SAMPLING

To analyze the Full-History estimator, we must extend our stochastic basis to support random time
stepping.
Definition E.1 (Extended Probability Space and Time Sampling). Let (Ω,F ,P) be a probability
space that supports the following independent families of random variables:

1. Brownian Motions: A collection {W (l,j)}l,j∈Z of independent d-dimensional standard
Brownian motions.

2. Time Step Samples: A collection {r(l,j)}l,j∈Z of independent random variables distributed
on (0, 1) according to a probability density function ρ : (0, 1)→ (0,∞).

For our analysis and experiments, we specifically select the density ρ(s) = (1 − α)s−α for a
parameter α ∈ (0, 1). This ensures that the cumulative distribution function is Fρ(b) = b1−α,
facilitating efficient inverse transform sampling.

E.2 RELAXED SURROGATE ASSUMPTIONS

A key advantage of the Full-History MLP is its robustness. Unlike the quadrature scheme, which
incurs a time discretization error scaling with high-order time derivatives of the solution, the Monte
Carlo time integration is unbiased. Consequently, we can drop the higher-order regularity requirement
(Assumption F.1, Item 3) imposed in Appendix F.
Assumption E.2 (Accuracy of the Surrogate Model for Full-History MLP). Let ŭ be the solution to
the Defect PDE. We assume supt∈[0,T] ∥ŭ(t, ·)∥W 1,∞(Rd) <∞. There exist constants CF,1, CF,2 > 0

independent of û such that the surrogate error measure e(û) controls the following:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

1. Residual Bound (L∞):

sup
(t,x)∈[0,T]×Rd

|ϵ(t,x)| ≤ CF,1 e(û).

2. Defect Bound (W 1,∞):

sup
t∈[0,T]

∥ŭ(t, ·)∥W 1,∞(Rd) ≤ CF,2 e(û).

However, the singularity of density ρ requires a specific moment condition to ensure finite variance.

Assumption E.3 (Integrability of the Residual). There exists p ∈ N with p ≥ 2 such that for all
t ∈ [0, T) and q ∈ [1, p):∫ 1

0

1

sq/2ρ(s)q−1
ds+ sup

s∈[t,T)

E
[∣∣ϵ(t, x+ σWs − σWt)

∣∣q] <∞. (45)

Remark E.4. In Assumption E.3, we explicitly identified F̆ (0d+1) with the residual ϵ. This assump-
tion ensures that the surrogate’s residual does not grow too fast in expectation along Brownian paths,
and that the time sampling density ρ puts sufficient probability mass near t = 0 to counteract the
singularity.

E.3 MAIN RESULTS

We now show that, with an appropriately trained surrogate model, the Structural-preserving
Law of Defect can be simulated with lower complexity than the original PDE. In particular, the
error of the full-history MLP is upper-bounded by the surrogate model’s error measure e(û).

E.3.1 SKETCH OF PROOF

The computational complexity of the MLP solver depends on the Lipschitz constant of the nonlinearity
F̆ and the magnitude of the “source terms”. The “source term” driving the Multilevel Picard
simulation for the defect is the residual ϵ, already reduced by the surrogate. At the same time, we
show that the regularity in the law of defect is no worse than that of the original PDE, ensuring that
the refinement introduces no additional smoothness requirements. Combining the previous fact, a
more accurate surrogate makes the defect PDE “easier” to solve. This leads to our main error bound.

1. Improved Source Magnitude. Since the source term F̆ (0d+1, t,x) = ϵ(t,x) is the
surrogate’s residual by Definition D.8. Consequently, as the surrogate improves with
additional training data, the variance of the Monte Carlo estimator decreases proportionally.
Lemma E.5 formalizes this argument.

2. Complexity of MLP Hutzenthaler et al. (2021) show that the complexity of MLP depends
on both the smoothness and the size of the source term; these contributions combine
multiplicatively since nonlinearities, controlled by their Lipschitz constants, propagate
and amplify variance throughout successive Picard iterations. Then we analyze both the
magnitude of the source term in Law of Defect and its regularity.

3. Preservation of Regularity. By Lemma D.11, the defect nonlinearity F̆ inherits the
Lipschitz constants L of the original F exactly. Thus, the regularity requirements for the
MLP solver remains unchanged, ensuring that the refinement does not introduce additional
smoothness constraints.

4. Error Bound. Based on the previous inituition, Theorem E.6 bounds the total L2-error
as a multiplicative form, combining the classical MLP complexity with the surrogate’s
approximation error. Thus this can leads to faster convergence rate if the surrogate’s
approximation error consistently improves.

5. Complexity Estimate. Substituting the reduced source magnitude into the standard MLP
bound yields a multiplicative error reduction. Combined with Theorem E.11, we improve
O(dε−(2+δ)) to O(de(û)2+δε−(2+δ)).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.3.2 BOUND ON GLOBAL L2 ERROR

Our proof still utilizes the insight that the overall L2 error in the MLP mainly hinges on the Lipschitz
continuity of the PDE’s terminal and solution, as well as the extent of nonlinearity at the origin.
We illustrate that the parameter linked to the Structural-preserving Law of Defect is
constrained by the surrogate error. Initially, we present a lemma demonstrating how the complexity
of MLP can be capped by the error assessment.
Lemma E.5 (Complexity Estimation via Surrogate Error for Full-History MLP). Under Assumptions
D.6, D.7, E.2, and E.3, suppose p ≥ 2. There exists a constant CF > 0 independent of the surrogate
such that for all M,N ≥ 2:

sup
(t,x)∈[0,T]×Rd

{
σ
√
max{T − t, 3}K̆√

M
+

C sups∈[t,T) ∥ F̆ (0d+1, s,x+ σWs − σWt)∥
L

2p
p−2 (Ω)

2
√
M

+
C sups∈[t,T), ς∈{1,...,d+1} ∥ŭ(s,x+ σWs − σWt)ς∥

L
2p

p−2 (Ω)

2

}
≤ CF e(û),

(46)

where the constant C is defined as:

C = max

{
1, 2T

1
2

∣∣∣Γ(p
2

)∣∣∣ 1p (1− α)
1
p−1 max{1, L}max

{
T

1
2 , 2

1
2

∣∣∣∣Γ(p+ 1

2

)∣∣∣∣ 1p π− 1
2p

}}
.

Proof. We bound the three terms on the left-hand side of equation 46 using the L∞ bounds provided
by the surrogate accuracy Assumption E.2. We utilize the fact that for any bounded random variable
Z, ∥Z∥Lq(Ω) ≤ ∥Z∥L∞(Ω).

Step 1: Bounding the Terminal Condition. As shown in the proof of Lemma F.4 (Step 2), we have:

K̆ ≤ ∥ŭ(T, ·)∥W 1,∞(Rd) ≤ sup
r∈[0,T]

∥ŭ(r, ·)∥W 1,∞(Rd). (47)

Applying the Defect Bound from Assumption E.2 (Item 2):

K̆ ≤ CF,2 e(û). (48)

Step 2: Bounding the Residual Term. Recall that F̆ (0d+1, t,x) = ϵ(t,x). The second term
involves the L

2p
p−2 (Ω) norm of this residual evaluated along Brownian paths. Since the residual is

essentially bounded in space-time:

∥ F̆ (0d+1, s,x+ σWs − σWt)∥
L

2p
p−2 (Ω)

= ∥ ϵ(s,x+ σWs − σWt)∥
L

2p
p−2 (Ω)

≤ sup
ω∈Ω
|ϵ(s,x+ σWs(ω)− σWt(ω))|

≤ sup
y∈Rd

|ϵ(s, y)|. (49)

Applying the Residual Bound from Assumption E.2 (Item 1):

sup
s∈[t,T)

∥ F̆ (0d+1, s, ·)∥
L

2p
p−2
≤ CF,1 e(û). (50)

Step 3: Bounding the Defect Norm. The third term involves the L
2p

p−2 norm of the defect solution ŭ
and its gradient. Similarly, we bound the stochastic Lq norm by the deterministic uniform norm:

∥ŭ(s,x+ σWs − σWt)ς∥
L

2p
p−2 (Ω)

≤ ∥ŭ(s, ·)∥L∞(Rd)

≤ ∥ŭ(s, ·)∥W 1,∞(Rd). (51)

Applying the Defect Bound from Assumption E.2 (Item 2):

sup
s∈[t,T)

∥ŭ(s, ·)∥W 1,∞(Rd) ≤ CF,2 e(û). (52)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Substituting the bounds equation 48, equation 50, and equation 52 back into equation 46:

LHS ≤ σ
√
T + 3CF,2 e(û)√

M
+

C CF,1 e(û)

2
√
M

+
C CF,2 e(û)

2

=

[(
σ
√
T + 3√
M

+
C

2

)
CF,2 +

C

2
√
M

CF,1

]
e(û). (53)

Since M ≥ 1, we can simplify the coefficient by defining CF := σ
√
T + 3CF,2 +

C
2 (CF,1 +CF,2).

This proves the lemma.

The above lemma, together with standard error estimates for the full-history MLP, yields the following
result.
Theorem E.6 (Bound of Global L2 Error). Under assumptions D.6, D.7, E.3 and E.2 , suppose
p ≥ 2, α ∈ (p−2

2(p−1) ,
p

2(p−1)), t ∈ [0, T), x ∈ Rd, β = α
2 −

(1−α)(p−2)
2p . For ŬN,M (t,x) with level

N and sample base M as defined in Algorithm 1, it holds that

sup
(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥(ŬN,M (t,x)− ŭ(t,x)
)
ς

∥∥∥
L2
≤ E(M,N) ·

(
CF e(û)

)
, (54)

where E(M,N) =

[
e

(
pN
2 +1

)] 1
8

(2C)N−1 exp

(
βM

1
2β

)
√
MN−1

.

Proof. Under assumptions E.3 and D.6, combined with the integrability argument in (Hutzenthaler
et al., 2021, Lemma 3.3), the proof of (Hutzenthaler et al., 2021, Proposition 3.5) holds. Setting
n = N in this proposition, for all ς ∈ {1, . . . , d+ 1}, we have∥∥∥(ŬN,M (t,x)− ŭ(t,x)

)
ς

∥∥∥
L2
≤E(M,N) ·

{
σ
√
max{T − t, 3}K̆√

M
(55)

+
C sups∈[t,T) ∥ F̆ (0d+1)(s,x+ σWs − σWt)∥

L
2p

p−2

2
√
M

(56)

+
C sups∈[t,T), ς∈{1,...,d+1} ∥ŭ(s,x+ σWs − σWt)ς∥

L
2p

p−2

2

}
.

(57)

Take sup(t,x)∈[0,T]×Rd maxς∈{1,...,d+1} for the LHS, and note that the RHS does not depend on ς ,
we get

sup
(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥(ŬN,M (t,x)− ŭ(t,x)
)
ς

∥∥∥
L2

(58)

≤E(M,N) · sup
(t,x)∈[0,T]×Rd

{
σ
√
max{T − t, 3}K̆√

M
+

C sups∈[t,T) ∥ F̆ (0d+1)(s,x+ σWs − σWt)∥
L

2p
p−2

2
√
M

(59)

+
C sups∈[t,T), ς∈{1,...,d+1} ∥ŭ(s,x+ σWs − σWt)ς∥

L
2p

p−2

2

}
. (60)

Substituting the sup term in 58 by Lemma E.5 immediately yields the stated result.

In practice, a common choice for M is ⌊N2βN⌋. Plugging it in E.7, we get the error order of the
solver w.r.t. N :
Corollary E.7 (Error Order for M = ⌊N2βN⌋). Under assumptions D.6, D.7, E.3 and E.2 , suppose
p ≥ 2, α ∈ (p−2

2(p−1) ,
p

2(p−1)), t ∈ [0, T), x ∈ Rd, β = α
2 −

(1−α)(p−2)
2p . It holds that

sup
(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥(ŬN,M (t,x)− ŭ(t,x)
)
ς

∥∥∥
L2
≤ exp

(
N logN

(
−β + o(1)

))
·
(
CF e(û)

)
.

