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ABSTRACT

Solving high-dimensional partial differential equations (PDEs) is a critical chal-
lenge where modern data-driven solvers often lack reliability and rigorous error
guarantees. We introduce Simulation-Calibrated Scientific Machine Learning
(SCaSML), a framework that systematically improves pre-trained PDE solvers at
inference time without any retraining. Our core idea is to

derive a new PDE, which we term the St ructural-preserving
Law of Defect, that precisely describes the error of a given surrogate model.
Because this defect PDE retains the structure of the original problem, we can solve
it efficiently with traditional stochastic simulators, yielding a targeted correction
to the initial machine-learned solution. We prove that SCaSML achieves a faster
convergence rate, with a final error bounded by the product of the surrogate and
simulation errors. On challenging PDEs up to 160 dimensions, SCaSML reduces
the error of various surrogate models, including PINNs and Gaussian Processes,
by 20-80%. SCaSML provides a principled method to fuse the speed of machine
learning with the rigor of numerical simulation, enhancing the trustworthiness of
Al for scientific discovery.

1 INTRODUCTION

Solving high-dimensional partial differential equations (PDEs) is a fundamental challenge across
science and engineering. Many critical phenomena are modeled by semi-linear parabolic PDEs whose
dimensionality scales with the number of underlying components, a challenge often termed the curse
of dimensionality. Key examples include the imaginary-time Schrédinger equation in quantum many-
body systems, nonlinear Black—Scholes equations in finance, and the Hamilton—Jacobi—Bellman
equation in optimal control (Bellmanl|1954)). Traditional numerical methods, such as finite element
and finite difference schemes, become computationally intractable in high dimensions (Larsson &
Thomeéel 2003). While stochastic simulation methods can be effective, they often suffer from high
variance (Briand & Labart, 2014). In response, Scientific Machine Learning (SciML) has emerged
as a powerful alternative, using neural networks and other data-driven models to approximate PDE
solutions (Karniadakis et al., [20215|[Han et al., 2018a; Raissi et al.,[2017). However, the ”black-box”
nature of these models can introduce subtle biases, and they often lack the rigorous error guarantees
of their traditional counterparts, raising concerns about their reliability for safety-critical applications.

Recent breakthroughs in large language models (LLMs) have shown that allocating additional
computational resources at inference time can dramatically improve output quality, a phenomenon
known as inference-time scaling (Snell et al., [2024; |Wei et al., 2022)). This success inspires our
central research question:

Can we leverage additional computation at inference time to systematically refine and provably
improve a pre-trained surrogate model—allocating more compute to harder PDE states just as LLMs
spend more search or planning on harder queries—without any retraining or fine-tuning?



Under review as a conference paper at ICLR 2026

In this work, we provide an affirmative answer by introducing Simulation-Calibrated Scientific
Machine Learning (SCaSML), a novel physics-informed framework for improving SciML solvers at
inference time. We focus on a broad class of semi-linear parabolic PDEs of the form:

{g: + Lu+ F(u,0"Vu) =0, on[0,T) x R
u(T,y) = g(y), on RY,

where Lu := (u, Vu) + $Tr(o "Hess(u)o) is a second-order linear differential operator. SCaSML
operates in two stages. First, a standard SciML solver 4 (e.g., a PINN (Raissi et all[2017), Gaus-
sian Process (Chen et al.| [2021)), or Tensor Network (Richter et al.| [2021))) is trained to find an
approximate solution. At inference time, rather than directly accepting u, we invoke a defect—
correction method (Bank & Weiser] [1985] [Stetter] [1978} [Bohmer et al] [1984) to derive a gov-
erning equation for the approximation error—its defect—defined as @ := u — 4. We term this
the Structural-preserving Law of Defect (Figure[l). Crucially, unlike classical grid-
based defect correction which is intractable in high dimensions, we show that this new PDE describing
the exact defect inherits the semi-linear structure of the original problem. This structural preservation
allows us to solve it efficiently using well-established stochastic simulation algorithms based on
the Feynman—Kac formula. This simulation step acts as a targeted correction, leveraging additional
compute to refine the initial surrogate prediction.

ey

Our main contributions are summarized as follows:

* We propose SCaSML, the first physics-informed inference-time scaling framework that improves
a pre-trained Scisurrogate model at inference-time, without any retraining or fine-tuning.
SCaSML uses defect correction method that corrects a pre-trained surrogate SCiML model by
deriving and solving a new PDE via a branching Monte Carlo Simulation that approximates its
error, which we call the Structural-preserving Law of Defect (]Z]) Notably, this
characterization of the defect is, to our knowledge, the first derivation that preserves the semi-linear
structure essential for high-dimensional Monte Carlo solvers.

* We theoretically prove that the final error of SCaSML is bounded by the product of the surro-
gate model’s error and the simulation error. Analogous to the classical defect-correction litera-
ture—where each correction step systematically improves the convergence rate— we establish
an analogous result for our Monte-Carlo defect-correction procedure at the first time. The
improved convergence rate is corroborated empirically in Section 3] with further comprehensive
findings presented in Appendix [G.3]

* We conduct extensive numerical experiments on challenging high-dimensional PDEs (up to 160
dimensions). Our results show that SCaSML significantly reduces approximation errors by 20-80%
across various surrogate models with high statistical significance (p < 0.001), demonstrating
its flexibility, practical efficacy and potential to mitigate the curse of dimensionality. We also
demonstrate that, with inference-time scaling, a smaller base PINN can outperform a larger PINN
under the same inference-time compute budget by spending its additional computation on targeted
refinement rather than parameter count. This enables elastic compute: users can trade inference
time for accuracy on demand.

2 METHODOLOGY

The core of our SCaSML framework is the derivation of a new PDE that describes the error of a pre-
trained surrogate model. We term this the St ructural-preserving Law of Defect. By
solving this auxiliary PDE at inference time, we can compute a precise correction to the surrogate’s
prediction. To build intuition, we first introduce this concept in the context of linear parabolic
equations before extending it to the general semi-linear case.

2.1 WARM UP: THE STRUCTURAL-PRESERVING LAW OF DEFECT FOR LINEAR
PArABOLIC PDES

Let us begin with a high-dimensional linear parabolic PDE, a simpler setting that clarifies our core
idea:
{gj + (u, Vyu) + %Tr(o'THessyu a) = f(r,y), on[0,T)x R% )
U(T,y) = g(y)7 on Rd.
Suppose we have a pre-trained surrogate model @ that approximates the true solution w. This surrogate
is inevitably imperfect, producing a residual when plugged into the PDE. Our goal is to run a defect-
correction method at inference time. The defect—correction method (Bohmer et al.} [1984} [Stetter}
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Figure 1: Overview of the SCaSML framework. (a) A pre-trained surrogate model @ provides
an initial, approximate solution to the PDE. At inference time, SCaSML calculates the defect
1 = u — 4 via a stochastic simulation and adds it back to the surrogate prediction, yielding a more
accurate final solution v = @ + 4. (b) The Structural-preserving Law of Defect is
derived by subtracting the PDE approximately satisfied by the surrogate @ from the original PDE.
This process yields a new semi-linear PDE that describes the defect u, enabling its estimation through
simulation.

19°/8) is a classical numerical strategy that improves an approximate solution by formulating and
solving an equation for its residual-induced error. The first step is to find a new equation that describes
the defect u(r,y) := u(r,y) — u(r, y), which represents the true, unknown error. To achieve this,
we define this residual as:

o1 1
e(r,y) == f(r,y) — (8_1: + {1 Vi) + 3 Tr(aT Hess, ua)) . 3)

By subtracting the equation for @ from (2)), we arrive at the following governing law.

Definition 2.1 (Structural-preserving Law of Defect for Linear PDEs). The defect i := u — 1 is the
solution to the linear parabolic PDE:

g:f + (u, Vyu) + %’IT(UT Hess,, 710) =e(r,y), on [OC,lT) x RY, @)

This Structural-preserving Law of Defect allows us to solve for the error u directly.
Since (@) is a linear PDE, its solution can be expressed probabilistically via the Feynman—Kac
formula:

T
i(s,2) = B[ (9003 — (. X37) + [ elt. ;)] 5)
where {X“},cs,) is the stochastic process associated with the PDE’s linear operator. This

representation allows us to estimate the defect @ using Monte Carlo simulation.

Remark 2.2 (Regards Training and Inference Separation). Training corresponds to solving the PDE
globally on the entire domain, learning a map that approximates the solution everywhere. In contrast,
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inference-time correction solves the PDE only at a specific, user-specified state. This separation is
natural and parallels standard practices in machine learning: a base model is trained once to answer
all queries, while computationally intensive refinement (like beam search or planning) is invoked
at inference time only when high precision is required for a specific input. This separation enables
“elastic compute,” allowing users to trade inference time for accuracy on demand without incurring
the massive fixed cost of retraining the global model.

Intuition for Faster Convergence. Why does this two-step process converge faster? The variance
of the Monte Carlo estimator for % in depends on the magnitude of the integrand, which is
primarily the surrogate’s residual e. A more accurate surrogate (i.e., smaller €) leads to lower
simulation variance. If the surrogate achieves an error of (@) ~ m~7 using m training points, the
residual € will be of a similar order, and the variance of our Monte Carlo estimator will be of order
m~27. By averaging over m new Monte Carlo paths at inference time, the final statistical error
becomes \/m~27/m = m~7~1/2_ Thus, for a total budget of 2m function evaluations, SCaSML
achieves a faster convergence rate than both the surrogate (m~") and a naive Monte Carlo solver
(m— 1/2 ) )

Why Use Monte Carlo for Correction? Neural networks and other common surrogates exhibit
a spectral bias, preferentially learning low-frequency (smooth) components of the solution first
(Rahaman et al.| 2019). Consequently, the residual error e is often a high-frequency, irregular function.
While challenging for many function approximators, Monte Carlo methods are perfectly suited for
this scenario, as their convergence rate is independent of the integrand’s smoothness. This makes
Monte Carlo an ideal choice for the correction step, as it can efficiently average out the complex error
signal left behind by the surrogate model.

2.2 EXTENSION TO SEMI-LINEAR PARABOLIC PDES
We now extend the Monte-Carlo based inference time defect-correction procedure to the general
semi-linear PDE in (T). Let @ be a surrogate solution. We define its residual with respect to the PDE
dynamics and the terminal condition as:
{e(r, y) =L + La+ F(a,0" Vi),
9(y) = g(y) — (T’ y).
By subtracting (6) from the original PDE in (T)), we obtain the governing law for the defect & = u — 4.

(6)

Fact 2.3 (Structural-preserving Law of Defect for Semi-linear PDEs). The defect i(r,y) := u(r,y)—
@(r, y) is the solution to the following semi-linear parabolic equation:

{% + Lit+ F(it,0TV,i) =0, on0,T) x RY, D

’LVL(T’ y) = g(y)v on Rda

where the modified nonlinear term F' is given by F(ii,0 "V, it) := F(it + i1, 0 (Vi + Vi) —
F(t,0 "V, ) + e

Notably, the Structural-preserving Law of Defect () retains a semi-linear struc-
ture. This is the key property that allows us to apply powerful stochastic solvers, such as the
Multilevel Picard (MLP) iteration (Hutzenthaler et al.,|2019)), to estimate the defect % and correct the
initial surrogate .

How does the Structural-preserving Law of Defect differ from classical defect-
correction methods? Classical finite element methods admit a well-characterized asymptotic error
expansion[Strang et al] (T973), which enables defect-correction schemes to systematically remove the
leading error term and improve convergence rates (Zienkiewicz & Zhu] [1992aljb} [Bank & Weiser
[[983). In contrast, no such asymptotic structure is available for neural networks: NN approximations
lack any mesh-refinement hierarchy, their errors do not exhibit a polynomial expansion with respect
to a single resolution parameter, and the optimization-induced approximation error provides no
perturbative decomposition. A different family of debiasing techniques in numerical PDEs relies
on iterative solvers such as Newton methods (Stetter] [[978} [Dutt et al] 2000} [1994} [B6hmer}
198T) and quasi-Newton methods (Jameson et al} [[974} [Heinrichs| [1996). However, these methods
present two fundamental limitations in our setting. First, iterative updates produce only approximate
corrections, whereas our law of defect is an exact analytical identity that delivers a closed-form
unbiased correction in a single step. Second, embedding iterative methods into a Monte—Carlo
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or Feynman—Kac framework is highly inefficient: each iteration requires recomputing residuals
and Jacobian actions through additional Monte—Carlo estimators, producing a nested simulation

hierarchy whose convergence rate rapidly deteriorates—from the standard O(N ~1/2) rate for a single
Monte—Carlo level, to O(N ~1/4) for a second iteration, O(NN ~1/8) for a third, and so on as more

levels are introduced. Practitioners are therefore forced to balance early-termination errors against
the rapidly declining statistical efficiency of nested Monte—Carlo estimates, making these approaches
both computationally expensive and numerically unstable.

Practical Scenarios In many applications, the quantity of interest is required only at a single
state rather than across the full domain. For example, in optimal control and financial pricing (e.g.,
nonlinear Black—Scholes (Eskiizmirliler et al] 2021}, [Santos & Ferreiral [2024)), practitioners need
the value function and its gradient only at the current state to determine the next action or hedge;
forward simulations can then be used to compute the Bellman error and correct the current decision.
In rare-event analysis and committor problems in molecular dynamics, neural committor estimators
(Khoo et al] 2019 [Li et al 2019 [Hua et al| 2024} [Lucente et al.} 2019) can be refined using a small
number of targeted simulations initiated from designated configurations. In goal-oriented estimation
(Becker & Rannacher] [T996; [2001])), the objective is often a specific functional of the solution rather
than the full field. In all such settings, training a surrogate to high global accuracy is computationally
wasteful. Our method uses the surrogate for a fast initial approximation and then applies a targeted
Monte Carlo refinement at inference time, allocating computational effort precisely where accuracy
is needed.

2.3 SIMULATING STRUCTURAL—-PRESERVING LAW OF DEFECT USING MULTILEVEL
PICARD ITERATION

The defect PDE (7)) is a semi-linear parabolic equation of the same structural form as (24) with
a different closed nonlinear term. Under the standard regularity assumptions, the pair u>* =
(i, [0] TV, u>) admits the Feynman—Kac and Bismut-Elworthy-Li representations presented in
(27)—-(28). Hence u is the fixed point of the expectation operator ® on Lip([0, 7] x R? R*+4):

> = o(u*), (8)

with @ given exactly as in the appendix at (28). Intuitively, the operator @ is a Feynman—Kac—type
backward propagator. Given an approximation of the solution at a future time, ® maps it back
to the present by running a stochastic simulation forward in time and averaging over all resulting
trajectories. Concretely, for each initial state z, it computes the expected terminal payoff together
with the accumulated contribution of the nonlinearity F along the simulated path. The exact solution
u* is therefore characterized as the fixed point of this propagation: inserting «* into the simulation
leaves it unchanged, i.e., ®u* = w*. Standard Picard iteration ux+; = ®(1;) converges to u®
under standard regularity assumptions (Yong & Zhou), (1999, Theorem 3.4).

Multilevel Picard (MLP) method (E et all, 2021 [Hutzenthaler et al 2020a), uses Multilevel
Monte Carlo (MLMC) (Giles, 2008; [2015) to simulate the telescoping formulation E[u,] =
E[®(u0)] + Zlnz_ll E[®(w;) — ®(W;—1)]. The MLMC method exploits a hierarchy of approxi-
mations ®(uy), ®(1y),...,P(0,), ranging from the coarsest to the finest resolution. Crucially,
consecutive approximations (®(1;))* and (®(11;_1))® are generated using the same underlying
sample path ¢, which induces a strong positive correlation between them. As a result, the variance
of their difference is significantly reduced. Moreover, as the level [ increases, the iterates converge
linearly ; — w;—; — 0, and the variance of the difference decreases linearly toward zero. As a
consequence, the required number of samples M ™! can decrease as [ increases, meaning very few
expensive samples are needed at the finest levels. The majority of the computational cost is thereby
shifted to the coarser levels, significantly reducing the overall complexity of the estimation.

Another factor affecting the variance is how the time integral is computed; we used two MLP variants
to simulate St ructural-preserving Law of Defect:

* Quadrature MLP: 2021) Simulate the time integrals by the Gauss—Legendre quadrature.
* Full-history MLP: (Hutzenthaler et al.,2021) Simulate the time integrals by Monte Carlo.

We leave all the preliminaries and implementation details of the MLP methods in Appendix [B.2.1]
The overall SCaSML procedure, which involves first training a surrogate model and then solving the
Structural-preserving Law of Defect with MLP methods to correct it, is summarized
in Algorithm|[C]
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Use MLP to simulate (7)
and at inference correct @

Build a surrogate Formulate st ructural-preserving m
solution @ Law of Defect describingu — @

Figure 2: Flow diagram of SCaSML. We formulate the error u — % of surrogate solution @
as the solution Structural-preserving Law of Defect (7), a new semi-linear PDE.
At inference time, we approximate v — 4 via solving Structural-preserving Law of
Defect using Multilevel Picard (MLP) iteration. The generated estimation of v — 4 helps us to
calibrate the surrogate solution .

2.4 PROVABLY ACCELERATED CONVERGENCE

We now provide theoretical guarantees for SCaSML, showing that it achieves a provably faster
convergence rate. For simplicity, we present results for the case ;4 = 0 and 0 = sI4. Our analysis
relies on the assumption that the pre-trained surrogate is reasonably accurate.

Why SCaSML Enjoys Provable Faster Convergence Rate. The Monte Carlo error in MLP
methods depends on the scale of the terminal defect ¢ and the modified nonlinearity F, which
depends on the error of the surrogate model. A more accurate surrogate model yields smaller g and
F, resulting in reduced variance during inference. If the surrogate achieves an error of e(%) ~ m™"7
(Assumption from m training points, then the variance is O(m~27). During inference, we

—2~

1

average over m additional Monte Carlo paths, which reduces the statistical error

(Blanchet et al.| |2023)). With a total computation cost of 2m function evaluations, SCaSML therefore
attains a convergence rate that surpasses both the surrogate method m™=" and the standard MLP /
Monte-Carlo estimator m~'/2. Full constant-tracking and rigorous proofs are in Appendices and@
Assumption 2.4 (Surrogate Model Accuracy). Let the true defect be well-behaved such that
supyeo,ry [[0(t, )[lwre < o0o. We assume the surrogate error is bounded by a measure e(i),
such that for constants Cr,1,Cp 2 > 0:

1. L Residual: sup,. , |e(r,y)| < Cg 1 e(1).
2. Wb Error: sup, |[u(r,)|lwre~ < Cpae(a).

Our main theoretical result stems from the observation that the computational

complexity of the MLP solver depends on the Lipschitz constant of the nonlinearity F and the
magnitude of the “source terms”.