(61)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Proof. First, we rewrite E(M,N) in E.6 as exponential form:

E(M,N) =

[
e
(

pN
2 + 1

)] 1
8

(2C)N−1 exp
(
βM

1
2β

)
√
MN−1

(62)

=exp

(
o(N) +N log(2C) + βM1/2β − N − 1

2
logM

)
(63)

Note that ⌊N2βN⌋ ≤ N2βN and that M = ⌊N2βN⌋ ⇒ logM ≥ log(N2βN − 1) ≥ log(N2βN)−
1 = 2β logN − 1 for N ≥ 21/2β . We can simplify 62 to

exp

(
o(N) +N log(2C) + βM1/2β − N − 1

2
logM

)
(64)

≤ exp

(
o(N) +N log(2C) + βN − N − 1

2
(2β logN − 1)

)
(65)

=exp

(
N(o(1) + log(2C) + β − 1

2
(2β logN − 1))

)
(66)

=exp

(
N logN(−β + o(1))

)
. (67)

Plugging 64 to the conclusion of E.6, we get the result we want.

Corollary E.8 (Improved Scaling Law for M = ⌊N2βN⌋). Under Assumptions D.6, D.7, E.3 and E.2,

suppose that p ≥ 2, α ∈
(

p−2
2(p−1) ,

p
2(p−1)

)
, t ∈ [0, T), x ∈ Rd, and define β = α

2 −
(1−α)(p−2)

2p .

Assume that the error at (t,x) of the surrogate model decays polynomially with respect to the
number of training points; namely, e(û) = O(m−γ), for some γ > 0. Suppose further that
m = (d+ 1)5N N2βN . Then, for all sufficiently large m, the SCaSML procedure improves the error

bound from O(m−γ) to O
(
m−γ− 1

2+o(1)
)

with same points number.

Proof. In what follows, we adopt the notation f(m) ∼ g(m) to signify that limm→∞
f(m)
g(m) = 1.

Since m is a continuous and strictly increasing function of N , there exists a unique inverse function
N = N(m). Taking logarithms, we obtain logm = log(d+1)+N(m) log 5+2β N(m) logN(m)
which follows immediately that logm ∼ 2β N(m) logN(m)

Define

z =
logm

2β
− log(d+ 1) +N(m) log 5

2β

and set x = logN , so that the relation x ex = z holds. The inverse of this equation is given by the
Lambert W function, i.e., x = W (z). Therefore,

N(m) = ex = eW (z) =
z

W (z)
=

logm
2β −

log(d+1)+N(m) log 5
2β

W
(

logm
2β −

log(d+1)+N(m) log 5
2β

) .
Since W (z) ∼ log z− log log z, we can deduce that N(m) ∼

log m
2β

log(logm) =
logm

2β log logm . Equivalently,

N(m) = logm
2β log logm + o

(
logm

2β log logm

)
.

In contrast to the surrogate model, which uses all m points to achieve an error of O(m−γ), the
SCaSML method allocates 5N N2βN points for training and d5N N2βN points for inference (see Foot-
note E.9), thereby yielding an error bound of the form O

(
N logN

(
−β + o(1)

)
(5N N2βN)−γ

)
=

O
(
N−βN(1+o(1)) m−γ

)
. Substituting the asymptotic expression for N(m), and noting that

N(m)−βN(m) =

√
d+ 1 exp(log 5

2 N(m))
√
m

(68)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

=
√
d+ 1 exp(

log 5

2
logm(

N(m)

logm
− 1

log 5
)) (69)

=
√
d+ 1 exp(

log 5

2
logm(− 1

log 5
+ o(

1

log logm
))) (70)

=
√
d+ 1 exp(−(1

2
− o(

1

log logm
)) logm) (71)

=
√
d+ 1m− 1

2+o(1
log log m) = O(m− 1

2+o(1
log log m)). (72)

We obtain the SCaSML error bound O
(
m−γ m(− 1

2+o(1
log log m))(1+o(1))

)
= O

(
m−γ− 1

2+o(1)
)
.

Hence, for high-dimensional problems where m ≫ 1 and for any fixed γ > 0, we conclude
that O

(
m−γ− 1

2+o(1)
)
≪ O

(
m−γ

)
, thereby demonstrating that the SCaSML procedure attains a

strictly faster rate of convergence.

Corollary E.9 (Error Order for M = ⌊N2βN⌋). Under Assumptions E.2, E.3, D.6 and D.7 , suppose
p ≥ 2, α ∈ (p−2

2(p−1) ,
p

2(p−1)), t ∈ [0, T), x ∈ Rd, β = α
2 −

(1−α)(p−2)
2p . It holds that

sup
(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥(ŬN,⌊N2βN⌋(t,x)− ŭ(t,x)
)
ς

∥∥∥
L2
≤ exp

(
N logN

(
−β + o(1)

))
·
(
CF e(û)

)
.

(73)

Specifically, this approximator ŬN,⌊N2βN⌋ requires at most d(5⌊N2βN⌋)N points for evaluation, as
detailed in (Hutzenthaler et al., 2020a, Lemma 3.6).

E.3.3 BOUND ON COMPUTATIONAL COMPLEXITY

We now define two indicators to quantify the computational complexity of full-history SCaSML:the
number of realization variables (RV) and the number of function evaluations (FE).
Definition E.10 (Computational Complexity of full-history SCaSML). We define the following
complexity:

• Let {RVn,M}n,M∈Z ⊂ N satisfy RV0,M = 0 and, for all n,M ∈ N,

RVn,M ≤ dMn +

n−1∑
l=0

[
Mn−l

(
1 + d+RVl,M +1N(l) RVl−1,M

)]
. (74)

This quantity captures the number of scalar normal and uniform time realizations required
to compute one sample of Ŭn,M (s, x).

• Let {FEn,M}n,M∈Z ⊂ N satisfy FE0,M = 0 and, for all n,M ∈ N,

FEn,M ≤Mn +

n−1∑
l=0

[
Mn−l

(
1 + FEl,M +1N(l) + 1N(l) FEl−1,M

)]
. (75)

This reflects the number of evaluations of F̆ and ğ required to compute one sample of
Ŭn,M (s, x).

Theorem E.11 (Computational Complexity of full-history SCaSML). Under assumptions D.6, D.7,
E.3 and E.2 , suppose p ≥ 2, α ∈ (p−2

2(p−1) ,
p

2(p−1)) and β = α
2 −

(1−α)(p−2)
2p ∈ (0, α

2). For any
N ≥ 2 and δ > 0, taking M = ⌊N2βN⌋, we have

RVN,M +FEN,M ≤ exp

(
N logN

(
− βδ + o(1)

))

(d+ 1)(CF e(û))
2+δ

[
sup

(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥∥(ŨN,M (t,x)− u∞(t,x)
)
ς

∥∥∥∥
L2

]−(2+δ)

.

(76)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Proof. From (Hutzenthaler et al., 2020a, Lemma 3.6), we derive that

RVN,M ≤ d(5M)N ,FEN,M ≤ (5M)N . (77)

Suppose the maximum error is ε. To compensate for the (5M)N term in the complexity by the
denominator of Theorem E.6, we multiply the complexity by ε2+δ and then divide it, and put
everything into the exponent:

RVN,M +FEN,M (78)

≤(d+ 1)(5M)N (79)

=(d+ 1)(5M)Nε2+δε−(2+δ) (80)

≤
[[

e

(
pN
2 +1

)] 1
8
(2C)N−1 exp

(
βM

1
2β

)
√
MN−1

]2+δ

(CF e(û))
2+δ(d+ 1)(5M)N (81)[

sup
(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥∥(ŨN,M (t,x)− u∞(t,x)
)
ς

∥∥∥∥
L2

]−(2+δ)

(82)

=exp

(
N

(
(2 + δ) log(2C) + log 5

)
+ (2 + δ)βM1/2β + logM − δ

2
(N − 1) logM + o(N)

)
(83)

(d+ 1)(CF e(û))
2+δ

[
sup

(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥∥(ŨN,M (t,x)− u∞(t,x)
)
ς

∥∥∥∥
L2

]−(2+δ)

(84)

=exp

(
N

(
(2 + δ) log(2C) + log 5 +

(2 + δ)β

N
M1/2β − (

δ

2
− 2 + δ

2N
) logM + o(1)

))
(85)

(d+ 1)(CF e(û))
2+δ

[
sup

(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥∥(ŨN,M (t,x)− u∞(t,x)
)
ς

∥∥∥∥
L2

]−(2+δ)

(86)

≤ exp

(
N

(
(2 + δ) log(2C) + log 5 +

(2 + δ)β

N
M1/2β − (

δ

2
− 2 + δ

2N
) logM + o(1)

))
(87)

(d+ 1)(CF e(û))
2+δ

[
sup

(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥∥(ŨN,M (t,x)− u∞(t,x)
)
ς

∥∥∥∥
L2

]−(2+δ)

(88)

Note that ⌊N2βN⌋1/2β ≤ N and β < α
2 , thus (2+δ)β

N M1/2β ≤ (2 + δ)β ≤ α(1 + δ
2). Therefore, by

78:

exp

(
N

(
(2 + δ) log(2C) + log 5 +

(2 + δ)β

N
M1/2β − (

δ

2
− 2 + δ

2N
) logM + o(1)

))
(89)

(d+ 1)(CF e(û))
2+δ

[
sup

(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥∥(ŨN,M (t,x)− u∞(t,x)
)
ς

∥∥∥∥
L2

]−(2+δ)

(90)

≤ exp

(
N

(
(2 + δ) log(2C) + log 5 + α(1 +

δ

2
)− (

δ

2
− 2 + δ

2N
) logM + o(1)

))
(91)

(d+ 1)(CF e(û))
2+δ

[
sup

(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥∥(ŨN,M (t,x)− u∞(t,x)
)
ς

∥∥∥∥
L2

]−(2+δ)

.

(92)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Since M = ⌊N2βN⌋ ⇒ logM ≥ log(N2βN−1) ≥ log(N2βN)−1 = 2β logN−1 for N ≥ 21/2β ,
we can further reduce 89 to:

exp

(
N

(
(2 + δ) log(2C) + log 5 + α(1 +

δ

2
)− (

δ

2
− 2 + δ

2N
) logM + o(1)

))
(93)

(d+ 1)(CF e(û))
2+δ

[
sup

(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥∥(ŨN,M (t,x)− u∞(t,x)
)
ς

∥∥∥∥
L2

]−(2+δ)

(94)

≤ exp

(
N

(
(2 + δ) log(2C) + log 5 + α(1 +

δ

2
) + (

δ

2
− 2 + δ

2N
)− (

δ

2
− 2 + δ

2N
) · 2β logN + o(1)

))
(95)

(d+ 1)(CF e(û))
2+δ

[
sup

(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥∥(ŨN,M (t,x)− u∞(t,x)
)
ς

∥∥∥∥
L2

]−(2+δ)

(96)

=exp

(
N logN

(
− βδ + o(1)

))
(97)

(d+ 1)(CF e(û))
2+δ

[
sup

(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥∥(ŨN,M (t,x)− u∞(t,x)
)
ς

∥∥∥∥
L2

]−(2+δ)

.

(98)
The right-hand side of this expression is clearly decreasing for large enough N , and in turn, fi-
nite. Hence, quadrature SCaSML boosts a quadrature MLP with complexity O(dε−(2+δ)) to a
corresponding physics-informed inference solver with complexity O(de(û)2+δε−(2+δ)).

F PROOF FOR QUADRATURE MULTILEVEL PICARD ITERATION

In this section, we present the proof for the Quadrature Multilevel Picard (MLP) iteration method.
For simplicity, we consider the case where µ = 0 and σ = sId(s ∈ R) in the proof. We first establish
the mathematical framework and underlying assumptions, then analyze the convergence properties
and computational complexity of our proposed simulation-calibrated variant. The result shows that
the error of SCaSML is bounded by the product of MLP error and surrogate error. Likewise, the
complexity is bounded by the product of MLP error and surrogate error. Both indicate that surrogate
models can substantially reduce computational complexity while maintaining accuracy guarantees.

Since the Structural-preserving Law of Defect is also a semi-linear heat equation,
we can use the quadrature/full-history multilevel Picard iteration to obtain an estimation Ŭ(s, x) of
u(s, x)−û(s, x). In this section, we study the theoretical properties of SCaSML that using Quadrature
Multilevel Picard Iteration to solve the Structural-preserving Law of Defect and we
investigate the full-history multilevel Picard iteration in the next section.

F.1 SURROGATE ACCURACY AND INTEGRABILITY ASSUMPTIONS

To derive improved convergence rates for the Quadrature MLP, we must quantify the quality of the
pre-trained surrogate û. We introduce a scalar error measure e(û) ∈ [0,∞) which serves as a uniform
bound on both the PDE residual and the approximation error of the surrogate.
Assumption F.1 (Accuracy of the Surrogate Model for Quadrature MLP). Assumption needed for
quadrature MLP builds directly on Assumption E.2, augmenting it with an additional higher-order
regularity condition required for the quadrature rule.

3. Higher-Order Regularity: To ensure rapid convergence of the time quadrature rules, we
assume the defect satisfies the following Gevrey-class regularity bounds:

sup
k∈N0

∥(1, σ⊤∇x)
(
(∂
∂t +

σ2

2 ∆x)
kŭ
)
(t,x)∥L∞

(k!)3/4
≤ CQ,3 e(û),

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

This condition is required only for the Quadrature MLP variant (Appendix F) and is relaxed
for the Full-History variant (Appendix E).

Assumption F.2 (Quadrature Integrability). To ensure the well-posedness of the Feynman-Kac
expectations, we assume polynomial growth bounds. There exists p ∈ N such that for the zero vector
0d+1 ∈ Rd+1:

sup
x∈Rd

|ğ(x)|
1 + ∥x∥p1

+ sup
t∈[0,T],x∈Rd

|F̆ (0d+1, t,x)|
1 + ∥x∥p1

<∞. (99)

Remark F.3 (Magnitude of Nonlinearity at Zero). Recall from Definition D.8 that F̆ (0d+1, t,x) ≡
ϵ(t,x). Thus, the second term in Assumption F.2 effectively bounds the growth of the surrogate’s
residual. In the standard Picard iteration for the defect ŭ, the first iteration is driven solely by this
term. A small ”magnitude at zero” implies that the fixed-point iteration starts very close to the true
solution (zero), minimizing the Monte Carlo work required.

F.2 MAIN RESULTS

We now present our main theoretical results, which characterize both the accuracy and computational
complexity of our proposed method. These results demonstrate the substantial efficiency gains
achieved by incorporating surrogate models into the multilevel Picard framework.

F.2.1 BOUND ON GLOBAL L2 ERROR

Follows the sam proof sketch as Section E.3.1,the convergence analysis proceeds in two steps. First,
we establish a ”Bridge Lemma” that bounds the complexity-determining constants of the Defect
PDE (specifically the magnitude of the nonlinearity at zero and the Lipschitz constant of the terminal
condition) linearly by the surrogate error e(û). Second, we substitute these bounds into the standard
error estimate for Multilevel Picard iterations to prove that the final error is the product of the
simulation error and the surrogate error.
Lemma F.4 (The Bridge Lemma: Complexity Estimation via Surrogate Error). Suppose Assumptions
D.6, D.7, F.1, and F.2 hold. Then there exists a constant CQ > 0 independent of the surrogate û such
that:

sup
(t,x)∈[0,T]×Rd

{∣∣F̆ (0d+1, t,x)
∣∣+σ
√
T + 3 K̆+sup

k∈N

∥(1,∇x)
(
(∂
∂t +

σ2

2 ∆x)
kŭ
)
(t,x)∥L∞

(k!)3/4

}
≤ CQ e(û).

(100)

Proof. We bound each of the three terms on the left-hand side of equation 100 using the surrogate
accuracy assumptions defined in Assumption F.1.

Step 1: Bounding the Residual Term. Recall from Remark F.3 that F̆ (0d+1, t,x) ≡ ϵ(t,x).
Applying the L∞ residual bound from Assumption F.1 (Item 1):

sup
(t,x)∈[0,T]×Rd

|F̆ (0d+1, t,x)| = sup
(t,x)∈[0,T]×Rd

|ϵ(t,x)| ≤ CQ,1 e(û). (101)

Step 2: Bounding the Terminal Lipschitz Constant. Let eα be the standard basis vector at index α

in Rd. The L1 norm of K̆ satisfies:

K̆ ≤
d∑

α=1

∥Deα ğ∥L∞ =

d∑
α=1

∥Deα ŭ(T, ·)∥L∞ ≤ ∥ŭ(T, ·)∥W 1,∞(Rd). (102)

Using the Defect Bound from Assumption F.1 (Item 2):

K̆ ≤ sup
t∈[0,T]

∥ŭ(t, ·)∥W 1,∞ ≤ CQ,2 e(û). (103)

Step 3: Bounding the Higher-Order Regularity Term. The third term is directly controlled by the
Higher-Order Regularity condition in Assumption F.1 (Item 3):

sup
k∈N

∥(1,∇x)((
∂
∂t +

σ2

2 ∆x)
kŭ)(t,x)∥L∞

(k!)3/4
≤ CQ,3 e(û). (104)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Summing the bounds from Steps 1-3, we define CQ := CQ,1 + σ
√
T + 3CQ,2 + CQ,3. This yields

the desired inequality.

We now combine this lemma with the general convergence theory of Multilevel Picard iterations to
state our main result.
Theorem F.5 (Global L2 Error Bound). Under Assumptions D.6, D.7, F.1, and F.2, the error of the
SCaSML estimator ŬN,N,N with level N , sample base N and quadrature order N (as defined in
Algorithm 1) satisfies:

sup
(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥(ŬN,N,N (t,x)− (ŭ(t,x), σ∇xŭ(t,x))
)
ς

∥∥∥
L2
≤ E(N) ·

(
CQ e(û)

)
,

(105)
where the convergence factor E(N) is defined as:

E(N) =
7CN 2N−1eN√

N N−3
+

(
14
(
4C
)N−1

+ 1
)
T 2N+1

√
NN

,

with constant C = 2(
√
T + 1)

√
Tπ(L+ 1) + 1.

Proof. We apply the general error bound for Quadrature MLP from (Hutzenthaler & Kruse, 2020) to
the specific case of the Defect PDE. (Hutzenthaler & Kruse, 2020, Corollary 4.7) provides a bound of
the form:

sup
(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥(ŬN,N,N (t,x)− (ŭ(t,x), σ∇xŭ(t,x))
)
ς

∥∥∥
L2

(106)

≤E(N)× sup
(t,x)∈[0,T]×Rd

{∣∣F̆ (0d+1, t,x)
∣∣+ σ

√
T + 3 K̆ + sup

k∈N

∥(1,∇x)
(
(∂
∂t +

σ2

2 ∆x)
kŭ
)
(t,x)∥L∞

(k!)3/4

}
.

(107)

Specifically, the second term is the supremum bounded in Lemma F.4. By substituting the result of
Lemma F.4 directly into the corollary, we replace the generic PDE constants with the term CQ e(û),
thereby proving the factorization.

Corollary F.6 (Asymptotic Error Decay). Under the assumptions of Theorem F.5, the convergence
factor E(N) satisfies the following asymptotic bound as N →∞:

E(N) = exp

(
−1

2
N logN +O(N)

)
. (108)

Consequently, the error decays super-polynomially with respect to the computational depth N .

Proof. We determine the leading order asymptotic behavior of logE(N) by analyzing the two
summands in the definition of E(N) separately. Recall:

E(N) =
7CN 2N−1eN√

N N−3︸ ︷︷ ︸
=:T1(N)

+

(
14(4C)N−1 + 1

)
T 2N+1

√
NN︸ ︷︷ ︸

=:T2(N)

.

Step 1: Asymptotic of the First Term T1(N).
Taking the natural logarithm of T1(N):

log T1(N) = log(7 · 2−1) +N log(2Ce)− N − 3

2
logN (109)

= −1

2
N logN +N log(2Ce) +

3

2
logN + log(3.5). (110)

Observing that as N →∞, the term − 1
2N logN dominates linear terms O(N), we have:

log T1(N) = −1

2
N logN +O(N). (111)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Step 2: Asymptotic of the Second Term T2(N).
We bound the numerator: 14(4C)N−1 + 1 ≤ 15(4C)N−1 for sufficiently large C,N . Thus:

log T2(N) ≤ log
(
15(4C)N−1T 2N+1

)
− N

2
logN (112)

= log(15 · (4C)−1 · T) +N log(4C) + 2N log T − 1

2
N logN (113)

= −1

2
N logN +N(log(4C) + 2 log T) +O(1). (114)

Similar to Step 1, the dominant term is − 1
2N logN :

log T2(N) = −1

2
N logN +O(N). (115)

Since E(N) = T1(N) + T2(N), we have logE(N) ≤ log(2max{T1, T2}) = log 2 +
max{log T1, log T2}. Substituting equation 111 and equation 115:

logE(N) ≤ log 2 +

(
−1

2
N logN +O(N)

)
= −1

2
N logN +O(N).

Exponentiating both sides yields the claim.

F.2.2 BOUND ON COMPUTATIONAL COMPLEXITY

To fully assess the efficiency of our method, we now analyze its computational complexity. We
introduce two key metrics that capture different aspects of the computational cost.

Definition F.7 (Computational Complexity of Quadrature SCaSML). We define the following com-
plexity measures:

First, let {RNn,M,Q}n,M,Q∈Z ⊂ N satisfy RN0,M,Q = 0 and, for all n,M,Q ∈ N,

RNn,M,Q ≤ dMn +

n−1∑
l=0

[
QMn−l

(
d+RNl,M,Q +1N(l) RNl−1,M,Q

)]
. (116)

This number represents the total scalar normal random variable realizations required for computing
one sample of Ŭn,M,Q(s, x).

Second, let {FEn,M,Q}n,M,Q∈Z ⊂ N satisfy FE0,M,Q = 0 and, for all n,M,Q ∈ N,

FEn,M,Q ≤Mn +

n−1∑
l=0

[
QMn−l

(
1 + FEl,M,Q +1N(l) + 1N(l) FEl−1,M,Q

)]
. (117)

This quantity reflects the number of evaluations of F̆ and ğ necessary to compute of one sample of
Ŭn,M,Q(s, x).

These metrics provide a comprehensive measure of the computational resources required by our
method. The first metric, RNn,M,Q, accounts for the cost of generating random variables, while the
second, FEn,M,Q, captures the number of function evaluations needed.

Theorem F.8 (Complexity of Quadrature SCaSML). Under assumptions D.6, D.7, F.2 and F.1, for
any δ > 0 and all N ∈ N, we have

RNN,N,N +FEN,N,N ≤

[
sup

(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥(ŨN,N,N (t,x)− u∞(t,x)
)
ς

∥∥∥
L2

]−(4+δ)

· 8(d+ 1)(CQe(û))
4+δ exp

(
N logN(−δ

2
+ o(1))

)
<∞.

(118)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Proof. From established results in (Hutzenthaler et al., 2020a, Lemma 3.6), we know that for all
N ∈ N,

RNN,N,N ≤ 8dN2N , FEN,N,N ≤ 8N2N . (119)

We want to use the O(NN/2) denominator in Theorem F.5 to compensate for the N2N term in the
complexity. Suppose the maximum error is ε, and note that N2N = (NN/2)4 < (NN/2)4+δ,∀δ > 0,
we multiply the complexity by ε4+δ , i.e.

(RNN,N,N + FEN,N,N)

[
sup

(t,x)∈[0,T]×Rd

max
ς∈{1,...,d+1}

∥∥∥∥(ŨN,N,N (t,x)− u∞(t,x)
)
ς

∥∥∥∥
L2

](4+δ)

≤8(d+ 1)N2N ·
(7
(
2(
√
T + 1)

√
Tπ(L+ 1) + 1

)N
2N−1eN

√
NN−3

+
(14(8(

√
T + 1)

√
Tπ(L+ 1) + 4)N−1 + 1)T 2N+1

√
NN

)(4+δ)

(CQe(û))
4+δ

≤8(d+ 1)N2N ·
(
(24(T + 1))

3N
(L+ 1)

N
√
N

−N
)(4+δ)

(CQe(û))
4+δ

≤8(d+ 1)(CQe(û))
4+δ exp

(
N logN(−δ

2
+ o(1))

)
.

(120)

The right-hand side of this expression is clearly decreasing for large enough N , and in turn, fi-
nite. Hence, quadrature SCaSML boosts a quadrature MLP with complexity O(dε−(4+δ)) to a
corresponding physics-informed inference solver with complexity O(de(û)4+δε−(4+δ))

This theorem provides a comprehensive characterization of the computational complexity of our
method. The inclusion of the surrogate model error measure e(û) in the complexity bound demon-
strates how the quality of the surrogate model directly influences the computational efficiency of our
approach. Specifically, a more accurate surrogate model (smaller e(û)) leads to a lower computational
cost for achieving a given level of accuracy.