This
leads to our main error bound.

Theorem 2.5 (Global L? Error Bound). Under standard regularity assumptions on the PDE coeffi-
cients (Assumptions , the global L? error of the SCaSML estimator using a full-history MLP

approximation U n pr with N levels and use M Monte Carlo samples at —th level is bounded by:

sup
(t,x)€[0,T] xR

Ut ) — a(t, ‘”)Hm < E(M, N) - (Cr e()), )

where 0 = (U, 0V 4 1) is the true defect and its gradient, and E(M, N) represents the error term of
the underlying MLP solver, which depends on M and N but is independent of the surrogate.

Theorem [2.5]shows that the final error is the product of the MLP simulation error and the surrogate
model error. This synergistic relationship implies that the computational cost to reach a global
L? error of ¢ is reduced from O(d s~ (29) for a naive MLP solver to O(d e~ ?+9) e()?*?) for
SCaSML (see Corollary [E.9)in Appendix). This means the cost of our correction step decreases as
the quality of the initial surrogate improves. This directly leads to an improved scaling law.

Corollary 2.6 (Improved Scaling Law). Under the assumptions of Theorem[2.5] suppose the surrogate
model’s error scales as e(t) = O(m™") with m training points. By allocating an additional m
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Table 1: Comparative performance of full-history SCaSML against the surrogate model (SR: PINN
or GP) and a naive MLP solver. We report total runtime (s) and relative errors in L?, L>°, and L'
norms. Bold values indicate the best performance in each category. SCaSML consistently achieves
the lowest error across nearly all settings.

Problem Time (s) Relative L2 Error L°° Error LT Error

’ ‘ SR MLP SCaSML SR MLP SCaSML SR MLP SCaSML SR MLP SCaSML

10d 045  6.77 13.31 5.20E-02  2.27E-01  2.74E-02 | 2.50E-01  9.06E-01  1.65E-01 | 3.39E-02 1.67E-01  1.78E-02

8 20d 0.54  6.73 17.11 9.00E-02  2.35E-01 4.72E-02 | 4.72E-01 1.35E+00 3.30E-01 | 9.37E-02 2.37E-01  4.52E-02
= | 30d 046  6.89 22.44 1.45E-01  2.38E-01  9.72E-02 | 2.04E+00 1.59E+00 7.69E-01 | 1.61E-01  2.84E-01  1.04E-01
60d 0.28  6.94 37.59 3.13E-01  2.39E-01 1.32E-01 | 3.24E+00 2.05E+00 1.57E+00 | 5.35E-01 4.07E-01  2.06E-01

7z | 20d 0.54  6.80 10.59 1.I7E-02  8.36E-02 4.03E-03 | 3.26E-02 296E-01  2.26E-02 | 5.36E-03 3.39E-02 1.29E-03
Z | 40d 029 8.1 14.09 4.06E-02  1.04E-01  2.92E-02 | 843E-02 3.57E-01 7.43E-02 | 2.00E-02 4.36E-02 1.24E-02
: 60d 3.14  11.36 38.30 3.95E-02 1.17E-01  2.88E-02 | 8.20E-02 3.93E-01  7.20E-02 | 1.94E-02 4.82E-02  1.22E-02
= | 80d 3.65 1178 42.50 6.74E-02  1.19E-01  5.64E-02 | 1.90E-01  3.35E-01  1.80E-01 | 321E-02 4.73E-02  2.46E-02
20d 1.74  10.56 61.82 1.47E-01  1.90E-01  6.23E-02 | 3.54E-01 5.72E-01 2.54E-01 | 7.01E-02 8.00E-02  2.48E-02

?5 40d 1.78 12.28 61.28 1.81E-01  2.20E-01  8.55E-02 | 4.00E-01  8.71E-01  3.00E-01 | 9.19E-02 9.06E-02  3.82E-02
§ 60d 1.68  9.70 57.79 2.40E-01  2.57E-01 1.28E-01 | 3.84E-01 9.50E-01  2.84E-01 | 1.27E-01 9.99E-02  6.11E-02
80d 1.69 10.12 60.69 2.66E-01  3.02E-01 1.52E-01 | 3.61E-01 1.91E+00 2.61E-01 | 1.45E-01 1.09E-01 7.59E-02

100d || 042 827 21.33 797E-02 5.63E+00 5.53E-02 | 7.82E-01 1.26E+01  6.82E-01 | 1.40E-01 1.21E+01  8.72E-02

QO | 120d || 032 8.52 23.98 9.40E-02 5.50E+00 6.66E-02 | 9.06E-01 1.27E+01 8.06E-01 | 1.74E-01 1.22E+01 1.06E-01
g 140d || 040  8.65 27.31 9.87E-02 5.37E+00 6.84E-02 | 9.96E-01 127E+01 8.96E-01 | 1.93E-01 1.23E+01 1.12E-01
160d || 0.34 8.09 29.95 1.12E-01  5.27E+00  9.94E-02 | 1.40E+00 1.28E+01 1.30E+00 | 2.17E-01 1.23E+01 1.79E-01

100d || 0.32  7.59 58.51 1.41E-02  8.99E-02 1.11E-02 | 9.58E-02 6.37E-01 8.58E-02 | 1.87E-02 9.74E-02  1.38E-02

x | 120d || 033 7.16 68.28 I.I1E-02  9.13E-02 1.03E-02 | 7.50E-02 5.74E-01  6.50E-02 | 1.39E-02 9.97E-02  1.29E-02
A | 140d || 042 773 79.99 3.22E-02 8.97E-02 3.00E-02 | 1.82E-01 8.56E-01 1.72E-01 | 4.03E-02 9.77E-02  3.75E-02
160d || 037 722 86.77 3.45E-02 9.00E-02  3.22E-02 | 2.08E-01  8.02E-01  1.98E-01 | 4.30E-02 9.75E-02  4.00E-02

samples for the inference-time simulation, the total error of the SCaSML procedure improves from
O(m™7) to O(m~7~1/2+e(1)),

3 NUMERICAL RESULTS

We now empirically validate the SCaSML framework across a suite of challenging high-dimensional
PDEs. In each experiment, we first train a baseline surrogate model u (either a Physics-Informed
Neural Network or a Gaussian Process) to obtain an approximate solution. Then, at inference time,
we apply a full-history Multilevel Picard (MLP) solver to the St ructural-preserving Law
of Defect (Fact[2.3) to compute a correction term @. The final SCaSML solution is the sum
UscasML = U + U.

The primary goal of these experiments is to demonstrate the value added by the correction step. Thus,
our key comparison is between the baseline surrogate model (SR) and the final corrected solver
(SCaSML). We also include the naive MLP solver for reference, to show that the hybrid approach
succeeds where pure simulation often fails. Our implementation leverages JAX (Bradbury et al.,
2018)) and DeepXDE (Lu et al.,[2021)) for efficient, parallelized computation.

As shown in Figure[3h, SCaSML consistently tightens the error distribution compared to the base
surrogate. Refer to Appendix [G.6] for detailed pointwise error maps. Figure [3p demonstrates
SCaSMLs effective inference-time scaling: as more computational resources (i.e., Monte Carlo
samples) are allocated, the accuracy of the solution progressively improves. A comprehensive
comparison of error metrics and timings is provided in Table[T] and the empirical validation of our
theoretical scaling law is shown in Figure @ More experiments, including statistical significance
tests (p < 0.001, Appendix[G.4) and fixed-budget efficiency comparisons (Appendix[G.7), are
shown in the Appendix|[G]

3.1 LINEAR CONVECTION-DIFFUSION EQUATION

Problem Formulation. We investigate a linear convection-diffusion equation given by %u(r, y)+
<f%1, Vyu(r,y)) +Ayu(r,y) =0, (r,y) € [0,T) x R?, with the terminal condition u(T', y) =
Z?:l yi + T, 1y € R% This PDE admits the explicit solution u(r,y) = Zle yi + 7.

Experimental Setup. The problem is solved over the hypercube [0, 0.5] x [0, 0.5]¢ for dimensions
d € {10,20, 30,60} with Dirichlet boundary conditions enforced by the PINN loss. We deploy
a Physics-Informed Neural Network (PINN) with 5 hidden layers, 50 neurons each, and a tanh
activation function. Training uses the Adam optimizer (learning rate 7 X 1074, B1 = 0.9, 82 = 0.99)
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for 10% iterations. At each iteration, the network is trained on 2.5 x 103 interior and 102 boundary
collocation points. For the inference step, we use a 2-level simulation with M = 10 as the basis
of Monte Carlo samples at each level in Multilevel Picard iteration for the tabulated results and
M € {10,...,16} for the scaling study. A clipping threshold of 0.5(d + 1) is applied to the solution
and gradients for both the naive MLP and SCaSML.

Results. As reported in Table |1{ (LCD), SCaSML achieves a reduction in the relative L? error
from 20% to 56.9% compared to the baseline PINN surrogate. Moreover, SCaSML exhibits robust
inference scaling, with performance improving as more inference time is allocated (see Figure [I0).

3.2 Viscous BURGERS EQUATION

Problem Formulation. Next, we consider a viscous Burgers equation from (Hutzenthaler et al.,
2 2
2019), a standard benchmark for nonlinear PDEs: % + <— (% + %0) 1,Vyu> + %Ayu +

exp(T+30; yi)

m The exact solution

oou Zle(aovyu)i = 0, with terminal condition u (7, y) =

. exp(r+ ?: n

isulry) = SR

Experimental Setup. We solve the PDE on [0,0.5] x [-0.5,0.5]¢ for dimensions d €
{20, 40,60, 80} with oy = /2. We test SCaSML with two types of surrogates. The PINN was
trained for 10* iterations using the Adam optimizer (learning rate 7 x 10~4, 8; = 0.9, and 35 = 0.99),
utilizing 2,500 interior, 100 boundary, and 160 terminal condition sample points. A Gaussian Process
(GP) regression surrogate was trained over 20 iterations via Newton’s method, using 1,000 interior
and 200 boundary points. For the 2-level MLP and SCaSML solvers with the basis of Monte Carlo
samples M = 10, we set clipping thresholds of 1.0 and 0.01, respectively, to handle the nonlinearity.

Results. SCaSML demonstrates strong performance with both surrogate types. For the PINN
surrogate (VB-PINN), it reduces the relative L? error by 16.2% to 66.1%. For the GP surrogate
(VB-GP), the reduction is even more pronounced, ranging from 42.7% to 57.5% (Table [I). This
highlights SCaSML’s versatility as a plug-and-play corrector for different SciML models.

3.3 HIGH-DIMENSIONAL HAMILTON-JACOBI-BELLMAN EQUATION

Problem Formulation. To showcase SCaSML on problems central to control theory, we tackle a
high-dimensional Hamilton-Jacobi-Bellman (HJB) equation arlslng from a hnear—quadratic-Gaussian
(LQG) control problem (Han et al., 2018b). The HIB equation is given by 4t Ayu— || Vyul|? =0,

+ZL 1 [('1 1(?/1 yz+1) +co, zy1+1])

with terminal condition u(T,y) = log( , where ¢1; and cy; are
independent random draws from interval [0.5, 1.5]. The reference solution is computed via u(r, y)

—log Eexp(—u(T,y + v2Wr_,)) with sufficiently large sample sizes(e.g. 100d).

Experimental Setup. Following (Hu et al.,[2024), we use a complex, non-trivial terminal condition
and evaluate the problem in very high dimensions, d € {100, 120, 140, 160}. The PINN surrogate
is trained for 2.5 x 103 iterations on the domain [0, 0.5] x B, where B¢ is the unit ball in R%, with
100 interior and 1,000 boundary points per iteration. We use the Adam optimizer with a learning
rate of 1073, B1 = 0.9, and B = 0.99. For inference steps, we set total level n = 2 and the basis of
Monte Carlo samples at each level M = 10, where n is the total level and M Lis sample used at level
[ for 0 <[ < n. To stabilize the simulation for this strongly nonlinear problem, we use a clipping
threshold of 10 for the naive MLP and a much smaller threshold of 0.1 for SCaSML, reflecting
the smaller magnitude of the defect. To accelerate computations, we use Hutchinson’s method to
stochastically estimate the Laplacian and divergence terms, sampling d/4 dimensions at each step
(Hutchinsonl, |1989; |Girard), [1989; [Shi et al. [2025)).

Results. In this challenging high-dimensional setting (LQG), the naive MLP solver fails entirely,
producing large errors. In contrast, SCaSML successfully refines the PINN solution, reducing the
relative L? error by 11.7% to 30.8% and achieving the lowest error across all metrics (Table'

3.4 DIFFUSION-REACTION EQUATION WITH AN OSCILLATING SOLUTION

Problem Formulation. Finally, we consider a diffusion-reaction system designed to have a highly
oscillatory solution (Gobet & Turkedjiev,|[2017; Han et al., 2018b), making it particularly difficult
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Figure 3: Efficiency and performance of the SCaSML methodology. (a) Violin plots showing
the distribution of pointwise errors. SCaSML consistently reduces the mean error and tightens the
distribution compared to the surrogate (SR) model. (b) Inference-time scaling. As the number of
inference-time simulation samples increases, SCaSML’s error steadily decreases, demonstrating
effective use of additional compute. (¢) Summary of performance. The left panel shows that SCaSML
(blue stars) consistently achieves lower L? error than both the surrogate (SR) and naive MLP methods
across all problems. The right panel (heatmap) confirms that SCaSML also dominates in L> and L'
error metrics.

for standard neural network surrogates % + 1A u+ min{1, (u — u*)?} = 0, where u*(r, y) =
1.6 4 sin(0.1 2?21 i) exp(%”_”) is the exact solution.

Experimental Setup. We solve the problem for dimensions d € {100,120, 140,160} on the
domain [0,1] x B?. The PINN surrogate is trained for 2.5 x 10% iterations with 1,000 interior
and 1,000 boundary points, using the Adam optimizer with a learning rate of 1073, 8; = 0.9, and
B2 = 0.99. For inference steps, we set total level n = 2 and the basis of Monte Carlo samples at each
level M = 10. The MLP and SCaSML solvers use clipping thresholds of 10 and 0.01, respectively.
Due to the solution’s oscillatory nature, we found that the Hutchinson estimator for the Laplacian
introduced instability; therefore, we computed the full Laplacian in this experiment.

Results. Even though the PINN surrogate is already quite accurate for this problem, SCaSML is
still able to provide a consistent refinement. As shown in Table|I| (DR), SCaSML further reduces the
relative L? error by 6.6% to 10.9%, demonstrating its capability to improve even well-performing
surrogates on complex, high-frequency problems.

4 CONCLUSION AND DISCUSSION

We introduced SCaSML, the first physics-informed inference time scaling framework that
integrates surrogate models with Monte-Carlo numerical simulations for solving high-dimensional



Under review as a conference paper at ICLR 2026

(a) Ilustration of SCaSML’s Improved Scaling Law

Surrogate Model Feynman Path Simulation Simulation-Calibrated Scientific Machine Learning

Methods BRIV / ‘ NNV Ty N
- L o R W
\ V 1 \ \ M
/ '\ eI \MMAN MY
/ YN A R |
i i MY Wl
TR ke VYA
Wi WM {\;'\“ W Training time Inference time
n colocation points at traiing time 1 colocation points at finest simulation 1 collocation points at training time 1 collocation points at finest simulation
Scaling 1 1
. —r . _L . L
Law Error: O (n™") Error: O (n7) Error: O,(n"""2)

(b) Empirical Verification on the Viscous Burgers Equation
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Figure 4: Empirical verification of the improved scaling law for SCaSML. (a) Conceptual diagram.
The final SCaSML error is a product of the surrogate error and the simulation error (Theorem 2.5).
By balancing the computational budget between training the surrogate and performing inference-time
simulation, SCaSML achieves a faster overall convergence rate (Corollary @) (b) Numerical results.
We plot the L2 error versus the number of collocation points (1) on a log-log scale for a GP surrogate
and SCaSML. The slope of the line corresponds to the convergence rate v. SCaSML consistently
exhibits a steeper slope than the base surrogate, empirically confirming its accelerated convergence.

PDE. By introducing Structural-preserving Law of Defect, we use the output of a
pre-trained SciML solver as an efficient starting point for inference-time corrections. Our theory
and experiments show this hybrid approach achieves faster convergence and reduces errors by up to
80% in complex high-dimensional PDEs. SCaSML represents a new approach in hybrid scientific
computing. Unlike previous work that used machine learning for discovering numerical schemes
(Long et al.l 2018)) or as preconditioners (Hsieh et all 2019), our framework uses the machine
learning model as a control variate in stochastic simulations to reduce the variance of Monte Carlo
simulation. The surrogate handles the low-frequency part, allowing the simulation to focus on the
small high-frequency residual, and enhances computational efficiency by addressing model bias at
inference time. This establishes an elastic compute paradigm, allowing users to trade inference time
for accuracy on demand—achieving gains that are often computationally intractable through further
training alone. SCaSML is the first inference-time scaling algorithm that enhances the learned
surrogate solution during inference without requiring fine-tuning or retraining.
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APPENDIX OUTLINE

This appendix provides supplementary materials to support the main paper. We include a centralized
notation glossary, detailed background on the methods used, the complete algorithm, full proofs of our
theoretical results, and extensive additional experimental validation including statistical significance
tests and computational budget analyses.

The appendix is organized as follows:

* [Appendix A: Notations.| We provide a centralized glossary defining the mathematical
symbols and operators used throughout the paper and appendices.

* [Appendix B: Preliminaries.| We provide background on the core technical components of
the SCaSML framework.

— Surrogate Models for PDEs (§B.1): We detail the architectures used: Physics-Informed
Neural Networks (PINNs) and Gaussian Processes (GPs).

— Multilevel Picard (MLP) Iterations (§B.2): We overview the quadrature and full-history
MLP methods which form the basis of our inference-time correction.

* [Appendix C: Algorithm.| We present the complete SCaSML algorithm in detailed pseu-
docode, including practical implementation details like outlier thresholding and Hutchinson’s
estimator for high-dimensional Laplacians.

* |Appendix D: Proof Settings.| We establish the common probability space definitions and
specific regularity assumptions on the surrogate models required for our theoretical analysis.