G AUXILIARY EXPERIMENTS RESULTS

We include supplementary experimental results that further validate our claims, including detailed
error distribution plots (violin plots) and additional inference-time scaling curves for all PDE test
cases.

G.1 VIOLIN PLOT FOR ERROR DISTRIBUTION

In this section, we present violin plots of the absolute error distributions for the base surrogate
model , the MLP, and the SCaSML method. We uniformly select the test points. By combining
kernel density estimation with boxplot-style summaries, these plots capture both the spread and
central tendency of the errors. A violin plot exposes the full distribution—its density, variability,
skewness, and outliers—offering much deeper insight into model performance. The width of each
violin at a given error level reflects the density of the observations. The results indicate that SCaSML
reduces the largest absolute error, lowers the median and produces more accurate points for a majority
of equations compared to the surrogate and MLP, demonstrating its robustness across different
dimensions and equations.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

PIN
N

MLP

SC
aS

ML

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

(a) d = 10

PIN
N

MLP

SC
aS

ML

10 6

10 5

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

(b) d = 20

PIN
N

MLP

SC
aS

ML

10 5

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

(c) d = 30

PIN
N

MLP

SC
aS

ML

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

(d) d = 60

Figure 5: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray), applying
qudrature SCaSML (teal) to calibrate the PINN surrogate on linear convection-diffusion equation for
d = 10, 20, 30, 60.

PIN
N

MLP

SC
aS

ML

10 5

10 4

10 3

10 2

10 1

Ab
so

lu
te

 E
rro

r

d = 20

PIN
N

MLP

SC
aS

ML

10 5

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 40

PIN
N

MLP

SC
aS

ML

10 5

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 60

PIN
N

MLP

SC
aS

ML

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 80

(a) SCaSML using Quadrature MLP

PIN
N

MLP

SC
aS

ML

10 5

10 4

10 3

10 2

10 1

Ab
so

lu
te

 E
rro

r

d = 20

PIN
N

MLP

SC
aS

ML

10 5

10 4

10 3

10 2

10 1

Ab
so

lu
te

 E
rro

r

d = 40

PIN
N

MLP

SC
aS

ML

10 5

10 4

10 3

10 2

10 1

Ab
so

lu
te

 E
rro

r

d = 60

PIN
N

MLP

SC
aS

ML

10 5

10 4

10 3

10 2

10 1

Ab
so

lu
te

 E
rro

r

d = 80

(b) SCaSML using full-history MLP

Figure 6: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray), applying
qudrature SCaSML (teal) to calibrate the PINN surrogate on viscous Burgers’ equation equation for
d = 10, 20, 30, 60.

G.2 INFERENCE TIME SCALING CURVE

In this section, we illustrate how SCaSML enhances estimation accuracy as the number of inference-
time collocation points increases, as outlined in 2.1 and 2.2. Our findings indicate that allocating
additional computational resources during inference consistently improves estimation accuracy.

G.3 IMPROVED SCALING LAW OF SCASML ALGORITHMS

In this section, we consider the viscous Burgers equation as an illustrative example to demonstrate
the improved convergence of SCaSML algorithms, as suggested by Corollary E.8.

We implemented a physics-informed neural network (PINN) with five hidden layers, each containing
50 neurons and employing hyperbolic tangent activation functions. Because the number of training
points, m, is proportional to the number of iterations in the PINN, the control group was trained using
the Adam optimizer (learning rate 7× 10−4, β1 = 0.9, β2 = 0.99) over iterations set to 400, 2 000,
4 000, 6 000, 8 000, and 10 000 (as illustrated along the x-axis). The dataset comprised 2 500 interior
points, 100 boundary points, and 160 initial points uniformly sampled from [0, 0.5]× [−0.5, 0.5]d,
ensuring that m≫ 1. To replicate the conditions of Corollary E.8, the SCaSML group was trained
over iterations set to ⌊400/(d+1)⌋, ⌊2 000/(d+1)⌋, ⌊1 000/(d+1)⌋, ⌊6 000/(d+1)⌋, ⌊8 000/(d+
1)⌋, and ⌊10 000/(d+ 1)⌋. In addition, we set the inference level as N = ⌊logm/(2β log logm)⌋
with β = 1/2. Theoretically, SCaSML exhibits an improvement in γ of 1

2 + o(1) relative to the
control group.

For the Gaussian process regression surrogate model, training was performed over 20 iterations
using Newton’s method. Due to the increasing inference parameters with m and the consequent
GPU memory constraints, it was not possible to replicate the conditions of Corollary E.8 exactly
for the Gaussian process model. Consequently, both the control and SCaSML groups employed
identical training sizes, which theoretically does not alter the asymptopic convergence rate(i.e. the
slope). Specifically, the training data consisted of the following pairs of interior and boundary
points:(100, 20), (200, 40), (300, 60), (400, 80), (500, 100), (600, 120), (700, 140), (800, 160),
(900, 180), and (1 000, 200), with the x-axis representing the total number of training points. Again,
the inference level was chosen as N = ⌊logm/(2β log logm)⌋ with β = 1/2, and the SCaSML
continues to exhibit an improvement in γ of 1

2 + o(1) relative to the control group.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

GP
MLP

SC
aS

ML

10 2

10 1

Ab
so

lu
te

 E
rro

r

d = 20

GP
MLP

SC
aS

ML

10 2

10 1

Ab
so

lu
te

 E
rro

r

d = 40

GP
MLP

SC
aS

ML

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 60

GP
MLP

SC
aS

ML

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 80

(a) SCaSML using Quadrature MLP

GP
MLP

SC
aS

ML

10 2

10 1

Ab
so

lu
te

 E
rro

r

d = 20

GP
MLP

SC
aS

ML

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 40

GP
MLP

SC
aS

ML

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 60

GP
MLP

SC
aS

ML

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 80

(b) SCaSML using full-history MLP

Figure 7: Violin Plot for comparison of the baseline Gaussian Process surrogate (black), MLP (gray),
applying qudrature SCaSML (teal) to calibrate the Gaussian Process surrogate on viscous Burgers’
equation equation for d = 20, 40, 60, 80.

PIN
N

MLP

SC
aS

ML

10 4

10 3

10 2

10 1

100

101

Ab
so

lu
te

 E
rro

r

d = 100

PIN
N

MLP

SC
aS

ML

10 4

10 3

10 2

10 1

100

101
Ab

so
lu

te
 E

rro
r

d = 120

PIN
N

MLP

SC
aS

ML

10 4

10 3

10 2

10 1

100

101

Ab
so

lu
te

 E
rro

r

d = 140

PIN
N

MLP

SC
aS

ML

10 4

10 3

10 2

10 1

100

101

Ab
so

lu
te

 E
rro

r

d = 160

(a) SCaSML using full-history MLP

Figure 8: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray), ap-
plying qudrature SCaSML (teal) to calibrate the PINN surrogate on LQG control problem for
d = 100, 120, 140, 160.

PIN
N

MLP

SC
aS

ML

10 5

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 100

PIN
N

MLP

SC
aS

ML

10 6

10 5

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 120

PIN
N

MLP

SC
aS

ML

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 140

PIN
N

MLP

SC
aS

ML
10 5

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r

d = 160

(a) SCaSML using full-history MLP

Figure 9: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray), applying
qudrature SCaSML (teal) to calibrate the PINN surrogate on diffusion reaction equation for d =
100, 120, 140, 160.

We observe that, for the PINNs, full-history SCaSML achieves near-monotonic error reduction across
resolutions (with d ranging from 20 to 80), outperforming quadrature SCaSML, which displays
oscillatory behavior at higher dimensions. The Gaussian process-based SCaSML similarly accelerates
convergence during training. In both cases, the error trajectories generated by SCaSML are generally
shifted downward relative to the base models, underscoring its capacity to enhance accuracy without
altering the fundamental training dynamics. These findings underscore SCaSML’s robustness in
diverse settings, ensuring reliable convergence even in high-dimensional or non-monotonic scenarios.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

103

Evaluation Numbers

35

40

45

50

55

60

65

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(a) d = 10

103

Evaluation Numbers

55.0
57.5
60.0
62.5
65.0
67.5
70.0
72.5

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(b) d = 20

103

Evaluation Numbers

35

40

45

50

55

60

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(c) d = 30

103

Evaluation Numbers

24

25

26

27

28

29

30

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(d) d = 60

Figure 10: For the linear convection-diffusion equation, SCaSML for PINNs reliably enhances
performance with increased computational resources. Notably, scaling effects are more pronounced
in lower dimensions, potentially due to the MLP’s convergence rate exhibiting a linear dependency
on the dimensionality d.

102 103

Evaluation Numbers

50

55

60

65

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(a) d = 20

102 103

Evaluation Numbers

26.0

26.5

27.0

27.5

28.0

28.5

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(b) d = 40

102 103

Evaluation Numbers

19.5

20.0

20.5

21.0

21.5

22.0

22.5

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(c) d = 60

102 103

Evaluation Numbers

14.5

15.0

15.5

16.0

16.5

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(d) d = 80

Figure 11: For the viscous Burgers equation, SCaSML with PINN consistently improves performance
as the sample size M increases exponentially.

102 103

Evaluation Numbers

28.0

28.5

29.0

29.5

30.0

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(a) d = 100

102 103

Evaluation Numbers

30.0
30.5
31.0
31.5
32.0
32.5
33.0
33.5

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(b) d = 120

102 103

Evaluation Numbers

24

26

28

30

32

34

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(c) d = 140

102 103

Evaluation Numbers

26

27

28

29

30

31
Im

pr
ov

em
en

t (
%

)
Improvement (%)

(d) d = 160

Figure 12: For the HJB equation, SCaSML with PINN consistently enhances performance with
increases in the exponential base of the sample size M . However, the scaling curve plateaus at
M = 14, likely due to the relatively small clipping range of SCaSML compared to the solution
magnitude. In general, a larger clipping threshold permits more outliers, thereby requiring additional
samples to mitigate variance and ultimately enhancing accuracy; this trade-off must be considered in
light of available computational resources.

102 103

Evaluation Numbers

4

6

8

10

12

14

16

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(a) d = 100

102 103

Evaluation Numbers

10

5

0

5

10

15

20

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(b) d = 120

102 103

Evaluation Numbers

2

3

4

5

6

7

8

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(c) d = 140

102 103

Evaluation Numbers

0

2

4

6

8

10

Im
pr

ov
em

en
t (

%
)

Improvement (%)

(d) d = 160

Figure 13: For the Diffusion Reaction equation, SCaSML with PINN consistently improves perfor-
mance as the exponential base of the sample size M increases.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

103 104

Training Steps

10 2

Re
la

tiv
e

L2
 E

rro
r

PINN (=0.52)
SCaSML (=0.79)

(a) d = 20

103 104

Training Steps

10 1

Re
la

tiv
e

L2
 E

rro
r

PINN (=0.47)
SCaSML (=0.56)

(b) d = 40

103 104

Training Steps

10 1

Re
la

tiv
e

L2
 E

rro
r

PINN (=0.48)
SCaSML (=0.55)

(c) d = 60

103 104

Training Steps

10 1

4 × 10 2

6 × 10 2

2 × 10 1

Re
la

tiv
e

L2
 E

rro
r

PINN (=0.33)
SCaSML (=0.38)

(d) d = 80

Figure 14: We apply quadrature SCaSML to calibrate a PINN surrogate for the d-dimensional viscous
Burgers equation. All plots employ logarithmic scales on both axes, and the slope γ denotes the
polynomial convergence rate. Numerical results demonstrate that, when collocation points for testing
and inference are increased simultaneously, SCaSML achieves a faster scaling law than the base
surrogate model.