* [Appendix E: Proof for Full-History .| We provide the theoretical analysis for the
full-history MLP variant using Monte Carlo time integration.
- Global L? Error Bound ( : We derive the error bound for the full-history case.
— Improved Scaling Law (§E.3.3)): We provide the proof for the accelerated asymptotic
convergence rate of O(m~7~1/2),

* [Appendix F: Proof for Quadrature MLP|We present the theoretical analysis for SCaSML
using the quadrature MLP solver.

- Global L? Error Bound ( : We derive the error bound showing dependence on
the surrogate’s accuracy e(i).

— Computational Complexity (§F2.2): We prove the reduction in complexity afforded by
the SCaSML framework.

* [Appendix G: Auxiliary Experimental Results.| We include comprehensive additional
experiments to validate robustness, statistical significance, and efficiency.

— Violin Plots for Error Distribution (§G.I): Visualizations of the full error distribution
for all test cases.

— Inference Time Scaling Curves (§G.2)and §G.3): Plots demonstrating monotonic error
reduction with increased inference compute.

— Statistical Analysis of L' Errors ( .' Detailed tables reporting means, standard
deviations, 95% confidence intervals, and p-values from paired t-tests.

— Relative L? Error Improvement ( .' Visualization of the percentage error reduction
across all dimensions.

- Pointwise Error Reduction Analysis (§G.0): Scatter plots confirming that SCaSML
systematically reduces error on the vast majority of individual test points.

— Performance Comparison Under Fixed Computational Budgets (§G.7): A Pareto effi-
ciency analysis comparing SCaSML to baselines when total wall-clock time (Training
+ Inference) is held constant.

— Performance Comparison: Large PINN vs. SCaSML Correction (§G.8): A Pareto

efficiency analysis comparing SCaSML to PINN with increasing scales of the same
computing budget.
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A NOTATION

This section establishes the rigorous mathematical framework, including probability spaces, function
classes, and norms used throughout the theoretical analysis. We strictly distinguish between spatial
functional norms and probabilistic norms to ensure clarity in the convergence analysis.

Al

A2

A3

A4

GENERAL CONVENTIONS AND GEOMETRY
o Let T € (0,00) be a fixed terminal time. We define the spatiotemporal domain as Qp :=
[0, T] x R?, where d € N denotes the spatial dimension.

* We adopt the unified coordinate convention (¢, x) € Qp throughout this appendix. The
notation (7, y) is reserved strictly for integration variables within time integrals.

* B(R?) denotes the Borel -algebra on RY,

* (x,y) denotes the standard Euclidean inner product for ¢,y € R?, and |x| := /(z, )
denotes the Euclidean norm.

NORMS AND FUNCTION SPACES
* Measurable Functions: Let M (A, B) denote the set of all measurable functions mapping
from measurable space A to B.
 Spatial Spaces and Norms:
— For any function ¢ : RY — R*, we define the uniform norm ||¢|| s := sup,cpa [¢(x)|.

- C%2([0,T] x R?) denotes the space of functions that are once continuously differen-
tiable in time and twice continuously differentiable in space.

— WH>(R?) denotes the Sobolev space of functions with essentially bounded weak
derivatives up to order k, equipped with the norm [|§|[wx.o := >4 <, [D¢||co-

* Probabilistic Spaces and Norms:

— Let (2, F,P) be a complete probability space equipped with a filtration (F;);c[o, 7]
satisfying the usual conditions.

— For p € [1,00), LP(2; R¥) denotes the Lebesgue space of random variables X : ) —
RF with finite p-th moment. We explicitly define the probabilistic norm:

p1\ 1
I1X | Lo () == (B[ X PP

PDE FORMULATION AND STOCHASTIC PROCESSES
* The Operator: Let i1 : [0,7] x R? — R% and o : [0,T] x R? — R?*4. We define the
second-order linear differential operator £ acting on ¢ € C1+? as:

Lo(t, ) := (u(t,x), Ved(t,x)) + %Tr (o(t,x)o(t, ) Hess,d(t, x)).

* The SDE: For any (t,x) € Qp, let X"* = (X!®),c; 1) be the unique strong solution to
the stochastic differential equation (SDE):

X =g+ / w(r, XE®)dr + / o(r, XE®)dW,., se€[t, T,
t t
where W is a standard d-dimensional Brownian motion under P.

DEFECT FORMULATION (THE SCASML OBIJECT)
* Surrogate and Defect: Let & € C'2(Q7) be the surrogate solution. We define the defect
pointwise as u(t, ) := u(t,x) — u(t, x).
¢ The Residual: We define the PDE residual € : Q) — R as:
9
e(t,x) = ait‘(t, x) + Lalt,x) + F(a(t, ), o(t, 2) Vau(t, z)).

16
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 Modified Nonlinearity F:

* Terminal Defect: §(x) := g(x) — u(T, x).

B PRELIMINARY

In this section, we provide the necessary background on the two main building blocks of the SCaSML
framework. First, we detail the surrogate models—Physics-Informed Neural Networks and Gaussian
Processes—used to generate the initial approximate solution 4. Second, we review the Multilevel
Picard (MLP) iteration method, the numerical solver we employ at inference time to solve the
Structural-preserving Law of Defect.

B.1 SURROGATE MODELS FOR PDES

In our experiments, we employ two surrogate models to solve high-dimensional PDEs:a Physics-
Informed Neural Network (PINN) and a Gaussian Process (GP) regression model. Both models are
implemented in JAX (Bradbury et al., 2018)) and DeepXDE (Lu et al.| |2021) to leverage efficient
parallelization and runtime performance. Furthermore, Hutchinson’s estimator technique [3] as
delineated in (Shi et al., [2025)) is incorporated during the training process to substantially decrease
GPU memory consumption, applicable to both the training and inference stages of Physics-Informed
Neural Networks (PINN), as well as the inference phase of Gaussian Processes.

B.1.1 PHYSICS-INFORMED NEURAL NETWORK (PINN)

Physics-Informed Neural Networks (PINNs) are designed to approximate solutions of PDEs by
embedding physical laws into the learning process. In our framework, the neural network (¢, x)
with parameters 6 approximates the true solution u*° (¢, ) of the given PDE. The training loss is
constructed as a weighted sum of several components, each designed to enforce key aspects of the
problem’s constraints.

The first component is the PDE loss, which ensures that the network output adheres to the governing
differential equation. This is achieved by penalizing deviations from the expected behavior defined
by the differential operator, evaluated at a set of interior collocation points {(tx, ) };.,. The PDE
loss is defined as

51

1 ou o . . 2
Lppg(8) = 5 Z E(tk’xk) + 7Ayu(tk, xp) + F(u, UVyu) (tk,xk)‘ ) (10)
k=1

In order to satisfy the prescribed boundary conditions, the model employs a Dirichlet boundary loss.
This term minimizes the difference between the network output and the given boundary values h(xy,)

at selected boundary points { (¢, xk)}fil, and is expressed as
1 &
Loi(0) = o > lalte, i) — h(zp)|?. (11)
b ot

Moreover, the initial conditions of the problem are enforced by an initial loss component. This ensures
that the solution at time ¢ = 0 matches the known initial data g(z},) for the points {(0, xk)};js: 1

S3
L
Linitial(0) = A > a0, zk) — q(zi)|?. (12)
k=1

The overall training objective is then formulated as a combination of these losses, with each term
scaled by its corresponding weighting coefficient:

E(H) = Q1 E(H) —+ Qo L’Dir(ﬁ) + a3 ,C,-nma](H). (13)
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This formulation ensures that the PINN not only fits the observed data but also rigorously respects
the underlying physical laws, boundary conditions, and initial conditions governing the PDE.

B.1.2 GAUSSIAN PROCESSES

In this section, we review the Gaussian Process (GP) framework developed in (Chen et al., 2021} Yang
et al.| 2021} |Chen et al., [2024) to solve nonlinear PDEs. Consider solving a semi-linear parabolic
PDE

0

a%‘(m) = r(ult, ), Agu(t, @), div, u(t,®)), V(tx) e [0,T]x RY,

’LL(T, :E) = g(iL’)7 Vo € Rd,

(14)

where 7 is a nonlinear function of the solution and its derivatives, and g specifies the terminal
condition.

The GP Framework Consider one already sample M, interior points and Mg boundary points,
denoted as x;, = {x1,... M‘"} C [0,T] x R? and xpq = {xy, ..., x}1} {T} x R?. Then,
we assign an unknown GP prior to the unknown function u with mean 0 and covariance function
K : ([0,7] x RY) x ([0,T] x RY) — R, the method aims to compute the maximum a posterior
estimator of the GP given the sampled PDE data, which leads to the following optimization problem

minimize ||ul]
ueU

s.t. 9u(xm) = r(u(x2), A u( m, dlvz w(x™), for m=1,..., M, (15
(de) g(xfy), for =1,..., M.
Here, || - || is the Reproducing Kernel Hilbert Space(RKHS) norm corresponding to the ker-

nel/covariance function K. Regarding consistency, once K is sufficiently regular, the above solution
will converge to the exact solution of the PDE when M;,, Myq — o0; see (Batlle et al., 2023, Theorem
1.2).

We denote the measurement functions by

o (u) :u — dxm ou, 1 <m < My, 2 (u) = u — Oxm 0 u, 1 <m < Mg,
0
3 (u) 1 u — dxm 0 Agu, 1 <m < My, 4 (u) s u— dxm © 8—1;, 1<m< My, (16)

(bfn(u) U= 6xl’;“ odivyu,1 <m < M,

where dy is the Dirac delta function centered at x. These functions belong to ¢/ ", the dual space of
U, for sufficiently regular kernel functions. We further use the shorthand notation ¢, ¢3, ¢*, ¢° for
M;, dimensional vectors and ¢? for My dimensional vectors as finite dimensional representation
for corresponding features. We use [+, -] to denote the primal-dual pairing, such that for u € I and

i, € U',Viit holds that [u,¢!] = [ u(x)¢!,(x)dx. For instance, for ¢3, we have [u, ¢3,] =
Ju(x )qbil( )dx = 2%(x,,). Based on the defined notation, we can rewrite the MAP problem (!
as

minimize ||u||
ueU

s.t. =W (), 23 = ¢ (w), 250 = oW (w), 25 = 6P (), m=1,..., My,
) (1)( ),m 1,.. Mbd,
(4) = 7(z%), 7(“3),27(2 )s =1,..., My,
(2) (de) =1,. M
(17)

Finite Dimensioanl Representation via Representer Theorem According to Representer The-
orem (Chen et al., |2021}; |Unser, 2021)) show that although the original MAP problem is an
infinite-dimensional optimization problem, the minimizer enjoys a finite-dimensional structure

uf(x) = K(x, ¢)a (18)

18



Under review as a conference paper at ICLR 2026

where K (x, ¢) is the (4M;, + Mpq) dimensional vector with entries [ K (x,X')¢;(x")dx’ (here the

integral notation shall be interpreted as the primal-dual pairing as above), i.e.

K(x,¢) = [K(x, Xin) K(x,%pd) ApK(X,Xin) %K(x, Xin) divy K(x,xin)] € RV (AMintMia)
19)

and o € R*Min+Mw jg the unknown coeficients. Based on the finite dimensional representation (18},

we know

{Zu)ﬂZ(z)ﬂZ(3>T7Z(4)T,Z<5>Tr — K(6,0)a, 20)

where Z(l) = [¢%(u)7 ¢%(’U,), ' a(b}\/[m( )]T € R]\/fi“a 2(2) = [(b%(u)a ¢%(u)7 e ?¢]Ubd (u)] €
RM 23 = [68(u), ¢3(u), -+, oy, (W] € RMe 2 = [§(u), ¢3(u), -, ¢y, (W)] T €
RMa 205) = [¢2(u), -+, 8%, (w)]T € RMo and K(¢,¢) is the kernel matrix as the (4M;, +
Myq) X (4Min + Myq) matrix with entries [ K (x,X')¢., (X)¢;(x')dxdx’ where ¢,,, denotes the
entries of ¢. Precisely K (¢, ¢) can be written down explicitly as:
K(Xim Xlln) K(Xim X{)d) Aar?’[((xim X:n) (le m) divy K(Xim X:n)
K (Xpd, X/, K (Xpd, Xpq) Ay K (Xpd, X)) K(de7 Xp4) divy K (Xpd, X},)
K(¢,¢) = | ApKXin, X))  ApK(Xin, Xphy)  AplAy K (Xin, X[, Aw tK(Xm, x[)  Agdivy K (X, X)) ,

QJQ)

Q%K(Xim X:n) iK(va de) _(‘)%Aac’K(Xim X:n) ()at dta[((xm’ Xlln) % di\.’x’ K (Xin, X:n)
divy K(Xin,X},)  divy K(Xin, Xig)  dive Ap K (Xin, X;,)  dive 57K (Xin, Xp,)  divg divyr K (Xin, Xi,)

21
Here we adopt the convention that if the variable inside a function is a set, it means that this function is

applied to every element in this set; the output will be a vector or a matrix, e.g. K (Xin, X,,) = exp ( —

[l

—xJ |12 . 3 . . . .
W) .1 <m,j < M, € RMnxMn jp the Gaussian kernel of our numerical experiment, where

o is the variance of the equation. Thus the finite dimensional representation (I8) can be rewritten in
terms of the function (derative) values

ul(x) = K(x,0)K (¢, ¢) 21, (22)

T
where 21 = [Z(I)T,Z(Q)T,z(3)T,z(4)T,Z(5)T} € RAMin+Mea

Plug the finite-dimensional representation (22)) to the original MAP problem (17) we have that 2 is
the solution to the following finite-dimensional quadratic optimization optimization problem with
nonlinear constraints

min 2z K(¢,4)"?

2 ERAMin+Mpg

subject to

2 =7z 23 ON M =1, M,

m ’HL ) WL

(2)—g(xd) m=1,..., M.

(23)

Solving the Optimization Formulation To develop efficient optimization algorlthms for (23] ’,
2)

observing that the constraints 28 = T(Z(l) 2, S)) and 22 = g(xp) express 2 and 2

in terms of the other variables, (Chen et al.,[2021;|2024) reformulate the optimization problem as an
unconstrained problem
. W [z(l);g(xbd); 2(3);7(2(1)’ 2, 2(5)); 2(5)]TK(¢7 ¢)_1[z(1);g(xbd); 2(3);7(2(1)7 23, 2(5)); 2(5)].
We apply Sparse Cholesky decomposition to the positive-definite (K (¢, ¢) + nI) as LL™. In turn,
b (K (¢, ¢) + n[)_lb =bT(LLT)='b = (L7 'b)T (L=1b) = ||L~'b||5. Hence, the loss function is
defined as 7 (2, 2(3), 2(5)) = ||L~1b||2. Optimization is carried out via a Newton method in 20
iterations. We 1n1t1ahze 2N 2B 26) ¢ RMn following N (0,101, ). In each iteration, the
gradient V7 and Hessian V2.7 are computed via automatic differentiation, and the Newton direction
Az is obtained by solving (V2j + Al ) Az = —VJ, where A = 10~% is an regularization parameter.
Then, update J at Newton direction with step size « = 1. Early stopping is triggered when the
gradient norm falls below 10~°. Finally, to apply the representer theorem in the algorithm solves
the linear system (K (¢, ¢) + nI)w’ = 21 to obtain the weight vector w' and the final PDE solution
is given as u'(x) = K (x, ¢)w'.
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B.2 QUADRATURE MULTILEVEL PICARD ITERATIONS AND FULL-HISTORY MULTILEVEL
PICARD ITERATIONS

Multilevel Picard Iteration (MLP) method (Hutzenthaler et al.,[2019)) is a simulation-based solver
which solves a semilinear parabolic PDEs (Hutzenthaler et al., 2019} Han et al.l 2018a; [Weinan et al.|
2021), represented as the following.

1
gu‘x’ + (1, Vyu™) + §Tr(0THess u™ o) + F(u™,0"V,u>) =0, on [0,T) x R?
r

u™(T,y) = g(y), on R

(24)

where T > 0,d € N, g : R? = R, u™® : [0,T] x R = R : [0,7] x R — R?. Additionally,
let o be a regular function mapping [0, 7] x R% to areal d x d invertible matrix.

The MLP method reformulates the PDE into a fixed-point problem using the Feynman—Kac formula
to represent the solution as the expected value of a stochastic process’s functional. A Picard scheme
iteratively solves this fixed-point problem. The MLP method employs a multilevel Monte Carlo
approach(Giles, 2008), blending coarse and fine discretizations and allocating more samples to
deeper iterations to control variance. This strategy ensures computational costs increase moderately
with accuracy. According to Feynman—Kac and Bismut-Elworthy-Li formula(Elworthy & Li},|1994;
Da Prato & Zabczykl |1997), the solution u™ = (u, JTVyu) of semilinear parabolic PDE
satisfies the fixed-point equation ®(u*>) = u*> where ®:Lip([0, 7] x R? R*4) — Lip([0, 7] x
R? R1*4) is defined as

9(X7") (17 M /T [o(r, X2 D3] dWTN

+/ST]E [F(V(t’xf’z)) (1W/t [o(r, X{f’x)lDf’z]TdWT)] dt.
(25)

(®(v)) (s,2) =E

Here X;** and D;"" are defined as

t d t
X7 :x+/ u(r,Xf’x)dr—i—Z/ oi(r, X5")dW,
= (26)
o t 9 St a -
D} = Tnwea + [ (gt Xi 0D + 3 | Gt XDy,

where W, : [0,T] x Q — R? is a standard (F;);¢[o,7)-adapted Brownian motion.

The Feynman-Kac formula gives
T
u(s,2) = Elg(X3:7)] + / E[F(u (8, X7), [o(t, X7)] T (V,u™) (6, X75)]de. 27)

Note that UTVyuoo appeared on the right-hand side in the fixed point iteration, which necessitates
a new representation formula of it to be simultaneous with And that is Bismut-Elworthy-Li
formula(Elworthy & Li, [1994;|Da Prato & Zabczyk, |1997), which gives

[o(s,2)]"

lo(s, 2)] T (Vyu)(s, ) =E T

9(X7")

/ " o(r X2y 1pme) T dwr]
* /T e [F<u°°<t, X5, [o(t, X0 T (Vyu™) (6, X0") (28

T t
[U(t&xﬂ / [U(Ta Xf,x)—lDi@]TdWr] dt,
— s s
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Concatenating the solution as u™ = (u, o ' V,u), we can define the iteration operator ®:Lip([0, 7] x
R< RY*) — Lip([0, T] x R, RY*4) as the following

9(X7") (1, % /T [o(r, X3) ' D] T dWrﬂ

+ / 'E [F(v(t,Xf"’”» (1, % / ot X201z dWr)] n
(29)

(@(v)) (s,2) =E

and yield

u® = ¢(u™). (30)

The Multilevel Picard iteration considers simulating the Picard iteartion wug(s,z) =
(®(ug—1))(s,z), k € Ny, which is guaranteed to converge to u™ as k — oo forany s € [0,T),z €
R4 (Yong & Zhou, {1999, Page 360, Theorem 3.4). Formally, the MLP method uses MLMC(Giles,
2008; 2015) to simulate the following telescope expansion problem derived from the Picard iteration.

k—1 -1

ui(s,x) =uy(s,z) + Z[qu(s, z) —w(s,z)] = ®(uy)(s,z) + {@(ul)(s,x) - q)(ul_l)(s,x)}.

=1 =1

agls, T T T
(9(X77) — g(=)) (1[(T_)S]/ [a(r,Xﬁvw)—lpi»w]TdWrﬂ

S

= (9(z),04) + E

s /TE[ (1, X37)) — 1n()F (w1 (1, X70)))
=0
(, ofg?](l [(rst)1D?ﬂTdmg)]ﬁ.

&1y

One can either estimate these integrations with the quadrature method(quadrature MLP (E et al.|
2021))) or the Monte-Carlo method(full-history MLP (Hutzenthaler et al., 2020b)), detialed intruction
is shown in demonstrated in A comprehensive summary of MLP variants can be found at
(Research Group on Stochastic Analysis, University of Duisburg-Essen, [2025)).

B.2.1 IMPLEMENTING MULTILEVEL PICARD ITERATIONS

Suppose we are given effective simulators (e.g., Euler—Maruyama or Milstein) parameterized by ¢
(e.g. discretization level), which produce the numerical approximations

1,i s,x i [U(S7$)]T i 8,x\— $,T T
X;ﬁ,ga)(s, z,t) ~ X, I,(W)(s, r,t) ~ (1, s [o(r, X5T)~ips } dw, |, (32)
where k denotes the total level, [ the current level, and ¢ (which may be negative) indexes the sample
path. To implement the Multilevel Picard Iterations, we need a numerical approximation to the

integral fsT EF (u,(t, X;""))dt. Following (E et al.,[2021; Hutzenthaler et al., 2021), we examine the
following two methodologies, using quadrature rule and Monte Carlo algorithm to approximate the

integral fST EF (u(t, X;"))dt:

Quadrature MLP In this approach (E et al.|[2021)), quadrature rules are employed to approximate
the time integrals that appear in the MLP formulation. This quadrature-based technique is motivated
by the need to efficiently and accurately resolve time integration errors while maintaining the stability
of the multilevel scheme. By leveraging well-established Gauss—Legendre quadrature, we obtain a
deterministic and high-order accurate approximation that is well-suited to the recursive structure of
the SCaSML algorithm.
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Definition B.1 (Gauss—Legendre quadrature). For eachn € N, let (c!)?_, C [—1,1] denote the
n distinct roots of the Legendre polynomial © 2”1”! dcfn [( 1)"] and define the function

gmlatl [a,b] — R by

b
2 — (b—a)cl* — b —(a
/ H z—(b-a)c —(a+ )dx, ifa<bandw€{c’f,...,cﬁ},
n,[a,b] 1) = _ 2t — (b - a)c? - (a‘ + b) *
q ( ) - C;L?ﬁzt;(_a:b)
0, otherwise.
(33)

The Gauss—Legendre quadrature serve as a fundamental building block to discretize the time variable
in the Picard iteration. With these polynomials, one can approximate the time integrals with high-order
accuracy while controlling the error propagation in the recursive iterations.

Definition B.2 (Quadrature Multilevel Picard leration). Ler {U\9] o} € M(B([0,T] x

l,jEL
R?Y) @ F, B(R x Rd)) be a family of measurable functions satisfying, for alll,j € N and (s,x) €

[0,T) x R?, we start with US)E%(S x) = 0g41. For n > 0, we define the quadrature SCaSML
iteration as

M™

1 —1 —1
Unana(s,2) = (9(2),00) + 7 S (9(20 7 (s5,2.7)) = 9(2)) T (5,2, 7)
=1
gl T) () " FUSD, ot 20 ) — 1n() FU LoD 10D
5 S O (0 0t0 0, 0) ~ 100 PO 0, AL 1)
1=0 te(s,T) i=1

1,3
I,S Z)W(s,x,t).
(34)

The use of quadrature in this context is motivated by its ability to yield a systematic error control
over the temporal discretization, thereby enhancing the stability and accuracy of the multilevel Picard
iteration in the simulation-calibrated framework.

Full-history MLP  The full-history MLP scheme (Hutzenthaler et al., 2021]) adopts a Monte Carlo

approach to approximate the time integral | f EF(w(t, X;""))dt instead of deterministic quadrature
rules with fixed time grids. This modification considerably simplifies error analysis(Hutzenthaler
et al.| 2020a) and avoids all temporal discretization error.

In the full-history MLP, we employ a time-sampler that guarantees an unbiased Monte Carlo ap-
proximation of time integrals. Let v : Q — (0, 1) be a collection of independent and identically

distributed random variables with density p satisfying ]P)(t(l’i) < b) = fob p(s) ds. Consider numeri-

cally approximating the integral I(f; s, t) f f(r)dr with t € (s, T) we construct an importance

N FRONL oy

sampling estimator with sample size N:I(f;s,t) = i (G ) )

(=)

T—s

, Where g is the the

A

rescaled density p on (s,T") defined as o(r, s) =
density o(-,s) on (s,T)viaR=s+ (T — s)t.

and R is the random sample from the

Definition B.3 (Full-history Multilevel Picard Iteration (Hutzenthaler et al., [2020a))). Let
{Ug:ﬁ }l,jez M (B( [0, T) xR @F, B(R x Rd)) be a family of measurable functions satisfying,

foralll,j € Nand (s,z) € [0,T) x R%, we start with Uggﬁj)(s,x) = 0411. Then, for n > 0,
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define the full-history SCaSML iteration as

n

M
Unaels,2) = (962),00) + 703 (910 (5,2.T) — 9()) 20 (5,2, 7)

= 1 &= 1 Ia U(l’i) R () X(l’i) R ) 35)
JrZ:Mn*l > () ( (U (R, X (52, REY))
1=0 i=1 o(s,Rs"")

S

~ @ F (UL RED, 2 (.2, REDN) ) T (.0, RED),
here Rgl’i) is i-th sampled time point after t at level | which is defined as as Rgl’i) =s+(T—5) MU

C ALGORITHM

In this section, we describe the complete procedure of Simulation-Calibrated Scientific Machine
Learning (SCaSML) for solving high-dimensional partial differential equations (I)). The SCaSML
framework at any space-time point (¢, ) can be summarized as follows:

* Step 1:Train a Base Surrogate. First, a surrogate model 4 is trained to approximately solve
the target PDE (T)), serving as a preliminary estimate of the true solution.

* Step 2:Physics-Informed Inference-Time Scaling via the Structural-preserving Law of
Defect. Recognizing that the defect & := u — « satisfies a semi-linear parabolic equation,
termed the Structural-preserving Law of Defect,

%ﬁ + (p, Vyii) + £ Tr(o " Hessy o) + F(ﬁ,aTvyﬁ) =0, on|0,7) x R%,
u(T,y) = g9(y), on R?,
(36)

one obtains an estimate of (¢, ) by employing Multilevel Picard iteration, either through
quadrature-based MLP (Definition [B.2)) or full-history MLP (Definition [B.3).

* Step 3:Final Estimation. The final estimate of the solution is then given by u(t, ) =~
a(t,x) + u(t, ).

The entire algorithm is detailed in Algorithm I]

We emphasize that the sample-wise iteration in Algorithm [I]can be substituted by vectorized opera-
tions, thereby enabling the algorithm to be applied concurrently to multiple points. These performance
enhancements were implemented using JAX and DeepXDE, resulting in a time reduction by a factor
of 5x to 10x.

Additionally, methods such as thresholding (Sebastian Becker et al., |2020) and Hutchinson’s esti-
mator (Hutchinsonl, [1989; |Shi et al.,|2025)) could also be employed within the principal algorithm.
Thresholding (Algorithm [2) mitigates numerical instability by methodically “clipping” the defect
estimator U, a critical action when the surrogate model yields outlier values or when unbounded
growth may manifest during iterative correction phases. Hutchinson’s estimator (Algorithm [3)) al-
leviates the computational and memory demands of eppg in a by forming an unbiased estimator
that necessitates only a subset of second-order derivatives approximating the Laplacian. This partial
evaluation not only expedites the simulation process but also minimizes peak memory consumption,
thus averting out-of-memory issues.

D PROOF SETTINGS

In the following sections, we establish the rigorous mathematical framework for analyzing the
SCaSML method. We proceed in three steps:

1. Notations and Definitions: We define the probability spaces, norms, and function spaces
used throughout the proofs.
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Algorithm 1 Simulation-Calibrated Scientific Machine Learning for Solving High-Dimensional
Partial Differential Equation

Require: Level n, sample base M, target point (s, ), a surrogate model 4, threshold €, (quadrature

A

—_ =

12:

13:
14:
15:
16:
17:
18:

19:

20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:

31:
32:

33:
34:
35:

36:
37:
38:
39:
40:
41:
42:
43:
44

45:
46:

YRR

order @ for using Qudrature MLP)
Train a base surrogate model 4 to approximate the PDE solution.
Take MLP_Law_of Defect(s, z,n, M, Q) - (1,04) + 4(s, x) as estimation of u(s, x)
function MLP_LAW_OF_DEFECT(s, x, n, M, Q)
u(s,x) (ﬂ(s, z), o' (s,2)V, (s, x))
if n = 0 then > Start Inference-Time Scaling via Simulating the
Structural-preserving Law of Defect
Un)MyQSS, x) — 0d+1
return U, 17 o(s, 2)
end if
UTLJVLQ(S7 z) < (g(x), 0q)
fori =1to M" do ) ,
Sample Feyman-Kac Path Xéog’;_z) (s,z,T) and Derivative Process I,gos;_z)(s, x,T) in
€ (0,—1) (0,—4)
Un,]\l,Q(S; Cﬂ) — Un,]\LQ(Sa :L') =+ 1\/}" (g()(k#; (S, x, T)) — g(x)) . Ika;a 4 (3’ T, T)
end for
for/=0ton—1do
fori=1to M"'do
if using Quadrature MLP to calibrate then
Compute () quadrature points with corresponding weights ¢@[*71(t) by -
for all quadrature points ¢ € [s,T] do
Sample Feyman-Kac Path X,SZZ) (s, z,t) and Derivative Process I,El’;) (s,z,t)
according to formula (32)
z  MLP_Law_of Defect(t, X"} (s,,t),1, M, Q)
if [ > 0 then L
Zprey < MLP_Law_of Defect(t, X\ (s,2,t),1 —1,M,Q)
AF « F(z) — F(2Zpey)

else .
AF « F(z)
end if
Un (s, z) < Upaols,z) + Wl(t) AF - Ikl ll)¢(s z,t)
end for
end if

ifusing Full History MLP to calibrate then
Sample time step RD o(s,T)
Sample Feyman-Kac Path X,Ef;j)(s, z, Rgl’i)) and Derivative Process
I,El,’;) (s,x, Rgl’i)) according to formula 1)
z + MLP_Law_of Defect(R{"", X"} (5,2, R{""),1, M, Q)

if [ > 0 then )
Zprey 4 MLP_Law_of Defect(R{"", X" (5,2, R$),1-1,M,Q)

AF « F(z) — F(Zpey)
else .
AF F(z)
end if ) . (z ; (z N
end 1f
end for

end for
U,.11.0(s,2) + Thresholding(e, U, ar.0(s,x)) > Threshold outliers using Algorithm
return U,, 1.0 (s, z)

end function
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Algorithm 2 Thresholding the outliers (Sebastian Becker et al., [2020)

Require: Threshold ¢, defect estimator U
1: function THRESHOLDING(g, U)
2: forc=1tod+1do

3: if U. > ¢ then
4: Ijg e

5: eng if

6: if U. < —¢ then
7: ﬁg — —¢

8: end if

9: end for

10: return Clipped U
11: end function

Algorithm 3 Hutchison’s estimator for estimating Laplacian (Shi et al., 2025)

Require: Sample size K, target function f
1: function HTE(K, f)
2 Draw K different indices from 1, .. ., d with equal probability 1/d, denoted as j1,. .., jx
3 Compute D3 f,1<¢<d
4: Compute estimator HTE « £ Zfil DJ2 f
5 return Laplacian estimator HTE
6: end function

2. Problem Setup: We explicitly state the regularity assumptions on the original PDE coeffi-
cients and the stochastic basis.

3. Surrogate and Defect Properties: We formally define the surrogate model, the defect PDE,
and the transfer of Lipschitz properties from the original problem to the defect problem.

D.1 MATHEMATICAL FRAMEWORK AND DEFINITIONS

In this section, we rigorously define the measure-theoretic structures, function spaces, and norms
required for the convergence analysis. Our framework aligns with the standard stochastic analysis
settings found in (Hutzenthaler et al.| 2020a; E et al.| [2021).

Definition D.1 ( ).

For any vector v = (vy,...,vq) € R4,
. For a generic vector z € R" (e.g., neural net-
work parameters), we define the discrete p-norm (p € [1,00)) and co-norm as:

n 1/p
- p o )
[|2]lp == (51 B ) , and ||z : 1réliagxnlzll.
=

Definition D.2 (Measurable Spaces and Functions). We denote by B(R?) the Borel o-algebra on
R<. For any two measurable spaces (S1, F1) and (Sz, F2), we define M(Sy, S2) as the set of all
measurable mappings from S to Sa:

M(Sy,82) :=={f : 51— Sy |[VA € Fo, f1(A) € Fu}.
When the o-algebras are clear from context (e.g., Borel for topological spaces), we simply write
M(R? R).
Definition D.3 (Probability Space and L? Norms). Let (), F,P) be a complete probability space.
For any measurable random variable X € M(,R) and p € [1,00), the L?(Q2)-norm is defined as:

1/p
1 X1 ey = (E X7 = ( / X<w>|pdw><w>) .
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For p = oo, the essential supremum norm is defined as:
| X| L) :=inf{C > 0:P(|X| > C) = 0}.

Definition D.4 (Function Spaces). Let D C R? be an open set. For k € N and p € [1, 0], the
Sobolev space W*P (D) consists of all functions u € LP(D) such that for every multi-index o € Ng
with |a] < k, the weak derivative D*u exists and belongs to LP (D). We define the norm for
W (D) as |[ullwr.o Dy = D)<k 1P ull Lo (D)-

2 1 m™d) - . .
Furthermore, let C12([0, T x R?) denote the space of functions ¢(t, x) that are once continuously
differentiable in t and twice continuously differentiable in x. This regularity is required for the
classical solution u and the surrogate 1.

Definition D.5 (Extended Real Arithmetic). To handle singularities in complexity analysis, we adopt
the standard conventions for the extended real number line R = R U {—o0, co}. Specifically, we
deﬁne% =0,0-00=0,0° =1, and \/oo = 0. Forany a > 0and b € R, weset% = 00,
_T":—oo,O"I:oo,%:m,%:O,andO‘I:O.

D.2 PROBLEM SETUP AND REGULARITY ASSUMPTIONS

We now formalize the specific partial differential equation and the stochastic framework used for our
theoretical analysis.

D.2.1 STOCHASTIC BASIS

Let T' € (0, 00) be the terminal time and d € N be the spatial dimension. et (O, 7 P, (7)1 1)
be all stochastic processes are assumed to be adapted to the usual Filtration (IF, ),ﬂ(,_r, -

To facilitate the Multilevel Picard (MLP) analysis, we assume the existence of a family of independent
standard Brownian motions. Specifically, let {WW () : [, j € Z} be a collection of independent

d-dimensional standard Brownian motions adapted to (IF;);c[o ). Here, the index I corresponds to
the level in the MLP hierarchy, and j corresponds to the Monte Carlo sample index within that level.

D.2.2 THE TARGET PDE

While the SCaSML framework applies to general semi-linear parabolic PDEs, we perform the
theoretical analysis on the semi-linear heat equation. This corresponds to the generator £ with drift
p = 0 and diffusion o = sl for a constant s € R\ {0}.

The classical solution v € C12([0, T] x R?, R) satisfies the terminal value problem:

%(7‘.:1:) + Lu(t,x) + F(u(t,x),0 Vau(t,x)) =0, (t,z)€[0,T) x R?, (37
C

where Lv := iAv, and subject to the terminal condition u(7T, x) = g(x).

2 \ / /

The nonlinearity F' : R x R? — R and terminal condition g : R — R are assumed to be Borel
measurable functions.

D.2.3 REGULARITY ASSUMPTIONS

The MLP method achieves dimension-independent convergence rates under Lipschitz continuity
conditions on the problem data. These conditions ensure bounded variance propagation across Picard
iterations (Hutzenthaler et al.] [2021]).

Assumption D.6 (Lipschitz Continuity of Nonlinearity and Terminal Condition). We assume the
following:

1. Nonlinearity: There exists a constant L > 0 such that for all (vy, z1), (v2, z2) € R x R?
and (t,z) € [0,T) x R%:

|F(v1, 21,t, @) — F(va, 20, t,2)| < L(Jvg — va| + ||21 — 22|1)- (38)
2. Terminal Condition: There exists a constant K > 0 such that for all ¢,y € R%:

l9(z) — 9(y)| < Kz — ylx. 39)
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D.3 SURROGATE MODEL AND DEFECT PROPERTIES

In this section, we rigorously define the relationship between the pre-trained surrogate model and
the defect (error) we aim to estimate. We first state the regularity assumptions on the surrogate, then
derive the properties of the Defect PDE.

D.3.1 SURROGATE REGULARITY

To ensure the classical defect PDE is well-defined, we assume the surrogate is sufficiently smooth.
Leta e CH2(10,7] < RYIR) be a deterministic approximation of «. To ensure the defect terminal
condition is well-behaved, we require the following:

Assumption D.7 (Lipschitz Continuity of the Surrogate Terminal). There exists a constant K e
[0, 00) such that for all x,y € R%:

(T, 2) — (T, y)| < K ||z —yl|- (40)

D.3.2 THE STRUCTURAL-PRESERVING LAW OF DEFECT
We define the defect i : [0, 7] x RY — R as the pointwise error:

u(t, ) = u(t,x) — u(t, ). 41)
The core of SCaSML is the observation that @ satisfies a semi-linear PDE of the same structure as the

original. We explicitly define the coefficients of this new PDE below.