103 104

Training Steps

10 2

Re
la

tiv
e

L2
 E

rro
r

PINN (=0.51)
SCaSML (=0.74)

(a) d = 20

103 104

Training Steps

10 1

Re
la

tiv
e

L2
 E

rro
r

PINN (=0.51)
SCaSML (=0.62)

(b) d = 40

103 104

Training Steps

10 1

Re
la

tiv
e

L2
 E

rro
r

PINN (=0.45)
SCaSML (=0.53)

(c) d = 60

103 104

Training Steps

10 1

6 × 10 2

2 × 10 1

Re
la

tiv
e

L2
 E

rro
r

PINN (=0.34)
SCaSML (=0.38)

(d) d = 80

Figure 15: We apply full-history SCaSML to calibrate a PINN surrogate for the d-dimensional
viscous Burgers equation. Numerical results demonstrate that, when collocation points for testing and
inference are increased simultaneously, SCaSML achieves a faster scaling law than the base surrogate
model.

G.4 STATISTICAL ANALYSIS OF ERROR REDUCTION AND CONFIDENCE INTERVALS

In response to reviewer feedback requesting a rigorous statistical validation of our results, we
conducted a repeated experiment analysis. Unlike the single-run statistics, this procedure accounts
for the randomness inherent in both the training process (e.g., neural network initialization, optimizer
noise) and the inference process (Monte Carlo sampling seeds).

G.4.1 EXPERIMENTAL DESIGN AND METHODOLOGY

For each problem configuration, we repeated the entire experiment Nreps = 10 times with different
random seeds. In each repetition, we performed the following steps:

1. Model Training: A new surrogate model (PINN or GP) was trained from scratch (where
applicable). Settings are the same with G.1.

2. Inference: The baseline surrogate, the naive MLP solver, and the SCaSML framework were
evaluated on a fixed test set of Ntest = 1200 points.

3. Metric Calculation: We computed the Mean Relative L2 Error, Mean L1 Error, Mean
Squared L2 Error, and for each run.

From these Nreps repetitions, we calculated the following statistics:

• Mean and Standard Deviation: Computed across the 10 independent runs.
• 95% Confidence Interval (CI): Calculated for the mean metric as [a, b] = [µ −
1.96 σ√

Nreps

, µ+ 1.96 σ√
Nreps

].

• Paired t-test: We performed paired t-tests to compare the error distributions of SCaSML
against the baselines (GP/PINN and MLP) across the repetitions. The null hypothesis is that
the mean difference in error is zero.

The tables below present the full results. Note that while SCaSML requires more execution time (as
expected for inference-time scaling), it achieves statistically significant error reductions (p≪ 0.001)
across all accuracy metrics and dimensions.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

103

Training Size

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Re
la

tiv
e

L2
 E

rro
r

GP (=0.37)
SCaSML (=0.57)

(a) d = 20

103

Training Size

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Re
la

tiv
e

L2
 E

rro
r

GP (=0.37)
SCaSML (=0.56)

(b) d = 40

103

Training Size

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Re
la

tiv
e

L2
 E

rro
r

GP (=0.36)
SCaSML (=0.53)

(c) d = 60

103

Training Size

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Re
la

tiv
e

L2
 E

rro
r

GP (=0.35)
SCaSML (=0.50)

(d) d = 80

Figure 16: We apply quadrature SCaSML to calibrate a Gaussian Process surrogate for the
d-dimensional viscous Burgers equation. Numerical results demonstrate that, when collocation
points for testing and inference are increased simultaneously, SCaSML achieves a faster scaling law
than the base surrogate model.

Table 2: Statistical analysis for Viscous Burgers (VB) with GP Surrogate (10 repetitions). Compar-
isons are pairwise against SCaSML.

20d 40d
Metric Method Mean ± Std 95% CI Stat (vs SCaSML) Mean ± Std 95% CI Stat (vs SCaSML)

Rel L2
GP 1.46e-1 ± 2.8e-3 [1.43e-1, 1.50e-1] t=158, p=8e-17 1.84e-1 ± 4.2e-3 [1.76e-1, 1.91e-1] t=127, p=6e-16
MLP 1.84e-1 ± 3.4e-3 [1.77e-1, 1.89e-1] t=80.0, p=4e-14 2.27e-1 ± 6.4e-3 [2.17e-1, 2.38e-1] t=73.1, p=9e-14
SCaSML 6.16e-2 ± 2.1e-3 [5.80e-2, 6.50e-2] – 8.91e-2 ± 3.1e-3 [8.55e-2, 9.60e-2] –

L1
GP 6.97e-2 ± 1.4e-3 [6.80e-2, 7.20e-2] t=131, p=4e-16 9.42e-2 ± 1.3e-3 [9.28e-2, 9.66e-2] t=129, p=5e-16
MLP 7.62e-2 ± 1.8e-3 [7.34e-2, 7.94e-2] t=81.7, p=3e-14 9.35e-2 ± 1.8e-3 [9.10e-2, 9.79e-2] t=80.6, p=4e-14
SCaSML 2.49e-2 ± 6.8e-4 [2.39e-2, 2.63e-2] – 4.01e-2 ± 1.0e-3 [3.83e-2, 4.20e-2] –

L2 (sq)
GP 7.63e-3 ± 3.1e-4 [7.26e-3, 8.18e-3] t=79.8, p=4e-14 1.29e-2 ± 4.3e-4 [1.25e-2, 1.39e-2] t=110, p=2e-15
MLP 1.22e-2 ± 5.3e-4 [1.13e-2, 1.28e-2] t=59.3, p=6e-13 1.95e-2 ± 1.2e-3 [1.80e-2, 2.19e-2] t=46.9, p=5e-12
SCaSML 1.37e-3 ± 9.1e-5 [1.25e-3, 1.53e-3] – 3.02e-3 ± 2.0e-4 [2.75e-3, 3.50e-3] –

60d 80d
Metric Method Mean ± Std 95% CI Stat (vs SCaSML) Mean ± Std 95% CI Stat (vs SCaSML)

Rel L2
GP 2.34e-1 ± 6.2e-3 [2.22e-1, 2.42e-1] t=174, p=4e-17 2.67e-1 ± 4.6e-3 [2.58e-1, 2.72e-1] t=141, p=2e-16
MLP 2.52e-1 ± 8.5e-3 [2.40e-1, 2.64e-1] t=36.9, p=4e-11 2.75e-1 ± 8.2e-3 [2.62e-1, 2.89e-1] t=43.7, p=9e-12
SCaSML 1.23e-1 ± 4.7e-3 [1.14e-1, 1.28e-1] – 1.53e-1 ± 3.0e-3 [1.48e-1, 1.57e-1] –

L1
GP 1.26e-1 ± 2.0e-3 [1.23e-1, 1.30e-1] t=222, p=4e-18 1.49e-1 ± 2.6e-3 [1.46e-1, 1.54e-1] t=134, p=4e-16
MLP 1.01e-1 ± 3.9e-3 [9.43e-2, 1.07e-1] t=26.3, p=8e-10 1.09e-1 ± 2.9e-3 [1.04e-1, 1.13e-1] t=35.6, p=5e-11
SCaSML 5.98e-2 ± 1.7e-3 [5.68e-2, 6.20e-2] – 7.90e-2 ± 1.6e-3 [7.65e-2, 8.25e-2] –

L2 (sq)
GP 2.15e-2 ± 6.8e-4 [2.05e-2, 2.26e-2] t=124, p=8e-16 2.89e-2 ± 8.1e-4 [2.80e-2, 3.05e-2] t=118, p=1e-15
MLP 2.50e-2 ± 2.1e-3 [2.23e-2, 2.84e-2] t=27.1, p=6e-10 3.07e-2 ± 2.2e-3 [2.73e-2, 3.36e-2] t=31.8, p=1e-10
SCaSML 6.00e-3 ± 3.2e-4 [5.40e-3, 6.41e-3] – 9.49e-3 ± 3.7e-4 [8.98e-3, 1.03e-2] –

G.5 RELATIVE L2 ERROR IMPROVEMENT

In this section, we provide supplementary plots that visualize the relative improvement in L2 error
achieved by SCaSML over the baseline surrogate model (PINN or GP). The percentage improvement
is calculated as:

Improvement % =

(
∥ErrorSurrogate∥L2 − ∥ErrorSCaSML∥L2

∥ErrorSurrogate∥L2

)
× 100

103

Training Size

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Re
la

tiv
e

L2
 E

rro
r

GP (=0.37)
SCaSML (=0.55)

(a) d = 20

103

Training Size

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Re
la

tiv
e

L2
 E

rro
r

GP (=0.37)
SCaSML (=0.55)

(b) d = 40

103

Training Size

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Re
la

tiv
e

L2
 E

rro
r

GP (=0.36)
SCaSML (=0.53)

(c) d = 60

103

Training Size

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Re
la

tiv
e

L2
 E

rro
r

GP (=0.35)
SCaSML (=0.50)

(d) d = 80

Figure 17: We apply full-history SCaSML to calibrate a Gaussian Process surrogate for the
d-dimensional viscous Burgers equation. Numerical results demonstrate that, when collocation
points for testing and inference are increased simultaneously, SCaSML achieves a faster scaling law
than the base surrogate model.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Table 3: Statistical analysis for Viscous Burgers (VB) with PINN Surrogate (10 repetitions).

20d 40d
Metric Method Mean ± Std 95% CI Stat (vs SCaSML) Mean ± Std 95% CI Stat (vs SCaSML)

Rel L2
PINN 1.25e-2 ± 3.9e-4 [1.19e-2, 1.31e-2] t=172, p=4e-17 4.51e-2 ± 1.3e-3 [4.23e-2, 4.67e-2] t=135, p=3e-16
MLP 8.34e-2 ± 2.2e-3 [8.08e-2, 8.78e-2] t=108, p=3e-15 1.06e-1 ± 2.2e-3 [1.03e-1, 1.10e-1] t=111, p=2e-15
SCaSML 4.37e-3 ± 2.9e-4 [3.90e-3, 4.78e-3] – 3.38e-2 ± 1.1e-3 [3.16e-2, 3.53e-2] –

L1
PINN 5.83e-3 ± 1.8e-4 [5.48e-3, 6.11e-3] t=84.5, p=2e-14 2.16e-2 ± 4.5e-4 [2.08e-2, 2.22e-2] t=77.7, p=5e-14
MLP 3.43e-2 ± 1.1e-3 [3.29e-2, 3.61e-2] t=93.5, p=9e-15 4.38e-2 ± 9.8e-4 [4.27e-2, 4.55e-2] t=104, p=3e-15
SCaSML 1.44e-3 ± 4.8e-5 [1.38e-3, 1.55e-3] – 1.41e-2 ± 3.5e-4 [1.36e-2, 1.45e-2] –

L2 (sq)
PINN 5.63e-5 ± 3.6e-6 [5.03e-5, 6.23e-5] t=57.4, p=7e-13 7.72e-4 ± 3.3e-5 [7.19e-4, 8.17e-4] t=96.6, p=7e-15
MLP 2.50e-3 ± 0.0 [2.30e-3, 2.82e-3] t=48.0, p=4e-12 4.29e-3 ± 2.4e-4 [3.91e-3, 4.72e-3] t=51.6, p=2e-12
SCaSML 6.90e-6 ± 9.4e-7 [5.55e-6, 8.30e-6] – 4.34e-4 ± 2.2e-5 [4.03e-4, 4.66e-4] –

60d 80d
Metric Method Mean ± Std 95% CI Stat (vs SCaSML) Mean ± Std 95% CI Stat (vs SCaSML)

Rel L2
PINN 4.62e-2 ± 1.1e-3 [4.43e-2, 4.75e-2] t=203, p=9e-18 6.59e-2 ± 2.0e-3 [6.17e-2, 6.95e-2] t=168, p=5e-17
MLP 1.17e-1 ± 3.2e-3 [1.14e-1, 1.23e-1] t=75.0, p=7e-14 1.22e-1 ± 3.7e-3 [1.15e-1, 1.28e-1] t=44.8, p=7e-12
SCaSML 3.53e-2 ± 9.8e-4 [3.36e-2, 3.65e-2] – 5.51e-2 ± 1.9e-3 [5.13e-2, 5.90e-2] –

L1
PINN 2.24e-2 ± 4.4e-4 [2.14e-2, 2.29e-2] t=134, p=4e-16 3.20e-2 ± 6.6e-4 [3.10e-2, 3.31e-2] t=182, p=2e-17
MLP 4.79e-2 ± 1.7e-3 [4.55e-2, 5.04e-2] t=56.8, p=8e-13 4.94e-2 ± 1.2e-3 [4.74e-2, 5.12e-2] t=50.0, p=3e-12
SCaSML 1.50e-2 ± 4.3e-4 [1.41e-2, 1.55e-2] – 2.46e-2 ± 6.9e-4 [2.34e-2, 2.58e-2] –

L2 (sq)
PINN 8.40e-4 ± 2.9e-5 [7.72e-4, 8.71e-4] t=128, p=5e-16 1.76e-3 ± 8.6e-5 [1.64e-3, 1.95e-3] t=136, p=3e-16
MLP 5.44e-3 ± 3.5e-4 [4.99e-3, 6.09e-3] t=44.0, p=8e-12 6.08e-3 ± 3.5e-4 [5.37e-3, 6.55e-3] t=36.9, p=4e-11
SCaSML 4.92e-4 ± 2.2e-5 [4.43e-4, 5.18e-4] – 1.23e-3 ± 7.5e-5 [1.13e-3, 1.41e-3] –

Table 4: Statistical analysis for Linear Convection-Diffusion (LCD) (10 repetitions).