Definition D.8 (Modified Nonlinearity and PDE Residual). Zer ¢ - (0.7 < RY — R be the PDE
residual of the surrogate U defined by:
ot T ~
e(t,x) == ()f( x) + La(t,x) + F(u(t,x), o' Vaul(t,x)).

We define the modified nonlinearity F:RxR?x [0, 7] x R — R for the defect PDE as follows.
For any state v € R and gradient-state z € R? at a spacetime point (t,x):

F(v,z,t,x) := F(a(t,z) +v,0' Vgi(t,x) + z) — F(a(t,z),0 " Vaa(t,z)) +e(t,x). (42)
We similarly define the defect terminal condition §(x) := g(x) — 4(T, x).

Lemma D.9 (Structural-Preserving Law of Defect). 7/e defect w is a classical solution to the

following semi-linear parabolic PDE:

ot
ot

Remark D.10 (Why Law of Defect is Easier to Solve). 7/e complexity of MLP depends on the
magnitude 0/ source term I (iHul enthaler et a/] |2020bl Theorem 3.1). Based on the Lipschitz
continuity of F' and the variance-reduction structure inherent to MLMC, IHut enthaler et al. MZ()Z]])
shows that the overall computational complexity of MLP is governed solely by the value of F at
the origin. Substituting v = 0 and z = 0 into Definition ' F(0,0,t,2) = €(t,x). The "source
term” driving the Multilevel Picard simulation for the defect is the residual €, already reduced by
an approximate surrogate. If the surrogate is perfect (¢ — 0), the driving force vanishes, and the
variance of the Monte Carlo estimator approaches zero. In our later theorem, we show that the
variance of MLP can be controlled by the magnitude of e.

—(t,x) + Li(t,x) + F(@,0 Vyi, t,x) =0,Y(t,x) € [0,T) x RY (T, x) = j(z). (43)

D.3.3 REGULARITY ESTIMATIONS

MLP complexity is governed by both the smoothness and magnitude of the source term; these factors
enter multiplicatively because nonlinearities—via their Lipschitz bounds—propagate and amplify
variance through each Picard iteration. Remark[D.T0]established that the magnitude component in the
law of defect can be improved using the surrogate. It remains to show that the regularity appearing
in the law of defect is no worse than that of the original PDE, ensuring that the refinement does not
introduce additional smoothness requirements.
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Lemma D.11 (Preservation of Lipschitz Constants). Suppose F satisfies Assumption [D.6] with

Lipschitz constants L. Then, the modified nonlinearity F' satisfies the same Lipschitz condition with

the same constants. Specifically, for any fixed (t, ), and any vectors (01, z1), (02, z2) € R x R%:
|F (01, 21, t, @) — F(2, 20, t, )| < L5y — To| + || 21 — 221, (44)

Furthermore, the defect terminal condition § is Lipschitz continuous with constants K=K+K.

Proof. Letw; = (01, 2z1) and we = (Us, 22). We define the background state vector of the surrogate
as U = (i(t,x),0 " Vi(t,2)). From Definition|D.8] the difference is:

F(wi,t, @) — F(wa, t,x) = [F((Af—&-’wﬂ—F(ﬁ)—i—e} — {F(U—i—wg)—F(ﬁ)—&—e}
= F(U +w,) — F(U + w,).

b4

|F(U 4 wy) — F(U +wy)| < L|(U +wy) — (U +ws)||1 = Lljwy — wyl;.

This confirms that F inherits the Lipschitz constants L. For the terminal condition, since 4 €
CH2(]0,T] x RY) by Assumption the map = — 4(T, z) is Lipschitz with constants K. The
triangle inequality applied to § = g — @(T, -) then yields K < K + K. O

E PROOF OF FULL-HISTORY MULTILEVEL PICARD ITERATION

This section establishes the theoretical guarantees for SCaSML when the
Structural-preserving Law of Defect is solved using the Full-History Multi-
level Picard (MLP) iteration. In contrast to the quadrature method, this approach utilizes Monte
Carlo sampling for time integration, which relaxes the regularity requirements on the solution.

For the theoretical analysis, we retain the setting of the semi-linear heat equation where ;1 = 04 and
o = sl for a constant s € R.

E.1 PROBABILISTIC SETUP AND TIME SAMPLING

To analyze the Full-History estimator, we must extend our stochastic basis to support random time
stepping.

Definition E.1 (Extended Probability Space and Time Sampling). Let (Q, F,P) be a probability
space that supports the following independent families of random variables:

1. Brownian Motions: A collection {W(ZJ)}MeZ of independent d-dimensional standard
Brownian motions.

2. Time Step Samples: A collection {t(l’j ) }i jez of independent random variables distributed
on (0, 1) according to a probability density function p : (0,1) — (0, c0).

For our analysis and experiments, we specifically select the density p(s) = (1 — a)s™® for a
parameter o € (0,1). This ensures that the cumulative distribution function is F,(b) = b'~¢,
facilitating efficient inverse transform sampling.

E.2 RELAXED SURROGATE ASSUMPTIONS

A key advantage of the Full-History MLP is its robustness. Unlike the quadrature scheme, which
incurs a time discretization error scaling with high-order time derivatives of the solution, the Monte
Carlo time integration is unbiased. Consequently, we can drop the higher-order regularity requirement
(Assumption [F-1] Item 3) imposed in Appendix [F}

Assumption E.2 (Accuracy of the Surrogate Model for Full-History MLP). Let @ be the solution to
the Defect PDE. We assume supc(o 71 ||@(t, -) ||y, may < 00. There exist constants Cp,1, Cr2 > 0
independent of G such that the surrogate error measure e(0) controls the following:
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1. Residual Bound (L*>°):

sup le(t,z)| < Cpae(d).
(t,)€[0,T] xR

2. Defect Bound (W1 >°):

sup [[a(t, <) [lw1.0o (ray < Cr2e(w).
t€[0,T]

However, the singularity of density p requires a specific moment condition to ensure finite variance.

Assumption E.3 (Integrability of the Residual). There exists p € N with p > 2 such that for all
t€]0,T)andq € [1,p):

1
1 a
d E[|e(t, W, — o) < oo. 45
/o s4/2p(s)a1 8+sesﬁ,pT) UE( rro 7 t)l} “3)

Remark E4. In Assumption we explicitly identified F (0g41) with the residual e. This assump-
tion ensures that the surrogate’s residual does not grow too fast in expectation along Brownian paths,
and that the time sampling density p puts sufficient probability mass near t = 0 to counteract the
singularity.

E.3 MAIN RESULTS

We now show that, with an appropriately trained surrogate model, the St ructural-preserving
Law of Defect can be simulated with lower complexity than the original PDE. In particular, the
error of the full-history MLP is upper-bounded by the surrogate model’s error measure e(1i).

E.3.1 SKETCH OF PROOF

The computational complexity of the MLP solver depends on the Lipschitz constant of the nonlinearity
F and the magnitude of the “source terms”. The “source term”™ driving the Multilevel Picard
simulation for the defect is the residual ¢, already reduced by the surrogate. At the same time, we
show that the regularity in the law of defect is no worse than that of the original PDE, ensuring that
the refinement introduces no additional smoothness requirements. Combining the previous fact, a
more accurate surrogate makes the defect PDE “easier” to solve. This leads to our main error bound.

1. Improved Source Magnitude. Since the source term F(0qy1,t,2) = e(t,x) is the
surrogate’s residual by Definition [D.8] Consequently, as the surrogate improves with
additional training data, the variance of the Monte Carlo estimator decreases proportionally.
Lemma[E-3]formalizes this argument.

2. Complexity of MLP[Hutzenthaler et al] (2021) show that the complexity of MLP depends
on both the smoothness and the size of the source term; these contributions combine
multiplicatively since nonlinearities, controlled by their Lipschitz constants, propagate
and amplify variance throughout successive Picard iterations. Then we analyze both the
magnitude of the source term in Law of Defect and its regularity.

3. Preservation of Regularity. By Lemma the defect nonlinearity F' inherits the
Lipschitz constants L of the original F' exactly. Thus, the regularity requirements for the
MLP solver remains unchanged, ensuring that the refinement does not introduce additional
smoothness constraints.

4. Error Bound. Based on the previous inituition, Theorembounds the total L2-error
as a multiplicative form, combining the classical MLP complexity with the surrogate’s
approximation error. Thus this can leads to faster convergence rate if the surrogate’s
approximation error consistently improves.

5. Complexity Estimate. Substituting the reduced source magnitude into the standard MLP
bound yields a multiplicative error reduction. Combined with Theorem(E. 11} we improve
O(de=(+9)) to O(de(0)>H0e~(2+9)),
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E.3.2 BOUND ON GLOBAL L? ERROR

Our proof still utilizes the insight that the overall L? error in the MLP mainly hinges on the Lipschitz
continuity of the PDE’s terminal and solution, as well as the extent of nonlinearity at the origin.
We illustrate that the parameter linked to the St ructural-preserving Law of Defect s
constrained by the surrogate error. Initially, we present a lemma demonstrating how the complexity
of MLP can be capped by the error assessment.

Lemma E.5 (Complexity Estimation via Surrogate Error for Full-History MLP). Under Assumptions
[D.6| D [E2] and[E.3) suppose p > 2. There exists a constant C'r > 0 independent of the surrogate
such that for all M, N > 2:

C sup,cir 1) | F(Odﬂ» s, &+ oW, — oWyl

ov/max{T —t,3}K L7722 ()
sup +
(t,2)€[0,T] xR4 v M oM
C SUPsepr 1), ceft,....ar1} 1A(s, x + oWy — UWt)§”L%(Q)
+ 2 S OF 6(’&),
(46)

where the constant C' is defined as:

1
C = max {1,2Té r (g) (11— oz)%_l max{1, L} max {T5,2é

r(pgl);w—ﬁ}}.

Proof. We bound the three terms on the left-hand side of equation 46 using the L bounds provided
by the surrogate accuracy Assumption We utilize the fact that for any bounded random variable
Z, 1 ZLa) < 12| L= (0

Step 1: Bounding the Terminal Condition. As shown in the proof of Lemma [F4] (Step 2), we have:

K < |Ji(T, ) |[wr.eo (ray < . [(r, )| w.oe (Ray.- 47)
re|0,

Applying the Defect Bound from Assumption [E.2](Item 2):
K < Cpae(d). (48)

Step 2: Bounding the Residual Term. Recall that F'(04.1,¢,2) = €(t,x). The second term

2
involves the L7-2 (€2) norm of this residual evaluated along Brownian paths. Since the residual is
essentially bounded in space-time:

| F(O441, 8, &+ ocWs — UWt)”szfpz(Q) =|e(s,x+ oW, — UWt)”L%(Q)
< sup |e(s,x + oWs(w) — oWy (w))|
weN
< sup le(s, ). (49)
yeR4
Applying the Residual Bound from Assumption [E.2|(Item 1):
sup | F(0d+178,')\|L% < Crae(t). (50)

set,T)

Step 3: Bounding the Defect Norm. The third term involves the L7%% norm of the defect solution 4
and its gradient. Similarly, we bound the stochastic L? norm by the deterministic uniform norm:

|la(s,z + cWs — c W)

g < 05 e
< la(ss ) lwroe (me)- (51
Applying the Defect Bound from Assumption [E.2|(Item 2):
sup [[a(s, ) ||w1.0o(ray < Cr2 e(i). (52)

seft,T)
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Substituting the bounds equation [#8] equation[50] and equation [52] back into equation A6}
U\/T + 3CF’2 6(’&) + CCFJ e(ﬁ) + CCF’Q 6(’&)

LHS < S Wi 5
_ [(WfMT : ) Cra + JMCFJ} (@), (53)

Since M > 1, we can simplify the coefficient by defining Cr := o/ T +3Cp2 + %(CFJ + CF,Q).
This proves the lemma. O

The above lemma, together with standard error estimates for the full-history MLP, yields the following
result.

Theorem E.6 (Bound of Global L? Error). Under assumptions m and , suppose
p=2ac (5 21), s ) t€0,T), € RY, B=9— %;_2). For Uy i (t, @) with level
N and sample base M as defined in Algorithm|[I] it holds that

sup ma H(UN Mm(t,x) —u(t ac))
(t,z)€[0,T)xRd s€{L,-, d+1} ) t

1
[e(%ﬂ)} 8(20)N 1exp(3MTlf)
where E(M,N) = NATLES .

< E(M,N)- (Cp c(ﬁ)), (54)

sliL2?

Proof. Under assumptions [E.3|and combined with the integrability argument in (Hutzenthaler
et al.} 2021, Lemma 3.3), the proof of (Hutzenthaler et al., 2021, Proposition 3.5) holds. Setting
n = N in this proposition, for all ¢ € {1,...,d + 1}, we have

<E(M,N) {m/max{T—t 3}K (55)

H <IVJN’M(t, ) — it :c))

L2

C supecpmy | F(0gs1)(s,@ + oWy — oWy)|| 2
Lp—2
(56)
2vV M
C SuPsep 1), ce(t,....at1} (s, + oWy — UWt)gan%
_|_
2
(57)

Take sup; zye[o,7)xre M8Xse(1,...,a+1} for the LHS, and note that the RHS does not depend on ,
we get

sup max H (IVJN,M(t,a:) - ﬁ(t,:c)) (58)

(t,2)€[0,T] xR SE{1,....,d+1}

L2

ov/max{T —t, 3}Iu( C supsep,m) [ F(0d+1)(5a x+ oWy — oWy 2p
<E(M,N)-  sup + Le
(t,x)€[0,T]x R4 VM M
(59)
C SUPsep 1), ceft,....ar1} [1A(s, x + oWy — UWt)§||L%
+ . (60)
2

Substituting the sup term in [58|by Lemma[E-5immediately yields the stated result. O

In practice, a common choice for M is | N2#V |, Plugging it in we get the error order of the
solver w.r.t. IV:

Corollary E.7 (Error Order for M = | N2V |). Under assumptions|D.6|[D.7} [E.3and [E.2], suppose
P>2ac (2 gilp) t€10,T), x € RE B =g — U=2)=2) fy holds thar

sup max H (IVJN,M(t,m) —u(t, :1:)>§HL2 < exp <N log N (-8 + 0(1))) . <CF c(ﬁ)).

(t,z)€[0,T]xRd sE{1,....,d+1}
(61)
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Proof. First, we rewrite E(M, N) in[E.6|as exponential form:
1
(2 +1)] 2e)¥ - exp (M%)
N1
=exp <0(N) + Nlog(20) + gM*1/?8 —

E(M,N) = (62)

1 log M) (63)

Note that | N2V | < N28N and that M = [ N2V | = log M > log(N?Y — 1) > log(N?/N) —
1 =2Blog N — 1 for N > 21/28_We can simplify [62|to

N -1
exp (0(N) + Nlog(2C) + BM*/?8 — — log M) (64)
N -1
<exp (O(N) + Nlog(2C) + BN — T(Zﬁ log N — 1)> (65)
1

=exp <N(0(1) +1log(2C) + 5 — 5(25 log N — 1))) (66)

=exp (NlogN(ﬂJro(l))). (67)

Plugging [64]to the conclusion of [E.6| we get the result we want. O
Corollary E.8 (Improved Scaling Law for M = | N2V |). Under Assumptions|D.6| @ [E.3|and[E.2]
suppose that p > 2, o € ( 50 21), S 1)) t €10,T), x € RY, and define B = %.

Assume that the error at (t,x) of the surrogate model decays polynomially wzth respect to the
number of training points; namely, e(t) = O(m™7), for some v > 0. Suppose further that
m = (d 4 1)5~ N2°N . Then, for all sufficiently large m, the SCaSML procedure improves the error

bound from O(m~"7) to O (m‘”‘é"’o(l)) with same points number.
Proof. In what follows, we adopt the notation f(m) ~ g(m) to signify that lim,, £ E;’;; =

Since m is a continuous and strictly increasing function of N, there exists a unique inverse function
N = N(m). Taking logarithms, we obtain log m = log(d + 1) + N(m)log 5+ 25 N(m)log N(m)
which follows immediately that logm ~ 28 N(m)log N(m)

Define

logm  log(d+ 1)+ N(m)log5
28 25
and set x = log N, so that the relation x e = z holds. The inverse of this equation is given by the
Lambert W function, i.e., x = W(z). Therefore,

logm _ log(d+1)4+N(m)logb

T z < 25 23
N(m):e zew(): = .
Wiz logm log(d+1)+N(m) log 5
=) W( 2gﬁ o 28 )

log m

28 . logm

Since W (z) ~ log z — loglog z, we can deduce that N (m) ~ oalogm) = 37 loelogm

_ logm logm
N(m) ~ 2B loglogm + <2ﬁ loglogm)

. Equivalently,

In contrast to the surrogate model, which uses all m points to achieve an error of O(m~7), the
SCaSML method allocates 57 N2#N points for training and d5" N2#" points for inference (see Foot-

note , thereby yielding an error bound of the form O (N log N (—ﬁ + 0(1)) (5N N%N)Jy) =

0] (N —AN(1+o(1)) m’”). Substituting the asymptotic expression for N (m), and noting that

Vd + Texp(® 22N (m))
vm

N (m)= PN — (68)
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log b N(m) 1
1 —1 —
d + 1exp( ogm(logm log5)) (69)
log 5 1 1
d+1 1 70
+exp( 2 ogm(= 10g5+0<loglogm))) (70)
1
1 —)) 1 1
T Texp(—(5 — ol logm) )
= d+1m‘5+°(m>:0(m—%+o(m>). (72)

We obtain the SCaSML error bound O(m_7 m(féﬂ’(m))(l*o(l))) = O(m_"y_%“(l)).
Hence, for high-dimensional problems where m > 1 and for any fixed v > 0, we conclude
that O (m”’%“(l)) <0 (m’”), thereby demonstrating that the SCaSML procedure attains a
strictly faster rate of convergence. O

Corollary E.9 (Error Order for M = | NN |). Under Assumptions and @ suppose
p>2ac (52 st t€0,T), 2 € RY B =g — U= Jtjolds that

sup max H(IVJ nv2en () — 1 t,:c)
(t,)€[0,T] xR se{l,...,d+1} NN J( ) ( )

sHL

(73)

Specifically, this approximator IVJNJ N26N | requires at most d(5 | N2BN NN points for evaluation, as
detailed in (Hutzenthaler et al.l 20204l Lemma 3.6).

E.3.3 BOUND ON COMPUTATIONAL COMPLEXITY
We now define two indicators to quantify the computational complexity of full-history SCaSML:the
number of realization variables (RV) and the number of function evaluations (FE).
Definition E.10 (Computational Complexity of full-history SCaSML). We define the following
complexity:

* Let {RVy, v}, ez C N osatisfy RV v = 0 and, for all n, M € N,

n—1

RV < dM™+ 30 M2 (14 d+ RV +1n() RV )| (74)
=0

This quantity captures the number of scalar normal and uniform time realizations required
to compute one sample of U, p(s, ).

* Let {FE,, pr}n.mez C Nsatisfy FEg pr = 0 and, for alln, M € N,
n—1
FE,a < M"+Y {M”*l (1 + FEar +1n(0) + 1n (D) FEH,M)] (75)
—0

This reflects the number of evaluations of F and g required to compute one sample of
Un,M (S, Z‘)
Theorem E.11 (Computational Complexity of full -history SCaSML). Under assumptions|D.6| [D.7}
and , suppose p > 2, a € (5h—4y 5o 1),2(p ) )and f = § — %}9’_2) € (0,%). For any
N >2and§ > 0, taking M = | N*N |, we have

RVN’]V[-FFEN’M <exp <N10gN( — B5+0(1))>

(d+1)(Cpe(u))*+° [ sup max
(t,®)€[0,T] xR sE{1,...,d+1}

‘ (ﬁN,M(t, ) — u=(1, :c))c
(76)
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Proof. From (Hutzenthaler et al.l 2020a, Lemma 3.6), we derive that
RV < d(5M)N, FEn ar < (5M)V. (77)
Suppose the maximum error is . To compensate for the (5M)% term in the complexity by the

denominator of Theorem we multiply the complexity by €219 and then divide it, and put
everything into the exponent:

RVN)M + FEN,M (78)
<(d+1)(5M)N (79)
=(d+1)(5M)N2+9—(2+9) (80)

1
pN g N-1 25 ) 2+6
e +1 (20) exp| SM 28 PR
< [ () e (r?) ] (Cre(a)**(d+1)(5M)™ ®1)
~ —(2+9)
su max Unm(t,z) —u™(t,x (82)
[u@mw%xW<dhwﬂﬂw( v () ( )L p}

=exp (N((Q +0)log(2C) + log5> + (24 8)BMY?P £ log M — g(N —1)log M + o(N))

(83)
‘ 5 —(2+9)
(d+1)(Cre(a))*? [ sup max ‘ (UMM(t, x) —u™(t, m)) ]
(t,2)€[0,T] xR SE{1,...,d+1} <llr2
(84)
2 2
=exp | N( (2 + §)log(2C) + log5 + ﬂMWﬁ - (é - ié) log M + o(1) (85)
N 2 2N
i B —(249)
d+1)(Cre(u 2“[ su max ’ U t,x) —u>(t,x ]
( )( e ( )> (t,m)E[OB“]X]Rd ce{l,...,d+1} ( N’M( ) ( ))g L2
(86)
<exp [ N[ (2+6)log(2C) + log5 + 24008 e _ (é - 2L‘S) log M + o(1) (87)
N 2 2N
) - —(249)
(d+ 1)(@,0(@))%0{ sup max ‘(UN,M(t,m) - uOO(t,w)) ]
(t,2)€[0,T]xRd SE{1,....,d+1} <|lr2

(88)

Note that | N2#N |1/28 < N and B < £, thus %MU?B < (246)B8 < a1l + 3). Therefore, by

(2+6)8

exp (N ((2 + 6)log(2C) + log 5 + TM”QB ~ (é _ 2%

5~ oy s M+ 0(1)>> (89)
—(2+9)
(d+1)(Cpe(a)*** { sup max }
(t,2)€[0,T] xR s€{1,....,d+1}

(I"JN,M(t, ) — u=(1, m))

Silr2

(90)

) 6 2490
| —(249)
d+1)(Creli 2+()|: sup max :l ’
@+ 1)(Cre(a) (8:@)€[0,T] xR SE {1 A1}

(ﬁN,M(t, ) — u=(t, m))

Sz

92)
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Since M = | N?/N | = log M > log(N?/N —1) > log(N?#N)—~1 = 23log N —1 for N > 21/28,
we can further reduce [89] to:

0 6 2496
exp <N<(2 +96)log(2C) +logh + a(1 + 5) - (5 - %)logM + o(l))) 93)
: _ —(2+9)
d+1)(Cpe(a))?° U t,x) —u>(t,
(d+1)(Cre(w)) [(t,m);‘(}%]wce{f???éﬂ} ‘( Nt ) —u™( :zc))< Lz]
%94)
1) 6 2490 6 2490
< 1 1 T+ 229 (2279 9810 N + o1
_exp<N<(2+6) 0g(2C) + log 5 + o —&-2)4-(2 2N) (2 2N) 281log N + o ))
95)
) B —(2+9)
d+1)(Cre(u 2*"[ su max ‘ U t,x) —u>(t,x ]
( /(Cre(@) (t,m)e[og“}xﬂ{d<€{17~~-»d+1} ( . ) ( ))c L2
(96)
=exp (N logN< — B+ 0(1))) 97)
i B —(2+9)
(d+1)(0F(1(ﬁ))2+"[ sup max ‘(UMM(t,a:) quO(t,a,-)) ] .
(t,2)€[0,T]xRd s€{1,....,d+1} |2
(93)

The right-hand side of this expression is clearly decreasing for large enough N, and in turn, fi-
nite. Hence, quadrature SCaSML boosts a quadrature MLP with complexity O(de_(2+5)) to a
corresponding physics-informed inference solver with complexity O(de()?+9e=(2+9)), O

F PROOF FOR QUADRATURE MULTILEVEL PICARD ITERATION

In this section, we present the proof for the Quadrature Multilevel Picard (MLP) iteration method.
For simplicity, we consider the case where = 0 and 0 = sI4(s € R) in the proof. We first establish
the mathematical framework and underlying assumptions, then analyze the convergence properties
and computational complexity of our proposed simulation-calibrated variant. The result shows that
the error of SCaSML is bounded by the product of MLP error and surrogate error. Likewise, the
complexity is bounded by the product of MLP error and surrogate error. Both indicate that surrogate
models can substantially reduce computational complexity while maintaining accuracy guarantees.

Since the Structural-preserving Law of Defect is also a semi-linear heat equation,
we can use the quadrature/full-history multilevel Picard iteration to obtain an estimation Ij(s, x) of
u(s, z) — (s, x). In this section, we study the theoretical properties of SCaSML that using Quadrature
Multilevel Picard Iteration to solve the St ructural-preserving Law of Defect and we
investigate the full-history multilevel Picard iteration in the next section.

F.1 SURROGATE ACCURACY AND INTEGRABILITY ASSUMPTIONS

To derive improved convergence rates for the Quadrature MLP, we must quantify the quality of the
pre-trained surrogate . We introduce a scalar error measure e(4) € [0, oo) which serves as a uniform
bound on both the PDE residual and the approximation error of the surrogate.

Assumption F.1 (Accuracy of the Surrogate Model for Quadrature MLP).

3. Higher-Order Regularity: To ensure rapid convergence of the time quadrature rules, we
assume the defect satisfies the following Gevrey-class regularity bounds:

10,0 7Va) (2 + 5 Aa)*0) () 1

e ()7 = Coaclt)
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1
12
Assumption F.2 (Quadrature Integrability). To ensure the well-posedness of the Feynman-Kac
expectations, we assume polynomial growth bounds. There exists p € N such that for the zero vector
0441 € R
sup =) |[F(0d41,t, )|
vera LH@lT  iejomeere 1+ [l

Remark F.3 (Magnitude of Nonlinearity at Zero). Recall from Definition @ that F (0g41,t,x) =

. Thus, the second term in Assumption effectively bounds the growth of the surrogate’s
residual. In the standard Picard iteration for the defect u, the first iteration is driven solely by this
term. A small "magnitude at zero” implies that the fixed-point iteration starts very close to the true
solution (zero), minimizing the Monte Carlo work required.

< 00. 99)

F.2 MAIN RESULTS

We now present our main theoretical results, which characterize both the accuracy and computational
complexity of our proposed method. These results demonstrate the substantial efficiency gains
achieved by incorporating surrogate models into the multilevel Picard framework.

F.2.1 BOUND ON GLOBAL L? ERROR

E31]

Lemma F.4 (The Bridge Lemma: Complexity Estimation via Surrogate Error). Suppose Assumptions

[D.6|[D.7] and|F2\hold. Then there exists a constant Cq > 0 independent of the surrogate i such
that:

2
) I (B + S Ak ()
sup ‘F(Od+1,t7w)‘+0\/T + 3 K+sup o2 7
(t,2)€[0,T] xRY keN (k1)3/

(100)

Proof. We bound each of the three terms on the left-hand side of equation using the surrogate
accuracy assumptions defined in Assumption [F1]

Step 1: Bounding the Residual Term. Recall from Remark that F(OdH, t,x) = e(t,x).
Applying the L>° residual bound from Assumption [F.1](Item 1):

sup  |F(0grr,t, @)= sup  |e(t, @) < Co.ie(a). (101)
(t,2)€[0,T] xR (t,z)€[0,T] xR

Step 2: Bounding the Terminal Lipschitz Constant. Let e, be the standard basis vector at index «
in R%. The L' norm of K satisfies:

d d
K <) DGl = > [ Di(T, )| poe < (T, )]0 (ray- (102)
a=1 a=1
Using the Defect Bound from Assumption [FI] (Item 2):
K < sup [[a(t,")|lwre < Cqae(a). (103)
t€[0,T]

Step 3: Bounding the Higher-Order Regularity Term. The third term is directly controlled by the
Higher-Order Regularity condition in Assumption [FI| (Item 3):

(L Vo) (5 + T A=) W)t @) _ Cos

u
sup (R < Coael

Q). (104)
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Summing the bounds from Steps 1-3, we define C := Cg.1 + o1 4+ 3Cq 2 + Cg 3. This yields
the desired inequality. O

We now combine this lemma with the general convergence theory of Multilevel Picard iterations to
state our main result.
Theorem F.5 (Global L? Error Bound). Under Assumptions|D.6|[D.7} and the error of the

SCaSML estimator U N,N,N With level N, sample base N and quadrature order N(as defined in
Algorithm[l) satisfies:

sup max H([vJ Nt x)— (Ut x),oVau(t,
(t,2)€[0,T]xRd SE{1,...,d+1} n.x (@) = (it @) =l )))

< E(N) . (CQ e(ﬁ)),

cllp2 —

(105)
where the convergence factor E(N) is defined as:

7ON 9QN—1N (14(4C)N_1 + 1)T2N+1
= —+ s
VNN-3 VNN
with constant C = 2(v/T + 1)v/Tr(L + 1) + 1.

E(N)

Proof. We apply the general error bound for Quadrature MLP from (Hutzenthaler & Kruse} 2020) to
the specific case of the Defect PDE. (Hutzenthaler & Kruse, 2020, Corollary 4.7) provides a bound of
the form:

sup ma)cilH}H (UN7N7N (t,x) — (u(t,x), oV u(t, m)))

(106)
(t,®)€[0,T] xR SE{L,.., )

L2

10, Va) (5 + 5 Aa)*0) (@) 2o

<E(N) x sup ‘F(Odﬂ,t,w)}+U\/T+3K+sup N3/
(t,@)€[0,T] x R4 keN (k1)

(107)

Specifically, the second term is the supremum bounded in Lemma|[F.4] By substituting the result of
Lemma directly into the corollary, we replace the generic PDE constants with the term Cg e(4),
thereby proving the factorization. [

Corollary F.6 (Asymptotic Error Decay). Under the assumptions of Theorem the convergence
factor E(N) satisfies the following asymptotic bound as N — co:

1
E(N) =exp (—2NlogN + O(N)) . (108)
Consequently, the error decays super-polynomially with respect to the computational depth N.

Proof. We determine the leading order asymptotic behavior of log E(NN) by analyzing the two
summands in the definition of E(N) separately. Recall:

7ON 9N—1,N (14(40)]\7’1 + 1)T2N+1
T UNEs VNS |

=:Ty(N) =:T5(N)

E(N)

Step 1: Asymptotic of the First Term 77 (N).
Taking the natural logarithm of T3 (N):

log T1(N) = log(7-27") + Nlog(2Ce) — N; 5 log N (109)
= f%NlogN + Nlog(2Ce) + %logN + log(3.5). (110)

Observing that as N — oo, the term —%N log N dominates linear terms O(N), we have:

1
long(N):—iNlogN—l—O(N). (111)
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Step 2: Asymptotic of the Second Term 75 (N).
We bound the numerator: 14(4C)N~1 + 1 < 15(4C)N ! for sufficiently large C, N. Thus:

N
log T5(N) < log (15(4C)N 172N +1) — 5 log N (112)
1
=log(15- (4C)~' - T) + Nlog(4C) + 2N log T — §NlogN (113)
1
= —5Nlog N + N(log(4C) + 2log T) + O(1). (114)

Similar to Step 1, the dominant term is — N log N:

logTo(N) = f%NlogN + O(N). (115)

Since E(N) = Ti(N) + To(N), we have log E(N) < log(2max{T,T>}) = log2 +
max{log T1,log T» }. Substituting equation[111]and equation

1 1
log E(N) <log2+ (—2N10gN + O(N)) = —§NlogN + O(N).
Exponentiating both sides yields the claim. O

F.2.2 BOUND ON COMPUTATIONAL COMPLEXITY
To fully assess the efficiency of our method, we now analyze its computational complexity. We
introduce two key metrics that capture different aspects of the computational cost.

Definition F.7 (Computational Complexity of Quadrature SCaSML). We define the following com-
plexity measures:

First, let {RNp 11,0 }n,m,0ez C N osatisfy RNo ar,o = 0 and, for alln, M,Q € N,

n—1
RNaarq < dM" + 3 [Q M (44 RN +1n() RN g)] (116)
=0

This number represents the total scalar normal random variable realizations required for computing
one sample of U, a1.0(s, x).
Second, let {FE,, ar,0}n,m,0ez C N satisfy FEo p.q = 0 and, foralln, M,Q € N,

n—1

FEnuq < M"+ 3 [Q@M" (14 FE g +1n0() + 1n() FE_1aq) | (117)
=0

This quantity reflects the number of evaluations of F and g necessary to compute of one sample of
Un (s, 2).
These metrics provide a comprehensive measure of the computational resources required by our

method. The first metric, RN, s ¢, accounts for the cost of generating random variables, while the
second, FE,, 7., captures the number of function evaluations needed.

Theorem F.8 (Complexity of Quadrature SCaSML). Under assumptions[D.6][D.7} [F2)and [F71] for
any § > 0and all N € N, we have
—(444)

-8(d + 1)(Cge(@))*? exp (Nlog N(—g + o(l))) < 0.

RNN.N,N +FEN,N,N < sup max H(GN’N7N(t’m) —uoo(t,m))
' (t,x)€[0,T]xRd s€{1,....d+1}

N

(118)
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Proof. From established results in (Hutzenthaler et al., [2020a, Lemma 3.6), we know that for all
N eN,
RNy v n <8N FEyyy <8NV, (119)

We want to use the O(N"/2) denominator in Theoremto compensate for the N2V term in the

complexity. Suppose the maximum error is £, and note that N2V = (NN/2)4 < (NN/2)4+9 s > 0,
we multiply the complexity by 419 i.e.
(449)
LJ

(RNN,N,N + FEN,N,N) sup max

(t,@)€[0,T] xR SE{L,.-,d+1}

7 (2(\/T +OVTr(L+1) + 1)N QN -1eN
VNN3
QOO DT ) A YT 0
<8(d+1)N2N . ((24(T + )M L+ 1) \/N’N) o (Coe()*+°

‘ (fJN,NVN(t, ) — u=(1, w))

S

<8(d+1)N?*N. (

<8(d + 1)(Coe()) 9 exp (Nlog N(—g + 0(1))).

(120)

The right-hand side of this expression is clearly decreasing for large enough N, and in turn, fi-
nite. Hence, quadrature SCaSML boosts a quadrature MLP with complexity O(de~*+%) to a
corresponding physics-informed inference solver with complexity O(de(i)*+0e=(4+9)) O

This theorem provides a comprehensive characterization of the computational complexity of our
method. The inclusion of the surrogate model error measure e(%) in the complexity bound demon-
strates how the quality of the surrogate model directly influences the computational efficiency of our
approach. Specifically, a more accurate surrogate model (smaller e(%)) leads to a lower computational
cost for achieving a given level of accuracy.

G AUXILIARY EXPERIMENTS RESULTS

We include supplementary experimental results that further validate our claims, including detailed
error distribution plots (violin plots) and additional inference-time scaling curves for all PDE test
cases.

G.1 VIOLIN PLOT FOR ERROR DISTRIBUTION

In this section, we present violin plots of the absolute error distributions for the base surrogate
model , the MLP, and the SCaSML method. We uniformly select the test points. By combining
kernel density estimation with boxplot-style summaries, these plots capture both the spread and
central tendency of the errors. A violin plot exposes the full distribution—its density, variability,
skewness, and outliers—offering much deeper insight into model performance. The width of each
violin at a given error level reflects the density of the observations. The results indicate that SCaSML
reduces the largest absolute error, lowers the median and produces more accurate points for a majority
of equations compared to the surrogate and MLP, demonstrating its robustness across different
dimensions and equations.
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Absolute Error
Absolute Error

(a)d=10 (b)yd =20 (c)d =30 (d)d=060

Figure 5: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray), applying
qudrature SCaSML (teal) to calibrate the PINN surrogate on linear convection-diffusion equation for

TR TTRITEATEIT

L E p E R B & R B ‘
d =20 d =40 d =60 d =80 =20 d =140 =60 d =280
(a) SCaSML using Quadrature MLP (b) SCaSML using full-history MLP

Figure 6: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray), applying
qudrature SCaSML (teal) to calibrate the PINN surrogate on viscous Burgers’ equation equation for
d = 10, 20, 30, 60.

G.2 INFERENCE TIME SCALING CURVE

In this section, we illustrate how SCaSML enhances estimation accuracy as the number of inference-
time collocation points increases, as outlined in[2.Tand [2.2] Our findings indicate that allocating
additional computational resources during inference consistently improves estimation accuracy.