10d 20d
Metric Method Mean ± Std 95% CI Stat (vs SCaSML) Mean ± Std 95% CI Stat (vs SCaSML)

Rel L2
PINN 4.85e-2 ± 2.2e-3 [4.43e-2, 5.23e-2] t=34.1, p=8e-11 8.60e-2 ± 3.6e-3 [7.80e-2, 9.03e-2] t=39.2, p=2e-11
MLP 2.30e-1 ± 5.5e-3 [2.20e-1, 2.36e-1] t=134, p=4e-16 2.41e-1 ± 5.5e-3 [2.32e-1, 2.48e-1] t=129, p=5e-16
SCaSML 2.77e-2 ± 8.6e-4 [2.60e-2, 2.90e-2] – 5.07e-2 ± 1.8e-3 [4.84e-2, 5.37e-2] –

L1
PINN 3.01e-2 ± 1.1e-3 [2.83e-2, 3.23e-2] t=35.0, p=6e-11 8.71e-2 ± 2.2e-3 [8.24e-2, 8.95e-2] t=71.5, p=1e-13
MLP 1.68e-1 ± 1.7e-3 [1.65e-1, 1.70e-1] t=285, p=4e-19 2.38e-1 ± 3.0e-3 [2.31e-1, 2.42e-1] t=241, p=2e-18
SCaSML 1.77e-2 ± 4.3e-4 [1.71e-2, 1.84e-2] – 4.67e-2 ± 1.3e-3 [4.50e-2, 4.83e-2] –

L2 (sq)
PINN 2.20e-3 ± 1.8e-4 [1.98e-3, 2.58e-3] t=26.7, p=7e-10 1.29e-2 ± 7.9e-4 [1.15e-2, 1.41e-2] t=36.7, p=4e-11
MLP 4.96e-2 ± 1.0e-3 [4.85e-2, 5.16e-2] t=154, p=1e-16 1.02e-1 ± 3.1e-3 [9.47e-2, 1.05e-1] t=102, p=4e-15
SCaSML 7.20e-4 ± 2.3e-5 [6.82e-4, 7.54e-4] – 4.50e-3 ± 2.8e-4 [4.05e-3, 4.91e-3] –

30d 60d
Metric Method Mean ± Std 95% CI Stat (vs SCaSML) Mean ± Std 95% CI Stat (vs SCaSML)

Rel L2
PINN 1.57e-1 ± 9.5e-3 [1.43e-1, 1.74e-1] t=19.7, p=1e-08 2.85e-1 ± 8.7e-3 [2.74e-1, 2.96e-1] t=55.2, p=1e-12
MLP 2.42e-1 ± 8.1e-3 [2.29e-1, 2.54e-1] t=83.3, p=3e-14 2.46e-1 ± 4.8e-3 [2.38e-1, 2.52e-1] t=106, p=3e-15
SCaSML 9.69e-2 ± 4.6e-3 [9.12e-2, 1.02e-1] – 1.25e-1 ± 2.8e-3 [1.21e-1, 1.30e-1] –

L1
PINN 1.81e-1 ± 6.0e-3 [1.72e-1, 1.89e-1] t=37.0, p=4e-11 4.90e-1 ± 8.2e-3 [4.77e-1, 4.99e-1] t=83.4, p=3e-14
MLP 2.89e-1 ± 4.6e-3 [2.82e-1, 2.95e-1] t=316, p=2e-19 4.18e-1 ± 4.5e-3 [4.11e-1, 4.24e-1] t=219, p=4e-18
SCaSML 1.05e-1 ± 3.8e-3 [1.01e-1, 1.11e-1] – 1.96e-1 ± 4.7e-3 [1.86e-1, 2.02e-1] –

L2 (sq)
PINN 6.43e-2 ± 9.2e-3 [5.50e-2, 8.25e-2] t=14.4, p=2e-07 4.13e-1 ± 1.7e-2 [3.87e-1, 4.39e-1] t=55.7, p=1e-12
MLP 1.52e-1 ± 6.3e-3 [1.43e-1, 1.62e-1] t=81.8, p=3e-14 3.06e-1 ± 7.7e-3 [2.96e-1, 3.20e-1] t=134, p=4e-16
SCaSML 2.44e-2 ± 2.1e-3 [2.20e-2, 2.80e-2] – 7.97e-2 ± 3.9e-3 [7.36e-2, 8.54e-2] –

These plots directly visualize the 20-80% error reduction claimed in the main text and demonstrate
the effectiveness of our correction framework across all test cases and dimensions. The experimental
settings are identical to those used for violin plots in Appendix G.1.

PINN MLP SCaSML
0.00

0.05

0.10

0.15

0.20

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-44.0%

-88.0%

(a) d = 10

PINN MLP SCaSML
0.00

0.05

0.10

0.15

0.20

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-47.5%

-79.9%

(b) d = 20

PINN MLP SCaSML
0.00

0.05

0.10

0.15

0.20

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-32.6%

-59.7%

(c) d = 30

PINN MLP SCaSML
0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-56.3%

-42.8%

(d) d = 60

Figure 18: Relative L2 error improvement (%) of SCaSML (full-history) over the baseline PINN
surrogate on the linear convection-diffusion equation for d = 10, 20, 30, 60.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Table 5: Statistical analysis for Hamilton-Jacobi-Bellman (LQG) (10 repetitions).

100d 120d
Metric Method Mean ± Std 95% CI Stat (vs SCaSML) Mean ± Std 95% CI Stat (vs SCaSML)

Rel L2
PINN 9.05e-2 ± 2.5e-3 [8.57e-2, 9.49e-2] t=6.5, p=1e-04 9.13e-2 ± 2.0e-3 [8.77e-2, 9.43e-2] t=25.9, p=9e-10
MLP 5.69e+0 ± 2.0e-2 [5.66e+0, 5.73e+0] t=927, p=1e-23 5.50e+0 ± 1.7e-2 [5.48e+0, 5.53e+0] t=1073, p=3e-24
SCaSML 7.27e-2 ± 9.4e-3 [6.48e-2, 9.85e-2] – 6.42e-2 ± 1.7e-3 [6.17e-2, 6.68e-2] –

L1
PINN 1.50e-1 ± 3.0e-3 [1.44e-1, 1.55e-1] t=7.2, p=5e-05 1.68e-1 ± 3.3e-3 [1.62e-1, 1.74e-1] t=146, p=2e-16
MLP 1.21e+1 ± 1.3e-2 [1.21e+1, 1.21e+1] t=1599, p=7e-26 1.22e+1 ± 1.4e-2 [1.21e+1, 1.22e+1] t=2531, p=1e-27
SCaSML 1.09e-1 ± 1.8e-2 [9.68e-2, 1.59e-1] – 1.02e-1 ± 2.3e-3 [9.81e-2, 1.05e-1] –

L2 (sq)
PINN 3.70e-2 ± 1.8e-3 [3.34e-2, 4.00e-2] t=6.2, p=2e-04 4.09e-2 ± 1.8e-3 [3.79e-2, 4.39e-2] t=75.8, p=6e-14
MLP 1.46e+2 ± 2.8e-1 [1.46e+2, 1.47e+2] t=1623, p=7e-26 1.48e+2 ± 3.0e-1 [1.48e+2, 1.49e+2] t=1576, p=8e-26
SCaSML 2.42e-2 ± 7.0e-3 [1.91e-2, 4.37e-2] – 2.02e-2 ± 1.1e-3 [1.88e-2, 2.20e-2] –

140d 160d
Metric Method Mean ± Std 95% CI Stat (vs SCaSML) Mean ± Std 95% CI Stat (vs SCaSML)

Rel L2
PINN 1.03e-1 ± 1.8e-3 [1.01e-1, 1.06e-1] t=3.7, p=5e-03 1.10e-1 ± 2.4e-3 [1.06e-1, 1.14e-1] t=21.7, p=4e-09
MLP 5.36e+0 ± 2.0e-2 [5.34e+0, 5.40e+0] t=823, p=3e-23 5.26e+0 ± 1.9e-2 [5.24e+0, 5.29e+0] t=870, p=2e-23
SCaSML 8.52e-2 ± 1.5e-2 [7.45e-2, 1.15e-1] – 8.48e-2 ± 5.0e-3 [7.88e-2, 9.49e-2] –

L1
PINN 1.92e-1 ± 3.5e-3 [1.87e-1, 1.99e-1] t=4.3, p=2e-03 2.11e-1 ± 3.3e-3 [2.05e-1, 2.17e-1] t=26.0, p=9e-10
MLP 1.23e+1 ± 1.4e-2 [1.22e+1, 1.23e+1] t=866, p=2e-23 1.23e+1 ± 1.3e-2 [1.23e+1, 1.23e+1] t=2170, p=5e-27
SCaSML 1.41e-1 ± 3.8e-2 [1.16e-1, 2.14e-1] – 1.43e-1 ± 1.0e-2 [1.32e-1, 1.61e-1] –

L2 (sq)
PINN 5.55e-2 ± 1.8e-3 [5.35e-2, 5.89e-2] t=3.4, p=8e-03 6.60e-2 ± 2.5e-3 [6.15e-2, 7.04e-2] t=25.3, p=1e-09
MLP 1.50e+2 ± 3.1e-1 [1.50e+2, 1.51e+2] t=1485, p=1e-25 1.52e+2 ± 3.0e-1 [1.51e+2, 1.52e+2] t=1583, p=8e-26
SCaSML 3.90e-2 ± 1.5e-2 [2.90e-2, 6.74e-2] – 3.95e-2 ± 4.7e-3 [3.43e-2, 4.87e-2] –

Table 6: Statistical analysis for Diffusion-Reaction (DR) (10 repetitions).

100d 120d
Metric Method Mean ± Std 95% CI Stat (vs SCaSML) Mean ± Std 95% CI Stat (vs SCaSML)

Rel L2
PINN 9.83e-3 ± 2.6e-4 [9.45e-3, 1.02e-2] t=14.3, p=2e-07 1.10e-2 ± 3.0e-4 [1.04e-2, 1.13e-2] t=25.9, p=9e-10
MLP 8.62e-2 ± 2.6e-3 [8.20e-2, 9.05e-2] t=92.6, p=1e-14 9.01e-2 ± 1.2e-3 [8.78e-2, 9.17e-2] t=249, p=1e-18
SCaSML 9.19e-3 ± 2.8e-4 [8.63e-3, 9.61e-3] – 1.00e-2 ± 2.8e-4 [9.61e-3, 1.03e-2] –

L1
PINN 1.20e-2 ± 3.2e-4 [1.14e-2, 1.24e-2] t=14.1, p=2e-07 1.36e-2 ± 4.0e-4 [1.29e-2, 1.41e-2] t=16.7, p=4e-08
MLP 9.37e-2 ± 2.6e-3 [8.97e-2, 9.77e-2] t=102, p=4e-15 9.77e-2 ± 1.9e-3 [9.51e-2, 1.01e-1] t=142, p=2e-16
SCaSML 1.14e-2 ± 3.4e-4 [1.07e-2, 1.19e-2] – 1.24e-2 ± 2.8e-4 [1.20e-2, 1.28e-2] –

L2 (sq)
PINN 2.48e-4 ± 1.3e-5 [2.29e-4, 2.68e-4] t=14.2, p=2e-07 3.09e-4 ± 1.7e-5 [2.79e-4, 3.29e-4] t=24.3, p=2e-09
MLP 1.91e-2 ± 1.1e-3 [1.73e-2, 2.08e-2] t=53.1, p=1e-12 2.09e-2 ± 4.9e-4 [1.98e-2, 2.15e-2] t=132, p=4e-16
SCaSML 2.17e-4 ± 1.3e-5 [1.91e-4, 2.35e-4] – 2.57e-4 ± 1.4e-5 [2.38e-4, 2.72e-4] –