G.3 IMPROVED SCALING LAW OF SCASML ALGORITHMS

In this section, we consider the viscous Burgers equation as an illustrative example to demonstrate
the improved convergence of SCaSML algorithms, as suggested by Corollary [E.§]

We implemented a physics-informed neural network (PINN) with five hidden layers, each containing
50 neurons and employing hyperbolic tangent activation functions. Because the number of training
points, m, is proportional to the number of iterations in the PINN, the control group was trained using
the Adam optimizer (learning rate 7 x 1074, B1 = 0.9, B2 = 0.99) over iterations set to 400, 2 000,
4000, 6 000, 8000, and 10 000 (as illustrated along the x-axis). The dataset comprised 2 500 interior
points, 100 boundary points, and 160 initial points uniformly sampled from [0, 0.5] x [—0.5,0.5]4,
ensuring that i >> 1. To replicate the conditions of Corollary [E-8] the SCaSML group was trained
over iterations set to [400/(d+1)], [2000/(d+1)], |1000/(d+1)], |6 000/(d+1)], |[8000/(d+
1), and [10000/(d 4+ 1) . In addition, we set the inference level as N = |logm /(25 loglogm) ]
with 3 = 1/2. Theoretically, SCaSML exhibits an improvement in  of 5 + o(1) relative to the
control group.

For the Gaussian process regression surrogate model, training was performed over 20 iterations
using Newton’s method. Due to the increasing inference parameters with m and the consequent
GPU memory constraints, it was not possible to replicate the conditions of Corollary [E.8]exactly
for the Gaussian process model. Consequently, both the control and SCaSML groups employed
identical training sizes, which theoretically does not alter the asymptopic convergence rate(i.e. the
slope). Specifically, the training data consisted of the following pairs of interior and boundary
points: (100, 20), (200, 40), (300, 60), (400, 80), (500, 100), (600, 120), (700, 140), (800, 160),
(900, 180), and (1000, 200), with the z-axis representing the total number of training points. Again,
the inference level was chosen as N = |logm/(26loglogm)]| with § = 1/2, and the SCaSML
continues to exhibit an improvement in y of % + o(1) relative to the control group.
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(a) SCaSML using Quadrature MLP (b) SCaSML using full-history MLP

Figure 7: Violin Plot for comparison of the baseline Gaussian Process surrogate (black), MLP (gray),
applying qudrature SCaSML (teal) to calibrate the Gaussian Process surrogate on viscous Burgers’
equation equation for d = 20, 40, 60, 80.
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d =100 d=120 d =140 d =160
(a) SCaSML using full-history MLP

Figure 8: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray), ap-
plying qudrature SCaSML (teal) to calibrate the PINN surrogate on LQG control problem for
d = 100,120, 140, 160.
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(a) SCaSML using full-history MLP

Figure 9: Violin Plot for comparison of the baseline PINN surrogate (black), MLP (gray), applying
qudrature SCaSML (teal) to calibrate the PINN surrogate on diffusion reaction equation for d =
100, 120, 140, 160.

We observe that, for the PINNs, full-history SCaSML achieves near-monotonic error reduction across
resolutions (with d ranging from 20 to 80), outperforming quadrature SCaSML, which displays
oscillatory behavior at higher dimensions. The Gaussian process-based SCaSML similarly accelerates
convergence during training. In both cases, the error trajectories generated by SCaSML are generally
shifted downward relative to the base models, underscoring its capacity to enhance accuracy without
altering the fundamental training dynamics. These findings underscore SCaSML’s robustness in
diverse settings, ensuring reliable convergence even in high-dimensional or non-monotonic scenarios.
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Figure 10: For the linear convection-diffusion equation, SCaSML for PINNs reliably enhances
performance with increased computational resources. Notably, scaling effects are more pronounced

in lower dimensions, potentially due to the MLP’s convergence rate exhibiting a linear dependency
on the dimensionality d.
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Figure 11: For the viscous Burgers equation, SCaSML with PINN consistently improves performance
as the sample size M increases exponentially.
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Figure 12: For the HIB equation, SCaSML with PINN consistently enhances performance with
increases in the exponential base of the sample size M. However, the scaling curve plateaus at
M = 14, likely due to the relatively small clipping range of SCaSML compared to the solution
magnitude. In general, a larger clipping threshold permits more outliers, thereby requiring additional

samples to mitigate variance and ultimately enhancing accuracy; this trade-off must be considered in
light of available computational resources.
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Figure 13: For the Diffusion Reaction equation, SCaSML with PINN consistently improves perfor-
mance as the exponential base of the sample size M increases.
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Figure 14: We apply quadrature SCaSML to calibrate a PINN surrogate for the d-dimensional viscous
Burgers equation. All plots employ logarithmic scales on both axes, and the slope v denotes the
polynomial convergence rate. Numerical results demonstrate that, when collocation points for testing
and inference are increased simultaneously, SCaSML achieves a faster scaling law than the base
surrogate model.
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Figure 15: We apply full-history SCaSML to calibrate a PINN surrogate for the d-dimensional
viscous Burgers equation. Numerical results demonstrate that, when collocation points for testing and
inference are increased simultaneously, SCaSML achieves a faster scaling law than the base surrogate
model.

G.4 STATISTICAL ANALYSIS OF ERROR REDUCTION AND CONFIDENCE INTERVALS

In response to reviewer feedback requesting a rigorous statistical validation of our results, we
conducted a repeated experiment analysis. Unlike the single-run statistics, this procedure accounts
for the randomness inherent in both the training process (e.g., neural network initialization, optimizer
noise) and the inference process (Monte Carlo sampling seeds).

G.4.1 EXPERIMENTAL DESIGN AND METHODOLOGY

For each problem configuration, we repeated the entire experiment NN,..,s = 10 times with different
random seeds. In each repetition, we performed the following steps:

1. Model Training: A new surrogate model (PINN or GP) was trained from scratch (where
applicable). Settings are the same with[G.T}

2. Inference: The baseline surrogate, the naive MLP solver, and the SCaSML framework were
evaluated on a fixed test set of N5, = 1200 points.

3. Metric Calculation: We computed the Mean Relative L? Error, Mean L' Error, Mean
Squared L2 Error, and for each run.

From these N, repetitions, we calculated the following statistics:

* Mean and Standard Deviation: Computed across the 10 independent runs.

* 95% Confidence Interval (CI): Calculated for the mean metric as [a,b] = [u —

1.96 I i+ 1.96 T ]

* Paired t-test: We performed paired t-tests to compare the error distributions of SCaSML
against the baselines (GP/PINN and MLP) across the repetitions. The null hypothesis is that
the mean difference in error is zero.

The tables below present the full results. Note that while SCaSML requires more execution time (as
expected for inference-time scaling), it achieves statistically significant error reductions (p < 0.001)
across all accuracy metrics and dimensions.
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Figure 16: We apply quadrature SCaSML to calibrate a Gaussian Process surrogate for the
d-dimensional viscous Burgers equation. Numerical results demonstrate that, when collocation
points for testing and inference are increased simultaneously, SCaSML achieves a faster scaling law
than the base surrogate model.

Table 2: Statistical analysis for Viscous Burgers (VB) with GP Surrogate (10 repetitions). Compar-

isons are pairwise against SCaSML.

20d 40d
Metric  Method | Mean + Std 95% C1 Stat (vs SCaSML) ‘ Mean =+ Std 95% CI Stat (vs SCaSML)
GP 1.46e-1 4 2.8e-3 [1.43e-1, 1.50e-1] t=158, p=8e-17 1.84e-1 4= 4.2e-3 [1.76e-1, 1.91e-1] t=127, p=6e-16
Rel L2 MLP 1.84¢-1 & 34e-3 [1.77e-1, 1.89¢-1] t=80.0, p=de-14 | 2.27e-1 & 6.4e-3 [2.17e-1,2.38¢-1] t=73.1, p=9e-14
SCaSML | 6.16e-2 == 2.1e-3 [5.80e-2, 6.50e-2] — 8.91e-2 &+ 3.1e-3 [8.55¢-2,9.60e-2] —
GP 6.97¢-2 £ 1.4e-3 [6.80e-2, 7.20e-2] t=131, p=4e-16 9.42¢-2 + 1.3e-3 [9.28e-2, 9.66e-2] =129, p=5e-16
! MLP 7.62e-2 £ 1.8e-3 [7.34e-2,7.94e-2] t=81.7, p=3e-14 |9.35e-2 £ 1.8e-3 [9.10e-2,9.79¢-2] t=80.6, p=4e-14
SCaSML | 2.49¢-2 + 6.8e-4 [2.39¢-2,2.63e-2] — 4.0le-2 £ 1.0e-3 [3.83¢-2,4.20e-2] —
GP 7.63¢-3 + 3.1e-4 [7.26e-3, 8.18¢-3] t=79.8, p=de-14 | 1.29¢-2 £ 4.3e-4 [1.25e-2, 1.39%¢-2] t=110, p=2e-15
L2 (sq) MLP 1.22e-2 + 5.3e-4 [1.13e-2, 1.28e-2] t=59.3, p=6e-13 | 1.95¢-2 £ 1.2e-3 [1.80e-2, 2.19¢-2] t=46.9, p=5e-12
SCaSML | 1.37e-3 £ 9.1e-5 [1.25¢-3, 1.53e-3] — 3.02e-3 + 2.0e-4 [2.75¢-3, 3.50e-3] —
60d 80d
Metric  Method | Mean + Std 95% CI Stat (vs SCaSML) | Mean =+ Std 95% CI Stat (vs SCaSML)
GP 2.34e-1 £ 6.2e-3 [2.22e-1, 2.42¢-1] =174, p=4e-17 2.67e-1 £ 4.6e-3 [2.58e-1,2.72e-1] =141, p=2e-16
Rel L2 MLP 2.52e-1 &+ 8.5¢-3 [2.40e-1, 2.64e-1] 1=36.9, p=4e-11 | 2.75e-1 + 8.2e-3 [2.62e-1,2.8%¢-1] t=43.7, p=Je-12
SCaSML | 1.23e-1 4 4.7e-3 [l.14e-1, 1.28e-1] — 1.53e-1 + 3.0e-3 [1.48e-1, 1.57e-1] —
GP 1.26e-1 4= 2.0e-3 [1.23e-1, 1.30e-1] =222, p=4e-18 1.49e-1 + 2.6e-3 [1.46e-1, 1.54e-1] t=134, p=4e-16
! MLP 1.01e-1 4= 3.9e-3 [9.43e-2, 1.07e-1] =26.3, p=8e-10 | 1.09¢-1 4 2.9¢-3 [1.04e-1, 1.13e-1] t=35.6, p=5e-11
SCaSML |5.98¢-2 + 1.7e-3 [5.68¢-2, 6.20e-2] — 7.90e-2 + 1.6e-3 [7.65e-2, 8.25¢-2] —
GP 2.15e-2 £ 6.8e-4 [2.05¢-2, 2.26e-2] t=124, p=8e-16 2.89¢-2 + 8.1e-4 [2.80e-2, 3.05¢-2] t=118, p=le-15
L2 (sq) MLP 2.50e-2 + 2.1e-3 [2.23e-2, 2.84e-2] t=27.1, p=6e-10 3.07e-2 £ 2.2e-3 [2.73e-2,3.36e-2] t=31.8, p=le-10
SCaSML | 6.00e-3 =+ 3.2e-4 [5.40e-3, 6.41e-3] — 9.49¢-3 + 3.7e-4 [8.98e-3, 1.03e-2] —

G.5 RELATIVE L? ERROR IMPROVEMENT

In this section, we provide supplementary plots that visualize the relative improvement in L? error
achieved by SCaSML over the baseline surrogate model (PINN or GP). The percentage improvement

is calculated as:
<||Err - ||ErrorsCaSMLL2> X 100

Improvement %
|| Errorsurogate|| .2
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Figure 17: We apply full-history SCaSML to calibrate a Gaussian Process surrogate for the
d-dimensional viscous Burgers equation. Numerical results demonstrate that, when collocation
points for testing and inference are increased simultaneously, SCaSML achieves a faster scaling law
than the base surrogate model.
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Table 3: Statistical analysis for Viscous Burgers (VB) with PINN Surrogate (10 repetitions).

20d 40d
Metric  Method |Mean =+ Std 95% CI Stat (vs SCaSML) | Mean + Std 95% CI Stat (vs SCaSML)
PINN 1.25e-2 + 3.9¢-4 [1.19e-2, 1.31e-2] =172, p=4e-17 4.51e-2 £ 1.3e-3 [4.23e-2,4.67e-2] t=135, p=3e-16
Rel L2 MLP 8.34e-2 + 2.2e-3 [8.08e-2, 8.78e-2] t=108, p=3e-15 1.06e-1 &+ 2.2e-3 [1.03e-1, 1.10e-1] t=111, p=2e-15
SCaSML | 4.37e-3 &£ 2.9¢-4 [3.90e-3, 4.78¢-3] — 3.38e-2 + 1.1e-3 [3.16e-2,3.53e-2] —
PINN 5.83e-3 £ 1.8e-4 [5.48e-3, 6.11e-3] 1=84.5,p=2e-14 |2.16e-2 &+ 4.5¢-4 [2.08e-2,2.22¢e-2] (=77.7, p=5e-14
! MLP 3.43e-2 + 1.1e-3 [3.29e-2,3.61e-2] 1=93.5,p=9e-15 |[4.38e-2 &+ 9.8e-4 [4.27e-2,4.55¢e-2] =104, p=3e-15
SCaSML | 1.44e-3 £ 4.8e-5 [1.38e-3, 1.55¢-3] — 1.41e-2 £ 3.5e-4 [1.36e-2, 1.45¢e-2] —
PINN 5.63e-5 &+ 3.6e-6 [5.03e-5, 6.23e-5] t=57.4, p=Te-13 | 7.72e-4 £ 3.3e-5 [7.19e-4, 8.17e-4] t=96.6, p=Te-15
L? (sq) MLP 2.50e-3 £ 0.0 [2.30e-3, 2.82e-3] 1=48.0, p=4e-12 | 4.29e-3 4 2.4e-4 [3.91e-3,4.72¢-3] t=51.6, p=2e-12
SCaSML | 6.90e-6 £ 9.4e-7 [5.55¢e-6, 8.30e-6] — 4.34e-4 4 2.2e-5 [4.03e-4, 4.66e-4] —
60d 80d
Metric  Method | Mean =+ Std 95% CI Stat (vs SCaSML) | Mean + Std 95% CI Stat (vs SCaSML)
PINN 4.62e-2 + 1.1e-3 [4.43e-2,4.75e-2] t=203, p=9e-18 6.59¢-2 + 2.0e-3 [6.17e-2, 6.95¢-2] =168, p=5e-17
Rel L2 MLP 1.17e-1 £ 3.2e-3 [l.14e-1, 1.23e-1] t=75.0, p=Te-14 1.22e-1 + 3.7e-3 [1.15e-1, 1.28e-1] t=44.8, p=Te-12
SCaSML | 3.53e-2 + 9.8e-4 [3.36e-2, 3.65¢-2] — 5.51e-2 £ 1.9e-3 [5.13e-2,5.90e-2] —
PINN 2.24e-2 + 4.4e-4 [2.14e-2,2.29e-2] t=134, p=4e-16 3.20e-2 £ 6.6e-4 [3.10e-2, 3.31e-2] =182, p=2e-17
! MLP 4.79¢-2 + 1.7e-3 [4.55e-2, 5.04e-2] 1=56.8, p=8e-13 [4.94e-2 + 1.2¢-3 [4.74e-2,5.12e-2] t=50.0, p=3e-12
SCaSML | 1.50e-2 4 4.3e-4 [1.41e-2, 1.55e-2] — 2.46e-2 + 6.9e-4 [2.34e-2,2.58e-2] —
PINN 8.40e-4 = 2.9e-5 [7.72e-4,8.71e-4] t=128, p=5e-16 1.76e-3 + 8.6e-5 [1.64e-3, 1.95¢e-3] =136, p=3e-16
L? (sq) MLP 5.44e-3 £ 3.5e-4 [4.99e-3, 6.09e-3] 1=44.0, p=8e-12 | 6.08e-3 £ 3.5¢-4 [5.37e-3, 6.55e-3] (=36.9, p=de-11
SCaSML | 4.92e-4 + 2.2¢-5 [4.43e-4,5.18e-4] — 1.23e-3 + 7.5e-5 [1.13e-3, 1.41e-3] —

Table 4: Statistical analysis for Linear Convection-Diffusion (LCD) (10 repetitions).

10d 20d
Metric  Method | Mean + Std 95% CI Stat (vs SCaSML) | Mean =+ Std 95% CI Stat (vs SCaSML)
PINN 4.85e-2 + 2.2e-3 [4.43e-2, 5.23e-2] t=34.1, p=8e-11 8.60e-2 + 3.6e-3 [7.80e-2,9.03e-2] t=39.2, p=2e-11
Rel L2 MLP 2.30e-1 &£ 5.5e-3 [2.20e-1, 2.36e-1] t=134, p=4e-16 2.41e-1 £ 5.5¢-3 [2.32e-1,2.48e-1] t=129, p=5e-16
SCaSML |2.77¢-2 + 8.6e-4 [2.60e-2, 2.90e-2] — 5.07e2 4+ 1.8e-3 [4.84e-2,5.37¢-2] —
PINN 3.01e-2 £ 1.1e-3 [2.83e-2,3.23e-2] t=35.0, p=6e-11 8.71e-2 £ 2.2e-3 [8.24e-2, 8.95¢-2] t=71.5, p=le-13
! MLP 1.68e-1 + 1.7e-3 [1.65e-1, 1.70e-1] =285, p=4e-19 2.38e-1 £ 3.0e-3 [2.31e-1,2.42e-1] =241, p=2e-18
SCaSML | 1.77e-2 4 4.3e-4 [1.71e-2, 1.84e-2] — 4.67e-2 £ 1.3e-3 [4.50e-2, 4.83e-2] —
PINN 2.20e-3 + 1.8e-4 [1.98e-3, 2.58e-3] t=26.7, p=7e-10 1.29e-2 + 7.9e-4 [1.15e-2, 1.41e-2] t=36.7, p=de-11
L? (sq) MLP 4.96e-2 £ 1.0e-3 [4.85e-2, 5.16e-2] t=154, p=le-16 1.02e-1 & 3.1e-3 [9.47e-2, 1.05e-1] =102, p=4e-15
SCaSML | 7.20e-4 &+ 2.3e-5 [6.82e-4, 7.54e-4] — 4.50e-3 £ 2.8e-4 [4.05e-3,4.91e-3] —
30d 60d
Metric  Method |Mean =+ Std 95% CI Stat (vs SCaSML) | Mean + Std 95% CI Stat (vs SCaSML)
PINN 1.57e-1 £ 9.5e-3 [1.43e-1, 1.74e-1] t=19.7, p=1e-08 |2.85e-1 £ 8.7e-3 [2.74e-1,2.96e-1] (=55.2, p=le-12
Rel L2 MLP 2.42e-1 £ 8.1e-3 [2.29e-1, 2.54e-1] t=83.3, p=3e-14 |2.46e-1 £ 4.8e-3 [2.38e-1,2.52e-1] =106, p=3e-15
SCaSML | 9.69¢-2 + 4.6e-3 [9.12¢-2, 1.02e-1] — 1.25e-1 4 2.8e-3 [1.21e-1, 1.30e-1] —
PINN 1.81e-1 £ 6.0e-3 [1.72e-1, 1.8%¢-1] t=37.0, p=4e-11 4.90e-1 4= 8.2e-3 [4.77e-1,4.99¢-1] t=83.4, p=3e-14
! MLP 2.8%e-1 + 4.6e-3 [2.82¢-1,2.95¢-1] t=316, p=2e-19 4.18e-1 £+ 4.5¢-3 [4.11e-1,4.24e-1] =219, p=4e-18
SCaSML | 1.05e-1 &+ 3.8¢-3 [1.0le-1, 1.11e-1] — 1.96e-1 + 4.7e-3 [1.86e-1,2.02e-1] —
PINN 6.43e-2 £+ 9.2¢-3 [5.50e-2, 8.25¢-2] t=14.4, p=2e-07 4.13e-1 £ 1.7e-2 [3.87e-1,4.39%-1] t=55.7, p=le-12
L2 (sq) MLP 1.52e-1 + 6.3e-3 [1.43e-1, 1.62e-1] t=81.8, p=3e-14 [3.06e-1 &+ 7.7e-3 [2.96e-1, 3.20e-1] t=134, p=4e-16
SCaSML | 2.44e-2 + 2.1e-3 [2.20e-2, 2.80e-2] — 7.97e-2 4 3.9e-3 [7.36e-2, 8.54e-2] —

These plots directly visualize the 20-80% error reduction claimed in the main text and demonstrate
the effectiveness of our correction framework across all test cases and dimensions. The experimental

settings are identical to those used for violin plots in Appendix [G.1]

Mean Relative L2 Error

_44.0%

0.00
PINN

-88.0%

020

010

Mean Relative L2 Error

0.00

MLP SCashL

(a)d =10

79.9%

-47.5%

PINN

(b)d =20

e

Mean Relative L2 Error

005

SCasML

59.7%

PINN

(¢)d =30

MLP

Mean Relative L2 Error

ScasML

56.3%

PINN

(d)d =60

MLP SCasML

Figure 18: Relative L? error improvement (%) of SCaSML (full-history) over the baseline PINN
surrogate on the linear convection-diffusion equation for d = 10, 20, 30, 60.
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Table 5: Statistical analysis for Hamilton-Jacobi-Bellman (LQG) (10 repetitions).

100d 120d
Metric  Method | Mean + Std 95% CI Stat (vs SCaSML) | Mean + Std 95% CI Stat (vs SCaSML)
PINN 9.05e-2 + 2.5¢-3 [8.57e-2,9.49e-2] t=6.5, p=le-04 9.13e-2 + 2.0e-3 [8.77e-2,9.43e-2] t=25.9, p=9e-10
Rel L2 MLP 5.69e+0 &£ 2.0e-2 [5.66e+0, 5.73e+0] =927, p=1e-23 5.50e+0 &£ 1.7e-2 [5.48e+0, 5.53e+0] t=1073, p=3e-24
SCaSML | 7.27e-2 4 9.4e-3 [6.48e-2,9.85e-2] — 6.42e-2 + 1.7e-3  [6.17e-2, 6.68e-2] —
PINN 1.50e-1 & 3.0e-3 [1.44e-1, 1.55e-1] 1=7.2, p=5e-05 1.68e-1 &+ 3.3e-3 [1.62e-1, 1.74e-1]  t=146, p=2e-16
Lt MLP 1.21e+1 & 1.3e-2 [1.21e+], 1.21e+1] t=1599, p=7e-26 |1.22e+1 =+ 1.4e-2 [1.21e+1, 1.22e+1] =2531, p=1e-27
SCaSML | 1.09e-1 £ 1.8e-2 [9.68e-2, 1.5%-1] - 1.02e-1 £ 2.3e-3 [9.81e-2, 1.05e-1] —
PINN 3.70e-2 £ 1.8e-3 [3.34e-2,4.00e-2] t=6.2, p=2e-04 4.09e-2 4 1.8e-3 [3.79¢-2,4.39e-2] t=75.8, p=6e-14
L? (sq) MLP 1.46e+2 £ 2.8e-1 [1.46e+2, 1.47e+2] t=1623, p=Te-26 | 1.48e+2 & 3.0e-1 [1.48e+2, 1.49¢+2] t=1576, p=8e-26
SCaSML | 2.42e-2 + 7.0e-3 [1.91e-2,4.37e-2] - 2.02e-2 £ 1.1e-3 [1.88e-2,2.20e-2] -
140d 160d
Metric  Method | Mean + Std 95% CI Stat (vs SCaSML) | Mean + Std 95% CI Stat (vs SCaSML)
PINN 1.03e-1 + 1.8e-3 [1.0le-1, 1.06e-1]  t=3.7, p=5e-03 1.10e-1 + 2.4e-3  [1.06e-1, 1.14e-1]  t=21.7, p=4e-09
Rel L2 MLP 5.36e+0 £ 2.0e-2 [5.34e+0, 5.40e+0] =823, p=3e-23 5.26e+0 £ 1.9e-2 [5.24e+0, 5.29¢+0] =870, p=2e-23
SCaSML | 8.52e-2 4 1.5e-2  [7.45¢e-2, 1.15e-1] — 8.48¢-2 + 5.0e-3 [7.88e-2,9.49e-2] -
PINN 1.92e-1 + 3.5¢-3 [1.87e-1,1.99e-1] t=4.3, p=2¢-03 2.11e-1 £ 3.3e-3 [2.05e-1,2.17e-1]  t=26.0, p=9e-10
! MLP 1.23e+1 &+ 1.4e-2 [1.22e+1, 1.23e+1] t=866, p=2e-23 1.23e+1 &+ 1.3e-2 [1.23e+1, 1.23e+1] t=2170, p=5e-27
SCaSML | 1.41e-1 4= 3.8e-2 [l.16e-1,2.14e-1] — 1.43e-1 £ 1.0e-2 [1.32e-1, 1.61e-1] -
PINN 5.55e-2 + 1.8e-3 [5.35e-2,5.89e-2] t=3.4, p=8e-03 6.60e-2 + 2.5¢-3  [6.15e-2, 7.04e-2] =253, p=1e-09
L? (sq) MLP 1.50e+2 & 3.1e-1 [1.50e+2, 1.51e+2] t=1485, p=1e-25 |1.52e+2 =4 3.0e-1 [1.51e+2, 1.52e+2] (=1583, p=8e-26
SCaSML | 3.90e-2 4 1.5e-2 [2.90e-2, 6.74e-2] — 3.95e-2 + 4.7e-3 [3.43e-2,4.87e-2] -

Table 6: Statistical analysis for Diffusion-Reaction (DR) (10 repetitions).

100d
Metric  Method |Mean + Std 95% CI Stat (vs SCaSML)

120d
Mean + Std 95% CI Stat (vs SCaSML)

PINN 9.83e-3 £ 2.6e-4 [9.45¢-3, 1.02e-2] t=14.3, p=2e-07 1.10e-2 + 3.0e-4 [1.04e-2, 1.13e-2] t=25.9, p=9¢-10
Rel L2 MLP 8.62e-2 + 2.6e-3 [8.20e-2, 9.05e-2] t=92.6, p=le-14 |9.0le-2 4 1.2e-3 [8.78e-2,9.17e-2] (=249, p=le-18
SCaSML [ 9.19e-3 & 2.8e-4 [8.63e-3,9.61e-3] — 1.00e-2 + 2.8¢e-4 [9.61e-3, 1.03e-2] —

PINN 1.20e-2 + 3.2e-4 [1.14e-2, 1.24e-2] t=14.1, p=2e-07 | 1.36e-2 £ 4.0e-4 [1.29e-2, 1.41e-2] t=16.7, p=4e-08
Lt MLP 9.37e-2 £ 2.6e-3 [8.97e-2,9.77e-2] t=102, p=4e-15 9.77e-2 £ 1.9¢-3 [9.51e-2, 1.0le-1] t=142, p=2e-16
SCaSML | 1.14e-2 4 3.4e-4 [1.07e-2, 1.19e-2] — 1.24e-2 + 2.8e-4 [1.20e-2, 1.28e-2] —

PINN 2.48e-4 + 1.3e-5 [2.29¢-4,2.68¢-4] t=14.2, p=2e-07 |3.09e-4 £ 1.7e-5 [2.79e-4,3.29e-4] t=24.3, p=2¢-09
L? (sq) MLP 1.91e-2 + 1.1e-3 [1.73e-2,2.08¢-2] t=53.1, p=le-12 |2.09¢-2 + 4.9e-4 [1.98e-2,2.15¢-2] (=132, p=de-16

SCaSML | 2.17e-4 &£ 1.3e-5 [1.91e-4,2.35¢-4] — 2.57e-4 £ 1.4e-5 [2.38e-4,2.72e-4] —
140d 160d
Metric  Method |Mean =+ Std 95% CI Stat (vs SCaSML) | Mean + Std 95% CI Stat (vs SCaSML)

PINN 3.23e-2 4+ 5.4e-4 [3.14e-2, 3.34e-2] =474, p=4e-12 |3.59¢-2 4 8.1e-4 [3.47e-2,3.71e-2] t=72.4, p=9e-14
Rel L2 MLP 8.96e-2 + 2.3e-3 [8.69e-2, 9.47e-2] t=80.6, p=4e-14 | 8.74e-2 4 2.5¢-3 [8.28e-2, 9.17e-2] (=62.1, p=4e-13
SCaSML | 3.00e-2 + 4.8e-4 [2.92e-2, 3.09¢e-2] — 3.37e-2 + 8.2e-4 [3.24e-2,3.48e-2] —

PINN 4.05e-2 £ 8.0e-4 [3.91e-2,4.21e-2] t=33.5,p=9e-11 |4.50e-2 £ 9.5¢-4 [4.36e-2,4.67e-2] t=35.5, p=5e-11
! MLP 9.89¢-2 + 2.3e-3 [9.53e-2, 1.04e-1] t=84.2, p=2e-14 9.6le-2 + 2.3e-3 [9.34e-2, 1.01e-1] t=62.9, p=3e-13

SCaSML | 3.77e-2 & 6.5¢-4 [3.64e-2, 3.88e-2] — 4.22e-2 £ 9.9e-4 [4.06e-2,4.39¢-2] —

PINN 2.67e-3 £ 8.7e-5 [2.53¢-3,2.85¢-3] t=41.8,p=le-11 |3.31e-3 £ 1.5e-4 [3.10e-3,3.53e-3] t=68.9, p=le-13
L2 (sq) MLP 2.06e-2 £ 1.0e-3 [1.93e-2,2.30e-2] t=55.5, p=le-12 |1.96e-2 £ l.1e-3 [1.77e-2,2.15e-2] t=46.9, p=5e-12

SCaSML [ 2.31e-3 £ 7.0e-5 [2.19¢-3, 2.44e-3] — 291e-3 + l.4e-4 [2.70e-3,3.10e-3] —

G.6 POINTWISE ERROR REDUCTION ANALYSIS

To further investigate the robustness of our method, we present scatter plots visualizing the pointwise
error difference between the baseline methods (Surrogate and Naive MLP) and our proposed SCaSML.
The settings are still the same with Appendix [G.1}

For a given test point x, we calculate the difference in absolute error:
AError(x) = |Errorpaseline ()| — |Errorscasmr ()]

In the following figures:

* Red points (AError > 0) indicate locations where SCaSML has lower error than the
baseline.

* Blue points (AError < 0) indicate locations where SCaSML has higher error.

We provide comparisons for both baselines: Surrogate vs. SCaSML (showing the correction of the
initial model) and Naive MLP vs. SCaSML (showing the benefit of using the surrogate as a control
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(a) SCaSML using Quadrature MLP (b) SCaSML using full-history MLP

Figure 19: Relative L? error improvement (%) of SCaSML over the baseline PINN surrogate on the

viscous Burgers’ equation for d = 20, 40, 60, 80.
=80

d =20 d =140 d =60 = d=20 d =140 d =60 d=280
(a) SCaSML using Quadrature MLP (b) SCaSML using full-history MLP

Figure 20: Relative L? error improvement (%) of SCaSML over the baseline Gaussian Process
surrogate on the viscous Burgers’ equation for d = 20, 40, 60, 80.
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Figure 21: Relative L? error improvement (%) of SCaSML (full-history) over the baseline PINN
surrogate on the LQG control problem for d = 100, 120, 140, 160.
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Figure 22: Relative L? error improvement (%) of SCaSML (full-history) over the baseline PINN
surrogate on the diffusion reaction equation for d = 100, 120, 140, 160.

variate). Across all experiments, the dominance of red points confirms that SCaSML systematically
improves accuracy locally across the high-dimensional domain.
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Figure 23: Pointwise error differences for the Linear Convection-Diffusion equation. SCaSML
outperforms both the pre-trained PINN and the naive MLP solver across all dimensions.
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Figure 24: Pointwise error differences for the Viscous Burgers’ equation (PINN Surrogate). We
observe that SCaSML corrects the PINN’s error (top) and significantly outperforms the standalone
MLP (bottom).

G.7 PERFORMANCE COMPARISON UNDER FIXED COMPUTATIONAL BUDGETS

A central question regarding inference-time scaling is whether the performance gain is simply a
result of increased wall-clock time, or if the SCaSML framework utilizes computational resources
more efficiently than standard training. To address this, we conducted a Fixed Computational Budget
analysis.
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Figure 25: Pointwise error differences for the Viscous Burgers’ equation (Gaussian Process Surro-
gate).
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Figure 26: Pointwise error differences for the LQG control problem. The contrast in the bottom

row highlights that the naive MLP fails in high dimensions, whereas SCaSML (stabilized by the
surrogate) performs well.

We define a "unit budget” based on a baseline number of training iterations (e.g., 2,000 iterations
for a PINN), other settings are still the same with [G.I} We then scale this budget by factors of
x1, x2,..., x16. For each budget level, we compare three allocation strategies:

1. Pure Training (Baseline PINN): The entire time budget is allocated to training the neural
network. A budget of xk implies training for k& X Np,s. iterations.
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Figure 27: Pointwise error differences for the Diffusion-Reaction equation.

2. Pure Simulation (Naive MLP): The entire time budget is allocated to generating Monte
Carlo paths for the MLP solver.

3. Hybrid Allocation (SCaSML): This represents our proposed strategy. We allocate a small
fraction of the budget (specifically 1/(d+ 1)) to training a "weak” surrogate, and allocate the
remaining majority of the budget to inference-time correction via the Structural-preserving
Law of Defect.

This setup ensures a fair comparison where all methods consume approximately the same total
wall-clock time (Training Time + Inference Time). We performed this analysis on the Linear
Convection-Diffusion (LCD) equation (d = 10, 20) and the Viscous Burgers (VB) equation (d = 20)
using the full-history SCaSML variant.

The results are visualized in Figure 28]
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Figure 28: Error vs. Computational Budget. The x-axis represents the total computational budget
multiplier (log scale), and the y-axis represents the Relative L? Error (log scale). SCaSML (teal
triangles) consistently achieves lower error than the Baseline PINN (black circles) and Naive MLP
(gray squares) for the same total cost.

As shown in Figure 28] the SCaSML error curve consistently lies below the PINN training curve.
This confirms that allocating marginal compute to inference-time correction yields a higher return on
investment (ROI) than allocating it to further training.
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Specifically, for the Viscous Burgers equation (d = 20), we observe that training the PINN for
significantly longer (moving right on the x-axis) results in diminishing returns due to the optimiza-
tion difficulty of high-frequency error components. In contrast, SCaSML leverages the rigorous
convergence rate of the Monte Carlo correction to reduce error rapidly. This empirically validates
our theoretical claim that the hybrid ML+MC scaling law (O(m~"~1/2)) is superior to the pure ML
scaling law (O(m~7)).

G.8 PERFORMANCE COMPARISON: LARGE PINN vSs. SCASML CORRECTION

A critical question in SciML is whether the computational budget is better spent on training a larger,
more expressive neural network (increasing model capacity) or on post-hoc inference-time correction
(SCaSML). To address this, we conducted a second Fixed Budget analysis where we scaled the model
architecture while keeping the number of training iterations fixed.

We define a “unit budget” (B = 1) corresponding to our standard PINN configuration: a fully
connected network with width Wp,se = 50 and depth Dy, = 5. As the budget B increases by
factors of x1, x2, x4, we scale the network architecture to increase its capacity. Specifically, the
scaled width Wy and depth D p are defined as:

WB = I_Wbase . \/EJv DB = maX(Dbasea I_Dbase + lOgQ(B)J) (121)

This scaling strategy ensures that the network’s parameter count and computational cost per iteration
grow with the budget, allowing us to test the limits of model capacity.

We compare three strategies under these scaling rules using the Linear Convection-Diffusion (d =
10, 20) and Viscous Burgers (d = 20) equations:

1. Large PINN (Model Scaling): We train the scaled network architecture (Wg, Dp) for a
fixed number of iterations (/V;¢e, = 2000). The optimizer is Adam with a learning rate of
7 x 10~* and Glorot normal initialization. The increased computational cost arises entirely
from the more expensive forward and backward passes of the larger model.

2. SCaSML (Inference Correction): We employ the SCaSML framework where the surrogate
backbone utilizes the available budget. Crucially, the method allocates resources to the
inference-time Monte Carlo correction (using the full-history MLP solver with basis M = 10
and levels NV = 2) rather than relying solely on the surrogate’s capacity.

3. Naive MLP (Pure Simulation): The entire time budget is allocated to generating Monte
Carlo paths for the MLP solver, serving as a pure simulation baseline.

The results (Figure 29) demonstrate that simply increasing the PINNs capacity yields diminishing
returns; the model hits a “data efficiency wall” where additional parameters do not translate to
proportionally lower errors for high-frequency defects. In contrast, SCaSML consistently achieves
lower error for the same total compute time, proving that inference-time correction is a more efficient
user of marginal compute than model scaling for these high-dimensional problems.
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Figure 29: Large PINN vs. SCaSML. Comparison of error rates when the computational budget is
used to scale up the PINN architecture (black) versus performing inference-time correction (teal).
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