140d 160d
Metric Method Mean ± Std 95% CI Stat (vs SCaSML) Mean ± Std 95% CI Stat (vs SCaSML)

Rel L2
PINN 3.23e-2 ± 5.4e-4 [3.14e-2, 3.34e-2] t=47.4, p=4e-12 3.59e-2 ± 8.1e-4 [3.47e-2, 3.71e-2] t=72.4, p=9e-14
MLP 8.96e-2 ± 2.3e-3 [8.69e-2, 9.47e-2] t=80.6, p=4e-14 8.74e-2 ± 2.5e-3 [8.28e-2, 9.17e-2] t=62.1, p=4e-13
SCaSML 3.00e-2 ± 4.8e-4 [2.92e-2, 3.09e-2] – 3.37e-2 ± 8.2e-4 [3.24e-2, 3.48e-2] –

L1
PINN 4.05e-2 ± 8.0e-4 [3.91e-2, 4.21e-2] t=33.5, p=9e-11 4.50e-2 ± 9.5e-4 [4.36e-2, 4.67e-2] t=35.5, p=5e-11
MLP 9.89e-2 ± 2.3e-3 [9.53e-2, 1.04e-1] t=84.2, p=2e-14 9.61e-2 ± 2.3e-3 [9.34e-2, 1.01e-1] t=62.9, p=3e-13
SCaSML 3.77e-2 ± 6.5e-4 [3.64e-2, 3.88e-2] – 4.22e-2 ± 9.9e-4 [4.06e-2, 4.39e-2] –

L2 (sq)
PINN 2.67e-3 ± 8.7e-5 [2.53e-3, 2.85e-3] t=41.8, p=1e-11 3.31e-3 ± 1.5e-4 [3.10e-3, 3.53e-3] t=68.9, p=1e-13
MLP 2.06e-2 ± 1.0e-3 [1.93e-2, 2.30e-2] t=55.5, p=1e-12 1.96e-2 ± 1.1e-3 [1.77e-2, 2.15e-2] t=46.9, p=5e-12
SCaSML 2.31e-3 ± 7.0e-5 [2.19e-3, 2.44e-3] – 2.91e-3 ± 1.4e-4 [2.70e-3, 3.10e-3] –

G.6 POINTWISE ERROR REDUCTION ANALYSIS

To further investigate the robustness of our method, we present scatter plots visualizing the pointwise
error difference between the baseline methods (Surrogate and Naive MLP) and our proposed SCaSML.
The settings are still the same with Appendix G.1.

For a given test point x, we calculate the difference in absolute error:

∆Error(x) = |ErrorBaseline(x)| − |ErrorSCaSML(x)|

In the following figures:

• Red points (∆Error > 0) indicate locations where SCaSML has lower error than the
baseline.

• Blue points (∆Error < 0) indicate locations where SCaSML has higher error.

We provide comparisons for both baselines: Surrogate vs. SCaSML (showing the correction of the
initial model) and Naive MLP vs. SCaSML (showing the benefit of using the surrogate as a control

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

PINN MLP SCaSML
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
ea

n
Re

la
tiv

e
L2

 E
rro

r
-50.5%

-96.3%

d = 20

PINN MLP SCaSML
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-21.8%

-81.8%

d = 40

PINN MLP SCaSML
0.00

0.05

0.10

0.15

0.20

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-23.8%

-86.8%

d = 60

PINN MLP SCaSML
0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-16.1%

-81.3%

d = 80

(a) SCaSML using Quadrature MLP

PINN MLP SCaSML
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-65.8%

-95.2%

d = 20

PINN MLP SCaSML
0.00

0.02

0.04

0.06

0.08

0.10

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-28.2%

-71.7%

d = 40

PINN MLP SCaSML
0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-27.2%

-75.6%

d = 60

PINN MLP SCaSML
0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-16.3%

-52.6%

d = 80

(b) SCaSML using full-history MLP

Figure 19: Relative L2 error improvement (%) of SCaSML over the baseline PINN surrogate on the
viscous Burgers’ equation for d = 20, 40, 60, 80.

GP MLP SCaSML
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Re
la

tiv
e

L2
 E

rro
r

-52.2%

-56.3%

d = 20

GP MLP SCaSML
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Re
la

tiv
e

L2
 E

rro
r

-48.5%

-54.7%

d = 40

GP MLP SCaSML
0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

L2
 E

rro
r

-43.5%
-46.2%

d = 60

GP MLP SCaSML
0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

L2
 E

rro
r

-39.5% -40.6%

d = 80

(a) SCaSML using Quadrature MLP

GP MLP SCaSML
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Re
la

tiv
e

L2
 E

rro
r

-57.5%

-67.2%

d = 20

GP MLP SCaSML
0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e

L2
 E

rro
r

-52.8%

-61.2%

d = 40

GP MLP SCaSML
0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

L2
 E

rro
r

-46.7%
-50.3%

d = 60

GP MLP SCaSML
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
la

tiv
e

L2
 E

rro
r

-42.7%

-49.5%

d = 80

(b) SCaSML using full-history MLP

Figure 20: Relative L2 error improvement (%) of SCaSML over the baseline Gaussian Process
surrogate on the viscous Burgers’ equation for d = 20, 40, 60, 80.

PINN MLP SCaSML
0

1

2

3

4

5

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-30.6%

-99.0%

d = 100

PINN MLP SCaSML
0

1

2

3

4

5

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-29.3%

-98.8%

d = 120

PINN MLP SCaSML
0

1

2

3

4

5

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-30.8%

-98.7%

d = 140

PINN MLP SCaSML
0

1

2

3

4

5

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-11.4%

-98.1%

d = 160

(a) SCaSML using full-history MLP

Figure 21: Relative L2 error improvement (%) of SCaSML (full-history) over the baseline PINN
surrogate on the LQG control problem for d = 100, 120, 140, 160.

PINN MLP SCaSML
0.00

0.02

0.04

0.06

0.08

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-6.2%

-89.7%

d = 100

PINN MLP SCaSML
0.00

0.02

0.04

0.06

0.08

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-5.9%

-87.8%

d = 120

PINN MLP SCaSML
0.00

0.02

0.04

0.06

0.08

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-7.2%

-67.3%

d = 140

PINN MLP SCaSML
0.00

0.02

0.04

0.06

0.08

M
ea

n
Re

la
tiv

e
L2

 E
rro

r

-6.7%

-64.2%

d = 160 u
(a) SCaSML using full-history MLP

Figure 22: Relative L2 error improvement (%) of SCaSML (full-history) over the baseline PINN
surrogate on the diffusion reaction equation for d = 100, 120, 140, 160.

variate). Across all experiments, the dominance of red points confirms that SCaSML systematically
improves accuracy locally across the high-dimensional domain.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 827
Negative count: 373
Positive sum: 23.82

Negative sum: -6.77

0.906

0.000

0.906

Error Difference (PINN - SCaSM
L)

d = 10

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 873
Negative count: 327
Positive sum: 73.22

Negative sum: -15.20

1.32

0.00

1.32

Error Difference (PINN - SCaSM
L)

d = 20

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 788
Negative count: 412
Positive sum: 109.05

Negative sum: -42.78

1.545

0.000

1.545

Error Difference (PINN - SCaSM
L)

d = 30

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 904
Negative count: 296
Positive sum: 445.03

Negative sum: -59.68

3.052

0.000

3.052

Error Difference (PINN - SCaSM
L)

d = 60

(a) Baseline PINN vs. SCaSML

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1130
Negative count: 69

Positive sum: 180.94
Negative sum: -1.29

0.906

0.000

0.906

Error Difference (M
LP - SCaSM

L)

d = 10

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4
Sp

at
ia

l D
im

en
sio

n
2

Positive count: 1057
Negative count: 143
Positive sum: 236.42
Negative sum: -5.58

1.32

0.00

1.32

Error Difference (M
LP - SCaSM

L)

d = 20

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 966
Negative count: 233
Positive sum: 242.35

Negative sum: -24.69

1.545

0.000

1.545

Error Difference (M
LP - SCaSM

L)

d = 30

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 885
Negative count: 315
Positive sum: 299.28

Negative sum: -65.34

3.052

0.000

3.052

Error Difference (M
LP - SCaSM

L)

d = 60

(b) Naive MLP vs. SCaSML

Figure 23: Pointwise error differences for the Linear Convection-Diffusion equation. SCaSML
outperforms both the pre-trained PINN and the naive MLP solver across all dimensions.

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1075
Negative count: 125

Positive sum: 5.02
Negative sum: -0.11

0.295

0.000

0.295

Error Difference (PINN - SCaSM
L)

d = 20

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1107
Negative count: 93
Positive sum: 9.47

Negative sum: -0.22

0.341

0.000

0.341

Error Difference (PINN - SCaSM
L)

d = 40

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1075
Negative count: 125

Positive sum: 8.82
Negative sum: -0.33

0.3824

0.0000

0.3824

Error Difference (PINN - SCaSM
L)

d = 60

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1073
Negative count: 126

Positive sum: 9.61
Negative sum: -0.64

0.3109

0.0000

0.3109

Error Difference (PINN - SCaSM
L)

d = 80

(a) Baseline PINN vs. SCaSML

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1157
Negative count: 42
Positive sum: 39.23

Negative sum: -0.09

0.295

0.000

0.295

Error Difference (M
LP - SCaSM

L)

d = 20

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 894
Negative count: 306
Positive sum: 41.11

Negative sum: -4.14

0.341

0.000

0.341

Error Difference (M
LP - SCaSM

L)

d = 40

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 904
Negative count: 296
Positive sum: 47.06

Negative sum: -3.82

0.3824

0.0000

0.3824

Error Difference (M
LP - SCaSM

L)

d = 60

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 731
Negative count: 468
Positive sum: 38.02

Negative sum: -10.80

0.3109

0.0000

0.3109

Error Difference (M
LP - SCaSM

L)

d = 80

(b) Naive MLP vs. SCaSML

Figure 24: Pointwise error differences for the Viscous Burgers’ equation (PINN Surrogate). We
observe that SCaSML corrects the PINN’s error (top) and significantly outperforms the standalone
MLP (bottom).

G.7 PERFORMANCE COMPARISON UNDER FIXED COMPUTATIONAL BUDGETS

A central question regarding inference-time scaling is whether the performance gain is simply a
result of increased wall-clock time, or if the SCaSML framework utilizes computational resources
more efficiently than standard training. To address this, we conducted a Fixed Computational Budget
analysis.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 992
Negative count: 202
Positive sum: 57.73

Negative sum: -3.30

0.527

0.000

0.527

Error Difference (GP - SCaSM
L)

d = 20

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1018
Negative count: 181
Positive sum: 69.07

Negative sum: -4.62

0.843

0.000

0.843

Error Difference (GP - SCaSM
L)

d = 40

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1049
Negative count: 148
Positive sum: 83.95

Negative sum: -4.85

0.865

0.000

0.865

Error Difference (GP - SCaSM
L)

d = 60

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1055
Negative count: 143
Positive sum: 88.00

Negative sum: -5.03

1.836

0.000

1.836

Error Difference (GP - SCaSM
L)

d = 80

(a) Baseline GP vs. SCaSML (Full-History)

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 949
Negative count: 243
Positive sum: 71.82

Negative sum: -5.58

0.527

0.000

0.527

Error Difference (M
LP - SCaSM

L)

d = 20

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 844
Negative count: 356
Positive sum: 75.75

Negative sum: -12.84

0.843

0.000

0.843

Error Difference (M
LP - SCaSM

L)

d = 40

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 681
Negative count: 515
Positive sum: 74.62

Negative sum: -28.12

0.865

0.000

0.865

Error Difference (M
LP - SCaSM

L)

d = 60

0.4 0.2 0.0 0.2 0.4
Spatial Dimension 1

0.4

0.2

0.0

0.2

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 613
Negative count: 584
Positive sum: 76.05

Negative sum: -35.86

1.836

0.000

1.836

Error Difference (M
LP - SCaSM

L)

d = 80

(b) Naive MLP vs. SCaSML (Full-History)

Figure 25: Pointwise error differences for the Viscous Burgers’ equation (Gaussian Process Surro-
gate).

0.2 0.0 0.2
Spatial Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 933
Negative count: 267
Positive sum: 82.62

Negative sum: -18.82

12.54

0.00

12.54

Error Difference (PINN - SCaSM
L)

d = 100

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Spatial Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1023
Negative count: 177
Positive sum: 94.63

Negative sum: -13.05

12.6

0.0

12.6

Error Difference (PINN - SCaSM
L)

d = 120

0.2 0.1 0.0 0.1 0.2
Spatial Dimension 1

0.2

0.1

0.0

0.1

0.2

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1088
Negative count: 106
Positive sum: 103.96
Negative sum: -7.80

12.66

0.00

12.66

Error Difference (PINN - SCaSM
L)

d = 140

0.3 0.2 0.1 0.0 0.1 0.2
Spatial Dimension 1

0.2

0.1

0.0

0.1

0.2

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 830
Negative count: 363
Positive sum: 76.81

Negative sum: -32.02

12.71

0.00

12.71

Error Difference (PINN - SCaSM
L)

d = 160

(a) Baseline PINN vs. SCaSML

0.2 0.0 0.2
Spatial Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1199
Negative count: 1

Positive sum: 14431.09
Negative sum: -0.10

12.54

0.00

12.54

Error Difference (M
LP - SCaSM

L)

d = 100

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Spatial Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1200
Negative count: 0

Positive sum: 14487.93
Negative sum: 0.00

12.6

0.0

12.6

Error Difference (M
LP - SCaSM

L)

d = 120

0.2 0.1 0.0 0.1 0.2
Spatial Dimension 1

0.2

0.1

0.0

0.1

0.2

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1194
Negative count: 0

Positive sum: 14493.43
Negative sum: 0.00

12.66

0.00

12.66

Error Difference (M
LP - SCaSM

L)

d = 140

0.3 0.2 0.1 0.0 0.1 0.2
Spatial Dimension 1

0.2

0.1

0.0

0.1

0.2

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1193
Negative count: 0

Positive sum: 14473.37
Negative sum: 0.00

12.71

0.00

12.71

Error Difference (M
LP - SCaSM

L)

d = 160

(b) Naive MLP vs. SCaSML

Figure 26: Pointwise error differences for the LQG control problem. The contrast in the bottom
row highlights that the naive MLP fails in high dimensions, whereas SCaSML (stabilized by the
surrogate) performs well.

We define a ”unit budget” based on a baseline number of training iterations (e.g., 2,000 iterations
for a PINN), other settings are still the same with G.1. We then scale this budget by factors of
×1,×2, . . . ,×16. For each budget level, we compare three allocation strategies:

1. Pure Training (Baseline PINN): The entire time budget is allocated to training the neural
network. A budget of ×k implies training for k ×Nbase iterations.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Spatial Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 604
Negative count: 596

Positive sum: 4.59
Negative sum: -4.44

0.605

0.000

0.605

Error Difference (PINN - SCaSM
L)

d = 100

0.4 0.2 0.0 0.2
Spatial Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 660
Negative count: 540

Positive sum: 5.32
Negative sum: -4.15

0.555

0.000

0.555

Error Difference (PINN - SCaSM
L)

d = 120

0.2 0.1 0.0 0.1 0.2
Spatial Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 777
Negative count: 423

Positive sum: 7.21
Negative sum: -3.71

0.803

0.000

0.803

Error Difference (PINN - SCaSM
L)

d = 140

0.3 0.2 0.1 0.0 0.1 0.2
Spatial Dimension 1

0.2

0.1

0.0

0.1

0.2

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 783
Negative count: 417

Positive sum: 7.26
Negative sum: -3.66

0.783

0.000

0.783

Error Difference (PINN - SCaSM
L)

d = 160

(a) Baseline PINN vs. SCaSML

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Spatial Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1039
Negative count: 161
Positive sum: 104.45
Negative sum: -1.58

0.605

0.000

0.605

Error Difference (M
LP - SCaSM

L)

d = 100

0.4 0.2 0.0 0.2
Spatial Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 1034
Negative count: 166
Positive sum: 104.80
Negative sum: -1.85

0.555

0.000

0.555

Error Difference (M
LP - SCaSM

L)

d = 120

0.2 0.1 0.0 0.1 0.2
Spatial Dimension 1

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 839
Negative count: 361
Positive sum: 85.89

Negative sum: -12.56

0.803

0.000

0.803
Error Difference (M

LP - SCaSM
L)

d = 140

0.3 0.2 0.1 0.0 0.1 0.2
Spatial Dimension 1

0.2

0.1

0.0

0.1

0.2

Sp
at

ia
l D

im
en

sio
n

2

Positive count: 808
Negative count: 392
Positive sum: 84.14

Negative sum: -15.12

0.783

0.000

0.783

Error Difference (M
LP - SCaSM

L)

d = 160

(b) Naive MLP vs. SCaSML

Figure 27: Pointwise error differences for the Diffusion-Reaction equation.

2. Pure Simulation (Naive MLP): The entire time budget is allocated to generating Monte
Carlo paths for the MLP solver.

3. Hybrid Allocation (SCaSML): This represents our proposed strategy. We allocate a small
fraction of the budget (specifically 1/(d+1)) to training a ”weak” surrogate, and allocate the
remaining majority of the budget to inference-time correction via the Structural-preserving
Law of Defect.

This setup ensures a fair comparison where all methods consume approximately the same total
wall-clock time (Training Time + Inference Time). We performed this analysis on the Linear
Convection-Diffusion (LCD) equation (d = 10, 20) and the Viscous Burgers (VB) equation (d = 20)
using the full-history SCaSML variant.

The results are visualized in Figure 28.

100 101

Computing Budget (×baseline)

10 2

Re
la

tiv
e

L2
 E

rro
r

PINN
MLP
SCaSML

(a) LCD (d = 10)

100 101

Computing Budget (×baseline)

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

Re
la

tiv
e

L2
 E

rro
r

PINN
MLP
SCaSML

(b) LCD (d = 20)

100 101

Computing Budget (×baseline)

10 2

10 1

Re
la

tiv
e

L2
 E

rro
r

PINN
MLP
SCaSML

(c) VB-PINN (d = 20)

Figure 28: Error vs. Computational Budget. The x-axis represents the total computational budget
multiplier (log scale), and the y-axis represents the Relative L2 Error (log scale). SCaSML (teal
triangles) consistently achieves lower error than the Baseline PINN (black circles) and Naive MLP
(gray squares) for the same total cost.

As shown in Figure 28, the SCaSML error curve consistently lies below the PINN training curve.
This confirms that allocating marginal compute to inference-time correction yields a higher return on
investment (ROI) than allocating it to further training.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Specifically, for the Viscous Burgers equation (d = 20), we observe that training the PINN for
significantly longer (moving right on the x-axis) results in diminishing returns due to the optimiza-
tion difficulty of high-frequency error components. In contrast, SCaSML leverages the rigorous
convergence rate of the Monte Carlo correction to reduce error rapidly. This empirically validates
our theoretical claim that the hybrid ML+MC scaling law (O(m−γ−1/2)) is superior to the pure ML
scaling law (O(m−γ)).

G.8 PERFORMANCE COMPARISON: LARGE PINN VS. SCASML CORRECTION

A critical question in SciML is whether the computational budget is better spent on training a larger,
more expressive neural network (increasing model capacity) or on post-hoc inference-time correction
(SCaSML). To address this, we conducted a second Fixed Budget analysis where we scaled the model
architecture while keeping the number of training iterations fixed.

We define a ”unit budget” (B = 1) corresponding to our standard PINN configuration: a fully
connected network with width Wbase = 50 and depth Dbase = 5. As the budget B increases by
factors of ×1,×2,×4, we scale the network architecture to increase its capacity. Specifically, the
scaled width WB and depth DB are defined as:

WB = ⌊Wbase ·
√
B⌋, DB = max(Dbase, ⌊Dbase + log2(B)⌋). (121)

This scaling strategy ensures that the network’s parameter count and computational cost per iteration
grow with the budget, allowing us to test the limits of model capacity.

We compare three strategies under these scaling rules using the Linear Convection-Diffusion (d =
10, 20) and Viscous Burgers (d = 20) equations:

1. Large PINN (Model Scaling): We train the scaled network architecture (WB , DB) for a
fixed number of iterations (Niter = 2000). The optimizer is Adam with a learning rate of
7× 10−4 and Glorot normal initialization. The increased computational cost arises entirely
from the more expensive forward and backward passes of the larger model.

2. SCaSML (Inference Correction): We employ the SCaSML framework where the surrogate
backbone utilizes the available budget. Crucially, the method allocates resources to the
inference-time Monte Carlo correction (using the full-history MLP solver with basis M = 10
and levels N = 2) rather than relying solely on the surrogate’s capacity.

3. Naive MLP (Pure Simulation): The entire time budget is allocated to generating Monte
Carlo paths for the MLP solver, serving as a pure simulation baseline.

The results (Figure 29) demonstrate that simply increasing the PINN’s capacity yields diminishing
returns; the model hits a ”data efficiency wall” where additional parameters do not translate to
proportionally lower errors for high-frequency defects. In contrast, SCaSML consistently achieves
lower error for the same total compute time, proving that inference-time correction is a more efficient
user of marginal compute than model scaling for these high-dimensional problems.

1.0
×

2.0
×

4.0
×

Computing Budget (×baseline)

10 1

Re
la

tiv
e

L2
 E

rro
r

PINN
MLP
SCaSML

(a) LCD (d = 10)

1.0
×

2.0
×

4.0
×

Computing Budget (×baseline)

10 1Re
la

tiv
e

L2
 E

rro
r

PINN
MLP
SCaSML

(b) LCD (d = 20)

1.0
×

2.0
×

4.0
×

Computing Budget (×baseline)

10 3

10 2

10 1

Re
la

tiv
e

L2
 E

rro
r

PINN
MLP
SCaSML

(c) VB-PINN (d = 20)

Figure 29: Large PINN vs. SCaSML. Comparison of error rates when the computational budget is
used to scale up the PINN architecture (black) versus performing inference-time correction (teal).

51

	Introduction
	Methodology
	gray!80!blackWarm Up: The Structural-preserving Law of Defect for Linear Parabolic PDEs
	Extension to Semi-linear Parabolic PDEs
	Simulating Structural-preserving Law of Defect using Multilevel Picard Iteration
	Provably Accelerated Convergence

	Numerical Results
	Linear Convection-Diffusion Equation
	Viscous Burgers Equation
	High-Dimensional Hamilton-Jacobi-Bellman Equation
	Diffusion-Reaction Equation with an Oscillating Solution

	Conclusion and Discussion
	Notation
	General Conventions and Geometry
	Norms and Function Spaces
	PDE Formulation and Stochastic Processes
	Defect Formulation (The SCaSML Object)

	Preliminary
	Surrogate Models for PDEs
	Physics-Informed Neural Network (PINN)
	Gaussian Processes

	Quadrature Multilevel Picard Iterations and full-history Multilevel Picard Iterations
	Implementing Multilevel Picard Iterations

	Algorithm
	Proof Settings
	Mathematical Framework and Definitions
	Problem Setup and Regularity Assumptions
	Stochastic Basis
	The Target PDE
	Regularity Assumptions

	Surrogate Model and Defect Properties
	Surrogate Regularity
	The Structural-Preserving Law of Defect
	orange Regularity Estimations

	Proof of Full-History Multilevel Picard Iteration
	Probabilistic Setup and Time Sampling
	Relaxed Surrogate Assumptions
	Main Results
	Sketch of Proof
	Bound on Global L2 Error
	Bound on Computational Complexity

	Proof for Quadrature Multilevel Picard Iteration
	Surrogate Accuracy and Integrability Assumptions
	Main Results
	Bound on Global L2 Error
	Bound on Computational Complexity

	Auxiliary Experiments results
	Violin Plot for Error distribution
	Inference Time Scaling Curve
	Improved Scaling Law of SCaSML Algorithms
	Statistical Analysis of Error Reduction and Confidence Intervals
	Experimental Design and Methodology

	Relative L2 Error Improvement
	Pointwise Error Reduction Analysis
	Performance Comparison Under Fixed Computational Budgets
	Performance Comparison: Large PINN vs. SCaSML Correction

